概率论方法在数学分析中的一些应用

概率论方法在数学分析中的一些应用
概率论方法在数学分析中的一些应用

概率论方法在数学分析中的一些应用Some applications of probability theory in the mathematical

analysis

摘要

概率论作为数学的一个分支,与其他学科分支有着密切的联系,具有广泛的应用性。著名的数学家王梓坤院士在文献中[1]指出:“用概率论的方法来证明一些关系式或者解决其他数学分析中的问题,是概率论的重要研究方向之一。”概率论方法不仅能解决一些随机的数学问题,而且还可以解决一些确定的数学问题[2],而且某些在数学分析中很难解决的问题,只要运用合适的概率论模型或是定理,就能得到很好的解决。然而现如今多数有关概率论与数学分析联系的文献不是很全面,本文归纳概括了概率论在数学分析中的应用,选择了比较典型的五类:概率论方法解决极限问题、概率论方法解决无穷级数问题、概率论方法解决积分问题、概率论方法解决恒等式问题及概率论方法解决不等式问题,而且在每一类的问题讨论中引入很多概率论中的定理和公式,清晰地阐述概率论在数学分析知识间的运用。

Probability theory as a branch of mathematics has close connection with other subjects and their branches, it has wide applicability. Famous mathematician and academician Wong Chi-Kun, in his literature[1] pointed out: "It is one of the most important research directions to use probability theory to prove some relationship or to solve the problems in mathematical analysis.” Probability theory can not only solve some random math problems, but also can solve some identified mathematical problems[2], What’s more some very difficult questions in mathematical analysis can also be well resolved by using a suitable probability theory model or theorem. However, now most literatures which related to the relationship of probability theory and mathematical analysis are not very comprehensive, This article summarized the outlines of probability theory in mathematical analysis, selected five typical themes: probability theory in solving the ultimate problem, probability theory in solving the problem of infinite series, probability theory in solving the integral problem, probability theory in solving the identity problem and probability theory in solving the inequality problem. Furthermore in

order to represent a clear idea on the use of probability theory in Mathematical Analysis, this article introduced a lot of theorems and formulas related to probability theory when discussing every theme.

关键词:贝努利模型;正态分布;泊松分布;中心极限定理;大数定理;Cauchy-Schwartz 不等式;随机变量

Keyword: Bernoulli model; normal distribution; poisson distribution; central limit theorem; law of large numbers; Cauchy-Schwartz inequality; random variable

目录

引言 (4)

一、概率论方法解决极限问题 (5)

(一)概率论方法解决极限问题概述 (5)

(二)典型例题分析与证明 (5)

(三)概率论方法解决极限问题的意义 (8)

二、概率论方法解决无穷级数问题 (9)

(一)概率论方法解决无穷级数问题概述 (9)

(二)典型例题分析与证明 (9)

(三)概率论方法解决无穷级数问题的意义 (14)

三、概率论方法解决积分问题 (15)

(一)概率论方法解决积分问题概述 (15)

(二)典型例题分析与证明 (15)

(三)概率论方法解决积分问题的意义 (19)

四、概率论方法解决恒等式问题 (19)

(一)概率论方法解决恒等式问题概述 (19)

(二)典型例题分析与证明 (19)

(三)概率论方法解决恒等式问题的意义 (21)

五、概率论方法解决不等式问题 (21)

(一)概率论方法解决不等式问题概述 (21)

(二)典型例题分析与证明 (21)

(三)概率论方法解决不等式问题的意义 (26)

结论 (26)

参考文献 (27)

致谢 (28)

引 言

概率论作为数学的一个分支,它与其他学科分支有着密切的联系,具有广泛的应用性。著名的数学家王梓坤院士在文献中指出:“用概率论的方法来证明一些关系式或者解决其他数学分析中的问题,是概率的重要研究方向之一。”概率论方法不仅能解决一些随机的数学问题,而且还可通过建立适当的随机模型,进而解决一些确定的数学问题,而且某些在数学分析中很难解决的问题,只要运用合适的概率论模型,就能得到很好的解决。例如:朱显康曾在文献中写到:

用概率论方法求一类正项级数a

1n kr (C )(C C )C C a k a a n m n kr n m a k n r ∞

-+-=++-∑ 的和。陆晓恒曾在文献中通过建立随机模型,应用中心极限定理,证明了11

lim e !

2k n

n

n k n k -→∞==∑。王大胄在文献中证明了自然倒数平方的级数

和21

6n n ∞

==∑

。李慧琼, 陈振龙一同撰写的文献中就提到了构造随机概率模型证明不等式。如证明∑=<++N

n n n 1

1)!12()!1(,时构造了广义贝努利概率论模型;在证明301

2e !k k k +∞=+≥∑时构造了泊松分布概率模型等等。

但是这些文献仅仅是一个例子或几个例子来介绍用概率方法可以处理在数学分析中的一类问题。那么到底概率方法可以处理数学分析哪些问题,目前还没有一个详细全面的介绍。所以,在查阅了很多资料之后,笔者将这些资料做了整理,归纳了概率方法在数学分析中的应用,其中主要包括用概率方法解决无穷级数问题、概率方法解决极限问题、概率方法解决积分问题、用概率方法解决不等式问题和恒等式问题这五大类。 本文下面就从上述这五个方面阐述概率方法在数学分析知识间的运用,通过大量例子说明用什么概率方法解决数学分析上这四种类型的问题。这祥, 我们就能在数学分析中找到概率论的应用。在每一部分的讨论中,笔者都充分展示了概率论方法解决数学分析优越性。虽然这些问题不一定具有代表性, 但笔者认为, 这样的讨论是别开生面的、很有趣的, 其方法是独特的。下面我们仅就与本文有关的的五个方面介绍一下概率论在数学分析的应用:

一、概率论方法解决极限问题

(一)概率论方法解决极限问题概述 极限问题是数学分析中一个贯穿始终的问题,而难题也经常出现在极限这类问题中,很多复杂的极限问题若运用数学分析中得方法解决相当麻烦,而用概率论方法解决则克服了这类缺陷,在这方面,本文通过构造泊松分布,借助林德贝尔格——Levy 定理、中心极限定理、辛钦大数定理等概率论中的重要定理,简便直观地解决了相关的问题。以下几个例题充分展示了概率论方法解决极限问题的优势所在。 (二)例题与证明

例1: 设1e !

k n

n

n k n a k -==∑,证明1,2n a n →→∞。

证明 设随机变量12,,,,n ξξξ 独立同分布,都服从参数为1的泊松分布()1P , 那么

()()()1,1,1,2i i E D i ξξ=== 。

设1n

n i i ηξ==∑,则()(),n n E n D n ηη==,则n η服从参数为n 的泊松分布()P n 。

由题设知 ()n n a P n η=≤。

由林德贝尔格——Lev y 定理得:

212

1lim e

2n t i x

i n n P x dt n ξπ

-

=-∞

→∞??

- ? ?≤= ? ???∑?

()lim lim n n n n a P n η→∞

→∞

∴=≤

2

2

1lim 0e

2t n n n P dt n ηπ-

-∞

→∞

-??

=≤= ????

22

11e

2

22t dt π

+∞

-

-∞

=

=

?

本题用中心极限定理来求原在数学分析中比较困难的所谓泊松极限问题,先把要讨论的问题与泊松分布联系起来,然后应用中心极限定理得出相应的结果。本题还有更一般的表达形式,如下题:

例2([3]): 求极限()

lime

,0!

k

n

nt

n k nt t k →∞

=>∑

解:令()()

e !

k

n

nt

n k nt a t k -==∑

,考虑n 个相互独立的随机变量12,,,n ξξξ ,都服从参数为t 的泊

松分布,即

()~,1i P t i n ξ≤≤,

1

n

n i i ηξ==∑,则()~n P nt η,

由题设知

()()()

0e !

k

n

nt n n k nt a t P n k η-==≤=∑

由林德贝尔格——Levy 定理得 :

2121

lim e 2n t i x i n nt P x dt nt ξπ

-=-∞→∞??

- ? ?≤= ? ???

∑?, ()()1lim ()lim lim n n n n n n n t nt a t P n P nt nt ηη→∞→∞→∞

-??

-∴=≤=≤ ??? 。 ⑴ ⅰ 当1t =时,⑴式变为()2

2

1lim lim 0e

2t n

n n n n P n P dt n ηηπ-

-∞

→∞→∞

-??≤=≤= ???

?

,即为上题。

ⅱ 当1t >时,lim ()0n n a t →∞

∴=,因为0,N ε?>?使得

2

2

1

e

2t N

dt επ

-

-∞

时,⑴

式变为

()1lim lim n n n n n t nt P n P nt nt ηη→∞→∞

?-?

-≤=≤ ???

, 对以上的1,,N N ε?,当1n N ≥时有

()1n t N nt

-<,

从而

()12n n n t nt nt P P N nt

nt nt ηηε-??--??≤≤≤-< ?

?????, 即

lim ()0n n a t →∞

∴=。

ⅲ 当01t <<时,lim ()1n n a t →∞

∴=,因为0,N ε?>?使得

2

2

1e

12t N

dt επ

-

-∞

>-?

成立,仿1t >时

有:

1112n n n t nt nt P P N nt

nt nt ηηε?-?--??

≥≤

≥≤-≥- ?

?????

, 从而结论也成立。

对于更复杂的求极限问题,用概率论方法也能轻松解决,如下题:

例3([4]): 设x xvo +=,求极限()()()012lim 2!!

j n

n

n

n j n j n j j +

→∞

=---∑。

解: 设()12,,,,~0,1n x x x U , 此时记1

n n i i S x ==∑,取2,3

n n S n

n ξ-=,n ξ的分布弱收敛

于正态分布。注意到n S 的分布密度是:

()()()()()111111,01,11,1,2,3,,!!0,n j n m n n j x x n x j P x n m x m m n n n j j ----=?

≤≤?Γ?

?--?

=+-<≤=?Γ-?????

∑ 其他。

引入,0

0,0x x x xvo x +≥?==?

,则有:

(),0,x a x a

x a x a +-≥?-=?

于是

()()()()1

010!!

0,j n n n j x j n x n

P x n j j -+

=?--?≤≤=-??

?

∑,其他, 由独立同分布的中心极限定理,1y R ?∈,有{}2

2

1lim ,02t y

n n P y e

dt y ξπ

-

-∞

→<=

=?

时,

122n n P S ?

?<=???

?,

()()()()()1π2

000

1122!!!!n

j

j n n n

n j j n j x j n P S dx n j j n j j -++==??

-- ?--????<==??--??∑∑?,

所以:

()()()0121lim 2!!

2

j n

n

n n j n j n j j +

→∞

=--=

-∑。

本题的极限时一个比较复杂的极限问题,用通常的数学分析的方法难以计算,但本题利用独立同分布的中心极限定理和密度极限定理求极限的方法成功算出了该题的极限。

例4: 求多重积分时,用普通的近似方法往往无法实现,因为这时所需的运算次数是非常惊人的。而用大数定律作为理论基础,可获得n 重积分(n 很大时)的近似值。

设()222121212,,,|,0,,,12n n n n n G x x x x x x x x x ??

=+++≤≤≤????

,求极限:

12lim .n

n n G dx dx dx →∞

??? 。

解:设随机变量()1,2,n n ξ= 在[]0,1上服从均匀分布,且相互独立,则有

()()()11

,,1,2,23

n n E D n ξξ=== 。

(){}1212lim ,,n

n n n n G dx dx dx P G ξξξ→∞

=∈???

()22222212121

122n n n P P n

ξξξξξξ????

=+++≤=+++≤

????????

()()22221211

16n P E n

ξξξξ??=+++-≤????

()2211

116n i i P E n ξξ=??≥-≤????∑。

因为12,,n ξξξ 独立同分布,可见22212,,n ξξξ 独立同分布。根据辛钦大数定律,知:

()2211

11lim 16n i n i P E n ξξ→∞=??

-≤=????∑, 从而得:

()()222212111lim 16n n P E n

ξξξξ→∞??

++-≤=???? , 即得:

12lim 1n

n n G dx dx dx →∞

=??? 。

本题为求极限与n 重积分的综合,通过构造n 个服从[]0,1均匀分布的随机变量,将n 重积分的问题,转化为概率论问题,然后根据辛钦大数定律,获得n 重积分的近似值,即得到了n 重

积分的极限。显而易见,这样的概率论方法解决这个极限难题是非常巧妙的。

(三)概率论方法解决极限问题意义

通过以上四个例题的证明,不难发现概率论方法解决这些极限问题的简便性。在今后的极限计算或是证明中,根据概率论中的的重要分布及一些重要定理如:林德贝尔格——Lev y 定理、中心极限定理、辛钦大数定理等,我们或许可以轻松地的解决一些复杂问题,从中我们可以感受出数学各分支间的紧密联系。

二、概率论方法解决无穷级数问题

(一)概率论方法解决无穷级数问题概述 在这个部分,本文主要通过构造概率论模型如广义贝努力模型,并根据相关概率论模型的性质,解决了许多无穷级数问题。不仅如此,在这部分的讨论中可以发现,有时有概率论方法解题能得到更精确的结果。

(二)典型例题分析与证明

例1([5]): 设23221111

(1)(1)(1)(1),2,3,,23(1)n a n n n =----

=+ 试计算无穷级数1

n n a ∞

=∑。 解这道题可构造概率模型:袋中有一个红球和一个黑球,它们除颜色不同外,没有任何差异。现随机地有返回地从袋中两次取球。即第一次从袋中任取一球,记下它的颜色后放回袋中,搅匀后再第二次取球。如果两次取出的球都是红色,那么就认为该次实验成功;如果两次取出的球颜色不相同,那么就认为该次实验失败。假如实验失败了,就必须把一只型号相同的黑球加放在袋中,再进行实验,即有返回地两次取球,如果两次取出的球是红球,则认为该次成功了;假如失败了,再把一只型号相同的黑球加入袋中,如此连续进行以至无穷,求获得成功的概率。

{}A =获得成功,

{}1A =第1次实验成功,

{}2A =第1次实验失败,第2次实验成功, {}3A =第1、2次实验失败,第3次实验成功,

{}n A =第1至n-1次实验失败,第n 次实验成功。

显然,1n n A A ∞

== ,且,,1,2,3,i j A A i j ?=?=

()12

12P A =

, ()22211123

P A ?

?=- ???,

()322211111234

P A ?

???=-- ???????,

()2222

1111111,23(1)

n P A n n ?

?????=--- ??? ?+?????? 于是:

()1n n P A P A ∞=??

= ???

()()112n n n n P A P A P A ∞∞

==??

==+ ???∑ ()2

2222111111112231n n ??????=+--- ??? ???????+

22

1

2n n a ∞

==+∑。 可见()P A 就是我们想要求和的无穷级数。这样我们便把无穷级数求和问题,转换成求概率()P A 的问题,下面从另一个角度考虑,求出概率()P A ,即得到无穷级数的和。

在上述所构造的概率论模型中,在各次不同的实验中取出两只红球的概率依次为:212,21

3

,21n , 。于是在各次不同的实验中取出两只红球不全是红球的概率依次为:2112-,21

13-,

21

1n

-, ,故在所有各次试验中所取出的两只球不全是红球的概率为: ()

222211*********P A n ?

???????=---- ????? ?????????

22221111lim 1111234n n →∞

?

???????=---- ????? ?????????

132435(1)(1)

lim 223344n n n n n

→∞???+-=????

???? 11

lim 2n n n

→∞+=?

11lim (1)2n n →∞=+ 12

=。 因此()()

11

11,22

P A P A =-=-=所以有

1

14n

n a ∞

==∑。

通过构造这个摸球的概率模型将这个复杂的无穷级数问题转化为一个较为简单的概率论问题,利用这个模型的概率特性,得到了结果。今后如果碰到这种类型的无穷级数或是其他的数学分析难题,这个模型都可以作为参考,下面这个例题正是说明了这个概率模型对另一种无穷级数模型的应用。

例2: 求无穷级数()()()()()22212

112n

n k k k k k n n ∞==??+- ? ?+++??

∑∏的值。 按照数学分析中知识,我们很容易可以判断出这个级数是收敛的,但至于收敛于什么值,我们借助类似上题的概率论模型求解。

解:先将原无穷级数进行变形,()()()()()()22

122212122

1(1)1211n n n n n n n n n n n n n ∞∞∞===--??==- ?+++++??

∑∑∑ 构造随机试验:假设有两个口袋,其中一个口袋装有两个红球,另一个口袋装有一个红球

和两个黑球,有放回地从两个口袋中各取一只球,若取到的两个均为红球均为红球,则停止取球,否则在两个口袋中各加进一只黑球,然后按照上述规则取球,直到取到两个球均为红球为

概率论重要知识点总结

概率论重要知识点总结 概率论重要知识点总结 第一章随机事件及其概率 第一节基本概念 随机实验:将一切具有下面三个特点: (1)可重复性 (2)多结果性 (3)不确定性的试验或观察称为随机试验,简称为试验,常用表示。 随机事件:在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事不可能事件:在试验中不可能出现的事情,记为。必然事件:在试验中必然出现的事情,记为Ω。 样本点:随机试验的每个基本结果称为样本点,记作ω.样本空间:所有样本点组成的集合称为样本空间.样本空间用Ω表示.一个随机事件就是样本空间的一个子集。基本事件—单点集,复合事件—多点集一个随机事件发生,当且仅当该事件所包含的一个样本点出现。事件的关系与运算(就是集合的关系和运算)包含关系:若事件发生必然导致事件B发生,则称B 包含A,记为,则称事件A与事件B 相等,记为A=B。 事件的和:“事件A 与事件B 至少有一个发生”是一事件,称此事件为事件A 与事件B 事件的积:称事件“事件A与事件B 都发生”为A 或AB。事件的差:称事件“事件A 发生而事件B 不发生”为事件A 与事件B 的差事件,记为A-B。用交并补可以表示为互斥事件:如果A,B两事件不

能同时发生,即AB=Φ,则称事件A 与事件B 是互不相容事件或互斥事件。互斥时可记为A+B。对立事件:称事件“A不发生”为事件A 的对立事件(逆事件),记为A 。对立事件的性质:事件运算律:设A,B,C为事件,则有: (1)交换律:AB=BA,AB=BA A(BC)=(AB)C=ABC (3)分配律:A(BC)=(AB)(AC)ABAC (4)对偶律(摩根律): 第二节事件的概率 概率的公理化体系:第三节古典概率模型1、设试验E 是古典概型,其样本空间Ω个样本点组成.则定义事件A 的概率为的某个区域,它的面积为μ(A),则向区域上随机投掷一点,该点落在区域假如样本空间Ω可用一线段,或空间中某个区域表示,则事件A 的概率仍可用上式确定,只不过把μ理解为长度或体积即可.第四节条件概率条件概率:在事件B 发生的条件下,事件A 发生的概率称为条件概率,记作乘法公式: P(AB)=P(B)P(A|B)=P(A)P(B|A)全概率公式:设第五节事件的独立性两个事件的相互独立:若两事件A、B 满足P(AB)=相互独立.三个事件的相互独立:对于三个事件A、B、C,若P(AB)=相互独立三个事件的两两独立:对于三个事件A、B、C,若P(AB)=两两独立独立的性质:若A 均相互独立总结: 1.条件概率是概率论中的重要概念,其与独立性有密切的关系,在不具有独立性的场合,它将扮演主要的角色。 2.乘法公式、全概公式、贝叶斯公式在概率论的计算中经常使用,应

概率论在实际生活中的应用

信息学院 14-15学年第1学期《概率论与数理统计》课程(单元)项目研究报告 项目名称 概率论在足球比赛中的应用 【项目内容】详细叙述拟完成项目的条件和问题,可配表或图。 足球号称世界第一运动,因为在全球范围内无论是哪个国家或者地区都有许多喜欢足球,热爱足球甚至从事足球这项运动的人.四年举行一次的世界杯更是球迷们的狂欢节.中国同样有许多热爱足球的人,中国国家队水平不高经常让中国老百姓失望,但是这丝毫不会减少大家对足球的热情,作为一个中国人我希望中国足球会越来越好. 下面我们来看看大家都喜爱的足球与概率论到底有哪些关联。 相关问题:在某届欧洲杯足球比赛上,西班牙,德国,英格兰和荷兰队进入到了四强,这四支球队中的一支将有希望最终夺冠.决赛四强对阵情况是西班牙对阵英格兰,而德国将与荷兰队争夺另一个进入决赛的名额,由于四支球队都是强队,所以两场半决赛将会十分激烈,先比赛完的一场半决赛中世界第一西班牙队战胜了英格兰队率先进入了决赛,大家此时都将目光放到了西班牙队上,根据以往的比赛成绩,西班牙战胜德国的概率为0.8,战胜荷兰队的概率为0.3,而德国队战胜荷兰队的概率为0.5,那么西班牙球迷迫切想知道西班牙队最终能获得冠军的概率究竟是多大? 对于上面西班牙球迷十分迫切关心的问题,让我们来利用概率的知识来帮助他们解决他们心中的疑虑. 由于西班牙队已经率先挺进决赛,所以还没有完成的德国和荷兰的比赛对于最终的冠军归属有很大的影响,如果德国战胜了荷兰队,那么西班牙队就有80%的可能性夺冠,但是如果荷兰队取得了半决赛的胜利,那么西班牙队夺冠的希望只有30% 根据以上条件,把西 班牙队夺冠记为事件C ,德国战胜荷兰记为事件C ,而荷兰战胜德国则记为事件A ,P(B)=0.5,P(A)=0.5由全概率公式,则A,B 是一个完备事件组,那么有公式就可以得出P(C)=P(B)P(C|B)+P(A)P(C|A)其中可以看出P(C|A)以及P(C|B)是条件概率,P(C|B)表示西班牙在决赛战胜了另一场半决赛的胜者德国队夺冠,P(C|B)=0.8,P(C|A)表示西班牙队在决赛战胜了另一场半决赛的胜出者荷兰队夺冠,P(C|A)=0.3. 所以根据上述公式(全概率公式)我们就可以计算出西班牙队最终夺冠的概率为 P(C)= P(B)P(C|B)+P(A)P(C|A)=0.5*0.8+0.5*0.3=0.55 所以西班牙队最终夺冠的概率应该为55%[10] 看到了西班牙队的最终夺冠的概率,西班牙队的球迷应该可以松一口气,好好享受西班牙队在决赛上的精彩表演啦,因为西班牙队夺冠概率还是比较大的.以上是利用了全概率公式的知识解决了足球比赛中的常见问题,希望能给读者和球迷一些帮助。 2.排列和组合在足球比赛中的应用 每次举行一些足球比赛时经常要事先安排好比赛场次,为了能使足球比赛顺利进行.下面就是举办足球比赛时经常遇到的一类问题。某大学要举行一次校园足球比赛以增强大学生的体质,学校规定每个学院至少要派出一支球队参加这项赛事,最终一共有12支球队参

概率论在日常生活中的应用

概率论在日常生活中的应用 概率论是一门与现实生活紧密相连的学科,不过大多数人对这门学科的理解还是很平凡的:投一枚硬币,0.5的概率正面朝上,0.5的概率反面朝上,这就是概率论嘛。学过概率论的人多以为这门课较为理论化,特别是像大数定律,极限定理等内容与现实脱节很大,专业性很强。其实如果我们用概率论的方法对日常生活中的一些看起来比较平凡的内容做些分析,常常会得到深刻的结果。 在自然界和现实生活中,一些事物都是相互联系和不断发展的。在它们彼此间的联系和发展中,根据它们是否有必然的因果联系,可以分成两大类:一类是确定性现象,指在一定条件下,必定会导致某种确定的结果。例如,同性电荷相互排斥,异性电和相互吸引;在标准大气压下,水加热到100摄氏度,就必然会沸腾。事物间的这种联系是属于必然性的。另一类是不确定性现象。这类现象在一定条件下的结果是不确定的,即人们在未作观察或试验之前,不能预知其结果。例如,向桌上抛一枚硬币,我们不能预知向上的是正面还是反面;随机地找一户家庭调查其收入情况,我们亦不能预知其收入是多少。为什么在相同的情况下,会出现这种不确定的结果呢?这是因为,我们说的“相同条件”是指一些主要条件来说的,除了这些主要条件外,还会有许多次要条件和偶然因素是人们无法事先预料的。但另一方面,对这些不确定性现象进行大量、重复的实验时,人们会发现,其结果会出现某种“统计规律性”:重复抛一枚硬币多次,出现正、反两面的次数大致会各占一半;调查多户家庭,其收入会呈现“两头小,中间大”的状况,即处于中间状态的是大多数。这种在每次试验中呈现不确定性,而在大量重复试验中又呈现某种统计规律性的现象较随机现象。概率统计就是研究随机现象并揭示其统计规律性的一个数学分支,它在自然科学及社会科学的诸多领域都有着广泛的应用。 概率,简单地说,就是一件事发生的可能性的大小。比如:太阳每天都会东升西落,这件事发生的概率就是100%或者说是1,因为它肯定会发生;而太阳西升东落的概率就是0,因为它肯定不会发生。但生活中的很多现象是既有可能发生,也有可能不发生的,比如某天会不会下雨、买东西买到次品等等,这类事件的概率就介于0和100%之间,或者说0和1之间。大部分人认为一件事概率为0即为不可能事件,这是不对的。比如甲乙玩一个游戏,甲随机写出一个大于0小于1的数,乙来猜。1.乙一次猜中这个数2.乙每秒才一次,一直猜下去,“最终”猜中这个数。这两件事发生的概率的概率都是0,但显然他们都有可能发生,甚至可以“直观”地讲2发生的可能性更大些。这说明概率为0的事件也是有可能发生的。不过在我看来,这样的可能性实在太小了,在实际操作中认为不可能也是有道理的,但不管怎么说,他们确实是可能事件。 在日常生活中无论是股市涨跌,还是发生某类事故,但凡捉摸不定、需要用“运气”来解释的事件,都可用概率模型进行定量分析。不确定性既给人们带来许多麻烦,同时又常常是解决问题的一种有效手段甚至唯一手段。 走在街头,来来往往的车辆让人联想到概率;生产、生活更是离不开概率。在令人心动的彩票摇奖中,概率也同样指导着我们的实践。继股票之后,彩票也成了城乡居民经济生活中的一个热点。据统计,全国100个人中就有3个彩民。通过对北京、上海与广州3城市居民调查的结果显示,有50%的居民买过彩票,其中5%的居民成为“职业”(经济性购买)彩民。“以小博大”的发财梦,是不少彩票购买者的共同心态。那么,购买彩票真的能让我们如愿以偿吗?以从36个号码中选择7个的投注方式为例,看起来似乎并不很难,其实却是“可望而不可及”的。经计算,投一注的理论中奖概率极其小。由此看出,只有极少数人能中奖,购买者应怀有平常心,既不能把它作为纯粹的投资,更不应把它当成发财之路。 在我国南方流行一种成为“捉水鸡”的押宝,其规则如下:有庄家摸出一只棋子,放在密闭盒中,这只棋子可以是红的或黑的将、士、象、车、马、炮之一。赌客们把钱压在一

概率论在保险中的应

目录 摘要 (2) 关键字 (2) 一、简介 (2) 1.概率论的研究对象 (3) 2.概率论与保险的关系 (3) 二、随机变量及其分布与保险 (3) 三、数字特征与保险 (4) 四、大数法则与保险 (4) 1切比雪夫大数法则 (4) 2.贝努里大数法则 (5) 3.大数定律对风险转移的作用 (5) 4.大数定律在保险中的适用性 (5) 五、应用概率进行保险计算 (6) 六、总结 (7)

摘要:概率论与数理统计是研究随机现象统计规律的一门数学科学是对随机现象的统计规律进行的演绎和归纳的科学.随着社会的不断发展,概率论与数理统计的知识越来越重要.运用抽样数据进行推断已成为现代社会一种普遍适用并且强有力的思考方式.本文就概率论与数理统计的方法和思想,并就其在保险中的应用进行分析和讨论,从中可以看出在经济领域和日常生活中以概率方法和数理统计的思想解决问题的高效性,简捷性和实用性 关键词:概率论, 切比雪夫大数法则定理, 贝努里大数法则,大数定律 一、简介 1.概率论的研究对象 概率论是研究随机现象数量规律的数学分支.随机现象是相对于决定性现象而言的,在一定条件下必然发生某一结果的现象称为决定性现象.例如在标准大气压下,纯水加热到100度时水必然会沸腾等.随机现象则是指在基本条件不变的情况下,一系列试验或观察会得到不同结果的现象.每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性.例如,掷一硬币,可能出现正面或反面,在同一工艺条件下生产出的灯泡,其寿命长短参差不齐等等.随机现象的实现和对它的观察称为随机试验.随机试验的每一可能结果称为一个基本事件,一个或一组基本事件统称随机事件,或简称事件.事件的概率则是衡量该事件发生的可能性的量度.虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下大量重复的随机试验却往往呈现出明显的数量规律.例如,连续多次掷一均匀的硬币,出现正面的频率随着投掷次数的增加逐渐趋向于1/2.又如,多次测量一物体的长度,其测量结果的平均值随着测量次数的增加,逐渐稳定于一常数,并且诸测量值大都落在此常数的附近,其分布状况呈现中间多,两头少及某程度的对称性.大数定律及中心极限定理就是描述和论证这些规律的.在实际生活中,人们往往还需要研究某一特定随机现象的演变情况随机过程.例如,微小粒子在液体中受周围分子的随机碰撞而形成不规则的运动(即布朗运动),这就是随机过程.随机过程的统计特性、计算与随机过程有关的某些事件的概率,特别是研究与随机过程样本轨道(即过程的一次实现)有关的问题,是现代概率论的主要课题.概率论与实际生活有着密切的联系,它在自然科学、技术科学、社会科学、军事和工农业生产中都有广泛的应用.

浅谈概率论在生活中的应用

单位代码: 分类号: X X 大学 题目: 浅谈概率论在生活中的应用专业名称: 数学与应用数学 学生: 学生学号: 指导教师: 毕业时间:

浅谈概率论在生活中的应用 摘要:随机现象存在于我们日常生活的方方面面和科学技术的各个领域,概率论与数理统计是一门十分重要的大学数学基础课,也是唯一一门研究随机现象规律的学科,它指导人们从事物表象看到其本质.它的实际应用背景很广,包括自然科学、社会科学、工程技术、经济、管理、军事和工农业生产等领域.经过不断的发展,学科本身的理论和方法日趋成熟,近年来,概率统计知识也越来越多的渗透到诸如物理学、遗传学、信息论等学科当中.另外,在社会生活中,就连面试、赌博、彩票、体育和天气等等也都会涉及到概率学知识.可以说,概率统计是当今数学中最活跃,应用最广泛的学科之一.本文通过对现实生活中的部分现象分析探讨了概率知识在日常生活中的广泛应用. 关键词:随机现象;概率;日常生活;应用分析

Discuss the application in life probability Abstract: Random phenomenon exists in every aspect of our everyday lives and scientific technology each domain, probability and mathematical statistics is an important basic course in college mathematics, and is the only the study of random phenomenon regular course, its guiding people from representation see its nature. Its actual application background is very wide, including natural science, social science, engineering, economics, management, military and industrial and agricultural production, etc. Through continuous development, the theory and method of subject itself becomes mature, in recent years, the probability and statistics knowledge also more and more penetrated into such as physics, genetics, information subjects such as the midst. In addition, in social life, even interview, gambling, lottery tickets, sports and weather, etc are also involves probability learn knowledge. Can say, probability and statistics is the most active in mathematics, the most widely used in the fields of. This article through to in real life part phenomenon discussed probability knowledge in daily life the widely application. Keywords:random phenomenon; probability; daily life; application analysis

毕业论文.概率统计在生活中的应用Word版

毕业论文 课题 学生姓名胡泽学 系别 专业班级数学与应用数学指导教师 二0 一六年三月

目录 摘要.................................................................... I ABSTRACT................................................................... II 第一章绪论. (1) 第二章概率在生活中的应用 (4) 2.1在抽签和摸彩中的应用 (4) 2.2经济效益中的应用 (8) 2.3在现实决策中的应用 (4) 2.4在相遇问题中的应用 (12) 2.5在预算及检测中的应用 (10) 结论 (13) 参考文献 (14) 致谢 (15)

概率统计在生活中的应用 摘要 随着时代的发展人类的进步,17—18世纪出现了一门新的学科概率论,概率论逐渐成为了为数不多的可以和传统数学相抗衡的学科之一,并一步步的走向了人们的生活,成为了人们生活中不可或缺的部分。 本文先简述了概率论的发展,之后从概率在抽签中的应用、经济效益中的应用、现实决策中的应用、追击相遇问题中的应用、最大利润问题中的应用、最佳配置问题中的应用、经济保险问题中的应用、获奖问题中的应用、概率和选购方案的综合应用、金融界中的应用、设计方案的综合应用、厂矿生产中的如何合理配置维修工人问题、在商品质检中的应用和在运输预算费用中的应用等。多方面论述了概率的应用。 关键词:概率;概率的含义;概率的应用

Abstract

第一章绪论 概率统计是一门和生活关联紧密的学科同样也是一门特别有趣的数学分支学科,17-18世纪,数学得到了快速的发展。数学家们打破了古希腊的演绎框架,社会生活对与自然界的多方面吸取灵感,数学领域涌现了许多新面孔,之后都形成了完整的数学分支。除了分析学这之外,概率论就是同时期能使"欧几里德几何不相上下"的几个伟大成就之一。 概率的发源与赌博有关,伴随着科学技术的发展进步以及计算机普及,它在最近几十年来的社会科学和自然科学中得到了特别广泛的应用,在生活与社会生产中起着很重要的作用。我们生活在一个千变万化千变万化、千变万化的时代里,而我们每个人无时无刻都要直面生活中遇到的问题。而其中很多的问题都是随机的与随机的随机的。如决策时如何获取最大利益,公司要如何组合生产才能取得最大收益,如何加大买彩票的获奖概率,怎样进行误差分析、所购买物品的产品检验,生产质量把控等,当我们在遇到这些问题时应该如何解决它呢?幸好我们如今有了概率,概率是一门探索和揭示随机现象和规律的一门学科。 实践证明,概率是对生活中碰到的问题进行量的解答的有效工具,对经济决策和预测提供了新型的手段。下文就通过列举实例来表述概率在抽签中的应用、经济效益中的应用、现实决策中的应用、追击相遇问题中的应用、最大利润问题中的应用、最佳配置问题中的应用、经济保险问题中的应用、获奖问题中的应用、概率和选购方案的综合应用、金融界中的应用、设计方案的综合应用、厂矿生产中的如何合理配置维修工人问题、在商品质检中的应用和在运输预算费用中的应用等。

概率论在现实生活中的意义

概率论在现实生活中的意义 概率,简单地说,就是一件事发生的可能性的大小。比如:太阳每天都会东升西落,这件事发生的概率就是100%或者说是1,因为它肯定会发生;而太阳西升东落的概率就是0,因为它肯定不会发生。但生活中的很多现象是既有可能发生,也有可能不发生的,比如某天会不会下雨、买东西买到次品等等,这类事件的概率就介于0和100%之间,或者说0和1之间。在日常生活中无论是股市涨跌,还是发生某类事故,但凡捉摸不定、需要用“运气”来解释的事件,都可用概率模型进行定量分析。不确定性既给人们带来许多麻烦,同时又常常是解决问题的一种有效手段甚至唯一手段。 走在街头,来来往往的车辆让人联想到概率;生产、生活更是离不开概率。在令人心动的彩票摇奖中,概率也同样指导着我们的实践。继股票之后,彩票也成了城乡居民经济生活中的一个热点。据统计,全国100个人中就有3个彩民。通过对北京、上海与广州3城市居民调查的结果显示,有50%的居民买过彩票,其中5%的居民成为“职业”(经济性购买)彩民。“以小博大”的发财梦,是不少彩票购买者的共同心态。那么,购买彩票真的能让我们如愿以偿吗?以从36个号码中选择7个的投注方式为例,看起来似乎并不很难,其实却是“可望而不可及”的。经计算,投一注的理论中奖概率如下:

由此看出,只有极少数人能中奖,购买者应怀有平常心,既不能把它作为纯粹的投资,更不应把它当成发财之路。 体育比赛中,一局定胜负,虽然比赛双方获胜的机会均为二分之一,但是由于比赛次数太少,商业价值不大,因此比赛组织者普遍采用“三局两胜”或“五局三胜”制决定胜负的方法,既令参赛选手满意,又被观众接受,组织者又有利可图。那么它对于双方选手来说真的公平吗?以下我们用概率的观点和知识加以阐述: 日常生活中我们总希望自己的运气能好一些,碰运气的也大有人在,就像考生面临考试一样,这其中固然有真才实学者,但也不乏抱着侥幸心理的滥竽充数者。那么,对于一场正规的考试仅凭运气能通过吗?我们以大学英语四级考试为例来说明这个问题。 大学英语四级考试是全面检验大学生英语水平的一种考试,具有一定难度,包括听力、语法结构、阅读理解、填空、写作等。除写作15分外,其余85道题是单项选择题,每道题有A、 B、 C、D四个选项,这种情况使个别学生产生碰运气和侥幸心理,那么靠运气能通过四级英语考试吗?答案是否定的。假设不考虑写作15分,及格按60分算,则85道题必须答对51题以上,可以看成85重贝努利试验。

考研数学概率论重要知识点梳理

2017考研数学:概率论重要知识点梳理 来源:文都图书 概率论在历年考研数学真题中特点比较明显。概率论与数理统计对计算技巧的要求低一些,一些题目,尤其是文字叙述题要求考生有比较强的分析问题的能力。所以考生应在这门中尽量做到那全分,这样才能保证数学的分数,下面我们整理了一些概率论的重要知识点: 第一部分:随机事件和概率 (1)样本空间与随机事件 (2)概率的定义与性质(含古典概型、几何概型、加法公式) (3)条件概率与概率的乘法公式 (4)事件之间的关系与运算(含事件的独立性) (5)全概公式与贝叶斯公式 (6)伯努利概型 其中:条件概率和独立为本章的重点,这也是后续章节的难点之一,考生务必引起重视, 第二部分:随机变量及其概率分布 (1)随机变量的概念及分类 (2)离散型随机变量概率分布及其性质 (3)连续型随机变量概率密度及其性质 (4)随机变量分布函数及其性质 (5)常见分布 (6)随机变量函数的分布 其中:要理解分布函数的定义,还有就是常见分布的分布律抑或密度函数必须记好且熟练。 第三部分:二维随机变量及其概率分布 (1)多维随机变量的概念及分类 (2)二维离散型随机变量联合概率分布及其性质 (3)二维连续型随机变量联合概率密度及其性质

(4)二维随机变量联合分布函数及其性质 (5)二维随机变量的边缘分布和条件分布 (6)随机变量的独立性 (7)两个随机变量的简单函数的分布 其中:本章是概率的重中之重,每年的解答题定会有一道与此知识点有关,每个知识点都是重点,务必重视! 第四部分:随机变量的数字特征 (1)随机变量的数字期望的概念与性质 (2)随机变量的方差的概念与性质 (3)常见分布的数字期望与方差 (4)随机变量矩、协方差和相关系数 其中:本章只要清楚概念和运算性质,其实就会显得很简单,关键在于计算 第五部分:大数定律和中心极限定理 (1)切比雪夫不等式 (2)大数定律 (3)中心极限定理 其中:其实本章考试的可能性不大,最多以选择填空的形式,但那也是十年前的事情了。 第六部分:数理统计的基本概念 (1)总体与样本 (2)样本函数与统计量 (3)样本分布函数和样本矩 其中:本章还是以概念为主,清楚概念后灵活运用解决此类问题不在话下 第七部分:参数估计 (1)点估计 (2)估计量的优良性 (3)区间估计

概率在现实生活中的应用

概率在现实生活中的应用

我认为学习概率应该有两种认识,一是要理性的理解概率的意义,二是要学以致用。 一、概率的意义 (1)一般地,频率是随着实验者、实验次数的改变而变化的; (2)概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同;(3)频率是概率的近似值,概率是频率的稳定值.它是频率的科学抽象.当试验次数越来越多时,频率围绕概率摆动的平均幅度越来越小,即频率靠近概率. (4)概率从数量上刻画了一个随机事件发生的可能性的大小. 二、学以致用 学以致用不仅是会做“单项选择题选对正确答案的概率是多少?”的问题,还要会解决生活中的实际问题。例如: 1、在保险公司里有2500个同一年龄的人参加了人寿保险,在一年里死亡的概率为0.002,每个人一年付12元保险费,而在死亡的时候家属可以领取由保险公司支付的2000元,问保险公司盈利的概率是多少,公司获利不少于10000的概率是多少? 这样的问题咋一看很难知道保险公司是否盈利,但经过概率统计的知识一 计算就可以得知公司是几乎必定盈利的。 2、李炎是一位喜欢调查研究的好学生,他对高三年级的12个班(每班50人)同学的生日作过一次调查,结果发现每班都有三位同学的生日相同,难道这是一种巧合吗? 解析:本题即求50个同学中出现生日相同的机会有多大? 我们知道,任意两个人的生日相同的可能性为1/365×1/365≈0.0000075,确实非常小,那么对于一个班而言,这种可能性是不是也不大呢? 正面计算这种可能性的大小并不简单,因为要考虑可能有2个人生日相同,3个人生日相同,……有50个人生日相同的这些情况。如果我们从反而来考察,即计算找不到俩个人生日相同的可能性,就可知道最少有两个人生日相同的可能性。 对于任意2个人,他们生日不同的可能性是(365/365)×(364/365)=365×364/3652对于任意3个人,他们中没有生日相同的可能性是 365/365×364/365×363/365=365×364×363/3653; 类似可得,对于50个人,找不到两个生日相同的可能性是 365×364×363×…×316/36550≈0.03,因此,50个人中至少有两个人生日相同的机会达97%,这么大的可能性有点出乎意料,然而事实就是如此,高三年级的12个班级(每班50人)都有两位同学生日相同的事件发生,并非巧合。那么,50人中有3人生日相同的概率有多大? 3、深夜,一辆出租车被牵涉进一起交通事故,该市有两家出租车公司——红色出租车公司和蓝色出租车公司,其中蓝色出租车公司和红色出租车公司分别占整个城市出租车的85%和15%。据现场目击证人说,事故现场的出租车是红色,并对证人的辨别能力作了测试,测得他辨认的正确率为80%,于是警察就认定红色出租车具有较大的肇事嫌疑。请问警察的认定对红色出租车公平吗?试说明理由

概率论基本知识(通俗易懂)

第一章概率论的基本概论 确定现象:在一定条件下必然发生的现象,如向上抛一石子必然下落,等 随机现象:称某一现象是“随机的”,如果该现象(事件或试验)的结果是不能确切地预测的。 由此产生的概念有:随机现象,随机事件,随机试验。 例:有一位科学家,他通晓现有的所有学科,如果对一项试验(比如:掷硬币),该万能科学家也无法确切地预测该实验的结果(是正面朝上还是反面朝上),这一实验就是随机实验,其结果是“随机的”----为一随机事件。 例:明天下午三点钟”深圳市区下雨”这一现象是随机的,其结果为随机事件。 随机现象的结果(随机事件)的随机度如何解释或如何量化呢? 这就要引入”概率”的概念。 概率的描述性定义:对于一随机事件A,用一个数P(A)来表示该事件发生的可能性大小,这个数P(A)就称为随机事件A发生的概率。

§1.1随机试验 以上试验的共同特点是: 1.试验可以在相同的条件下重复进行; 2.试验的全部可能结果不止一个,并且在试验之前能明确知道所有的可能结果;3.每次试验必发生全部可能结果中的一个且仅发生一个,但某一次试验究竟发

生哪一个可能结果在试验之前不能预言。 我们把对随机现象进行一次观察和实验统称为随机试验,它一定满足以上三个条件。我们把满足上述三个条件的试验叫随机试验,简称试验,记E 。 §1.2样本空间与随机事件 (一) 样本空间与基本事件 E 的一个可能结果称为E 的一个基本事件,记为ω,e 等。 E 的基本事件全体构成的集,称为E 的样本空间,记为S 或Ω, 即:S={ω|ω为E 的基本事件},Ω={e}. 注意:ω的完备性,互斥性特点。 例:§1.1中试验 E 1--- E 7 E 1:S 1={H,T} E 2:S 2={ HHH,HHT,HTH,THH, HTT,THT,TTH,TTT } E 3:S 3={0,1,2,3} E 4:S 4={1,2,3,4,5,6} E 5: S 5={0,1,2,3,…} E 6:S 5={t 0 ≥t } E 7:S 7={()y x , 10T y x T ≤≤≤} (二) 随机事件

概率论知识点总结

概率论总结 目录 一、前五章总结 第一章随机事件和概率 (1) 第二章随机变量及其分布 (5) 第三章多维随机变量及其分布 (10) 第四章随机变量的数字特征 (13) 第五章极限定理 (18) 二、学习概率论这门课的心得体会 (20) 一、前五章总结 第一章随机事件和概率 第一节:1.、将一切具有下面三个特点:(1)可重复性(2)多结 果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用 E表示。 在一次试验中,可能出现也可能不出现的事情(结果)称为随 机事件,简称为事件。 不可能事件:在试验中不可能出现的事情,记为Ф。 必然事件:在试验中必然出现的事情,记为S或Ω。 2、我们把随机试验的每个基本结果称为样本点,记作e 或ω. 全体 样本点的集合称为样本空间. 样本空间用S或Ω表示.

一个随机事件就是样本空间的一个子集。 基本事件—单点集,复合事件—多点集 一个随机事件发生,当且仅当该事件所包含的一个样本点出现。 事件间的关系及运算,就是集合间的关系和运算。 3、定义:事件的包含与相等 若事件A发生必然导致事件B发生,则称B包含A,记为B?A 或A?B。 若A?B且A?B则称事件A与事件B相等,记为A=B。 定义:和事件 “事件A与事件B至少有一个发生”是一事件,称此事件为事件 A与事件B的和事件。记为A∪B。用集合表示为: A∪B={e|e∈A,或e∈B}。 定义:积事件 称事件“事件A与事件B都发生”为A与B的积事件,记为A∩ B或AB,用集合表示为AB={e|e∈A且e∈B}。 定义:差事件 称“事件A发生而事件B不发生,这一事件为事件A与事件B的差 事件,记为A-B,用集合表示为 A-B={e|e∈A,e?B} 。 定义:互不相容事件或互斥事件 如果A,B两事件不能同时发生,即AB=Φ,则称事件A与事件 B是互不相容事件或互斥事件。 定义6:逆事件/对立事件 称事件“A不发生”为事件A的逆事件,记为ā。A与ā满足:A ∪ā= S,且Aā=Φ。

概率论与数理统计在生活中的应用

概率论与数理统计在生活中的应用 单位:兴隆场初级中学姓名:姜宏琼 摘要:随机现象无处不在,渗透于日常生活的方方面面和科学技术的各个领域,概率论就是通过研究随机现象及其规律从而指导人们从事物表象看到其本质的一门科学。生活中买彩票显示了小概率事件发生的几率之小,抽签与体育比赛赛制的选择用概率体现了公平与不公平,用概率来指导决策,减少错误与失败等等,显示了概率在人们日常生活中越来越重要。数理统计在人们的生活中也不断的发挥重要的作用,如果没有统计学,人们在收集资料和进行各项的大型的数据收集工作是非常困难的,通过对统计方法的研究,使得我们处理各种数据更加简便,所以统计也是一门很实用的科学,应该受到大家的重视。 关键字:概率、保险、彩票、统计、数据、应用 由赌徒的问题引起,概率逐渐演变成一门严谨的科学。1654年,有一个法国赌徒梅勒遇到了一个难解的问题:梅勒和他的一个朋友每人出30个金币,两人谁先赢满3局谁就得到全部赌注。在游戏进行了一会儿后,梅勒赢了2局,他的朋友赢了1局。这时候,梅勒由于一个紧急事情必须离开,游戏不得不停止。他们该如何分配赌桌上的60个金币的赌注呢?梅勒的朋友认为,既然他接下来赢的机会是梅勒的一半,那么他该拿到梅勒所得的一半,即他拿20个金币,梅勒拿40个金币。然而梅勒争执道:再掷一次骰子,即使他输了,游戏是平局,他最少也能得到全部赌注的一半——30个金币;但如果他赢了,并可拿走全部的60个金币。在下一次掷骰子之前,他实际上已经拥有了30个金币,他还有50%的机会赢得另外30个金币,所以,他应分得45个金币。 赌本究竟如何分配才合理呢?后来梅勒把这个问题告诉了当时法国著名的数学家帕斯卡,这居然也难住了帕斯卡,因为当时并没有相关知识来解决此类问题,而且两人说的似乎都有道理。帕斯卡又写信告诉了另一个著名的数学家费马,于是在这两位伟大的法国数学家之间开始了具有划时代意义的通信,在通信中,他们最终正确地解决了这个问题。他们设想:如果继续赌下去,梅勒(设为甲)和他朋友(设为乙)最终获胜的机会如何呢?他们俩至多再赌2局即可分出胜负,这2局有4种可能结果:甲甲、甲乙、乙甲、乙乙。前3种情况都是甲最后取胜,只有最后一种情况才是乙取胜,所以赌注应按3:1的比例分配,即甲得

自考概率论与数理统计基础知识.

一、《概率论与数理统计(经管类)》考试题型分析: 题型大致包括以下五种题型,各题型及所占分值如下: 由各题型分值分布我们可以看出,单项选择题、填空题占试卷的50%,考查的是基本的知识点,难度不大,考生要把该记忆的概念、性质和公式记到位。计算题和综合题主要是对前四章基本理论与基本方法的考查,要求考生不仅要牢记重要的公式,而且要能够灵活运用。应用题主要是对第七、八章内容的考查,要求考生记住解题程序和公式。结合历年真题来练习,就会很容易的掌握解题思路。总之,只要抓住考查的重点,记住解题的方法步骤,勤加练习,就能够百分百达到过关的要求。二、《概率论与数理统计(经管类)》考试重点说明:我们将知识点按考查几率及重要性分为三个等级,即一级重点、二级重点、三级重点,其中,一级重点为必考点,本次考试考查频率高;二级重点为次重点,考查频率较高;三级重点为预测考点,考查频率一般,但有可能考查的知识点。第一章随机事件与概率 1.随机事件的关系与计算 P3-5 (一级重点)填空、简答事件的包含与相等、和事件、积事件、互不相容、对立事件的概念 2.古典概型中概率的计算 P9 (二级重点)选择、填空、计算记住古典概型事件概率的计算公式 3. 利用概率的性质计算概率 P11-12 (一级重点)选择、填空 ,(考得多)等,要能灵活运用。 4. 条件概率的定义 P14 (一级重点)选择、填空记住条件概率的定义和公式: 5. 全概率公式与贝叶斯公式 P15-16 (二级重点)计算记住全概率公式和贝叶斯公式,并能够运用它们。一般说来,如果若干因素(也就是事件)对某个事件的发生产生了影响,求这个事件发生的概率时要用到全概率公式;如果这个事件发生了,要去追究原因,即求另一个事件发生的概率时,要用到贝叶斯公式,这个公式也叫逆概公式。 6. 事件的独立性(概念与性质) P18-20(一级重点)选择、填空定义:若,则称A与B 相互独立。结论:若A与B相互独立,则A与,与B 与都相互独立。 7. n重贝努利试验中事件A恰好发生k次的概率公式 P21(一级重点)选择、填空在重贝努利试验中,设每次试验中事件的概率为(),则事件A恰好发生。第二章随机变量及其概率分布 8.离散型随机变量的分布律及相关的概率计算 P29,P31(一级重点)选择、填空、计算、综合。记住分布律中,所有概率加起来为1,求概率时,先找到符合条件的随机点,让后把对应的概率相加。求分布律就需要找到随机变量所有可能取的值,和每个值对应的概率。 9. 常见几种离散型分布函数及其分布律 P32-P33(一级重点)选择题、填空题以二项分布和泊松分布为主,记住分布律是关键。本考点基本上每次考试都考。 10. 随机变量的分布函数 P35-P37(一级重点)选择、填空、计算题记住分布函数的定义和性质是关键。要能判别什么样的函数能充当分布函数,记住利用分布函数计算概率的公式:①;②其中;③。 11. 连续型随机变量及其概率密度 P39(一级重点)选择、填空重点记忆它的性质与相关的计算,如①;;反之,满足以上两条性质的函数一定是某个连续型随机变量的概率密度。③;④ 设为的

概率论在现实生活中的意义

概率论在现实生活中的意义 在自然界和现实生活中,一些事物都是相互联系和不断发展的。在它们彼此间的联系和发展中,根据它们是否有必然的因果联系,可以分成两大类:一类是确定性的现象,指在一定条件下,必定会导致某种确定的结果。如,在标准大气压下,水加热到100摄氏度,就必然会沸腾。事物间的这种联系是属于必然性的。另一类是不确定性的现象。这类现象在一定条件下的结果是不确定的。例如,同一个工人在同一台机床上加工同一种零件若干个,它们的尺寸总会有一点差异。又如,在同样条件下,进行小麦品种的人工催芽试验,各颗种子的发芽情况也不尽相同有强弱和早晚之别等。为什么在相同的情况下,会出现这种不确定的结果呢?这是因为,我们说的“相同条件”是指一些主要条件来说的,除了这些主要条件外,还会有许多次要条件和偶然因素是人们无法事先预料的。这类现象,我们无法用必然性的因果关系,对现象的结果事先做出确定的答案。事物间的这种关系是属于偶然性的,这种现象叫做偶然现象,或者叫做随机现象。 概率,简单地说,就是一件事发生的可能性的大小。比如:太阳每天都会东升西落,这件事发生的概率就是100%或者说是1,因为它肯定会发生;而太阳西升东落的概率就是0,因为它肯定不会发生。但生活中的很多现象是既有可能发生,也有可能不发生的,比如某天会不会下雨、买东西买到次品等等,这类事件的概率就介于0和100%之间,或者说0和1之间。在日常生活中无论是股市涨跌,还是发生某类事故,但凡捉摸不定、需要用“运气”来解释的事件,都可用概率模型进行定量分析。不确定性既给人们带来许多麻烦,同时又常常是解决问题的一种有效手段甚至唯一手段。 走在街头,来来往往的车辆让人联想到概率;生产、生活更是离不开概率。在令人心动的彩票摇奖中,概率也同样指导着我们的实践。继股票之后,彩票也成了城乡居民经济生活中的一个热点。据统计,全国100个人中就有3个彩民。通过对北京、上海与广州3城市居民调查的结果显示,有50%的居民买过彩票,其中5%的居民成为“职业”(经济性购买)彩民。“以小博大”的发财梦,是不少彩票购买者的共同心态。那么,购买彩票真的能让我们如愿以偿吗?以从36个号码中选择7个的投注方式为例,看起来似乎并不很难,其实却是“可望而不可及”的。经计算,投一注的理论中奖概率如下: 由此看出,只有极少数人能中奖,购买者应怀有平常心,既不能把它作为纯粹的投资,更不应把它当成发财之路。 体育比赛中,一局定胜负,虽然比赛双方获胜的机会均为二分之一,但是由于比赛次数太少,商业价值不大,因此比赛组织者普遍采用“三局两胜”或“五局三胜”制决定胜负的方法,既令参赛选手满意,又被观众接受,组织者又有利可图。那么它对于双方选手来说真的公平吗?以下我们用概率的观点和知识加以阐述:日常生活中我们总希望自己的运气能好一些,碰运气的也大有人在,就像考生面临考试一样,这其中固然有真才实学者,但也不乏抱着侥幸心理的滥竽充数者。那么,对于一场正规的考试仅凭运气能通过吗?我们以大学英语四级考试为例来说明这个问题。 大学英语四级考试是全面检验大学生英语水平的一种考试,具有一定难度,包括听力、语法结构、阅读理解、填空、写作等。除写作15分外,其余85道题是单项选择题,每道题有A、B、C、D四个选项,这种情况使个别学生产生碰运气和侥幸心理,那么靠运气能通过四级英语考试吗?答案是否定的。假设不考虑写作15分,及格按60分算,则85道题必须答对51题以上,可以看成85重贝努利试验。

概率论在生活中的应用 毕业论文

学号:1001114119概率论在生活中的应用 学院名称:数学与信息科学学院 专业名称:数学与应用数学 年级班别: 10级二班 姓名: 指导教师: 2014年3月

概率论在生活中的应用 摘要 概率论作为数学的一个重要部分,在现实生活中的应用越来越广泛,同样也发挥着越来越重要的作用。加强数学的应用性,让学生学用数学的知识和思维方法去看待,分析,解决实际生活的问题,在数学活动中获得生活经验。这是当前数学课程改革的大势所趋。加强应用概率的意识,不仅是学习的需要,更是工作生活必不可少的。人类认识到随机现象的存在是很早的,但书上讲得都是理论知识,我们不仅仅要学习好理论知识,应用理论来实践才是重中之重。学好概率论,并应用概率知识解决现实问题已是我们必要的一种生活素养。(宋体,小四,1.5倍行距) 关键词随机现象;条件概率;极限定理;古典概率 The applyment of the theory of probability in daily life Abstract Probability theory as an important part of mathematics,in the life of the sue more and more widely, also play an increasingly important role. Strengthen mathematics applied, lets the student with mathematical knowledge andmathematical thinking method to treat, analysis, solve practical life in mathematics activity, gain life experience. This is the current trend of curriculum reform. Strengthen the consciousness of the application of probability, not only learning, but working life is indispensable. People realize the existence of random phenomenon is early, but telling the theory knowledge, we should not only study the theory knowledge well, the application of theory to practice is more important. Learn probability theory, and using probability knowledge to solve realiticl problems is already a life we necessary accomplishment. Keywords Random phenomenon; Conditional probability; Limit theorem. The classical probability

相关文档
最新文档