几种重要的概率分布性质

几种重要的概率分布性质
几种重要的概率分布性质

1 贝努里分布

它的概率分布为:P{X=1}=p,P{X=0}=1-p

它也称两点分布或(0-1)分布。它描述一次贝努里实验中,成功或失败的概率。

2 二项分布

P{X=k}=Cnkpk(1-p)n-k, k=0,1,…,n

它描述n次贝努里实验中事件A出现k次概率。

3 几何分布

P{X=k}=p(1-p)k-1, k=1,2, …

它描述在k次贝努里实验中首次出现成功的概率。

几何分布有一个重要的性质-----后无效性:在前n次实验未出现成功的条件下,再经过m次实验(即在n+m次实验中)首次出现成功的概率,等于恰好需要进行m次实验出现首次成功的无条件概率。用式子表达:

P{X=n+m | X>n}=P{X=m} (试证明之)

这种与过去历史无关的性质称为马尔可夫特性。

几何分布在我们下面讲的排队论中是非常重要。它可以描述某一任务(或顾客)的服务持续时间。

4 泊松分布(Poisson)

P{X = k} = λk e-λ/ k!k=0,1,2,…

泊松分布是最重要的离散型概率分布之一,它作为表述随机现象的一种形式,在计算机性能评价中扮演了重要的角色。

5 指数分布

它是一种连续型的概率分布,它的概率密度:

f(x)=λe-λx x≥0

f(x)=0 x<0

它的分布函数:

F(x)=1-e-λx x≥0

指数分布的一个有用的性质是它的数学期望等于标准差:

μx = σx = 1/λ

在连续型随机变量中,只有指数分布具有无后效性。

即:若随机变量ζ服从指数分布,对任意的 s>0 ,t>0 ,有P{ζ>s+t|ζ>s}=P{ζ>t}

在离散型随机变量中,只有几何分布具有无后效性。这两种分布可以分别用来描绘离散等待时间和连续等待时间。

在排队理论和随机Petri网中,指数分布是很重要的。在实际系统模型中,一般都要假定任务(或顾客)的到来是泊松分布的。实践也证明:这种假设是有效。

6 k-爱尔朗分布

f(x)=(λkx)n-1λke-λkx /(n-1)! x≥0

f(x)=0 x<0

k-爱尔朗分布的数学特征为:

E[X]=1/λ;Var[X]=1/kλ2

如果k个随机变量Xi,i=1,2,…,k,分别服从指数分布,那么随机变量X=X1+X2+ …+Xk服从爱尔朗分布。即:具有k-爱尔朗分布的随机变量可以看作具有同一指数分布的独立的k个随机变量之和。

k-爱尔朗分布在排队模型中,得到广泛应用。如:假定顾客在到达窗口排队必须通过一个关口,这个关口由k层构成,通过每层的时间服从参数为kλ的指数分布,这样顾客通过整个关口到达窗口排队时,就实现了爱尔朗分布。

16种常见概率分布概率密度函数、意义及其应用

目录 1. 均匀分布 (1) 2. 正态分布(高斯分布) (2) 3. 指数分布 (2) 4. Beta分布(:分布) (2) 5. Gamm 分布 (3) 6. 倒Gamm分布 (4) 7. 威布尔分布(Weibull分布、韦伯分布、韦布尔分布) (5) 8. Pareto 分布 (6) 9. Cauchy分布(柯西分布、柯西-洛伦兹分布) (7) 2 10. 分布(卡方分布) (7) 8 11. t分布................................................ 9 12. F分布 ............................................... 10 13. 二项分布............................................ 10 14. 泊松分布(Poisson 分布)............................. 11 15. 对数正态分布........................................

1. 均匀分布 均匀分布X ~U(a,b)是无信息的,可作为无信息变量的先验分布。

2. 正态分布(高斯分布) 当影响一个变量的因素众多,且影响微弱、都不占据主导地位时,这个变量 很可能服从正态分布,记作 X~N (」f 2)。正态分布为方差已知的正态分布 N (*2)的参数」的共轭先验分布。 1 空 f (x ): —— e 2- J2 兀 o' E(X), Var(X) _ c 2 3. 指数分布 指数分布X ~Exp ( )是指要等到一个随机事件发生,需要经历多久时间。其 中,.0为尺度参数。指数分布的无记忆性: Plx s t|X = P{X t}。 f (X )二 y o i E(X) 一 4. Beta 分布(一:分布) f (X )二 E(X) Var(X)= (b-a)2 12 Var(X)二 1 ~2

几种重要的概率分布

1、均匀分布(uniform) 定义:设连续型 随机变量X的分布函数为F(x)=(x-a)/(b-a),a≤x≤b 则称随机变量X服从[a,b]上的均匀分布,记为X~U[a,b]. 若[x1,x2]是[a,b]的任一子区间,则P{x1≤x≤x2}=(x2-x1)/(b-a) 这表明X落在[a,b]的子区间内的概率只与子区间长度有关,而与子区间位置无关,因此X落在[a,b]的长度相等的子区间内的可能性是相等的,所谓的均匀指的就是这种等可能性. 在实际问题中,当我们无法区分在区间[a,b]内取值的随机变量X取不同值的可能性有何不同时,我们就可以假定X服从[a,b]上的均匀分布 若随机变量X的密度函数为 则称随机变量X服从区间[a,b]上的均匀分布。记作X~U(a,b). 均匀分布的分布函数为

图像如下图所示: 均匀分布的数学期望E(X)=1/(2*(b+a)),方差为D(X)=1/(12*(b-a)2)。 2、正态分布 如果连续型随机变量X的密度函数为

其中,-∞

3.F分布 F分布定义为: 设X、Y为两个独立的随机变量,X服从自由度为k1的>2分布,Y服从自由度为k2的>2 分布,这2 个独立的>2分布被各自的自由度除以后的比率这一统计量的分布。即:上式F服从第一自由度为k1,第二自由度为k2的F分布 F分布的性质 1、它是一种非对称分布; 2、它有两个自由度,即n1 -1和n2-1,相应的分布记为F(n1 –1,n2-1),n1 –1通常称为分子自由度,n2-1通常称为分母自由度; 3、F分布是一个以自由度n1 –1和n2-1为参数的分布族,不同的自由度决定了F 分布的形状。 4、F分布的倒数性质:Fα,df1,df2=1/F1-α,df1,df2 密度函数表达式

几种常见的概率分布

几种常见的概率分布 一、 离散型概率分布 1. 二项分布 n 次独立的贝努利实验,其实验结果的分布(一种结果出现x 次的概率是多少的分布)即为二项分布 应用二项分布的重要条件是:每一种实验结果在每次实验中都有恒定的概率,各实验之间是重复独立的 平均数:(Y)np X E μ== 方差与标准差:2(1)X np P σ=- ;X σ=特例:(0-1)分布 若随机变量X 的分布律为 1(x k)p (1p)k k p -==-k=0,1;0

复抽样,抽样成功的次数X 的概率分布服从超几何分布,如福利彩票 二、 连续型概率分布 1. 均匀分布 若随机变量X 具有概率密度函数 (x)f = 则称X 在区间(a ,b )上服从均匀分布,记为X ~U(a ,b) 在区间(a ,b )上服从均匀分布的随机变量X 的分布函数为 0F(x),1 x a x a a x b b a b x ?是常数, 则称X 服从以λ为参数的指数分布,记作~()X E λ,X 的分布函数为 1,0(x)0,0 x e x F x λ-?-≥=?

概率论中几种常用重要分布

概率论中几种常用的重要的分布 摘要:本文主要探讨了概率论中的几种常用分布,的来源和他们中间的关系。其在实际中的应用。 关键词 1 一维随机变量分布 随机变量的分布是概率论的主要内容之一,一维随机变量部分要介绍六中常 用分布,即( 0 -1) 分布、二项分布、泊松分布、均匀分布、指数分布和正态分布. 下面我们将对这六种分布逐一地进行讨论. 随机事件是按试验结果而定出现与否的事件。它是一种“定性”类型的概念。为了进一步研究有关随机试验的问题,还需引进一种“定量”类型的概念,即,根据试验结果而定取什么值(实值或向量值)的变数。称这种变数为随机变数。本章内将讨论取实值的这种变数—— 一维随机变数。 定义1.1 设X 为一个随机变数,令 ()([(,)])([]),()F x P X x P X x x =∈-∞=-∞ +∞. 这样规定的函数()F x 的定义域是整个实轴、函数值在区间[0,1]上。它是一个普通的函数。成这个函数为随机函数X 的分布函数。 有的随机函数X 可能取的值只有有限多个或可数多个。更确切地说:存在着有限多个值或可数多个值12,,...,a a 使得 12([{,,...}])1P X a a ∈= 称这样的随机变数为离散型随机变数。称它的分布为离散型分布。 【例1】下列诸随机变数都是离散型随机变数。 (1)X 可能取的值只有一个,确切地说,存在着一个常数a ,使([])1P X a ==。称这种随机变数的分布为退化分布。一个退化分布可以用一个常数a 来确定。 (2)X 可能取的值只有两个。确切地说,存在着两个常数a ,b ,使 ([{,}])1P X a b ∈=.称这种随机变数的分布为两点分布。如果([])P X b p ==,那 么,([])1P X a p ===-。因此,一个两点分布可以用两个不同的常数,a b 及一个在区间(0,1)内的值p 来确定。 特殊地,当,a b 依次为0,1时,称这两点分布为零-壹分布。从而,一个零-壹分布可以用一个在区间(0,1)内的值p 来确定。 (3)X 可能取的值只有n 个:12,...,a a (这些值互不相同),且,取每个i a 值

第5、6章习题常用的概率分布

常用的概率分布 一、正态分布 概率密度函数:22 2)(21)(σμπσ--=x e x f 正态分布曲线的特点:在μ=x 处最高,两个参数(σμ,),曲线下面积等于1。 正态分布的应用:确定正常值范围 二、二项分布 概念:服从伯努力试验序列的试验,在n 次实验中发生阳性结果的次数为x 次的概率为二项分布,x n x x n c x P --=) 1()(ππ。 二项分布的特点:图形的形态取决于n 和?。 阳性率:n x p =, 标准差 :n p ) 1(ππσ-= 二项分布的应用:计算二项分布中出现阳性次数最多为k 次或者是至少为k 次的概率。 三.Poisson 分布 概念:Poisson 分布看作二项分布的特例,单位空间、单位面积或单位时间内某稀有事件发生次数的概率分布. μμ-=e x x P x !)( Poisson 分布的特点:图形的形态取决于 ? , 总体均数

等于方差, 具有可加性。 注意: 凡个体间有传染性、聚集性,均不能视为二项分布或Poisson 分布。 应用:计算Poisson 分布中某稀有事件出现次数最多为k 次或者是至少为k 次的概率。 ∑ ∑-+----=-+-222)2()2)(1(2)1())2()1((μμμμμμy y x x y x 案例分析: (一)观察某地100名12岁男孩身高,均数为138.00cm ,标准差为 4.12cm ,12 .400.13800.128-=u ,则9925.0)(1=-u φ,结论正确是_____________。 A .理论上身高低于138.00cm 的12岁男孩占%。 B .理论上身高高于138.00cm 的12岁男孩占% C .理论上身高在128.00cm 和138.00cm 之间的12岁男孩占%。 D .理论上身高高于128.00cm 的12岁男孩占% (二)研究人员为了解该地居民发汞(?mol/kg )的基础水平,为汞污染的环境监测积累资料,调查了居住该市1年以上,无明显肝、肾疾病,无汞作业接触史的居民230人,数据如下:

统计概率知识点归纳总结

统计概率知识点归纳总结大全 1.了解随机事件的发生存在着规律性和随机事件概率的意义. 2.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率. 3.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率. 4.会计算事件在n 次独立重复试验中恰好发生k 次的概率. 5. 掌握离散型随机变量的分布列. 6.掌握离散型随机变量的期望与方差. 7.掌握抽样方法与总体分布的估计. 8.掌握正态分布与线性回归. 考点1. 求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识: (1)等可能性事件(古典概型)的概率:P (A )=) ()(I card A card =n m ; 等可能事件概率的计算步骤: (1) 计算一次试验的基本事件总数n ; (2) 设所求事件A ,并计算事件A 包含的基本事件的个数m ; (3) 依公式()m P A n =求值; (4) 答,即给问题一个明确的答复. (2)互斥事件有一个发生的概率:P (A +B )=P (A )+P (B ); 特例:对立事件的概率:P (A )+P (A )=P (A +A )=1. (3)相互独立事件同时发生的概率:P (A ·B )=P (A )·P (B ); 特例:独立重复试验的概率:P n (k )=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P]n 展开的第k+1项.

(4)解决概率问题要注意“四个步骤,一个结合”: ① 求概率的步骤是: 第一步,确定事件性质???? ???等可能事件 互斥事件 独立事件 n 次独立重复试验 即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算?? ?和事件积事件 即是至少有一个发生,还是同时发生,分别运用相加或相乘事件. 第三步,运用公式()()()()()()()()(1) k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -? =???+=+? ??=??=-??等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复. 考点2离散型随机变量的分布列 1.随机变量及相关概念 ①随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,常用希腊字母ξ、η等表示. ②随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量. ③随机变量可以取某区间内的一切值,这样的随机变量叫做连续型随机变量. 2.离散型随机变量的分布列 ①离散型随机变量的分布列的概念和性质 一般地,设离散型随机变量ξ可能取的值为1x ,2x ,……,i x ,……,ξ取每一个值i x (=i 1,2,……)的概率P (i x =ξ)=i P ,则称下表.

概率的基本性质教学设计

《概率的基本性质》教学设计 蓟县第四中学于海存 一、说教材: 1、教材的地位及作用: 本节课是高中数学3(必修)第三章概率的第一节第三课时概率的基本性质,本节课主要是结合具体实例以螺旋上升的方式由浅入深地学习概率的一些基本性质,学生在前面已经学习了集合的表示方法(Venn图)和随机事件的概率,已具有一定的归纳、抽象的能力,这些都是学习本节内容的基础。 本节在教材中起着承上启下的作用。一方面把所学的概率知识应用于实际生活,另一方面为今后学习概率其他知识做了理论上的准备。 2、教学目标: 知识与技能:(1)了解事件之间的相互包含关系、相等关系,知到和事件、积事件 的意义, (2)通过实例,理解互斥事件、对立事件的概念及实际意义; (3)掌握概率的几个基本性质并能简单应用。 过程与方法:类比集合,揭示事件的关系与运算,培养学生的类比与归纳的数学思想,情感态度与价值观:通过各种有趣的,贴近学生生活的素材,激发学生学习数学的热情和兴 趣,在参与探究活动中,培养学生的合作精神.在观察发现中树立探 索精神,在探索成功后体验学习乐趣。 3、教学重点与难点: 根据本节课内容即尚未学习排列组合,以及学生的心理特点和认知水平,制定如下教学重难点。 重点:互斥事件、对立事件的概念及概率的加法公式的应用。 难点:正确理解和事件与积事件,以及互斥事件与对立事件的区别与联系. 4、课时安排:1课时 二、说教法: 根据本节课的内容、教学目标和学生的实际水平等因素,在教法上,本节课我采用“开放性教学”,充分了解学生的最近发展区,精心创设问题情景,以导为主,重视多媒体的作用,充分调动学生,展示学生的思维过程,使学生能准确理解、判断和运用所学知识。 1) 立足基础知识和基本技能,掌握好典型例题,做到重点突出; 2)紧扣数学的实际背景,多采用学生日常生活中熟悉的例子来突破难点。 三、说学法: 引导学生用观察、类比、归纳、推导方式来实现预定教学目标。创设、再现知识发生的情境,让每个学生都能动手、动笔、动口、动脑、动心、动情。从而在知识产生迁移中发现规律,进一步把知识纳入学生已有认知结构中,形成新的认知结构。达到教育学“最近发展区”要求,并培养学生学会观察、分析、归纳、等适应客观世界的思维方法,养成良好学习习惯和思维习惯。 1格式已调整,word版本可编辑.

重要的概率分布

第三章重要的概率分布 (1)正态分布; χ分布; (2)2 (3)t分布; (4)F分布。 3.1 正态分布 对于连续型随机变量而言,正态分布(normal distribution)是最重要的一种概率分布。 经验表明:对于依赖于众多微小因素;且每一因素均产生微小的或正或负影响的连续型随机变量来说,正态分布是一个相当好的描述模型。 如人的体重,因为遗传、骨骼结构、饮食、锻炼、等都对人的体重有影响,但又没有一种因素起到压到一切的主导作用。与此相类似,人的身高、考试分数等都近似地服从正态分布。 通常用: δ) (3 - 1) X~N(u, 2 δ称为正态分布的表示随机变量X服从正态分布。N表示正态分布,括号内的参数u, 2 总体均值(或期望)和方差。

3.1.1 正态分布的性质 (1) 正态分布曲线以均值u 为中心,对称分布。 (2) 正态分布的概率密度函数呈中间高、两边低,在均值u 处达到最高,向两边逐渐降低,即随机变量在远离均值处取值的概率逐渐变小。 (3) 正态曲线下的面积约有68%位于u ±δ 两值之间;约有95%的面积位于u±22 δ之间; 而约有99.7%的面积位于u±3 δ之间。 ★ (4) 两个(或多个)正态分布随机变量的线性组合仍服从正态分布。 令X 和Y 相互独立: X ~N(u X ,2x δ) Y ~N(u Y , 2y δ) 现在考虑两个变量的线性组合:W =a X+b Y 则 W ~N(u W , 2w δ) ( 3 - 2 ) 其中, u W =(au X +bu Y ) ( 3 - 3 ) 2w δ = (22x a δ+22y b δ) (3 - 4) 例3.1 令X 表示在下沙高教区一花店每日出售玫瑰花数量, Y 表示在下沙镇一花店每日出售玫瑰花的数量,假定X 和Y 服从正态分布,且相互独立,并有: X ~N( 100,64 ),Y ~N( 150,81 ) 求两天内两花商出售玫瑰花数量的期望及方差? W =2X +2Y 根据式( 3 - 3 ) E(w)=E( 2X+ 2Y) = 5 0 0, Var (w) = 4var(X) + 4var(Y) = 5 8 0 因此,W 服从均值为5 0 0,方差为5 8 0的正态分布,即W ~N( 5 0 0,5 8 0 )。

6概率的基本性质

3.1.3 概率的基本性质(第三课时) 一、教学目标: 1、知识与技能:(1)正确理解事件的包含、并事件、交事件、相等事件,以及互斥事件、对立事件的概念; (2)概率的几个基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1; 2)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);3)若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)(3)正确理解和事件与积事件,以及互斥事件与对立事件的区别与联系. 2、过程与方法:通过事件的关系、运算与集合的关系、运算进行类比学习,培养学生的类化与归纳的数学思想。 3、情感态度与价值观:通过数学活动,了解教学与实际生活的密切联系,感受数学知识应用于现实世界的具体情境,从而激发学习 数学的情趣。二、重点与难点:概率的加法公式及其应用,事件的关系与运算。 三、学法与教学用具:1、讨论法,师生共同讨论,从而使加深学生对概率基本性质的理解和认识;2、教学用具:投灯片四、教学设想: 1、 创设情境:(1)集合有相等、包含关系,如{1,3}={3,1},{2,4}С{2,3,4,5}等; (2)在掷骰子试验中,可以定义许多事件如:C 1={出现1点},C 2={出现2点},C 3={出现1点或2点},C 4={出现的点数为偶数}……师生共同讨论:观察上例,类比集合与集合的关系、运算,你能发现事件的关系与运算吗? 2、 基本概念:(1)事件的包含、并事件、交事件、相等事件见课本P115; (2)若A ∩B 为不可能事件,即A ∩B=ф,那么称事件A 与事件B 互斥; (3)若A ∩B 为不可能事件,A ∪B 为必然事件,那么称事件A 与事件B 互为对立事件; (4)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B).3、 例题分析: 例1 一个射手进行一次射击,试判断下列事件哪些是互斥事件?哪些是对立事件? 事件A :命中环数大于7环; 事件B :命中环数为10环; 事件C :命中环数小于6环; 事件D :命中环数为6、7、8、9、10环. 分析:要判断所给事件是对立还是互斥,首先将两个概念的联系与区别弄清楚,互斥事件是指不可能同时发生的两事件,而对立事件是建立在互斥事件的基础上,两个事件中一个不发生,另一个必发生。解:A 与C 互斥(不可能同时发生),B 与C 互斥,C 与D 互斥,C 与D 是对立事件(至少一个发生). 例2 抛掷一骰子,观察掷出的点数,设事件A 为“出现奇数点”,B 为“出现偶数点”,已知P(A)=21,P(B)=2 1,求出“出现奇数点或偶数点”.

考试练习题常用概率分布教学提纲

考试练习题常用概率 分布

第四章 选择题: 1.二项分布的概率分布图在 条件下为对称图形。 A .n > 50 B .π=0.5 C .n π=1 D .π=1 E .n π> 5 2.满足 时,二项分布B (n,π)近似正态分布。 A .n π和n (1-π)均大于等于5 B .n π或n (1-π)大于等于5 C .n π足够大 D .n > 50 E .π足够大 3. 的均数等于方差。 A .正态分布 B .二项分布 C .对称分布 D .Poisson 分布 E .以上均不对 4.标准正态典线下,中间95%的面积所对应的横轴范围是 。 A .-∞到+1.96 B .-1.96到+1.96 C .-∞到+2.58 D .-2.58到+2.58 E .-1.64到+1.64 5.服从二项分布的随机变量的总体均数为 。 A .n (1-π) B .(n -1)π C .n π(1-π) D .n π 6.服从二项分布的随机变量的总体标准差为 。 A . B . (1-π)(1-π)( -)π1 C . D . π(1-π)(π 7.设X 1,X 2分别服从以λ1,λ2为均数的Poisson 分布,且X 1与X 2独立,则X 1+X 2服从以 为方差的Poisson 分布。 A . B .λ2λ12+2λ 2λ1+ C . D . 2λ2λ1+() 2λ2λ1+() E .λ2λ12+2 8.满足 时,Poisson 分布Ⅱ(λ)近似正态分布。

A.λ无限大 B.λ>20 C.λ=1 D.λ=0 E.λ=0.5 9.满足时,二项分布B(n,π)近似Poisson分布。 A.n很大且π接近0 B.n→∞ C.nπ或n(1-π)大于等于5 D.n很大且π接近0.5 E.π接近0.5 10.关于泊松分布,错误的是。 A.当二项分布的n很大而π很小时,可用泊松分布近似二项分布 B.泊松分布均数λ唯一确定 C.泊松分布的均数越大,越接近正态分布 D.泊松分布的均数与标准差相等 E.如果X1和X2分别服从均数为λ1和λ2的泊松分布,且相互独立。则 X1+X2服从均数为λ1+λ2的泊松分布。 11.以下分布中,均数等于方差的分布是。 A.正态分布 B.标准正态分布 C.二项分布 D.Poisson分布 E.t 分布 12.随机变量X服从正态分布N(μ1,σ12),Y服从正态分布N(μ2,σ 2),X与Y独立,则X-Y服从。 2 A.N(μ1+μ2,σ12-σ22) B.N(μ1-μ2,σ12-σ22) C.N(μ1-μ2,σ12+σ22) D.N(0,σ12+σ22) E.以上均不对 13.下列叙述中,错误的是。 A.二项分布中两个可能结果出现的概率之和为1 B.泊松分布只有1个参数λ C.正态曲线下的面积之和为1

高中数学必修三3.1.3《概率的基本性质》

3.1.3《概率的基本性质》 【学习目标】 1.说出事件的包含,并,交,相等事件,以及互斥事件,对立事件的概念; 2..能叙述互斥事件与对立事件的区别与联系 3. 说出概率的三个基本性质;会使用互斥事件、对立事件的概率性质求概率。 【重点难点】 教学重点:概率的加法公式及其应用,事件的关系与运算。 教学难点:概率的加法公式及其应用,事件的关系与运算,概率的几个基本性质 【知识链接】 1. 两个集合之间存在着包含与相等的关系,集合可以进行交、并、补运算,你还 记得子集、等集、交集、并集和补集的含义及其符号表示吗? 2我们可以把一次试验可能出现的结果看成一个集合(如连续抛掷两枚硬币),那么必然事件对应全集,随机事件对应子集,不可能事件对应空集,从而可以类比集合的关系与运算,分析事件之间的 关系与运算,使我们对概率有进一步的理解和认识.育网 【学习过程】 1. 事件的关系与运算 思考:在掷骰子试验中,我们用集合形式定义如下事件: C1={出现1点},C2={出现2点},C3={出现3点},C4={出现4点},C5={出现5点},C6={出现6点},D1={出现的点数不大于1},D2={出现的点数大于4},D3={出现的点数小于6},E={出现的点数小于7},F={出现的点数大于6},G={出现的点数为偶数},H={出现的点数为奇数},等等. 你能写出这个试验中出现其它一些事件吗?类比集合与集合的关系,运算,你能发现 它们之间的关系和运算吗? 上述事件中哪些是必然事件?哪些是随机事件?哪些是不可能事件? (1) 显然,如果事件C1发生,则事件H一定发生,这时我们说事件H包含事件C1,记作H C1。一般地,对于事件A与事件B,如何理解事件B包含事件A(或事件A包含于事件B)?特别地,不可能事件用Ф表示,它与任何事件的关系怎样约定? 如果当事件A发生时,事件B一定发生,则B A ( 或A B );任何事件都包含不可能事件. [来源:https://www.360docs.net/doc/fb16576505.html,](2)分析事件C1与事件D1之间的包含关系,按集合观点这两个事件之间的关 系应怎样描述? 一般地,当两个事件A、B满足什么条件时,称事件A与事件B相等? 若B A,且A B,则称事件A与事件B相等,记作A=B. (3)如果事件C5发生或C6发生,就意味着哪个事件发生?反之成立吗?[来源:https://www.360docs.net/doc/fb16576505.html,] 事件D2称为事件C5与事件C6的并事件(或和事件),一般地,事件A与 事件B的并事件(或和事件)是什么含义? 当且仅当事件A发生或事件B发生时,事件C发生,则称事件C为事件A与事件B的并事件(或和事件),记作C=A∪B(或A+B). (4)类似地,当且仅当事件A发生且事件B发生时,事件C发生,则称事件C为事件A与事件B 的交事件(或积事件),记作C=A∩B(或AB),在上述事件中能找出这样的例子吗? 例如,在掷骰子的试验中D2∩D3=C4 (5)两个集合的交可能为空集,两个事件的交事件也可能为不可能事件,即A∩B=Ф,此时,称事件A与事件B互斥,其含义是:事件A与事件B在任何一次试验中不会同时发生 例如,上述试验中的事件C1与事件C2互斥,事件G与事件H互斥。 (6)若A∩B为不可能事件,A∪B为必然事件,则称事件A与事件B互为对立事件,其含义是: 事件A与事件B有且只有一个发生.

16种常见概率分布概率密度函数、意义及其应用

目录 1.均匀分布 (1) 2.正态分布(高斯分布) (2) 3.指数分布 (2) 4.Beta分布(β分布) (2) 5.Gamma分布 (3) 6.倒Gamma分布 (4) 7.威布尔分布(Weibull分布、韦伯分布、韦布尔分布) (5) 8.Pareto分布 (6) 9.Cauchy分布(柯西分布、柯西-洛伦兹分布) (7) χ分布(卡方分布) (7) 10.2 11.t分布 (8) 12.F分布 (9) 13.二项分布 (10) 14.泊松分布(Poisson分布) (10) 15.对数正态分布 (11) 1.均匀分布 均匀分布~(,) X U a b是无信息的,可作为无信息变量的先验分布。

1()f x b a = - ()2 a b E X += 2 ()()12 b a Var X -= 2. 正态分布(高斯分布) 当影响一个变量的因素众多,且影响微弱、都不占据主导地位时,这个变量很可能服从正态分布,记作2~(,)X N μσ。正态分布为方差已知的正态分布 2(,)N μσ的参数μ的共轭先验分布。 22 ()2()x f x μσ-- = ()E X μ= 2()Var X σ= 3. 指数分布 指数分布~()X Exp λ是指要等到一个随机事件发生,需要经历多久时间。其中0λ>为尺度参数。指数分布的无记忆性:{}|{}P X s t X s P X t >+>=>。 (),0 x f x e x λλ-=> 1 ()E X λ = 2 1 ()Var X λ = 4. Beta 分布(β分布)

Beta 分布记为~(,)X Be a b ,其中Beta(1,1)等于均匀分布,其概率密度函数可凸也可凹。如果二项分布(,)B n p 中的参数p 的先验分布取(,)Beta a b ,实验数据(事件A 发生y 次,非事件A 发生n-y 次),则p 的后验分布(,)Beta a y b n y ++-,即Beta 分布为二项分布(,)B n p 的参数p 的共轭先验分布。 10 ()x t x t e dt ∞--Γ=? 1 1()()(1)()() a b a b f x x x a b --Γ+= -ΓΓ ()a E X a b = + 2 ()()(1) ab Var X a b a b = +++ 5. Gamma 分布 Gamma 分布即为多个独立且相同分布的指数分布变量的和的分布,解决的

概率论中几种常用的重要的分布

伯努利试验、泊松过程、独立同分布生成 的重要分布 敖登 (内蒙古大学数学科学学院2010级数理基地,01008104) 摘要 本文是一篇读书报告。主要研究了伯努利试验与二项分布的关系,泊松过程生成泊松分布的过程和在泊松条件下的埃尔朗分布,正态分布的生成用到的独立同分布以及均匀分布生成任意分布的重要性质。 关键词:伯努利试验泊松分布独立同分布均匀分布的生成性

Important in theory of probability distribution of exploration Author:Ao Deng Tutor: Luo Cheng (School of Mathematical sciences ,Huhhot Inner Mongolia 01008104 ) Abstract This article mainly discusses the theory of several common distribution (0-1) distribution, binomial distribution, poisson distribution and uniform distribution, exponential distribution, normal distribution and normal distribution out three kinds of important distribution, distribution, distribution and the distribution of the source and the relationship among them and their application in actual. Key words: random variable; The discrete distribution ;Continuous distribution

几种常见的概率分布

几种常见的概率分布 离散型概率分布 1.二项分布 n次独立的贝努利实验,其实验结果的分布(一种结果出现x次的概率是多少的分布)即为二项分布 应用二项分布的重要条件是:每一种实验结果在每次实验中都有恒定的概率,各实验之间是重复独立的 平均数:\二E(Y)二叩 方差与标准差:▽ X = np(1- P) ; = J np(1- p) 特例:(0-1 )分布 若随机变量x的分布律为 p(x = k) = p k(1 - p)1* k=o,i ;0

复抽样,抽样成功的次数X的概率分布服从超几何分布,如福利彩票 二、连续型概率分布 1?均匀分布 若随机变量X具有概率密度函数 f(X)二 则称X在区间(a,b)上服从均匀分布,记为X?U(a,b)在区间(a,b)上服从均匀分布的随机变量X的分布函数为 x v a F(x)X— ,a 乞x b b — a , X x 2指数分布 若随机变量X具有概率密度函数f(X)= e ' x - 0其中0是常数, 0,x< 0 则称X服从以’为参数的指数分布,记作X?E(' ),X的分布函数为 F(x)=」1 -e ,x 色0 j 0,x<0 3.正态分布 正态随机变量X的概率密度函数的形式如下: 1 f (x) e 2 $ ,—:::: x ::: 式中,」为随机变量X的均值;、;2为随机变量X的方差通常对具有均值卩,方差为62的正态概率分布,记为N (卩,62)。于是有正态随机变量X~N ( '2)。

概率论与数理统计中的三种重要分布

概率论与数理统计中的三种重要分布 摘要:在概率论与数理统计课程中,我们研究了随机变量的分布,具体地研究了离散型随机变量的分布和连续型随机变量的分布,并简单的介绍了常见的离散型分布和连续型分布,其中二项分布、Poisson 分布、正态分布是概率论中三大重要的分布。因此,在这篇文章中重点介绍二项分布、Poisson 分布和正态分布以及它们的性质、数学期望与方差,以此来进行一次比较完整的概率论分布的学习。 关键词:二项分布;Poisson 分布;正态分布;定义;性质 一、二项分布 二项分布是重要的离散型分布之一,它在理论上和应用上都占有很重要的地位,产生 这种分布的重要现实源泉是所谓的伯努利试验。 (一)泊努利分布[Bernoulli distribution ] (两点分布、0-1分布) 1.泊努利试验 在许多实际问题中,我们感兴趣的是某事件A 是否发生。例如在产品抽样检验中,关心的是抽到正品还是废品;掷硬币时,关心的是出现正面还是反面,等。在这一类随机试验中,只有两个基本事件A 与A ,这种只有两种可能结果的随机试验称为伯努利试验。 为方便起见,在一次试验中,把出现A 称为“成功”,出现A 称为“失败” 通常记(),p A P = () q p A P =-=1。 2.泊努利分布 定义:在一次试验中,设p A P =)(,p q A P -==1)(,若以ξ记事件A 发生的次数, 则??? ? ??ξp q 10 ~,称ξ服从参数为)10(<

第四章 几种重要的分布习题

第四章 几种重要的分布习题 一 、填空题 1. 设随机变量),2(~P B ξ,若9 5)1(=≥ξP ,则=P 。 2.设ξ服从参数为λ的泊松分布且已知{}{}32===ξξP P ,则{}==1ξP 。 3 .设随机变量ξ在[1,6]上服从均匀分布,则=≤)3(ξP 。 4. 设随机变量ζ~)1,0(N ,12+=ζη , 则 η服从 。 5 .设随机变量),1(~p B ξ,且9 2=ξD ,则ξ的概率函数为________ 6. 一颗均匀骰子重复投掷10次,设ξ表示点3出现的次数,则ξ服从参数为________的________分布,ξ的概率函数为______)(==k P ξ,10次中点数3出现________次 7 .设随机变量ξ服从一区间上的均匀分布,且3 1,3==ξξD E ,则ξ的概率密度为________,______)2(==ξP ,______)31(=<<ξP 8. 设随机变量ξ服从参数为2的指数分布,η服从参数为4的指数分布,则_____)32(2=+ηξE 9 .若随机变量) ,25.01(~N ξ,则ξ2的概率密度函数为________ 10.设随机变量),2(~σμξN ,则23 -=ξη服从参数为________的正态分布 二、选择题 1.设随机变量ηξ,相互独立,且都服从泊松分布,又知3,2==ηξE E , 则)()(2=+ηξE A 2 B 30 C 26 D 5 2. 如果随机变量ξ服从( )上的均匀分布,则34,3= =ξξD E A [0,6] B [1,5] C [2,4] D [-3,3] 3.设随机变量),2(~σμξN ,且)()(c P c P >=≤ξξ,则)(=c

各种概率分布介绍

一、引言 Bayes统计起源于英国学者托马斯.贝叶斯(Thomas Bayes,1702~1761)死后发表的一篇论文“论有关机遇问题的求解”。在此论文中他提出了著名的贝叶斯公式和一些归纳推理方法,随后拉普拉斯(Laplace,P.C.1749~1827)不仅重新发现了贝叶斯定理,阐述的远比贝叶斯更为清晰,而且还用它来解决天体力学、医学统计以及法学问题。之后虽有一些研究和应用但由于其理论尚不完整,应用中出现一些问题,致使贝叶斯方法长期未被接受。直到二战后,瓦尔德(Wald,A.1902~1950)提出统计决策函数论后又引起很多人对贝叶斯研究方法的兴趣。因为在这个理论中,贝叶斯解被认为是一种最优决策函数。在Savage,L.J.(1954)、Jeffreys,H.(1961)、Good,I.J(1950)、Lindley,D.V(1961)、Box,G.E.P.&Tiao,G.C.(1973)、Berger,J.O.(1985)等贝叶斯学者的努力下,对贝叶斯方法在观点、方法和理论上不断的完善。另外在这段时期贝叶斯方法在工业、经济、管理等领域内获得一批无可非议的成功应用。贝叶斯统计的研究论文与著作愈来愈多,贝叶斯统计的国际会议经常举行。如今贝叶斯统计已趋成熟,贝叶斯学派已发展成为一个有影响的学派,开始打破了经典统计学一统天下的局面。 贝叶斯统计是在与经典统计的争论中发展起来的,现已成为统计学中不可缺少的一部分.贝叶斯统计与经典统计的主要区别就是是否利用先验信息。贝叶斯统计重视已出现的样本观测值,对尚未发生的样本观测值不予考虑。近几年来对贝叶斯统计的广泛应用,使得贝叶斯统计在可靠性问题中起到越来越重要的作用。尤其是对产品的失效率以及产品寿命的检验中,更是离不开贝叶斯统计。本文主要是探索串联系统和并联系统的可靠性,以及可靠性增长模型的Bayes估计,这些都表现出了Bayes统计在可靠性中的广泛应用。 二、绪论 (一)统计学及其发展历程 人类的统计活动源远流长,自从有了数的概念,有了计数活动,就有了统计。但作为一门学科的统计学,它的出现却晚得多。英国学者配第(W.Petty)《政治算术》一书的问世,标志着统计学的开端。 概率论是统计学的重要起源之一。14世纪时,在工商业比较繁荣的意大利以及地中海岸其他地区,由于赌博游戏盛行和保险活动的萌起。人们

概率的基本性质

概率的基本性质 导预习 通过预习事件的关系与运算,初步理解事件的包含,并,交, 相等事件, 以及互斥事件, 对立事件的概 念。 导课堂 第一步:情境创设 (1)必然事件:在条件S 下, 发生的事件,叫相对于条件S 的必然事件; (2)不可能事件:在条件S 下, 发生的事件,叫相对于条件S 的不可能事件; (3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件; (4)随机事件:在条件S 下 的事件,叫相对于条件S 的随机事件; 2、事件的关系与运算 ①对于事件A 与事件B , 如果事件A 发生,事件B 一定发生, 就称事件 包含事件 . (或称事件 包含于事件 ).记作A B , 或B A . 如上面试验中 与 ②如果B ?A 且A ?B , 称事件A 与事件B 相等.记作A B . 如上面试验中 与 ③如果事件发生当且仅当事件A 发生或事件B 发生. 则称此事件为事件A 与事件B 的并. (或称和事件), 记作A ?B (或A +B ). 如上面试验中 与 ④如果事件发生当且仅当事件A 发生且事件B 发生. 则称此事件为事件A 与事件B 的交. (或称积事件), 记作A ?B (或A ?B ). 如上面试验中 与 ⑤如果A ?B 为不可能事件(A ?B =?), 那么称事件A 与事件B 互斥. 其含意是: 事件A 与事件B 在任何一次实验中 同时发生. ⑥如果A ?B 为不可能事件,且A ?B 为必然事件,称事件A 与事件B 互为对立事件. 其含意是: 事件A 与事件B 在任何一次实验中 发生. 3. 概率的几个基本性质 (1).由于事件的频数总是小于或等于试验的次数. 所以, 频率在0~1之间, 从而任何事件的概率 在0~1之间.即 ①必然事件的概率: ; ; ②不可能事件的概率: . (2) 当事件A 与事件B 互斥时, A ?B 发生的频数等于A 发生的频数与B 发生的频数之和. 从而A ?B 的频率()()()n n n f A B f A f B ?=+. 由此得 概率的加法公式: (3).如果事件A 与事件B 互为对立, 那么, A ?B 为必然事件, 即()P A B ?= . 因而 第二步:目标展示 1.知识与技能 (1)正确理解事件的包含、并事件、交事件、相等事件,以及互斥事件、对立事件的 概念. (2)概率的几个基本性质. (3)正确理解并事件与积事件,以及互斥事件与对立事件的区别与联系. 2.过程与方法

相关文档
最新文档