电力补偿电容如何测量好坏

电力补偿电容如何测量好坏

电力补偿电容如何测量好坏

摘要: 现场检查和判断电力补偿电容器的好坏,可按如下简易方法和步骤进行:一、外部观察听诊法1、如发现电容器外壳变形,膨胀鼓肚现象,则说明电容器内部的绝缘介质或电极必有损坏,应立即退出运行报废并更换

新品。2、如...

现场检查和判断电力补偿电容器的好坏,可按如下简易方法和步骤进行:

一、外部观察听诊法

1、如发现电容器外壳变形,膨胀鼓肚现象,则说明电容器内部的绝缘介质或电极必有损坏,应立即退出运行报废并更换新品。

2、如发现电容器高压瓷瓶闪烙炸裂或已出现喷油、溢出内部绝缘介质等现象,也应立即判断为电容器损毁,要妥善处理和回收上缴损毁品,更换新

品。

3、电容器在正常运行时,不应有任何响声。如听到有异常“噼”、“啪”放电

声或“嗡嗡”的沉闷响声,说明电容器内部必有故障,应立即停运做进一步检

查处理或更换新品。

4、电容器在运行时,如发现该组电容器开关出现事故跳闸或高压跌落保险丝熔断现象,应退出运行,待查明电容器确无故障后方可再次投运。

二、绝缘摇表测试法

放电并解开电容器的外部连线待测。选取一只与电容器工作电压相当的电

压等级的兆欧表(一般规定:1000 伏以下用500 伏或1000 伏兆欧表; 1000 伏以上的使用1000 伏或2500 伏的兆欧表) 摇测电容器的绝缘电阻。摇测时应戴

电力电容器及无功补偿技术手册

电力电容器及无功补偿 技术手册 沙舟编著

目录 前言 第一章基本概念 (1) §1-1 交流电的能量转换 (1) §1-2 有功功率与无功功率 (2) §1-3 电容器的串联与并联 (3) §1-4 并联电容器的容量与损耗 (3) §1-5 并联电容器的无功补偿作用 (4) 第二章并联电容器无功补偿的技术经济效益 (5) §2-1 无功补偿经济当量 (5) §2-2 最佳功率因数的确定 (7) §2-3 安装并联电容器改善电网电压质量 (8) §2-4 安装并联电容器降低线损 (11) §2-5 安装并联电容器释放发电和供电设备容量 (13) §2-6 安装并联电容器减少电费支出 (15)

前言 众所周知,供电质量主要决定于电压、频率和波形三个方面。电网频率稳定决定于电网有功平衡,波形主要决定于网络和负荷的谐波,电压稳定则决定于无功平衡。当然三者之间也具有一定的内在关系。无功平衡决定于网络中无功的产生和消耗。在系统中无功电源有同步发电机、同步调相机、电容器、电缆、输电线路电容、静止无功补偿装置和用户同步电动机,无功负荷则有电力变压器,输电线路电感和用户的感应电动机,各种感应式加热炉、电弧炉等。为了满足系统中无功电力的需求,单靠发电机、调相机、电缆和输电线路电容是不够的,静补装置中也是采用电容器等。因此电容器在系统的无功电源中占有相当比重,加之调相机为旋转设备。建设投资大,运行维护费用高。近年来世界各国都积极装设电容器,满足系统无功电力要求,维持电压稳定。但各国主要是装设并联电容器,装串联电容器者较少,因此编者主要介绍并联电容器无功补偿技术,它还广泛应用于谐波滤波装置,动态无功补偿设备和电气化铁道无功补偿装置之中,因与电力系统谐波有关。限于篇幅,准备在“谐波技术”中详述。这里主要介绍一些无功补偿技术基础。限于编者水平,加上时间仓促,不当之处难免,请读者批评指正。

并联电容器无功补偿方案

课程设计 并联电容器无功补偿方案设计 指导老师:江宁强 1010190456 尹兆京

目录 1绪论 (2) 1.1引言 (2) 1.2无功补偿的提出 (3) 1.3本文所做的工作 (3) 2无功补偿的认识 (3) 2.1无功补偿装置 (3) 2.2无功补偿方式 (4) 2.3无功补偿装置的选择 (4) 2.4投切开关的选取 (4) 2.5无功补偿的意义 (5) 3电容器无功补偿方式 (5) 3.1串联无功补偿 (5) 3.2并联无功补偿 (6) 3.3确定电容器补偿容量 (6) 4案例分析 (6) 4.1利用并联电容器进行无功功率补偿,对变电站调压 (6) 4.2利用串联电容器,改变线路参数进行调压 (13) 4.3利用并联电容器进行无功功率补偿,提高功率因素 (15) 5总结 (21) 1绪论 1.1引言 随着现代科学技术的发展和国民经济的增长,电力系统发展迅猛,负荷日益增多,供电容量扩大,出现了大规模的联合电力系统。用电负荷的增加,必然要

求电网系统利用率的提高。但由于接入电网的用电设备绝大多数是电感性负荷,自然功率因素低,影响发电机的输出功率; 降低有功功率的输出; 影响变电、输电的供电能力; 降低有功功率的容量; 增加电力系统的电能损耗; 增加输电线路的电压降等。因此,连接到电网中的大多数电器不仅需要有功功率,还需要一定的无功功率。 1.2无功补偿的提出 电网输出的功率包括两部分:一是有功功率;二是无功功率。无功,简单的说就是用于电路内电场与磁场的交换,并用来在电气设备中建立和维持磁场的电功率。电机和变压器中的磁场靠无功电流维持,输电线中的电感也消耗无功,电抗器、荧光灯等所有感性电路全部需要一定的无功功率。为减少电力输送中的损耗,提高电力输送的容量和质量,必须进行无功功率的补偿。 1.3本文所做的工作 主要对变电站并联电容器无功补偿作了简单的分析计算,提出了目前在变电站无功补偿实际应用中计算总容量与分组的方法,本文主要作了以下几个方面的工作: 对无功补偿作了简单的介绍,尤其是电容器无功补偿,选取了相关的案例进行了简单的计算和分析。 2无功补偿的认识 2.1无功补偿装置 变电站中传统的无功补偿装置主要是调相机和静电电容器。随着电力电子技术的发展及其在电力系统中的应用,交流无触点开关SCR、GTR、GTO等相继出现,将其作为投切开关无功补偿都可以在一个周波内完成,而且可以进行单相调节。如今所指的静止无功补偿装置一般专指使用晶闸管投切的无功补偿设备,主要有以下三大类型: 1、具有饱和电抗器的静止无功补偿装置; 2、晶闸管控制电抗器、晶闸管投切电容器,这两种装置统称为SVC 3、采用自换相变流技术的静止无功补偿装置——高级静止无功发生器。

并联电容器补偿装置基础知识

并联电容器补偿装置基本知识 无功补偿容量计算的基本公式: Q = P (tg φ1——tg φ2) =P( 1cos 1 1cos 12 2 12---?? ) tg φ1、tg φ2——补偿前、后的计算功率因数角的正切值 P ——有功负荷 Q ——需要补偿的无功容量 并联电容器组的组成 1.组架式并联电容器组:并联电容器、隔离开关(接地开关或隔离带接地)、放电线圈、串联电抗器、氧化锌避雷器、并联电容器专用熔断器、组架等。 2.集合式并联电容器组(无容量抽头):并联电容器、隔离开关(接地开关或隔离带接地)、放电线圈、串联电抗器、氧化锌避雷器、组架等。 并联电容器支路串接串联电抗器的原因: 变电所中只装一组电容器时,一般合闸涌流不大,当母线短路容量不大于80倍电容器组容量时,涌流将不会超过10倍电容器组额定电流。可以不装限制涌流的串联电抗器。 由于现在系统中母线的短路容量普遍较大,且变电所同时装设两组以上的并联电容器组的情况较多,并联电容器组投入运行时,所受到的合闸涌流值较大,因而,并联电容器组需串接串联电抗器。 串联电抗器的另一个主要作用是当系统中含有高次谐波时,装设并联电容器装置后,电容器回路的容性阻抗会将原有高次谐波含量放大,使其超过允许值,这时应在电容器回路中串接串联电抗器,以改变电容器回路的阻抗参数,限制谐波的过分放大。 串联电抗器电抗率的选择 对于纯粹用于限制涌流的目的,串联电抗器的电抗率可选择为(0.1~1)%即可。 对于用于限制高次谐波放大的串联电抗器。其感抗值的选择应使在可能产生的任何谐波下,均使电容器回路的总电抗为感性而不是容性,从而消除了谐振的可能。电抗器的感抗值按下列计算: X L =K X C n 2 式中 X L ——串联电抗器的感抗,Ω; X C ——补偿电容器的工频容抗, Ω;

电力电容器及无功补偿技术手册

1 电力电容器及无功补偿 技术手册 沙舟编著

目录 前言 第一章基本概念 (1) §1-1 交流电的能量转换 (1) §1-2 有功功率与无功功率 (2) §1-3 电容器的串联与并联 (3) §1-4 并联电容器的容量与损耗 (3) §1-5 并联电容器的无功补偿作用 (4) 第二章并联电容器无功补偿的技术经济效益 (5) §2-1 无功补偿经济当量 (5) §2-2 最佳功率因数的确定 (7) §2-3 安装并联电容器改善电网电压质量 (8) §2-4 安装并联电容器降低线损 (11) §2-5 安装并联电容器释放发电和供电设备容量 (13) §2-6 安装并联电容器减少电费支出 (15)

前言 众所周知,供电质量主要决定于电压、频率和波形三个方面。电网频率稳定决定于电网有功平衡,波形主要决定于网络和负荷的谐波,电压稳定则决定于无功平衡。当然三者之间也具有一定的内在关系。无功平衡决定于网络中无功的产生和消耗。在系统中无功电源有同步发电机、同步调相机、电容器、电缆、输电线路电容、静止无功补偿装置和用户同步电动机,无功负荷则有电力变压器,输电线路电感和用户的感应电动机,各种感应式加热炉、电弧炉等。为了满足系统中无功电力的需求,单靠发电机、调相机、电缆和输电线路电容是不够的,静补装置中也是采用电容器等。因此电容器在系统的无功电源中占有相当比重,加之调相机为旋转设备。建设投资大,运行维护费用高。近年来世界各国都积极装设电容器,满足系统无功电力要求,维持电压稳定。但各国主要是装设并联电容器,装串联电容器者较少,因此编者主要介绍并联电容器无功补偿技术,它还广泛应用于谐波滤波装置,动态无功补偿设备和电气化铁道无功补偿装置之中,因与电力系统谐波有关。限于篇幅,准备在“谐波技术”中详述。这里主要介绍一些无功补偿技术基础。限于编者水平,加上时间仓促,不当之处难免,请读者批评指正。

电力电容器的补偿原理精编版

电力电容器的补偿原理公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

1电力电容器的补偿原理 电容器在原理上相当于产生容性无功电流的发电机。其无功补偿的原理是把具有容性功率负荷的装置和感性功率负荷并联在同一电容器上,能量在两种负荷间相互转换。这样,电网中的变压器和输电线路的负荷降低,从而输出有功能力增加。在输出一定有功功率的情况下,供电系统的损耗降低。比较起来电容器是减轻变压器、供电系统和工业配电负荷的最简便、最经济的方法。因此,电容器作为电力系统的无功补偿势在必行。当前,采用并联电容器作为无功补偿装置已经非常普遍。 2电力电容器补偿的特点 优点 电力电容器无功补偿装置具有安装方便,安装地点增减方便;有功损耗小(仅为额定容量的 %左右);建设周期短;投资小;无旋转部件,运行维护简便;个别电容器组损坏,不影响整个电容器组运行等优点。 缺点 电力电容器无功补偿装置的缺点有:只能进行有级调节,不能进行平滑调节;通风不良,一旦电容器运行温度高于70 ℃时,易发生膨胀爆炸;电压特性不好,对短路稳定性差,切除后有残余电荷;无功补偿精度低,易影响补偿效果;补偿电容器的运行管理困难及电容器安全运行的问题未受到重视等。 3无功补偿方式 高压分散补偿 高压分散补偿实际就是在单台变压器高压侧安装的,用以改善电源电压质量的无功补偿电容器。其主要用于城市高压配电中。 高压集中补偿

高压集中补偿是指将电容器装于变电站或用户降压变电站6 kV~10 kV高压母线的补偿方式;电容器也可装设于用户总配电室低压母线,适用于负荷较集中、离配电母线较近、补偿容量较大的场所,用户本身又有一定的高压负荷时,可减少对电力系统无功的消耗并起到一定的补偿作用。其优点是易于实行自动投切,可合理地提高用户的功率因素,利用率高,投资较少,便于维护,调节方便可避免过补,改善电压质量。但这种补偿方式的补偿经济效益较差。 低压分散补偿 低压分散补偿就是根据个别用电设备对无功的需要量将单台或多台低压电容器组分散地安装在用电设备附近,以补偿安装部位前边的所有高低压线路和变压器的无功功率。其优点是用电设备运行时,无功补偿投入,用电设备停运时,补偿设备也退出,可减少配电网和变压器中的无功流动从而减少有功损耗;可减少线路的导线截面及变压器的容量,占位小。缺点是利用率低、投资大,对变速运行,正反向运行,点动、堵转、反接制动的电机则不适应。 低压集中补偿 低压集中补偿是指将低压电容器通过低压开关接在配电变压器低压母线侧,以无功补偿投切装置作为控制保护装置,根据低压母线上的无功符合而直接控制电容器的投切。电容器的投切是整组进行,做不到平滑的调节。低压补偿的优点:接线简单、运行维护工作量小,使无功就地平衡,从而提高配变利用率,降低网损,具有较高的经济性,是目前无功补偿中常用的手段之一。 4电容器补偿容量的计算 无功补偿容量宜按无功功率曲线或无功补偿计算方法确定,其计算公式如下: QC=p(tgφ1-tgφ2)或是QC=pqc(1) 式中:Qc:补偿电容器容量; P:负荷有功功率; COSφ1:补偿前负荷功率因数; COSφ2:补偿后负荷功率因数; qc:无功功率补偿率,kvar/kw。 5电力电容器的安全运行

电力电容器的补偿原理

1电力电容器的补偿原理 电容器在原理上相当于产生容性无功电流的发电机。其无功补偿的原理是把具有容性功率负荷的装置和感性功率负荷并联在同一电容器上,能量在两种负荷间相互转换。这样,电网中的变压器和输电线路的负荷降低,从而输出有功能力增加。在输出一定有功功率的情况下,供电系统的损耗降低。比较起来电容器是减轻变压器、供电系统和工业配电负荷的最简便、最经济的方法。因此,电容器作为电力系统的无功补偿势在必行。当前,采用并联电容器作为无功补偿装置已经非常普遍。 2电力电容器补偿的特点 2.1优点 电力电容器无功补偿装置具有安装方便,安装地点增减方便;有功损耗小(仅为额定容量的0.4 %左右);建设周期短;投资小;无旋转部件,运行维护简便;个别电容器组损坏,不影响整个电容器组运行等优点。 2.2缺点 电力电容器无功补偿装置的缺点有:只能进行有级调节,不能进行平滑调节;通风不良,一旦电容器运行温度高于70 ℃时,易发生膨胀爆炸;电压特性不好,对短路稳定性差,切除后有残余电荷;无功补偿精度低,易影响补偿效果;补偿电容器的运行管理困难及电容器安全运行的问题未受到重视等。 3无功补偿方式 3.1高压分散补偿 高压分散补偿实际就是在单台变压器高压侧安装的,用以改善电源电压质量的无功补偿电容器。其主要用于城市高压配电中。 3.2高压集中补偿

高压集中补偿是指将电容器装于变电站或用户降压变电站6 kV~10 kV高压母线的补偿方式;电容器也可装设于用户总配电室低压母线,适用于负荷较集中、离配电母线较近、补偿容量较大的场所,用户本身又有一定的高压负荷时,可减少对电力系统无功的消耗并起到一定的补偿作用。其优点是易于实行自动投切,可合理地提高用户的功率因素,利用率高,投资较少,便于维护,调节方便可避免过补,改善电压质量。但这种补偿方式的补偿经济效益较差。 3.3低压分散补偿 低压分散补偿就是根据个别用电设备对无功的需要量将单台或多台低压电容器组分散地安装在用电设备附近,以补偿安装部位前边的所有高低压线路和变压器的无功功率。其优点是用电设备运行时,无功补偿投入,用电设备停运时,补偿设备也退出,可减少配电网和变压器中的无功流动从而减少有功损耗;可减少线路的导线截面及变压器的容量,占位小。缺点是利用率低、投资大,对变速运行,正反向运行,点动、堵转、反接制动的电机则不适应。 3.4低压集中补偿 低压集中补偿是指将低压电容器通过低压开关接在配电变压器低压母线侧,以无功补偿投切装置作为控制保护装置,根据低压母线上的无功符合而直接控制电容器的投切。电容器的投切是整组进行,做不到平滑的调节。低压补偿的优点:接线简单、运行维护工作量小,使无功就地平衡,从而提高配变利用率,降低网损,具有较高的经济性,是目前无功补偿中常用的手段之一。 4电容器补偿容量的计算 无功补偿容量宜按无功功率曲线或无功补偿计算方法确定,其计算公式如下: QC=p(tgφ1-tgφ2)或是QC=pqc(1) 式中:Qc:补偿电容器容量; P:负荷有功功率; COSφ1:补偿前负荷功率因数; COSφ2:补偿后负荷功率因数; qc:无功功率补偿率,kvar/kw。 5电力电容器的安全运行

并联电容器设计要求规范

并联电容器装置设计规范(GB50227-95) 第一章总则 第1.0.1条为使电力工程的并联电容器装置设计贯彻国家技术经济政策, 做到安全可靠、技术先进、经济合理和运行检修方便,制订本规范. 第1.0.2条本规范适用于220KV及以下变电所、配电所中无功补偿用三相交流高压、低压并联电容器装置的新建、扩建工程设计. 第1.0.3条并联电容器装置的设计, 应根据安装地点的电网条件、补偿要求、环境状况、运行检修要求和实践经验,确定补偿容量、选择接线、保护与控制、布置及安装方式. 第1.0.4条并联电容器装置的设备选型, 应符合国家现行的产品标准的规定. 第1.0.5条并联电容器装置的设计,除应执行本规范的规定外,尚应符合国家现行的有关标准和规范的规定. 第二章-1 术语 1.高压并联电容器装置 (installtion of high voltage shunt capacitors): 由高压并联电容器和相应的一次及二次配套设备组成, 可独立运行或并联运行的装置. 2.低压并联电容器装置 (installtion of low voltage shunt capacitors): 由低压并联电容器和相应的一次及二次配套元件组成, 可独立运行或并联运行的装置. 3.并联电容器的成套装置 (complete set of installation for shunt capacitors): 由制造厂设计组装设备向用户供货的整套并联电容器装置. 4.单台电容器(capacitor unit): 由一个或多个电容器元件组装于单个外壳中并引出端子的组装体. 5.电容器组(capacitor bank): 电气上连接在一起的一群单台电容器. 6.电抗率(reactance ratio): 串联电抗器的感抗与并联电容器组的容抗之比,以百分数表示.

如何根据电力变压器容量选择无功补偿电容器的大小

如何根据电力变压器容量选择无功补偿电容器的大小 怎样正确选用电力电容器,如下几点供用户参考: 1、用户购买电力电容器最好直接到生产厂家或由生产厂家授权的代理商处购买,这样防止购买假冒伪劣的产品。 2、用户在选用电力电容器时,应注意电力电容器的产品外观是否完整,有无碰损,及生产厂家的名牌、厂址、质保卡、合格证、说明书等是否齐全。(厂名不全,如“威斯康电气公司”就是厂名不全,齐全的厂名应如“上海威斯康电气有限公司”。通讯地址等不详的产品,用户最好不要购买,以防发生意外事故。)购买前最好与生厂厂家联系证实一下产品售后服务等情况。 3、用户在购买电力电容器时,还应注意标牌上的各种数据:如额定电量KVAR、电容量uf、电流是否对,最好用UF表测量一下,用兆欧表测一下绝缘电阻,生产成套装置的厂家有条件的话可抽查耐压是否符合国家标准。 用户购买电力电容器时,不能只讲究价格便宜,俗话说“便宜没好货、好货不便宜”。一般电容器产品的价格差异是基于其成本的高低。如原材料的优劣:制造电力电容器的电容膜,有铝膜与锌铝膜两种,两者的价格相差很大,用锌铝膜制造的电容器相对成本高,当然质量也不同。此外,电容膜的优质一等品与二等品的价格不同,质量也不同。因此,用户在购买电容器时,价格是次要的,产品的质量才是最重要的。 4、安装使 用电力电容器,安全可靠的方法是:安装之前,将每台电力电容器测量后,将产品序号做好纪录,再依次安装。值得注意的一点,生产成套装置的厂家应考虑到电容补偿柜的运输问题。如果将电容器安装好后运输,很容易造成电容器因运输途中的路面颠簸而碰撞损坏(特别是容量大的电容器因其自身高度和重量,最易因此受到损坏)。方便而有效的解决办法是:在起始点对电容补偿柜装上电容器进行测试后,将电容补偿柜(空柜)和电力电容器分开运输,直到最终目的地(直接用户处)再进行安装。 用户只要对电力电容器选用得当,可为企业提高经济效益,为设备运行与人身财产提供安全的保证。 二、对环境的原因直接影响到电力电容器的寿命。电压过高与冲击电流对电力电容器是致命损害。所以选用电力电容器时,应向生产厂家提供下列几点情况,这样生产厂家可为用户生产专用的电容器。 1、电力电容器设计温度标准45℃,超过45℃对电容器影响很大。(如上海虹桥机场国内候机楼配电房,其里面温度比外界的自然温度高出许多,普通电容器被封闭在柜子里,温度则更高。导致电容器在高温状态下发热过度,引起膨胀、漏液。而

用并联电容器补偿无功功率的原理及相关方法

用并联电容器补偿无功功率的原理及相关方法 无功补偿的原理:电网输出的功率包括两部分;一是有功功率;二是无功功率.直接消耗电能,把电能转变为机械能,热能,化学能或声能,利用这些能作功,这部分功率称为有功功率;不消耗电能;只是把电能转换为另一种形式的能,这种能作为电气设备能够作功的必备条件,并且,这种能是在电网中与电能进行周期性转换,这部分功率称为无功功率,如电磁元件建立磁场占用的电能,电容器建立电场所占的电能.电流在电感元件中作功时,电流超前于电压90℃.而电流在电容元件中作功时,电流滞后电压90℃.在同一电路中,电感电流与电容电流方向相反,互差180℃.如果在电磁元件电路中有比例地安装电容元件,使两者的电流相互抵消,使电流的矢量与电压矢量之间的夹角缩小,从而提高电能作功的能力,这就是无功补偿的道理. 集中补偿电容器作为补偿装置有两种方法:串联补偿和并联补偿。串联补偿是把直接串联到高压输电线路上,以改善输电线路参数,降低电压损失,提高其输送能力,降低线路损耗。这种补偿方法的电容器称作串联电容器,应用于高压远距离输电线路上,用电单位很少采用。并联补偿是把电容器直接与被补偿设备并接到同一电路上,以提高功率因数。这种补偿方法所用的电容器称作并联电容器,用电企业都是采用这种补偿方法。按电容器安装的位置不同,通常有三种方式。 1.集中补偿电容器组集中装设在企业或地方总降压变电所的6~10kV母线上,用来提高整个变电所的功率因数,使该变电所的供电范围内无功功率基本平衡。可减少高压线路的无功损耗,而且能够提高本变电所的供电电压质量。

2.分组补偿将电容器组分别装设在功率因数较低的车间或村镇终端所高压或低压母线上,也称为分散补偿。这种方式具有与集中补偿相同的优点,仅无功补偿容量和范围相对小些。但是分组补偿的效果比较明显,采用得也较普遍。 3.就地补偿将电容器或电容器组装设在异步或电感性用电设备附近,就地进行无功补偿,也称为单独补偿或个别补偿方式。这种方式既能提高为用电设备供电回路的功率因数,又能改善用电设备的电压质量,对中、小型设备十分适用。

无功补偿中各种型号的其意义

第1章绪论 1.1 无功补偿的意义 国民经济的高速发展和人民生活水平的不断提高带来了电力负荷的高速增长。尤其是近两、三年来,由于电力负荷增长迅猛,而发电装机容量和输配电能力不足,造成全国近20个省市电力供应紧张,部分省市出现限电拉闸[1]。与此同时,随着电力市场的开放,电力用户对电能质量的要求也在提高;电力生产与供应企业也比以往任何时候都重视电力系统运行的经济性。 电力系统运行的经济性和电能质量与无功功率有重大的关系。无功功率是电力系统一种不可缺少的功率。大量的感性负荷和电网中的无功功率损耗,要求系统提供足够的无功功率,否则电网电压将下降,电能质量得不到保证。同时,无功功率的不合理分配,也将造成线损增加,降低电力系统运行的经济性。 无功功率从何而来?显然,发电机提供的无功功率相对负荷和网络对无功功率的需求来说只是“杯水车薪”,仅仅依靠发电机提供无功功率也是极不经济的。无功功率最主要的来源是利用各种无功功率补偿(以下简称无功补偿)设备在电力系统的各个环节进行无功补偿。因此,无功补偿是电力系统的重要组成部分,它是保证电能质量和实现电力系统经济运行的基本手段。 低压电力用户量大面广,其负荷的功率因数又大都比较低,因此在低压电网中进行无功功率的就地补偿是整个电力系统无功补偿的重要环节。 低压电网的无功补偿主要采用并联电容器进行,它包括固定电容器(FC)补偿和自动投切电容器的动态补偿以及两者混合补偿等方式。 电力负荷是随时变化的,所需要的无功功率也是随时变化的,为了维持无功平衡,要求无功补偿设备实行动态补偿,即要根据无功负荷的变化及时投切电容器。以往的低压动态无功补偿设备以机械开关(接触器)作为电容器的投切开关,机械开关不仅动作速度慢,而且会产生诸如涌流冲击、过电压、电弧重燃等现象,开关本身和电容器都容易损坏。据调查,我国过去使用的自动投切电容器无功补偿装置在使用3年后损坏率达75%[2]。 随着电力电子技术和微机控制技术的迅速发展和广泛应用,出现了智能型的动态无功补偿装置。这种以电力电子器件作为无功器件(电容器、电抗器)的控制或开关器件的动态无功补偿装置被称为静止无功补偿装置(SVC:Static Var Compensator)。 SVC是动态无功补偿技术的发展方向,它正成为传统无功补偿装置的更新换代产

并联电容器无功补偿及其正确使用

并联电容器无功补偿及其正确使用 异步电动机的无功就地补偿技术,近些年来得到推广应用。就地补偿方式的主要优点是:所需设备少,投资少,运行可靠,维护方便,特别对单机容量较大,运行时间长,距离电源较远的电动机更为适用。它对减少企业电能损失,提高电压质量有重大意义。采用并联电容器进行无功补偿,其主要作用是:1、补偿无功功率,提高功率因数;2、提高设备出力;3、降低功率损耗和电能损失;4、改善电压质量。一般工矿企业要求功率因数必须大于0.9,为提高功率因数常采用变电所集中补偿和就地补偿或两者结合使用。无功补偿容量按下式计算:Q=P(tgθ1—tgθ2),其中tgθ1、tgθ2为补偿前后的正切值,在补偿前后,由于有功功率不变,有功功率损耗值也无改变,但是,无功功率发生了变化,由Q降低为Q—Q C,故通过输、变配、用电设备有效电阻R时,有功功率的损耗由降低为ΔP2Q,所以并联电容器补偿的经济当量为K C=ΔP1Q—ΔP2Q=[Q2/U2*10-3—(Q-Q C)2/U2*R*10-3]/ Q C=(2Q- Q C)/ U2Q(2- Q C/Q)=ΔP1Q/Q(2- Q C/Q),可见采取并联电容器补偿的经济当量的大小取决于补偿容量与无功功率的比值。并且还表明,K C与两个因素有关:一是与ΔP1Q/Q成正比,二是与(2- Q C/Q)成正比。由于Q C可大可小,从自身效益和社会效益整体来考虑,多少合适,这是一个值得研究的问题。(1)、当Q C《Q时,2- Q C/Q≈2,这种情况等于没有补偿,谈不上降低有功功率的损耗。(2)、当Q C≈Q 时,2- Q C/Q≈1,这种情况等于全补偿,因负荷的变化,有时会出现

电力电容器无功补偿分析

电力电容器无功补偿分析 【摘要】采用电力电容器组来进行无功功率补偿,这是一种实用、经济的方法。采用了无功补偿,可起到减少设计容量;减少投资;增加电网中有功功率的输送比例,降低线损,改善电压质量,稳定设备运行的作用;还可提高低压电网和用电设备的功率因素,从而起到降低电能损耗和节能的作用。 【关键词】电力电容器;无功补偿 由于经济的不断发展和用电负荷的增加,必然要求电网系统利用率的提高。但由于接入电网的用电设备绝大多数是电感性负荷,自然功率因素低,影响发电机的输出功率;降低有功功率的输出;影响变电、输电的供电能力;降低有功功率的容量;增加电力系统的电能损耗;增加输电线路的电压降等。因此,连接到电网中的大多数电器不仅需要有功功率,还需要一定的无功功率。无功,简单的说就是用于电路内电场与磁场的交换,并用来在电气设备中建立和维持磁场的电功率。电机和变压器中的磁场靠无功电流维持,输电线中的电感也消耗无功,电抗器、荧光灯等所有感性电路全部需要一定的无功功率。为减少电力输送中的损耗,提高电力输送的容量和质量,必须进行无功功率的补偿。 目前,在110kV及以下的电网中,常安装电力电容器组来进行无功功率补偿,这是一种实用、经济的方法。而采用无功补偿,具有减少设计容量;减少投资;增加电网中有功功率的输送比例,降低线损,改善电压质量,稳定设备运行;可提高低压电网和用电设备的功率因素,降低电能损耗和节能;减少用户电费支出;可满足电力系统对无功补偿的检测要求,消除因为功率因素过低而产生的罚款等优点。 1.电力电容器的补偿原理 电容器在原理上相当于产生容性无功电流的发电机。其无功补偿的原理是把具有容性功率负荷的装置和感性功率负荷并联在同一电容器上,能量在两种负荷间相互转换。这样,电网中的变压器和输电线路的负荷降低,从而输出有功能力增加。在输出一定有功功率的情况下,供电系统的损耗降低。比较起来电容器是减轻变压器、供电系统和工业配电负荷的最简便、最经济的方法。因此,电容器作为电力系统的无功补偿势在必行。当前,采用并联电容器作为无功补偿装置已经非常普遍。 2.电力电容器补偿的特点 2.1优点 电力电容器无功补偿装置具有安装方便,安装地点增减方便;有功损耗小(仅为额定容量的0.4%左右);建设周期短;投资小;无旋转部件,运行维护简便;个别电容器组损坏,不影响整个电容器组运行等优点。

电力系统电压与无功补偿

现代生产和现代生活离不开电力。电力部门不仅要满足用户对电力数量不断增长的需要,而且也要满足对电能质量上的要求。所谓电能质量,主要是指所提供电能的电压、频率和波形是否合格,在合格的电能下工作,用电设备性能最好、效率最高,电压质量是电能质量的一个重要方面,同时,电压质量的高低对电网稳定、经济运行也起着至关重要的作用。 1 电压与无功补偿 电压顾名思义就是电(力)的压力。在电压的作用下电能从电源端传输到用户端,驱动用电设备工作。 交流电力系统需要电源供给两部分能量,一部分将用于作功而被消耗掉,这部分电能将转换为机械能、光能、热能或化学能,我们称 为“有功功率”。另一部分能量是用来建立磁场,用于交换能量使用的,对于外部电路它并没有作功,由电能转换为磁能,再由磁能转换为电能,周而复始,并没有消耗,这部分能量我们称为“无功功率”,无功是相对于有功而言,不能说无功是无用之功,没有这部分功率,就不能建立感应磁场,电动机、变压器等设备就不能运转。在电力系统中,除了负荷无功功率外,变压器和线路的电抗上也需要大量无功功率。

国际电工委员会给出的无功功率的定义是:电压与无功电流的乘积 为无功功率。其物理意义是:电路中电感元件与电容元件活动所需要的功率交换称为无功功率。

我们以电感元件和电容元件的并联回路来说明这个问题,见图1a,在电压的作用下,电感回路中电流滞后电压90°,而在电容回路中电流却是超前电压90°,即在同一电压作用下,任一瞬时,IL和IC在时间轴对称。我们将每一瞬间电感上的电压与电感电流IL相乘得到电感的功率曲线PL(图1b),同样的,将电容上的电压与电容电流IC相乘得到电容的功率曲线PC(图1c)。 如图2a所示,功率在第二个和第四个1/4周期内电感在吸收功率,并把所吸 电感收的能量转化为磁场能量;而在第一和第三个1/4周期内

第九章__电力电容器和电抗器

提供相关设备的实物图片和视频。 第九章电力电容器和电抗器 第一节电力电容器 一、电力电容器的种类和作用 电力电容器按所起作用的不同分为并联(移相)电容器、串联电容器、耦合电容器、电热电容器、脉冲电容器等。 (1)并联电容器。并联电容器并联在电网上用来补偿电力系统感性负载的无功功率,以提高系统的功率因数,改善电能质量,降低线路损耗;还可以直接与异步电机的定子统组并联,构成自激运行的异步发电装置。 (2)串联电容器。 (3)耦合电容器。 (4)均压电容器。 (5)脉冲电容器。 本节主要介绍用于电网无功补偿的并联电容 器。 二、电力电容器的基本结构 并联电容器主要由电容元件、浸渍剂、紧固件、 引线、外壳和套管组成,其结构如图9-1所示。 (1)电容元件。电容元件是用一定厚度和层数的固体介质与铝箔电极卷制而成,如图9-2所示。 图9-1 并联电容器结构 1-出线瓷套管;2-出线连接片;3-连接片; 4-电容元件;5-出线连接片固定板;

为适应各种电压等级电容器耐压的要求,可由若干个电容元件并联和串联起来,组成电容器芯子。固体介质可采用电容器纸、膜纸复合或纯薄膜作为介质。在电压为10kV及以下的高压电容器内,每个电容元件上都串有一熔丝,作为电容器的内部短路保护,如图9-3所示。当某个元件击穿时,其他完好元件即对其放电,使熔丝在毫秒级的时间内迅速熔断,切除故障元件,从而使电容器能继续正常工作。 单元电容器安装在框架上,根据不同的电压和容量作适当的电气连接,单台三相电容器的芯子一般接成三角形接线。出线端子通过导线与箱盖上的套管相连,供进出线及放电线圈使用。 (2)浸渍剂。为了提高电容元件的介质耐压强度,改善局部放电特性和散热条件,电容器芯子一般放于浸渍剂中,浸渍剂一般有矿物油、氯化联笨、SF6气体等。 (3)外壳、套管。电容器的外壳一般采用薄钢板焊接而成,有利于散热,但绝缘性能较差,表面涂阻燃漆,壳盖上焊有出线套管,箱壁侧面焊有吊攀、接地螺栓等。大容量集合式电容器的箱盖上还装有油枕或金属膨胀器及压力释放阀,箱壁侧面装有片状散热器、压力式温控装置等。接线端子从出线瓷套管中引 出。 自愈式电容器结构如图9-4所示,采用聚丙 烯薄膜作为固体介质,表面蒸镀了一层很薄的金 图9-4 低压自愈式电容器结构 属作为导电电极。当作为介质的聚丙烯薄膜被击 穿时,击穿电流将穿过击穿点。由于导电的金属 化镀层电流密度急剧增大,并使金属镀层产生高热,使击穿点周围的金属导体迅速蒸发逸散,形成金属镀层空白区,击穿点自动恢复绝缘。 四、电力电容器的无功补偿 1.补偿方式

高压电容补偿柜介绍1

高压静电电容补偿柜介绍 一、概述 在工厂供电系统中,绝大多数用电设备都具有电感的特性。(诸如:感应电动机、电力变压器、电焊机等)这些设备不仅需要从电力系统吸收有功 功率,还要吸收无功功率以产生这些设备正常工作所必需的交变磁场。然而 在输送有功功率一定的情况下,无功功率增大,就会降低供电系统的功率因 数。因此,功率因数是衡量工厂供电系统电能利用程度及电气设备使用状况 的一个具有代表性的重要指标。 二、功率因数的含义及计算 图 1-1 有功功率、无功功率和视在功率的关系,如图1-1电流和电压的相量图所示。用公式表示则为: 式中 S—视在功率(KVA); P—有功功率(KW); Q—无功功率(Kvar)。 根据交流电路的基本原理,存在以下关系: S=UI P=UIcosφ= Scosφ Q=UIsinφ= Ssinφ 式中 U—设备两端的电压(KV); I—通过设备的电流(A); cosφ—功率因数。 如图1-1所示,φ角为功率因数角,表示电压与电流之间的相位差,它的

余弦(cosφ)表示有功功率与视在功率之比,称为功率因数。即:cosφ=P/S。 因此,用电设备的有功功率不仅随电压与电流的大小而变化,而且也随电压与电流之间的相位差而变化。 由图1-1看出,当有功功率需要量保持恒定时,无功需要量越大,其视在功率也就越大。而为满足用电设备需要,势必要增大变压器及配电线路的容量,如此不仅增加投资费用,而且增大设备及线路的损耗,浪费了电力。另外,无功功率需要量的增加,还使变压器及线路的电压损失增大,劣化电压质量。看来无功功率对电网及工厂企业内部供电系统都有不良影响,必须设法降低无功功率的需要量即提高功率因数cosφ。根据《全国供用电规则》的规定,要求一般工业用户的功率因数为0.85~0.9以上。 三、提高功率因数的措施 提高功率因数的方法很多,主要分为两大类,即提高自然功率因数和进行人工补偿提高功率因数。所谓提高自然功率因数,是指不添置任何补偿设备,采取措施改善设备工况,以减少用电设备的无功功率,提高功率因数。所谓人工补偿提高功率因数,一般指工厂企业多采用并联电容器来补偿无功功率。四、并联电容器的优点 并联电容器有几项优点:它的有功功率损耗小;运行维护方便;单台容量较小,便于集合成组装置;个别电容器损坏并不影响整个装置的运行,所以应用很广泛。 五、并联电容器的补偿方式 并联电容器的补偿方式可分为三种:个别补偿、分组补偿和集中补偿。个别补偿是指将并联补偿电容器组装设在需进行无功补偿的各个用电设备附近。这种补偿方式特别适用于负荷平稳、经常运转而容量又大的设备如大型感应电动机、高频电炉等采用。分组补偿一般适用于低压系统。集中补偿一般设置在总降压变电所或总配电所高压母线上,电容器利用率高,能减少变电所前电力系统和企业主变压器及供电线路的无功负荷,增加其负荷能力,但并不能减少企业内部配电网络的无功负荷。采取哪种方式最为合理,需要进行技术经济比较后加以确定。

无功补偿柜电容器的容量换算问题

无功补偿柜电容器的容量换算问题 在无功补偿领域,我们经常会问的一句话是:电容器容量是多少? “容量”,何为容量? 解答:电容器的额定容量(电容器的功率),单位kvar(千乏) 专业知识普及 从下面这个公式可以看出电容器的功率与电压的关系: Q=2πfCU2 Q表示电容器的功率,单位var f表示系统频率,50Hz/60Hz C为电容器容量,单位uF(微法) U表示系统电压,单位kV(千伏) 由上面表达式可以看出,电容器的功率与施加到电容器两端的电压平方成正比。 每一只电容器都有一个参数叫做额定电压,对应额定电压则有一个额定功率。 例如:选择电压为450V,额定功率为30kvar的电容器。 问1:当额定电压为450V,额定功率为30kvar的电容器,用在400V系统中,其输出功率为多少呢?

这就是我们经常碰到的问题,电容器的额定电压都是高于系统的额定电压的。 通过上面的公式,我们可以很快算出来: Q400=Q450×(4002/4502) =30×(4002/4502) ≈23.7kvar 问2:为什么要选择额定电压高于系统电压的电容器呢? 电容器经受过电压危害时将快速损坏。为了保障电容器的运行安全,需要选择额定电压大于系统电压的电容器。 安科瑞小贴士:以低压电力电容器、高性能电抗器、高可靠投切开关、控制系统为主体,实现低压无功补偿功能。主要应用于谐波十分严重场合的无功补偿,在一定程度上有吸收消除谐波的功能。 到这个阶段我们知道了,如果无功补偿支路设计为纯电容器的话,无功补偿支路的输出功率要根据电容器的额定电压和系统电压进行折算。 这也就是我们常说的安装功率(安装容量)和输出功率(输出容量)。 安装功率常指电容器的额定功率; 输出功率常指电容器在系统电压下的实际输出功率。 参照上面举例,我们可以知道:将额定电压为450V,30kvar的电容器应用于400V无功补偿系统,则此系统安装容量为30kvar,其输出容量为23.7kvar。

并联电容器的补偿方式

并联电容器的补偿方式 并联电容器按装设的位置分为高压集中补偿、低压集中补偿和低压就地补偿(个别补偿) 三种方式,如图8—2所示。 1.高压集中补偿 高压集中补偿是将高压并联电容器组集中安装在企业变配电所6—10kv母线上,其接线方式如图8—3所示。钽电容器织采用的是A形接线,装在高压电容器柜内。为防止电容器击穿 时引起相问短路,二角形的备边均串联—个高压熔断器作短路保护,控制方式为手动投切。 出于电容器从系统巾切除后有残余电压,其值最高可达系统电压的峰值,这对人是很危险 的。因此规定,电容器组应装设放电装置,高压电容器放电时间应不短f:5,n入低压电容器放 电时间应不短十1加n。对高压电容器组通常用电压互感器的‘次绕组来放电(如图8—3中的电压互感器Tv)。为确保放电可靠,电容器组的放电回路中不得装设熔断器或开关,以免放 电回路断开,危及人身安全。 一般规定室内高压电容器装置宜装设在单独房间内。当电容器容量较小时,可装设在高压配电室内,但与高压配电装置的距离不应小于1.5m。 该种补偿方式的初期投资较少,电容器利用率高,可以提高总功率因数,且便于集中运

行 维护,普遍应用于一些大中型企业。但是只能补偿6—10kv母线前的无功功率,而低压网络的无功功率得不到补偿。 2.低压集中补偿 低压集中补偿是将低压并联电容器组安装在变压器的二次母线上,其接线如图8—4所示。电容器组采用A形接线,一般利用两盏 220v、15—25w的白炽灯泡串联后再接成A形或 Y形来放电(自愈式电容器内部装有放电电阻), 同时白炽灯也作为电容器运行的指不灯。为延长 灯泡寿命,ST代理商一般选择两个灯泡串联。补偿的低压 电容器柜安装在变电所低压配电室内,控制方式 为手动投L5或自动控制,该补偿方式在企业供配 电中被厂—6采用。 低压集小补偿方式能补偿车间变电所低压母 线前车间变电所主变压器和前面高压配电线路及 电力系统的无功功率,可佼变压器的出力增加和 二次侧电压升高,补偿范围扩大,运行维护方便。 但是该补偿方式比低厌就地补偿范围小。这种补偿方式能够补偿女装部位前而所有高、低压线路和电力变压器的无功功率,因此, 其补偿范围最大,补偿效果也最好,能就地平衡无功电流。但该补偿方式总的设备投资较大,且当被补偿的用屯设备停止工作时,电容器组也将一并被切除,因此,其利用率较低,不便于维 护。这种补偿方式特别适用于负荷平稳、长期运转而容量又大的设备,如大型感应电动机、高 频电热炉等,也适用于容量虽小促数量多且是长期稳定运行的设备如荧光幻守” 图8—5是直接接在感应电动机夯就地补偿的低压电容器组接线图。这种电容器组通常利用用电设备本身的绕组电阻来放电,放电回路不装熔断器。 综上所述,各种补偿方式各有其优缺点,在企业供电设计中,企业采用哪种补偿方式最为 合适,需进行技术经济比较后加以确定。

并联电容器补偿装置基础知识

并联电容器补偿装置基 础知识 The manuscript was revised on the evening of 2021

并联电容器补偿装置基本知识 无功补偿容量计算的基本公式: Q = P (tg φ1——tg φ2) =P( 1cos 1 1cos 12 2 12---?? ) tg φ1、tg φ2——补偿前、后的计算功率因数角的正切值 P ——有功负荷 Q ——需要补偿的无功容量 并联电容器组的组成 1.组架式并联电容器组:并联电容器、隔离开关(接地开关或隔离带接 地)、放电线圈、串联电抗器、氧化锌避雷器、并联电容器专用熔断器、组架等。 2.集合式并联电容器组(无容量抽头):并联电容器、隔离开关(接地开关或隔离带接地)、放电线圈、串联电抗器、氧化锌避雷器、组架等。 并联电容器支路内串接串联电抗器的原因: 变电所中只装一组电容器时,一般合闸涌流不大,当母线短路容量不大于80倍电容器组容量时,涌流将不会超过10倍电容器组额定电流。可以不装限制涌流的串联电抗器。 由于现在系统中母线的短路容量普遍较大,且变电所内同时装设两组以上的并联电容器组的情况较多,并联电容器组投入运行时,所受到的合闸涌流值较大,因而,并联电容器组需串接串联电抗器。 串联电抗器的另一个主要作用是当系统中含有高次谐波时,装设并联电容器装置后,电容器回路的容性阻抗会将原有高次谐波含量放大,使其超过允许值,这时应在电容器回路中串接串联电抗器,以改变电容器回路的阻抗参数,限制谐波的过分放大。 串联电抗器电抗率的选择 对于纯粹用于限制涌流的目的,串联电抗器的电抗率可选择为(~1)%即可。 对于用于限制高次谐波放大的串联电抗器。其感抗值的选择应使在可能产生的任何谐波下,均使电容器回路的总电抗为感性而不是容性,从而消除了谐振的可能。电抗器的感抗值按下列计算: X L =K X C n 2 式中 X L ——串联电抗器的感抗,Ω; X C ——补偿电容器的工频容抗, Ω;

浅谈电力电容器无功补偿及其安全应用(新版)

浅谈电力电容器无功补偿及其安全应用(新版) Safety work has only a starting point and no end. Only the leadership can really pay attention to it, measures are implemented, and assessments are in place. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0607

浅谈电力电容器无功补偿及其安全应用 (新版) 摘要:本文主要从电力电容器的补偿原理、补偿的特点、无功补偿方式、电容器补偿容量的计算及电容器安全运行这几个方面进行阐述。 关键词:电力电容器无功补偿;安全运行 随着国民经济的发展,用电负荷的增加,必然要求电网系统利用率的提高。但由于接入电网的用电设备绝大多数是电感性负荷,自然功率因素低,影响发电机的输出功率;降低有功功率的输出;影响变电、输电的供电能力;降低有功功率的容量;增加电力系统的电能损耗;增加输电线路的电压降等。因此,连接到电网中的大多数电器不仅需要有功功率,还需要一定的无功功率。无功,简单的说就是用于电路内电场与磁场的交换,并用来在电气设备中建立和维持磁场的

电功率。电机和变压器中的磁场靠无功电流维持,输电线中的电感也消耗无功,电抗器、荧光灯等所有感性电路全部需要一定的无功功率。为减少电力输送中的损耗,提高电力输送的容量和质量,必须进行无功功率的补偿。 目前,在110kV及以下的电网中,常安装电力电容器组来进行无功功率补偿,这是一种实用、经济的方法。而采用无功补偿,具有减少设计容量;减少投资;增加电网中有功功率的输送比例,降低线损,改善电压质量,稳定设备运行;可提高低压电网和用电设备的功率因素,降低电能损耗和节能;减少用户电费支出;可满足电力系统对无功补偿的检测要求,消除因为功率因素过低而产生的罚款等优点。 1电力电容器的补偿原理 电容器在原理上相当于产生容性无功电流的发电机。其无功补偿的原理是把具有容性功率负荷的装置和感性功率负荷并联在同一电容器上,能量在两种负荷间相互转换。这样,电网中的变压器和输电线路的负荷降低,从而输出有功能力增加。在输出一定有功功率的情况下,供电系统的损耗降低。比较起来电容器是减轻变压器、供电

相关文档
最新文档