细菌基因工程

细菌基因工程
细菌基因工程

细菌基因工程

09生工2班

060509206

李赛赛

一、细菌基因工程的发展现状和趋势

1、细菌基因工程的发展简史

细菌与基因工程关系密切。细菌是单细胞、结构简单的原核微生物,目前对其生理代谢途径以及基因表达的调控机制研究较为透彻;细菌的物种和代谢类型多各多样,对环境因子敏感,易于获得各类突变株;并且细菌最显著的特征是生长速度快,便于大规模培养,容易朝廷遗传操作等。

1973年,波依尔和科恩首次完成外源基因在大肠杆菌中的表达,几年后,第一个基因工程产品——利用构建的基因工程菌生产人胰岛素获得成功,从此人类进入了生物技术的产业时代。

2、细菌基因工程的发展现状

1细菌工程菌与人类药物生产

1982年美国首先将重组胰岛素投入市场,标志着世界第一

个基因工程药物的诞生。30年以来基因工程技术成果60%集中

应用于医药工业,为生物医药的发展带来一场崭新的革命。

未来市场前景广阔的药品将集中在单克隆抗体、反义药物、

基因治疗药物、可溶性蛋白质类药物和疫苗等5个类别中,其中单克隆抗体的市场需求最令人注目。

○2细菌工程菌与环境保护

利用环境微生物基因工程技术治理环境污染和遏制生态恶化趋势、促进自然资源的可持续利用,是一条最安全和最彻底的消除污染的行之有效的途径。

原理:主要是采用现代分子生物学和分子生态学的原理和方法,充分利用环境微生物的生物净化、生物转化和生物催化等特性的功能基因,构建高效表达的基因工程菌进行污染治理、清洁生产和可再生资源利用,多层面和全方位地解决工业和生活废弃物污染、石油和煤炭脱硫、农药残留、能源和材料短缺等问题。

优点:与化学、物理等其它技术相比,环境微生物基因工程技术具有效率高、成本低、反应条件温和以及无二次污染等显著优点,同时还可以增强自然环境的自我净化能力。

应用方面:工业和生活废水治理、重金属污染土壤的生物修复、农药残留的微生物降解、生物制浆和生物漂白等清洁生产技术的建立、石油污染的消除以及友好可再生材料的合成等诸多方面。

○3细菌工程菌与食品、饲料及其他工业

在发酵工业上,利用生物技术构建的品质优良的食用乳酸杆菌提高了生产菌在食品发酵过程中的稳定性,改善了发酵食品的质量并且降低了成本,大大缩短生产周期,具有巨大的经济价值和社会效益。酶制剂、氨基酸、维生素、增稠剂、有机酸、乳化剂、表面活性剂、食用色素、食用香精及调味料等,都可以采用发酵生产而得到。

○4细菌工程菌与农业生产

各类农业微生物的应用是实现农业可持续发展和保护生态环境的有力保证。由于自然菌

株和传统技术本身的一些缺陷与不足,诸如研究周期长、成本高、活性低等,实现农业微生物的产业化受到很大限制。现代生物科学技术的发展给农业微生物研究注入了新的活力,特别是近年来基因工程的研究为微生物遗传改良提供了有效手段,使农业微生物发展成为生命科学领域中最为活跃、最具创新性的前沿之一。

二、细菌基因工程的表达系统

受体细胞的选择:

受体细胞的选择原则:

据所用载体体系及受体细胞的基因型进行选择;

重组体的转化或转染率高;

能够稳定遗传;

受体细胞基因型与载体所含的选择标记匹配;

易于筛选重组体;

外源基因可以高效表达和稳定遗传;

此外,安全性、导入方法、翻译及后加工机制和生产应用价值等。

基因工程的宿主细胞多种多样,但目前大多数重组DNA技术生产的蛋白产品都是在大肠杆菌中合成的。

表达载体构建:

要使克隆的外源基因在宿主细胞中高效表达,首先需要构建专门的表达载体,用来控制转录、翻译、蛋白质稳定性以及克隆基因产物的分泌等。表达载体实际上是在克隆载体的基础上装载了用于表达的一些元件,当外源基因插入到合适的位点后,在宿主菌中就可以启动表达。目前大肠杆菌使用的表达载体种类繁多,形成了最成熟的表达系统。表达载体的选择主要体现在表达元件的选择和利用。对于克隆载体,只要满足在宿主菌中复制和选择要求的载体,都可以作克隆载体。

表达载体的构建是实现高效表达的关键步骤。一个完整表达载体包含必需的几个元件。

○1启动子的选择:启动子位于转录起始位点上游一10bp~35bp,受载体自身或宿主染色体相应的调节基因调控。一个理想的启动子需要具备如下特点:(1)具有强启动性,使重组蛋白达到菌体表达蛋白总量的10%~30%;(2)必须受调节基因严谨调控。(3)启动子的诱导要求简便而廉价。通过基因工程手段表达外源基因的目的大致有2种,其一是超量表达,所以达到最大限度地获得蛋白质产物。如在大肠杆菌中常用lac、tac和T7等可调控强启动

子,在适当的条件下都可以使外源基因高水平表达。其二是使某个关键基因表达,使宿主菌表现出一种特殊的性状,或启动其他产物的大量合成。在这种情况下,不一定要高量表达,正常表达就可,往往可采用基因自身的启动子。

○2转录的有效性:为保证外源基因转录的有效性,在表达载体上应设法除去衰减序列或插入抗转录终止序列以避免转录的提前终止,保证mRNA有效地延伸和终止。也可在终止密码子后增加终止子序列,使转录正确、有效终止。

○3翻译起始的有效性:要使翻译起始效率最高,要满足以下条件:选用最佳起始密码子AUG;与SD序列接近或与下列完全相同:5'…AGGAGG…3';除SD序列外处于起始密码前的两个核苷酸应该是A和U;在不改变蛋白质功能的前提下,如果在起始密码AUG后的序列是GCAU 或AAAA序列,能使翻译效率提高;在翻译起始区不能形成明显二级结构。

○4翻译的有效终止:在基因工程中,一般采用UAA或一连串的终止密码来有效终止原核细胞的翻译。

导入受体细胞:

方法:

转化:通过生物学或理化方法使质粒DNA或以质粒DNA为载体构建的重组DNA导入受体细胞内,并在受体内稳定维持和表达的过程,主要用于原核生物。

转化方法多种多样,我简单介绍一下细菌转化法。有的微生物细胞在不加任何处理的情况下就能直接摄取外源 DNA,只要外源 DNA与这样的细胞混合,在适宜的条件下悬浮培养,就能完成外源 DNA 的转化。大肠杆菌是目前基因工程中最常用的受体细胞。通常采用的是大肠杆菌的感受态细胞,即在冰浴中用一定浓度的CaCl2处理对数生长期的大肠杆菌,以获得高效转化的感受态细胞。也有采用Rb+、Mn2+、K+、二甲亚矾、二硫苏糖醇(DTT)或用氯化己胺钴处理制备感受态细胞。感受态:是指受体细胞能吸收外源DNA分子而有效地作为转化受体的某些生理状态。一般受体细胞在对数生长期转化能力最强。

筛选方案:

目的基因的表达方式:

1、外源基因以融合蛋白形式表达

融合表达是指目的基因与编码具有特殊活性的多肽或蛋白质的基因融合,构建成一个融

合蛋白基因。此方法既可以保护外源蛋白不受宿主内蛋白酶的降解,同时也大简化了重组蛋白的纯化过程。

2、构建可分泌蛋白,到胞外培养基中

通过位于蛋白质N端称为信号肽的一段氨基酸序列会帮助蛋白通过细胞膜。通过基因操作可在外源蛋白的N端添加编码信号肽的DNA序列,形成一个分泌蛋白。然而,此法不适合大肠杆菌,因为仅仅是信号肽序列的存在并不能确保高效分泌,并且大肠杆菌由于外膜的存在,也不能使分泌蛋白进入周围的培养基。

3、外源蛋白在宿主细胞中以包涵体形式表达

包涵体是致密的不溶性复合物,含有大部分的表达蛋白,可以抵抗宿主细胞中蛋白水解酶的降解,也便于纯化。一些以可溶性蛋白形式表达时易被降解的蛋白质,以包涵体形式表达时却可以很稳定。

外源蛋白在大肠杆菌中的表达部位

1.细胞质中表达

2. 周质中表达

3.胞外表达

发展状况

随着基础生物科学和分子遗传学研究的突飞猛进,特别是随着人类对包括细菌在内的各种生物的基因组研究的深入,为提示种类生物基因结构与功能提供了大规模、高通量和自动化的研究手段和全新思路,细菌基因工程研究的范围也进一步拓宽。

在微生物基因工程农药方面,目前微生物农药主要有微生物杀虫剂、微生物杀菌剂、微生物除草剂及利用微生物代谢分泌的有效活性物质制成的农用抗生素杀虫、杀菌剂等。

在微生物肥料方面,利用微生物的生命活动及代谢产物的作用,改善作物养分供应,为农作物提供营养元素、生长物质、增强抗逆性,达到高产量、改善品质、减少化肥使用、提高土壤肥力的一类生物制品就是微生物肥料。

以及在食品和工业工程菌方面,都有很大发展。在医用抗生素上更是有很多突破,挽救了无数生命。

(完)

基因工程技术的现状和前景发展

基因工程技术的现状和前景发展 摘要 从20世纪70年代初发展起来的基因工程技术,经过30多年来的进步与发展,已成为生物技术的核心内容。许多科学家预言,生物学将成为21世纪最重要的学科,基因工程及相关领域的产业将成为21世纪的主导产业之一。基因工程研究和应用范围涉及农业、工业、医药、能源、环保等许多领域。 基因工程应用于植物方面 农业领域是目前转基因技术应用最为广泛的领域之一。农作物生物技术的目的是提高作物产量,改善品质,增强作物抗逆性、抗病虫害的能力。基因工程在这些领域已取得了令人瞩目的成就。由于植物病毒分子生物学的发展,植物抗病基因工程也也已全面展开。自从发现烟草花叶病毒(TMV)的外壳蛋白基因导入烟草中,在转基因植株上明显延迟发病时间或减轻病害的症状,通过导入植物病毒外壳蛋白来提高植物抗病毒的能力,已用多种植物病毒进行了试验。?在利用基因工程手段增强植物对细菌和真菌病的抗性方面,也已取得很大进展。植物对逆境的抗性一直是植物生物学家关心的问题。由于植物生理学家、遗传学家和分子生物学家协同作战,耐涝、耐盐碱、耐旱和耐冷的转基因作物新品种(系)也已获得成功。植物的抗寒性对其生长发育尤为重要。科学家发现极地的鱼体内有一些特殊蛋白可以抑制冰晶的增长,从而免受低温的冻害并正常地生活在寒冷的极地中。将这种抗冻蛋白基因从鱼基因组中分离出来,导入植物体可获得转基因植物,目前这种基因已被转入番茄和黄瓜中。?随着生活水平的提高,人们越来越关注口味、口感、营养成分、欣赏价值等品质性状。实践证明,利用基因工程可以有效地改善植物的品质,而且越来越多的基因工程植物进入了商品化生产领域,近几年利用基因工程改良作物品质也取得了不少进展,如美国国际植物研究所的科学家们从大豆中获取蛋白质合成基因,成功地导入到马铃薯中,培育出高蛋白马铃薯品种,其蛋白质含量接近大豆,**提高了营养价值,得到了农场主及消费者的普遍欢迎。在花色、花香、花姿等性状的改良上也作了大量的研究。? 基因工程应用于医药方面 目前,以基因工程药物为主导的基因工程应用产业已成为全球发展最快的产业之一,发展前景非常广阔。基因工程药物主要包括细胞因子、抗体、疫苗、激素和寡核甘酸药物等。它们对预防人类的肿瘤、心血管疾病、遗传病、糖尿病、包括艾滋病在内的各种传染病、类风湿疾病等有重要作用。在很多领域特别是疑难病症上,基因工程工程药物起到了传统化学药物难以达到的作用。我们最为熟悉的干扰素(IFN)就是一类利用基因工程技术研制成的多功能细胞因子,在临床上已用于治疗白血病、乙肝、丙肝、多发性硬化症和类风湿关节炎等多种疾病。?目前,应用基因工程研制的艾滋病疫苗已完成中试,并进入临床验证阶段;专门用于治疗肿瘤的“肿瘤基因导弹”也将在不久完成研制,它可有目的地寻找并杀死肿瘤,将使癌症的治愈成为可能。由中国、美国、德国三国科学家及中外六家研究机构参与研制的专门用于治疗乙肝、慢迁肝、慢活肝、丙肝、肝硬化的体细胞基因生物注射剂,最终解决了从剪切、分离到吞食肝细胞内肝炎病毒,修复、促进肝细胞再生的全过程。经4年临床试验已在全国面向肝炎患者。此项基因学研究成果在国际治肝领域中,是继干扰素等药物之后的一项具有革命性转变的重大医学成果。 基因工程应用于环保方面

基因工程菌的大规模培养及高密度发酵技术

生物工程下游技术实验模块实验一:基因工程菌的大规模培养及高密度发酵技术 创建人:时间:2013-04-17 【点击数: 482】 实验一:基因工程菌的大规模培养及高密度发酵技术 1.实验目的 (1)掌握工程菌大规模培养及高密度发酵技术的原理。 (2)学习工程菌高密度发酵的技术方法。 2.实验原理 重组大肠杆菌的高密度培养是增加重组蛋白产率的最有效的方法,高密度发酵在增加菌密度的同时提高蛋白的表达量,从而有利于简化下游的纯化操作。重组大肠杆菌高密度培养受表达系统、培养基、培养方式、发酵条件控制等多种因素的影响,在实际操作中需要对各种因素进行优化,建立最佳的发酵工艺。发酵工艺优化的研究可通过每次改变一个因素或同时改变几个参数来进行,然后运用统计学分析寻找它们之间的相互作用。 工程菌提高分裂速度的基本条件是必须满足其生长所需的营养物质,因此,培养基成分和浓度的选择就成为首要解决的问题,在成分选择上,要尽量选取容易被工程菌利用的营养物质,例如,普通培养基中一般是以葡萄糖为碳源,而葡萄糖需经过氧化和磷酸化作用,生成1,3-二磷酸甘油醛,才能被微生物利用,即用甘油作为培养基的碳源可缩短工程菌的利用时间,增加分裂增殖的速度。目前,普遍采用6g/L的甘油作为高密度发酵培养基的碳源。另外,高密度发酵培养基中各组分的浓度也要比普通培养基高2~3倍,才能满足高密度发酵中工程菌对营养物质的需求。当然,培养基浓度也不可过高,因为过高会使渗透压增高,反而不利于工程菌的生长。 补料的流加方式直接影响着发酵的效果。分批补料培养的特点是,在培养过程中不断补充培养基,使菌体在较长时间里保持稳定的生长速率,从而达到高密度生长。但是在补料流加过程中既不能加入得过快,也不能加入得过慢。过慢则无法满足逐渐增加的菌体生长需要,同时也使培养过程中产生的抑制性副产物大量积累;而过快则使携带目的蛋白的质粒没有充裕的时间复制,降低目的蛋白的表达量;而且快速的细菌生长还易引发质粒的不稳定性。 高密度发酵是工程菌剧烈生长繁殖的过程,这期间对氧气的需求量也大大提高,这就需要及时调整通风量和搅拌速度,一般的高密度发酵通风速度达18L/min(20L发酵罐),搅拌速度达500r/min以上,需保持60%以上的溶氧饱和度。此外,还需要考虑通风速度和搅

(完整word版)目的基因到工程菌的构建

目的基因到工程菌的构建 1基因工程的诞生 1972年,美国斯坦福大学的学者首先在体外进行了DNA改造的研究,他们把SV40(一种猴病毒)的DNA分别切割,又将两者连接在一起,成功构建了第一个体外重组的人工DNA分子。1973年,Cohen等人首次在体外将重组的DNA分子导入大肠杆菌中,成功地进行了无性繁殖,从而完成了DNA体外重组和扩增的全过程。在这个的基础上,基因工程诞生了。 SV40病毒

第一个重组体的构建 1.1基因工程技术的三大理论基础 一是20世纪40年代Avery等人通过肺炎球菌的转化实验证明了生物的遗传物质是DNA,而且证明了通过DNA可以把一个细菌的性状转移给另一个细菌。二是20世纪50年代Watson和Crick发现了DNA分子的双螺旋结构及DNA的半保留复制机理。三是20世纪60年代关于遗传信 息中心法则的确立,即生物体中遗传信息是按DN A→RNA→蛋白质的方向

进行传递的。 1.2基因工程技术的三大技术基础 三大基本技术问题:一是如何从生物体庞大的双链DNA分子中将所需的基因片段切割下来;二是如何将切割下来的DNA片段进行繁殖扩增;三是如何将所获得的基因片段重新连接。20世纪70年代,由Smith等人发现的核酸限制性内切酶、DNA连接酶和可以作为基因工程载体的细菌质粒的发现,解决了上述三大问题。 1.2.1 限制性核酸内切酶 限制性内切酶不切割自身DNA是因为原核生物中不存在酶的识别序列或识别序列已经被修饰。 1.2.2 DNA连接酶 作用实质:将具有末端碱基互补的2个DNA片段连接在一起,形成重组DNA分子,其起作用时不需要模板。 1.2.3 基因工程的载体-质粒 基因载体的作用是运载目的基因进入宿主细胞,使之能得到复制和进行表达。也就是说,离开染色体的外源DNA不能复制,而而插入复制子DNA的外源DNA可作为复制子的一部分在受体菌中进行复制,这种复

基因工程的利与弊

基因工程的利与弊 生物制药0911 陆莹莹 摘要: 基因工程技术能够创造出原本自然界不存在的重组基因,它为医药界带来新希望,在农业上提高产量,改良作物,也可为环境污染、能源危机提供解决之道,甚至可用在犯罪案件的侦查.但它亦引起人们很大的忧虑与关切,当此科技由严 谨的实验室转移至大规模医药应用或商业生产时,我们如何评估它的安全性,此项技术是否可能因为人为失控,反而危害人类健康并破坏大自然生态平衡,它又是否违背伦理道德.因此,基因工程对人类的利弊问题一直是个被争论的话题. (Genetic engineering technology can create the gene that nature does not exist , it brings new hope in medical and increased production in agriculture, also can be modified crops of environmental pollution, energy crisis, and even provide the solution that can be used in crime investigation of cases. But it also causes great worries and concerns, when this technology transfer by strict laboratory to large pharmaceutical application or commercial production, how we assess its safety, whether the technology could spiral out of control, because people instead of destroying nature is harmful to human health and ecological balance, whether it violated ethical. So for human, genetic engineering has been always the pros and cons of subject of debate.) 关键词:基因工程利与弊安全性道德伦理 引言: 基因工程包括把来自不同生物的基因同有自主复制能力的载体DNA在体外人工连接,构成新的重组的DNA,然后送到受体生物中去表达,从而产生遗传物质和状态的转移和重新组合。它是一项很精密的尖端生物技术。可以把某一生物的基因转殖送入另一种细胞中,甚至可把细菌、动植物的基因互换。当某一基因进入另一种细胞,就会改变这个细胞的某种功能。这一技术在医药、农业等方面应用广泛,但却引发人们极大的隐忧及争论。 正文: 基因工程对当今社会的发展功不可没 一、基因工程是在对促进生物学的发展具有重要意义 基因工程是在分子生物学、分子遗传学、微生物学、细胞工程等学科发展和研究成果的基础上诞生的,反过来也可促进现代生物学的发展。生物界是通过长期的进化发展而来的,因而通过基因工程手段,不仅可以阐明生命发生的现象和规律,揭示重要基因功能以及重要性状形成的分子机制,还能模拟自然界生物进化历程,更进一步丰富和完善生物进化的理论,促进生物学研究的全面发展。

第7章 基因工程菌大规模培养

第7章基因工程菌的培养 7.1 工程菌的稳定性 一、工程菌不稳定的表现 工程菌的不稳定实际上包括质粒的不稳定及其表达产物的不稳定两个方面。具体表现为:质粒的丢失、重组质粒发生DNA片段脱落和表达产物的不稳定。 二、引起工程菌不稳定的一些因素及对策 工程菌稳定与否,取决于质粒本身的分子组成、宿主细胞的生理和遗传特性及环境条件等三个方面 工程菌不稳定的因素:控制基因的过量表达,菌体的比生长速率,培养温度,培养基的组成 1、培养基的组成 质粒在丰富培养基比在低限培养基中更加不稳定。合成培养基往往有利于宿主细胞的生长,但不利于外源基因的表达。 2、培养温度 进行工程菌培养时必须探索其最佳培养温度。通常低温有利于重组质粒的稳定遗传。 3、菌体的比生长速率 如果宿主菌的比生长速率比工程菌的大,质粒将严重丢失,导致工业上倒罐;如果宿主菌的比生长速率比工程菌小,大量繁殖时因竟争性利用基质,宿主细胞将会受到抑制,对发酵影响不大。 4、控制基因的过量表达 外源基因表达水平越高,重组质粒就越不稳定。可以采用两阶段培养法,即在发酵前期控制外源基因不过量表达,使质粒稳定遗传,到后期通过提高质粒的拷贝数和转录、转译效率使外源基因高效表达。 控制外源基因过量表达的方法: 1)如构建含可诱导启动子的工程菌,这种工程菌发酵生产时,可选择培养条件使启动子受阻遏制一定时间, 在此期间质粒稳定遗传,然后通过去阻遏(诱导)使质粒高效表达; 2)采用温度敏感型质粒,温度较低时质粒拷贝数少,当温度升高到一定时质粒大量复制、拷贝数剧增。 7.2 高密度培养 为了大量获得基因工程产品,通常采用高密度培养技术,即提高菌体的发酵密度,最终提高产物的比生产率(单位体积单位时间内产物的产量)的一种培养技术,通常指分批补料发酵技术。这样不仅可减少培养体积、强化下游分离提取,还可缩短生产周期、减少设备投资,最终降低生产成本。 一、重组大肠杆菌的高密度培养 重组大肠杆菌高密度发酵成功的关键是补料策略,即根据工程菌的生长特点及产物的表达方式采取合理的营养流加方案。在重组大肠杆菌高密度发酵中,合理流加碳源降低“葡萄糖效应”是成功的关键。常见的流加技术有:恒速流加、变速流加、指数流加和反馈流加。 1、恒速流加 限制性基质以恒定流速流加进入发酵罐中供细胞生长和代谢用的一种培养技术。通常以补料前的耗糖速率作为流加补料速率。 特点: 1)相对于发酵罐中的菌体来说,营养物的浓度逐渐降低; 2)比生长速率也慢慢降低; 3)菌体密度呈线性增加。 2、变速流加 限制性基质以变速或梯度增加流速流加进入发酵罐中供细胞生长和代谢用的一种培养技术。 特点: 1)这样可以克服恒速流加中营养物的浓度逐渐降低的缺陷,菌体在较高密度下通过流加更多营养物 质来促进菌体的生长,并对产物的表达有利。 2)比生长速率不断改变。

基因工程基础知识梳理(二)

基因工程基础知识梳理(二) 三、基因工程的应用 1.植物基因工程的成果 提高农作物的_____能力、改良农作物的品质、利用植物生产_____等。 (1)抗虫转基因植物 ①方法:将_____导入植物体,使其具有抗虫性。 ②成果:各种抗虫作物,如抗虫水稻、抗虫棉、抗虫玉米等。 ③意义:减少_____,降低生产成本,减少环境污染。 ④主要杀虫基因:_____、蛋白酶抑制剂基因、淀粉酶抑制剂基因、植物凝集素基因等。 (2)抗病转基因植物 ①方法:将_____导入植物体中,使其具有抗病特性。 ②成果:多种抗病作物,如抗病的烟草、小麦、甜椒、番茄等。 ③意义:提高作物抗病力,增产。 ④主要抗病基因:抗病毒的_____和病毒的复制酶基因;抗真菌的_____基因和抗毒素合成基因。 (3)抗逆转基因植物 ①方法:将_____基因导入植物体,获得抗逆作物。 ②成果:多种抗逆植物,如抗盐碱和干旱的烟草、抗寒番茄、抗除草剂大豆和玉米等。 ③意义:提高作物抗逆能力,稳定高产。 ④主要抗逆基因:抗盐碱、抗干旱的_____基因、耐寒的_____基因、抗除草剂基因。 (4)利用转基因改良植物的品质 ①方法:将优良性状基因导入植物体,获得_____。 ②成果:_____含量较高的玉米、耐储存番茄、新花色的矮牵牛。 ③意义:改良植物的某些品种。 ④主要优良性状基因:_____的蛋白质编码基因、控制番茄果实成熟的基因、与植物花青素代谢有关的基因。 2.动物基因工程的成果

(1)提高动物的生长速度 ①生长基因:外源_____基因。 ②成果:转基因绵羊、转基因鲤鱼。 (2)改善畜产品的品质 ①优良基因:肠_____基因。 ②成果:转基因牛乳汁中_____含量少。 (3)转基因动物生产药物 ①基因来源:药用蛋白基因+乳腺蛋白基因的_____。 ②成果:乳腺生物反应器。 (4)转基因动物作器官移植的供体 ①器官供体:抑制或除去_____。 ②成果:利用_____培育没有免疫排斥反应的猪器官。 3.基因工程药物 (1)来源:转基因_____。 (2)成果:_____、抗体、疫苗、激素等。 (3)作用:预防和治疗人类肿瘤、心血管疾病、遗传病、各种传染病、_____、类风湿等疾病。 4.基因治疗 (1)特点:把_____导入病人体内,使该基因的表达产物发挥功能,从而达到治疗疾病的目的。 (2)成果:将腺苷酸脱氨酶基因导入患者的_____,治疗复合型免疫缺陷症。 (3)方法:分为体外基因治疗法和_____基因治疗法。 四、蛋白质工程 1.蛋白质工程的崛起 (1)实质:将一种生物的_____转移到另一种生物体内,后者产生它本不能产生的蛋白质,从而产生新性状。 (2)目的:生产符合人们生活需要的、并非自然界已存在的_____。 (3)实例:天冬氨酸激酶和________的活性受细胞内__________的影响,当赖氨酸浓度达到一定量时会抑制这两种酶的活性,改变两种酶的特性后,玉米游离赖氨酸含量提高。 2.蛋白质工程原理

大肠杆菌基因工程菌常用类型

1、大肠杆菌DH5a菌株 DH5a是世界上最常用的基因工程菌株之一。由于DH5α是DNA酶缺陷型菌株,有利于基因克隆,保存质粒,但该菌株的蛋白酶没有缺陷,表达的蛋白容易被降解,因此通常不作为表达菌株。E.coli DH5a在使用pUC系列质粒载体转化时,可与载体编码的β-半乳糖苷酶氨基端实现α-互补。可用于蓝白斑筛选鉴别重组菌株。 基因型:F-,φ80dlacZΔM15,Δ(lacZYA-argF)U169,deoR,recA1,endA1,hsdR17(rk-,mk+),phoA,supE44,λ-,thi-1,gyrA96,relA1 2、大肠杆菌BL21(DE3) 菌株 该菌株用于高效表达克隆于含有噬菌体T7启动子的表达载体(如pET系列)的基因。T7噬菌体RNA聚合酶位于λ噬菌体DE3区,该区整合于BL21的染色体上。该菌适合表达非毒性蛋白。 基因型:F-,ompT,hsdS(rBB-mB-),gal,dcm(DE3) 3、大肠杆菌BL21(DE3) pLysS菌株 该菌株含有质粒pLysS,因此具有氯霉素抗性。PLysS含有表达T7溶菌酶的基因,能够降低目的基因的背景表达水平,但不干扰目的蛋白的表达。该菌适合表达毒性蛋白和非毒性蛋白。 基因型:F-,ompThsdS(rBB-mB-),gal,dcm(DE3,pLysS,Camr 4、大肠杆菌JM109菌株 该菌株在使用pUC系列质粒载体进行DNA转化或用M13 phage载体进行转染时,由于载体DNA产生的LacZa多肽和JM09编码的LacZΔM15进行α-互补,从而显示β-半乳糖苷酶活性,由此很容易鉴别重组体菌株。 基因型:recA1,endA1,gyrA96,thi-1,hsdR17,supE44,relA1,Δ(lac-proAB)/F’[traD36,proAB+,lacIq,lacZΔM15] 5、大肠杆菌TOP10菌株 该菌株适用于高效的DNA克隆和质粒扩增,能保证高拷贝质粒的稳定遗传。 基因型:F- ,mcrAΔ(mrr-hsd RMS-mcrBC),φ80 ,lacZΔM15,△lacⅩ74,recA1 ,araΔ139Δ(ara-leu)7697,galU,galK,rps,(Strr) endA1,nupG 6、大肠杆菌HB101菌株 该菌株遗传性能稳定,使用方便,适用于各种基因重组实验。 基因型:supE44,hsdS20(rB-mB-),recA13,ara-14,proA2,lacY1,galK2,rpsL20,xyl-5,mtl-1,leuB6,thi-1 7.XL10-Gold菌株:所制备的感受态细胞是目前转化效率最高的感受态细胞,缺失几乎所有已知的限制酶切系统;同时缺失核酸内切酶(endA),提高了质粒DNA的产量和质量;重组酶缺陷型(recA)减少插入片段的同源重组概率,保证了插入DNA的稳定性,提高感受态转化效率及大质粒转化能力的宿主菌基因型。

基因工程菌大规模培养

第7章基因工程菌的培养 工程菌的稳定性 一、工程菌不稳定的表现 工程菌的不稳定实际上包括质粒的不稳定及其表达产物的不稳定两个方面。具体表现为:质粒的丢失、重组质粒发生DNA片段脱落和表达产物的不稳定。 二、引起工程菌不稳定的一些因素及对策 工程菌稳定与否,取决于质粒本身的分子组成、宿主细胞的生理和遗传特性及环境条件等三个方面 工程菌不稳定的因素:控制基因的过量表达,菌体的比生长速率,培养温度,培养基的组成 1、培养基的组成 质粒在丰富培养基比在低限培养基中更加不稳定。合成培养基往往有利于宿主细胞的生长,但不利于外源基因的表达。 2、培养温度 进行工程菌培养时必须探索其最佳培养温度。通常低温有利于重组质粒的稳定遗传。 3、菌体的比生长速率 如果宿主菌的比生长速率比工程菌的大,质粒将严重丢失,导致工业上倒罐;如果宿主菌的比生长速率比工程菌小,大量繁殖时因竟争性利用基质,宿主细胞将会受到抑制,对发酵影响不大。 4、控制基因的过量表达 外源基因表达水平越高,重组质粒就越不稳定。可以采用两阶段培养法,即在发酵前期控制外源基因不过量表达,使质粒稳定遗传,到后期通过提高质粒的拷贝数和转录、转译效率使外源基因高效表达。 控制外源基因过量表达的方法: 1)如构建含可诱导启动子的工程菌,这种工程菌发酵生产时,可选择培养条件使启动子受阻遏制一定时间, 在此期间质粒稳定遗传,然后通过去阻遏(诱导)使质粒高效表达; 2)采用温度敏感型质粒,温度较低时质粒拷贝数少,当温度升高到一定时质粒大量复制、拷贝数剧增。 高密度培养 为了大量获得基因工程产品,通常采用高密度培养技术,即提高菌体的发酵密度,最终提高产物的比生产率(单位体积单位时间内产物的产量)的一种培养技术,通常指分批补料发酵技术。这样不仅可减少培养体积、强化下游分离提取,还可缩短生产周期、减少设备投资,最终降低生产成本。 一、重组大肠杆菌的高密度培养 重组大肠杆菌高密度发酵成功的关键是补料策略,即根据工程菌的生长特点及产物的表达方式采取合理的营养流加方案。在重组大肠杆菌高密度发酵中,合理流加碳源降低“葡萄糖效应”是成功的关键。常见的流加技术有:恒速流加、变速流加、指数流加和反馈流加。 1、恒速流加 限制性基质以恒定流速流加进入发酵罐中供细胞生长和代谢用的一种培养技术。通常以补料前的耗糖速率作为流加补料速率。 特点: 1)相对于发酵罐中的菌体来说,营养物的浓度逐渐降低; 2)比生长速率也慢慢降低; 3)菌体密度呈线性增加。 2、变速流加 限制性基质以变速或梯度增加流速流加进入发酵罐中供细胞生长和代谢用的一种培养技术。 特点: 1)这样可以克服恒速流加中营养物的浓度逐渐降低的缺陷,菌体在较高密度下通过流加更多营养物 质来促进菌体的生长,并对产物的表达有利。 2)比生长速率不断改变。

基因工程与食品工程菌种改良

课程考核学位类型: 学科、领域: 研究方向: 导师姓名: 学生姓名: 学号: 入学时间: 授课教师: 课程名称: 考核时间:

课程论文原创性声明 本人郑重声明:所呈交的课程论文是本人在大量查阅文献资料的基础上,独立思考与总结所取得的成果作品。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品,也不包含为获得各教育机构的学位或证书所使用过的材料。本人完全意识到本声明的法律后果由本人承担。 作者签名: 年月日

基因工程与食品工程菌种改良 摘要:生物技术在食品生产中的应用已经有几个世纪,现在生物技术的蓬勃发展,极大推动了农业和食品工业朝高技术方向发展[1]。当代发酵食品工业是食品工业的重要组成部分,发酵工业的关键是优良菌株的获取,基因工程的出现,使得人工定向改造菌种成为可能,这给发酵工业带来生机[2]。本文综述了近年基因工程在改造食品工程菌方面的应用,并对转基因工程菌食品的安全性进行了探讨。 关键词:基因工程微生物食品应用安全 以DNA重组为核心内容的基因工程技术是一种新兴的现代生物技术。利用基因工程技术不但可以提高食品的营养价值,去除食物原料中的有害成分,同时还可以通过对农作物品种改良,减少种植过程中农药、化肥等化学品的使用量。目前,经基因工程改造的产品已经在农业、医药、环保等领域据了重要的地位,特别是在食品工业中越来越显示发展前景[1]。基因工程技术在食品领域的应用也取得了丰硕的成果, 并使食品的概念从农业食品、工业食品发展到了基因工程或微生物食品可以预言, 在二十一世纪, 以基因工程为核心的生物技术必将给食品工业带来深刻的革命[2]。 1基因工程的定义及其发展史 1.1基因工程的定义 基因工程是在分子水平上对基因进行操作的技术体系,是将某一种生物细胞的基因提出或者人工合成的基因,在体外进行酶切或连接到另一种生物的DNA 分子中。由此获得的DNA称为重组DNA,将重组DNA导入到自身细胞或其他生物细胞中进行复制和表达等实验手段,使之产生符合人类需要的遗传新特征,或制造出新的生物类型[3]。 1.2基因工程的发展史 基因工程是在分子生物学和分子遗传学综合发展的基础上逐步发展起来的,

基因工程技术在植物品质改良中的应用_综述_

2006,35(4):66-70. Subtropical Plant Science 基因工程技术在植物品质改良中的应用(综述) 王逸群 (福建师范大学生命科学学院,发育与神经生物学福建省高校重点实验室,福建福州 350108) 摘 要:从淀粉品质改良、蛋白质品质改良、增强果蔬食品保鲜性能、提高植物营养保健成分和植物疫苗生产等5个方面,总结基因工程技术所取得的成就。 关键词:基因工程;植物;品质改良 中图分类号:Q943.2 文献标识码:A 文章编号:1009-7791(2006)04-0066-05 Application of Genetic Engineering Technology in Plant Quality Improvement W ANG Yi-qun (The Key Lab of Developmental and Neural Biology in Fujian Provincial Universities, College of Life Sciences, Fujian Normal University, Fuzhou 350108, Fujian China) Abstract:The great progress has been made in plant quality improvement by the technology of genetic engineering for many years, such as improvement of starch quality, protein and fresh-keeping fruit and vegetable, an increase in nutritious and health-protected ingredients in transgenic plants and plant vaccine production by genetic engineering, therefore plant quality improvement by the technology of genetic engineering has brilliant prospects. Key words: genetic engineering; plant; quality improvement 植物基因工程是随着DNA重组技术、基因遗传转化技术及植物组织培养技术而发展起来的一门新兴学科。自20世纪90年代起,基因工程技术开始运用于改良植物品质的研究,并日渐受到人们的关注,成为当前研究热点之一。最近二十多年来,这一领域的研究取得了一定进展,本文对所取得的成就进行回顾。 1 淀粉品质改良 食味品质是水稻最重要的性状之一,而在影响稻米食味品质的各项指标中,较重要的是直链淀粉含量的多少。稻米直链淀粉含量与食用品质呈负相关,即直链淀粉含量越低,稻米的口感性越好。因此降低直链淀粉含量,对改良稻米的淀粉品质具有重要意义。 反义RNA技术是控制植物体内源目的基因表达效果的一种重要手段。利用转基因技术将目的基因的反义片段转入植物中,便有可能减少该目的基因编码的蛋白产物。目前利用反义RNA技术降低水稻直链淀粉含量的研究已取得很大进展。水稻颗粒结合淀粉合成酶(GBSS)催化直链淀粉的合成,编码GBSS的基因是Wx,因此,抑制Wx基因的表达,减少GBSS形成,便可减少直链淀粉的含量。1990年Wang等[1]首先克隆了Wx基因并测出该基因的全序列。Shimada等[2]和Itoh等[3]又先后利用电激法将Wx基因的反义片段导入水稻,获得了转基因植株,培育后转基因植株种子中直链淀粉含量有所下降。刘巧泉等[4]、Terada等[5]采用农杆菌介导法将Wx基因的反义片段导入不同粳稻品种中,直链淀粉含量大幅度下降。陈秀花等[6]将Wx基因的反义片段导入籼稻品种中,使稻米直链淀粉含量也有不同程 收稿日期:2006-04-03 基金项目:福建省教育厅科技项目(JB03125)、福建省自然基金项目(B0410009)和福建省科技厅科技项目(2004N026)资助 作者简介:王逸群(1964-),男,吉林梨树人,副教授,博士,从事植物分子生物学研究。

基因工程综述

基因工程综述 基因工程(genetic engineering)又称基因拼接技术和DNA重组技术。所谓基因工程是在分子水平上对基因进行操作的复杂技术,是将外源基因通过体外重组后导入受体细胞内,使这个基因能在受体细胞内复制、转录、翻译表达的操作。 基因工程是生物工程的一个重要分支,它和细胞工程、酶工程、蛋白质工程和微生物 工程共同组成了生物工程。所谓基因工程(genetic engineering)是在分子水平上对基因进行操作的复杂技术。它是用人为的方法将所需要的某一供体生物的遗传物质——DNA大分 子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源物质在其中“安家 落户”,进行正常的复制和表达,从而获得新物种的一种崭新技术。它克服了远缘杂交的不 亲和障碍。 1974年,波兰遗传学家斯吉巴尔斯基(Waclaw Szybalski)称基因重组技术为合成生物学概念,1978年,诺贝尔医生奖颁给发现DNA限制酶的纳森斯(Daniel Nathans)、亚伯(Werner Arber)与史密斯(Hamilton Smith)时,斯吉巴尔斯基在《基因》期刊中写道:限制酶将带领我们进入合成生物学的新时代。2000年,国际上重新提出合成生物学概念,并定义为基于系统生物学原理的基因工程。 重组DNA技术的基本定义 重组DNA技术是指将一种生物体(供体)的基因与载体在体外进行拼接重组,然后转入另一种生物体(受体)内,使之按照人们的意愿稳定遗传并表达出新产物或新性状的DNA 体外操作程序,也称为分子克隆技术。因此,供体、受体、载体是重组DNA技术的三大基本元件。 基因工程的基本定义 狭义上仅指基因工程。 是指将一种生物体(供体)的基因与载体在体外进行拼接重组,然后转入另一种生物 体(受体)内,使之按照人们的意愿稳定遗传,表达出新产物或新性状。 重组DNA分子需在受体细胞中复制扩增,故还可将基因工程表征为分子克隆(Molecular Cloning)或基因克隆(Gene Cloning)。 广义上包括传统遗传操作中的杂交技术、现代遗传操作中的基因工程和细胞工程。 是指DNA重组技术的产业化设计与应用,包括上游技术和下游技术两大组成部分。 上游技术:基因重组、克隆和表达的设计与构建(即DNA重组技术); 下游技术:基因工程菌(细胞)的大规模培养、外源基因表达产物的分离纯化过程。 广义的基因工程概念更倾向于工程学的范畴。 广义的基因工程是一个高度的统一体: 上游重组DNA的设计必须以简化下游操作工艺和装备为指导思想; 下游过程则是上游重组蓝图的体现与保证。---基因工程产业化的基本原则。 基因工程是指重组DNA技术的产业化设计与应用,包括上游技术和下游技术两大组成部分。上游技术指的是基因重组、克隆和表达的设计与构建(即重组DNA技术);而下游

SHMT基因工程菌的构建方案设计

SHMT基因工程菌的构建 第四组 一、实验相关知识 1、丝氨酸羟甲基转移酶是丝氨酸合成中的关键酶,能催化甘氨酸和丝氨酸的相互转化,具体的催化反应如下: SHMT 甘氨酸+N5,N10-亚甲基四氢叶酸L-丝氨酸+四氢叶酸 在丝氨酸羟甲基转移酶(SHMT)作用下,甘氨酸同亚甲基四氢叶酸反应生成L-丝氨酸。该反应需要5-磷酸吡哆醛作为辅酶。N5,N10-亚甲基四氢叶酸上亚甲基可以来自于甘氨酸、甲醛、甲酸、蛋氨酸、胆碱和肌氨酸,它们同四氢叶酸反应生成N5,N10-亚甲基四氢叶酸。本实验以甘氨酸和甲醇为前体物发酵生产L-丝氨酸时,菌体积累L-丝氨酸与菌体含有的SHMT的活性直接相关,但由于SHMT的催化作用理论上是双向的,有必要了解在相同的培养条件或者在本文所用的菌株SHMT是否具有双向催化作用。 2、基因工程(genetic engineering)又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。基因工程技术为基因的结构和功能的研究提供了有力的手段。

基因工程是生物工程的一个重要分支,它和细胞工程、酶工程、蛋白质工程和微生物工程共同组成了生物工程。所谓基因工程是在分子水平上对基因进行操作的复杂技术。它是用人为的方法将所需要的某一供体生物的遗传物质——DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源物质在其中“安家落户”,进行正常的复制和表达,从而获得新物种的一种崭新技术。它克服了远缘杂交的不亲和障碍。 3、丝氨酸是一种非必需氨基酸,它在脂肪和脂肪酸的新代谢及肌肉的生长中发挥着作用,因为它有助于免疫血球素和抗体的产生,维持健康的免疫系统也需要丝氨酸。丝氨酸在细胞膜的制造加工、肌肉组织和包围神经细胞的鞘的合成中都发挥着作用。 [大肠杆菌] 细菌染色体DNA 的制备(预习方案)一.实训目的 .学习并掌握细菌基因组的基本知识和提取方法 二.实训原理及相关知识 1.大肠杆菌(Escherichia coli,E.coli)革兰氏阴性短杆菌,大小 0.5×1~3微米。周身鞭毛,能运动,无芽孢。能发酵多种糖 类产酸、产气,是人和动物肠道中的正常栖居菌,婴儿出生后 即随哺乳进入肠道,与人终身相伴,几占粪便干重的1/3。国 家规定,每升饮用水肠杆菌数不应超过3个大肠杆菌的抗原成

基因工程基础知识

第一章基因工程 第一节基因工程概述 由于基因工程是在DNA分子水平上进行操作,因此又叫做重组DNA技术。 二.基因工程的基本工具 (一)“分子手术刀”——限制性核酸内切酶(简称限制酶) 1.来源:主要是从原核生物中分离纯化出来的。 2.功能:能够识别双链DNA分子的某种特定的核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开。 3.结果:经限制酶切割产生的DNA片段末端通常有两种形式:黏性末端和平末端。 (二)“分子针线”——DNA连接酶 1.分类:根据酶的来源不同,可分为E·coliDNA连接酶和T4DNA连接酶两类 2.功能:恢复被限制酶切开了的两个核苷酸之间的磷酸二酯键。 ★两种DNA连接酶(E·coliDNA连接酶和T4DNA连接酶)的比较: ①相同点:都缝合磷酸二酯键 ②区别:E.coIiDNA连接酶来源于大肠杆菌,只能使黏性末端之间连接; T4DNA连接酶能缝合两种末端,但连接平末端之间的效率较低。 (三)“分子运输车”——载体 1.载体具备的条件: ①能在受体细胞中复制并稳定保存; ②具有一至多个限制酶切割位点,供外源DNA片段插入; ③具有标记基因,供重组DNA的鉴定和选择。 2.基因工程常用的载体有:质粒、噬菌体和动、植物病毒等。 最早应用的载体是质粒,它是细菌细胞中的一种很小的双链环状DNA分子。 三.基因工程的基本过程

(一) 获得目的基因(目的基因的获取) 1.获取方法主要有两种:①从自然界中已有的物种中分离出来,如可从基因文库中获取。 ②用人工的方法合成。 ★获得原核细胞的目的基因可采取直接分离,获取真核细胞的目的基因一般是人工合成。 ★人工合成目的基因的常用方法有反转录法和化学合成法。 2.利用PCR技术扩增目的基因 (1)PCR的含义:是一项在生物体外复制特定DNA片段的核酸合成技术。 (2)目的:获取大量的目的基因 (3)原理:DNA双链复制 (4)过程:第一步:加热至90~95℃DNA解链为单链; 第二步:冷却到55~60℃,引物与两条单链DNA结合; 第三步:加热至70~75℃,热稳定DNA聚合酶从引物起始进行互补链的合成。(5)特点:指数形式扩增 (二) 制备重组DNA分子(基因表达载体的构建) 1.重组DNA分子的组成:除了目的基因外,还必须有标记基因。 ★标记基因的作用:鉴定受体细胞中是否含有目的基因,从而将含有目的基因的细胞筛选出来。 2.方法:同种限制酶分别切割载体和目的基因,再用DNA连接酶把两者连接。 (三)转化受体细胞(将目的基因导入受体细胞) 1.转化的概念:是目的基因进入受体细胞内,并且在受体细胞内维持稳定和表达的过程。 2.常用的转化方法: ①将目的基因导入植物细胞:采用最多的方法是农杆菌介导转化技术(农杆菌转化法),其次 还有基因枪介导转化技术(基因枪法)和花粉管通道技术(花粉 管通道法)。 ②将目的基因导入动物细胞:最常用的方法是显微注射技术。此方法的受体细胞多是受精卵。 ③将目的基因导入微生物细胞:Ca+处理法。 (四) 筛选出获得目的基因的受体细胞、培养受体细胞并诱导目的基因的表达(目的基因的检测与鉴定) 1.首先要检测转基因生物的染色体DNA上是否插入了目的基因,方法是采用DNA分子杂交技术。 2.其次还要检测目的基因是否转录出mRNA,方法是采用DNA分子杂交技术。 3.最后检测目的基因是否翻译成蛋白质,方法是采用抗原—抗体杂交技术。 4.有时还需进行个体生物学水平的鉴定。如抗虫或抗病的鉴定等。 第二节基因工程的应用 1.运用基因工程改良动植物品种最突出的优点是:能打破常规育种难以突破的物种之间的界限。2.基因工程的应用

基因工程的现状发展及展望

基因工程的现状发展及展望 课程:食品生物技术 专业: 班级: 学号: 姓名: 完成时间:2011 年5月25日

基因工程的现状发展及展望 【摘要】从20世纪70年代初发展起来的基因工程技术,经过30多年来的进步与发展,已成为生物技术的核心内容。许多科学家预言,生物学将成为21世纪最重要的学科,基因工程及相关领域的产业将成为21世纪的主导产业之一。基因工程研究和应用范围涉及农业、工业、医药、能源、环保等许多领域。 【关键词】基因工程技术;生物反应器;基因治疗 基因工程的发展史 1860至1870年奥地利学者孟德尔根据豌豆杂交实验提出遗传因子概念,并总结出孟德尔遗传定律。 1909年丹麦植物学家和遗传学家约翰逊首次提出“基因”这一名词,用以表达孟德尔的遗传因子概念。 1944年3位美国科学家分离出细菌的DNA(脱氧核糖核酸),并发现DNA 是携带生命遗传物质的分子。 1953年美国人沃森和英国人克里克通过实验提出了DNA分子的双螺旋模型。 1969年科学家成功分离出第一个基因。 1990年10月被誉为生命科学“阿波罗登月计划”的国际人类基因组计划启动。 1998年一批科学家在美国罗克威尔组建塞莱拉遗传公司,与国际人类基因组计划展开竞争。 1998年12月一种小线虫完整基因组序列的测定工作宣告完成,这是科学家第一次绘出多细胞动物的基因组图谱。 1999年9月中国获准加入人类基因组计划,负责测定人类基因组全部序列的1%。中国是继美、英、日、德、法之后第6个国际人类基因组计划参与国,也是参与这一计划的惟一发展中国家。 1999年12月1日国际人类基因组计划联合研究小组宣布,完整破译出人体第22对染色体的遗传密码,这是人类首次成功地完成人体染色体完整基因序列的测定。

基因工程知识点总结

选修3易考知识点背诵 专题1 基因工程 基因工程的概念 1.“分子手术刀”——限制性核酸内切酶(限制酶) (1)来源:主要是从原核生物中分离纯化出来的。 (2)功能:能够识别双链DNA分子的某种特定的核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开,因此具有特异性。 (3)结果:经限制酶切割产生的DNA片段末端通常有两种形式:黏性末端和平末端。 2.“分子缝合针”——DNA连接酶 (1)两种DNA连接酶(E·coliDNA连接酶和T4-DNA连接酶)的比较: ①相同点:都缝合磷酸二酯键。 ②区别:E·coliDNA连接酶来源于T4噬菌体,只能将双链DNA片段互补的黏性末端之间的磷酸二酯键连接起来; 而T4DNA连接酶能缝合两种末端,但连接平末端的之间的效率较低。 (2)与DNA聚合酶作用的异同:DNA聚合酶只能将单个核苷酸加到已有的核苷酸片段的末端,形成磷酸二酯键。DN A连接酶是连接两个DNA片段的末端,形成磷酸二酯键。 3.“分子运输车”——载体 (1)载体具备的条件:①能在受体细胞中复制并稳定保存。 ②具有一至多个限制酶切点,供外源DNA片段插入。 ③具有标记基因,供重组DNA的鉴定和选择。 (2)最常用的载体是质粒,它是一种裸露的、结构简单的、独立于细菌染色体之外,并具有自我复制能力的双链环状DNA分子。 (3)其它载体:噬菌体、动植物病毒 (二)基因工程的基本操作程序 第一步:目的基因的获取 1.目的基因是指:是人们所需要转移或改造的基因 2.获取目的基因的方法____________ _________________ _____________ 3.原核基因采取直接分离获得,真核基因是人工合成。人工合成目的基因的常用方法有反转录法_和化学合成法_。 4.PCR技术扩增目的基因 (1)原理:DNA双链复制 (2)过程:第一步:加热至90~95℃DNA解链;第二步:冷却到55~60℃,引物结合到互补DNA链;第三步:加热至70~75℃,热稳定DNA聚合酶从引物起始互补链的合成。 第二步:重组DNA分子 1.目的:使目的基因在受体细胞中稳定存在,并且可以遗传至下一代,使目的基因能够表达和发挥作用。 2.组成:目的基因+启动子+终止子+标记基因+复制原点 (1)启动子:是一段有特殊结构的DNA片段,位于基因的首端,是RNA聚合酶识别和结合的部位,能驱动基因转录出mRNA,最终获得所需的蛋白质。 (2)终止子:也是一段有特殊结构的DNA片段,位于基因的尾端。 (3)标记基因的作用:是为了鉴定受体细胞中是否含有目的基因,从而将含有目的基因的细胞筛选出来。常用的标记基因是抗生素基因。

基因工程技术在食品品质改良中的应用

基因工程技术在食品品质改良中的应用 吴青 孙远明 (华南农业大学食品科学系 广州510642) 摘 要: 概述了用基因工程技术改良食品的食用品质,提高食品加工性能的研究和应用现状。关键词: 基因工程技术 食品品质 改良 Application of G enetic E ngineering T echnology in Modif ication of Edible Q u ality and Processing Properties of Food Wu Qing Sun Yuanming (Food Science Depart ment ,South Chi na A gricult ural U niversity ,Guangz hou ,510642) Abstract : Using genetic engineering technology to modify edible quality andprocessing properties of food were reviewed. K ey words : genetic engineering technology food quality modification 基因工程技术在改良食品的食用品质,提高其 加工性能,开发具有特定营养成分和功能的新型食品方面取得了很大的成绩,现综述如下。 1 油脂改良 植物油是世界上最重要的油脂之一,目前世界年产量为6500万吨左右。在美国90%以上的食用油为植物油[1]。食用油有三个重要的质量指标:营养价值、氧化稳定性和功能性,但这三个指标之间存在着矛盾,即含较多的高不饱和脂肪酸的食用油对人的健康是有益的,但存在着氧化稳定性差的缺点;制造人造奶油和起酥油等需要高熔点的植物油,但这种油通常含高比例的饱和脂肪酸成分。为了获得氧化稳定、饱和程度高的煎炸油和烹调油以及为制造人造奶油和起酥油等提供高熔点的植物油,食品工业采用的方法是对植物油进行氢化处理,但在氢化过程中不可避免地会产生反式构型脂肪酸。反式构型脂肪酸是顺式脂肪酸的同分异构体,与顺式构型比,键角减小,熔点升高。研究表明,摄入反式脂肪酸会增加血液中低密度脂胆固醇的水平;最新的流行病学研究还表明,反式脂肪酸与心脏病的发病有线形关系[2]。基因工程技术与传统的育种方法 结合为人们提供了改善植物油质量的新途径,它不仅可增加植物油脂肪酸的饱和度,而且不会带来反式脂肪酸问题;还可降低脂肪酸的饱和度,提供对人体健康有益的植物油,这是氢化手段做不到的。有两种主要的分子技术用于油脂的改良:提高一种主要脂肪酸的含量和制造非常见脂肪酸。1.1 提高植物油中主要脂肪酸含量 植物油中主要的脂肪酸是C16∶0,C18∶0,C18∶1,C18∶2和C18∶3。通过抑制或增加油脂生物合成的特定的关键酶,已能制造1~2个主要脂肪酸含量减少或占优势的植物油,例如,美国DuPont 公司通过反义抑制和/或共同抑制油酸酯脱氢酶,开发成功高油酸含量的大豆油。这种新型油含有80%以上的油酸,而普通大豆油只含24%的油酸;这种新油有良好的氧化稳定性,很适合用作煎炸油和烹调油[3,4]。另外,美国Calgene 公司用同样的分子技术正在开发高硬脂酸含量的大豆油和芥花菜(canola )油,新的大豆油和芥花菜油将含30%以上的硬脂酸,而普通大豆油和芥花菜油分别只含4%和2%左右的硬脂酸;这些新油可取代氢化油用于制造人造奶油、液体起酥油和可可脂替代品,而不含氢化油中 作者简介:吴青,女,1965年1月生,讲师,硕士,现从事食品品质控制研究。 生物技术通报 ?综述与专论? B IO TEC HNOL O G Y BULL ETIN 2001年第5期

相关文档
最新文档