有限元简介

有限元简介
有限元简介

5盘式制动器的有限元分析

5.1有限元分析方法概述

离散化的思想可以追溯到20世纪40年代。1941年A.Hrennikoff首次提出用离散元素法来求解弹性力学问题。1943年R.Courant在求解扭转问题时,当时为了表征翘曲函数而将截面分成若干三角形区域。这实质上就是有限元法的基本思想,这一思想真正用于工程中是在电子计算机出现后。

20世纪50年代因航空工业的需要,美国波音公司的专家首次采用三节点三角形单元,将矩阵位移法用到平面问题上。同时,原联邦德国斯图加特大学的J.H.Argyris教授发表了一组矩阵分析和能量原理的论文,为这一方法的理论基础做出了基础贡献。1960年美国的R.W.Clough教授在一篇题为《平面应力分析的有限单元法》的论文中首先使用“有限单元法(FEM,Finite Element Method)”一词,之后这一名称得到了广泛承认。

20世纪70年代以来,有限单元法进一步得到发展,其应用范围扩展到所有工程领域,成为连续介质问题数值解法中最活跃的分支。由变分法有限元扩展到加权残数法与能量平衡法有限元,由弹性力学平面问题扩展到板壳及空间问题问题,由静力平衡问题扩展到稳定性问题、动力问题和波动问题,由线性问题扩展到非线性问题。

5.1.1有限元分析的基本思想

有限元法(FEA)的基本思想是把连续的几何结构里三成有限个单元,并在每一个单元中设定有限个结点,从而连续体被看做仅在离散的结点处相连接的一组单元的集合,同时选定场函数的结点值作为基本的未知量,并在每一单元中假设近似插值函数以表示单元中场函数的分布规律,建立求解结点未知量的有限元方程组,从而将一个连续域中的无限自由度问题转化为离散域中的有限自由度问题。

5.1.2 ANSYS的主要功能

ANSYS有限元软件包是一个多用途的有限元法计算机设计程序,目前,有限元法从它最初应用的固体力学领域,已经推广到温度场、流体场、电磁场、声场等其他连续介质领域。在固体力学领域,有限元法不仅可以用于线性静力分析,也可以用于动态分析,还可以用于非线性、热应力、接触、蠕变、断裂、加工模拟、碰撞模拟等特殊问题的研究。软件主要包括三个部分:前处理模块,分析计算模块和后处理模块。

(1) 前置处理

前置处理主要为建立有限元分析模型,定义相关参数,比如定义单位制、单元类型、单元常数以及定义材料属性和材料特征参数等,进行有限元几何模型的建立,其可在ANSYS系统中直接建模或借助于外部pre创建实体模型,然后通过ANSYS对的几何模型进行单元网络的划分,最后生成有限元分析模型。

(2)分析求解

分析求解过程是ANSYS系统对所建立的有限元模型进行力学分析和有限元求解的过程。用户可以根据所要求的分析目的,选择模态分析、静态分析、瞬态分析、谐响应分析、谱分析等不同的分析类型;对有限元模型施加包括约束、力或力矩、面载荷、体积载荷、惯性载荷等不同载荷,并可为不同的载荷指定载荷步;根据分析要求,选择不同的求解器进行计算,并完成求解。

(3)后处理模块

后处理模块可将计算结果以彩色等值线显示、梯度显示、矢量显示、粒子流迹显示、立体切片显示、透明及半透明显示(可看到结构内部)等图形方式显示出来,也可将计算结果以图表、曲线形式显示或输出。软件提供了200种以上的单元类型,用来模拟工程中的各种结构和材料。

5.2

有限元试题

2011年有限元试题 一、简答 1、有限元平面问题有几个自由度?空间问题有几个自由度?弹性力学三大方程分别应用了何种假定? 2、位移模式的完备性条件是什么?必须要满足吗? 3、如图所示节点编号,计算半带宽,并画出最合理的节点编号,刚度矩阵中对角元素为何都为正值? 4、等参单元变换的必要条件是什么? 5、简述铁木辛柯梁的基本特点,解释何谓剪切锁死现象,并给出避免出现剪切闭锁的条件。 二、推导题 1、用自然坐标推导四节点矩形单元的形函数 2、计算等效荷载,如图 3、分析下图的高斯点选取是否合理 三、计算 1、如图 (1)计算三角形单元的位移模式 (2)已知三节点的位移分别为() ,;,;,j j m i m i u u u v v v (已知数据),A 点的坐标(0.5,0.2,0)求A 点的位移分量

2、已知基本方程d 0d u u x +=,边界条件01x u ==,选取试函数1u cx =+ 用伽辽金法确定系数c 3、求雅克比矩阵J (同作业题) 4、如图所示结构当节点编号如右图所示时,可求出其单元刚度矩阵为 11121621 2226616266a a a a a a K a a a ??????=?????? (考试中均为具体数据) 试确定局部刚度矩阵[]22K 及[]45K

2005年有限元试卷 一、简答题 1、加权残数法、变分法与有限元法的联系与区别是什么?有限元方法有什么优点? 2、单元分析的重点是什么?单元刚度矩阵有什么特征?其中每一个元素的物理意义是什么?单元分析中坐标转换的作用是什么? 3、在有限元法中,等参单元的主要有点事什么?在应用等参单元时,坐标变换的精度与位移模式的精度是否一样?等参单元计算中积分阶次选择的原则是什么? 4、为什么位移型有限元应力解的精度要低于位移解?应力解的近似性表现在哪些方面?应力近似解的性质是什么?试分析下列平面单元中的位移和应力的误差量级? (1)三点三角形单元(2)四节点举行单元(3)六节点三角形单元 (4)四节点直边四边形等参单元(5)把节点曲边四边形等参单元 5、在博班弯曲问题中,何谓协调单元和非协调单元?试论证四节点矩形板12个自由度弯曲单元是完备的非协调单元 6、常用的构造单元插值函数的方法有哪三种?各有哪些优点? 7、什么是材料非线性问题和几何非线性问题?各自的难点是什么?材料非线性和几何非线性有什么联系和区别? 8、什么是非线性有限元方程的迭代解法和增量解法?各自的适用范围是什么?常见的迭代收敛准则有哪些?当有限元求解结果不对时,可从哪些方面进行检查? 9、简要说明学习“有限元的”的心得体会? 二、计算推导题 1、图示等刚度悬臂梁受均布荷载作用,假定试函数为:()21cos x x c l f π??=- ??? ,梁截面抗弯刚度为EI ,试采用最小势能原理计算梁的最大挠度 X

扩展有限元简介

扩展有限元 有限元是将一个物理实体模型离散成一组有限的相互连接的单元组合体, 该方法在考虑物体内部存在缺陷时间,单元边界与几何界面一致,会造成局部网格加密,其余区域稀疏的非均匀网格分布,在网格单元中最小的尺寸会增加计算成本,再者裂纹的扩展路径必须预先给定只能沿着单元边界发展。 1999年,美国西北大学Beleytachko 提出了扩展有限法,该方法是对传统有限元法进行了重大改进。扩展有限元法的核心思想是用扩充带有不连续性质的形函数来代表计算区域内的间断,在计算过程中,不连续场的描述完全独立于网格边界,在处理断裂问题有较好的优越性。利用扩展有限元,可以方便的模拟裂纹的任意路径,还可以模拟带有孔洞和夹杂的非均质材料。 扩展有限元是以标准有限元的理论为框架,保留传统有限元的优点,目前商业软件中如Abaqus 等都加入扩展有限元的分析模块。 扩展有限元以有限元为基本框架,主要针对不连续问题进行研究,相对于传统有限元方法,它克服了裂纹扩展问题的不足。其采用节点扩展函数,其中包括2个函数:裂纹尖端附近渐进函数表示裂纹尖端附近的应力奇异性;间断函数表示裂纹面处位移跳跃性。整体划分位移函数表示为 αααI =I I I =∑∑++=b x F a x H u x N x u N i )(])()[()('41 1 式中:)(x N I 为常用的节点位移函数;I u 为常规形状函数节点自由度,适用于模型中的所有节点;)(x H 为沿裂纹面间断跳跃函数;I a 为节点扩展自由度向量,这项只对形函数被裂纹切开的单元节点有效;)(x F α为裂纹尖端应力渐进函数;αI b 为节点扩展自由度向量,这项只对形函数被裂纹尖端切开的单元节点有效。 沿裂纹面间断跳跃函数)(x H 表达式为: otherwise n x x if x H 0)(11)(*≥-???-= 式中:x 为样本点;*x 距x 最近点;n 为单位外法线向量。 各向同性材料的裂纹尖端渐进函数)(x F α表达式为: ????? ?=2cos sin ,2sin sin ,2cos ,2sin )(θθθθθθαr r r r x F 裂纹尖端的渐进函数并不局限于各向同性弹性材料的裂纹建模。可用于弹塑性指数硬化材料,不同的裂纹尖端渐进函数的形式与裂纹位置、非线性材料变形程度有关。

有限元试题

一判断题节点的位置依赖于形态而并不依赖于载荷的位置√2. 对于高压电线的铁塔那样的框架结构的模型化处理使用梁单元×3. 不能把梁单元、壳单元和实体单元混合在一起作成模型√4. 四边形的平面单元尽可能作成接近正方形形状的单元×5. 平面应变单元也好平面应力单元也好如果以单位厚来作模型化处理的话会得到一样的答案×6. 用有限元法不可以对运动的物体的结构进行静力分析√7. 一般应力变化大的地方单元尺寸要划的小才好×8. 所谓全约束只要将位移自由度约束住而不必约束转动自由度√9. 同一载荷作用下的结构所给材料的弹性模量越大则变形值越小√10一维变带宽存储通常比二维等带宽存储更节省存储量。二、填空平面应力问题与薄板弯曲问题的弹性体几何形状都是薄板但前者受力特点是平行于板面且沿厚度均布载荷作用变形发生在板面内后者受力特点是垂直于板面的力的作用板将变成有弯有扭的曲面。平面应力问题与平面应变问题都具有三个独立的应力分量三个独立的应变分量但对应的弹性体几何形状前者为薄板后者为长柱体。位移模式需反映刚体位移反映常变形满足单元边界上位移连续。单元刚度矩阵的特点有对称性奇异性还可按节点分块。轴对称问题单元形状为三角形或四边形截面的空间环形单元由于轴对称的特性任意一点变形只发生在子午面上因此可以作为二维问题处理。等参数单元指的是描述位移和描述坐标采用相同的形函数形式。等参数单元优点是可以采用高阶次位移模式能够模拟复杂几何边界方便单元刚度矩阵和等效节点载荷的积分运算。有限单元法首先求出的解是节点位移单元应力可由它求得其计算公式为。8、一个空间块体单元的节点有 3 个节点位移变形体基本变量有位移应变应力基本方程平衡方程物理方程几何方程10.实现有限元分析标准化和规范化的载体就是单元 三选择题分等参变换是指单元坐标变换和函数插值采用__B___的结点和______ 的插值函数。不相同不相同相同相同相同不相同不相同 相同2 有限元位移模式中广义坐标的个数应与_______B____相等。单元结点个数 单元结点自由度数场变量个数 3 如果出现在泛函中场函数的最高阶导数是m阶单元的完备性是指试探函数必须至少是___B___完全多项式。-1次 次-1次 4 与高斯消去法相比高斯约当消去法将系数矩阵化成了____C_____形式因此不用进行回代计算。上三角矩阵下三角矩阵对角矩阵5 对分析物体划分好单元后会对刚度矩阵的半带宽产生影响。单元编号单元组集次序结点编号6 n个积分点的高斯积分的精度可达到__C____阶。--引入位移边界条件是为了消除有限元整 体刚度矩阵的_____C_____。对称性稀疏性奇异性三简答题 共20分每题5分、简述有限单元法结构刚度矩阵的特点。2、简述有限元法中选取单元位移函数多项式的一般原则。1、答答对前3个给4分对称性 奇异性主对角元恒正稀疏性非零元素带状分布2、答一般原则有(1) 广义坐标的个数应该与结点自由度数相等选取多项式时常数项和坐标的一次项必须完备多项式的选取应由低阶到高阶尽量选取完全多项式以提高单元的精度。有限元方法分析的目的对变形体中的位移、应力、应变进行定义和表达进而建立平衡方程、几何方程和物理方程。2)针对具有任意复杂几何形状的变形体完整得获取在复杂外力作用下它内部的准确力学信息。3)力学分析的基础上对设计对象进行强度(strength)、刚度评判修改、优化参数。有限单元法分析步骤1、结构的离散化2、选择位移模式3 、分析单元的力学特性4、集合所有单元平衡方程得到整体结构的平衡方程5、由平衡方程求解未知节点位移6、单元应变和应力的计算4连续体结构分析的基本假定连续性假设完全弹性假设均匀性假设

ABAQUS平台的扩展有限元方法模拟裂纹实现

ABAQUS平台的扩展有限元方法模拟裂纹实现 1.1 扩展有限元方法(XFEM)在ABAQUS上的实现 ABAQUS中XFEM的实现,两个步骤最为关键: 1、选择模型中可能出现的裂纹区域,将其单元设为具有扩展有限元性质的enrichment element. 2、其次重要的是选择恰当的破坏准则,使单元在达到给定的条件破坏,裂纹扩展。 在ABAQUS中模拟裂纹扩展的操作中,需要注意的是: 1、在Property模块,添加损伤演化参数、破坏法则、损伤稳定性参数 2、在Interaction模块,主菜单Special中创建XFEM的enrichment element 对于固定的裂纹模型,采用ABAQUS/STANDARD中使用奇异渐进函数。针对移动的裂纹问题,在XFEM中,有一种方法基于traction-separation cohesive behavior,即使用虚拟节点连续片段法进行移动裂纹建模,ABAQUS/STANDAR D 中用于计算脆性或韧性材料的裂纹初始化和扩展过程的模拟。另外一种cohesive segments method (粘性片段方法)可用于bulk material中的任意路径的裂纹初始化模拟扩展过程,由于裂纹扩展不依赖于单元边界,在XFEM中,裂纹每扩展一次需要通过一个完整单元,避免尖端应力奇异性。除此之外,ABAQUS为拥护提供了自定义子程序,来满足不同建模的需要。ABAQUS/STANDARD中的任意力学本构模型均可用来模拟扩展裂纹的力学特性。 由于XFEM采用的形函数在求解过程中,很容易造成逼近线性相关,极大的增加了收敛难度,到目前为止,能够实现扩展有限元的商业软件只有ABAQUS,但是ABAQUS为了减少求解难度,做了大量简化,因此用ABAQUS 扩展有限元模拟裂纹扩展时,有一些局限[16]: 1.扩展单元内不能同时存在两条裂纹,所以ABAQUS不能模拟分叉裂 纹; 2.在裂纹扩展分析过程中,每一个增量步的裂纹转角不允许超过90度; 3.自适应的网格是不被支持的; 4.固定裂纹中,只有各向同性材料的裂纹尖端渐进场才被考虑。 1.2 数值算例

有限元法试题

《汽车有限元基础》2009-2010二学期考试试卷

《汽车有限元基础》2009-2010第二学期考试试卷 一、填空题 1. 有限元法的基本思想是用个单元的集合来代替原来具有个自由 度的连续体。 2. 单元刚度矩阵K中元素K ij的物理意义:当单元第j个自由度产生而其它自由度固定时,在第i个自由度产生的。 3.按照各杆轴线及外力作用线在空间的位置,杆系结构可分为: 和。4.平面刚架中各单元发生轴向拉压变形及面内的弯曲变形,而且这两种变形相互独立,因此刚架单元可以看成是由单元和单元叠加而成。因此,平面刚架单元的节点位移应包含个平动分量和个转动分量。 5.工程中常用的薄板单元有:单元和单元。6.有限元分析的主要步骤先后为:(1) 网格划分, (2) , (3) 。 7. 单元特性分析的主要内容先后为:(1) 、(2) 、(3) 应力或内力、(4) 、(5) 单元节点载荷。 8.对于弹性变形体,承受的外载荷共有三种:集中载荷、和。在有限元法中,对于没有作用在节点上的这些外载荷,是按照的原则将其移置到节点上。 9.工程中任一平板,若其厚度为t,板面宽度为b,当t/b小于时可以认为是薄板。常用的薄板单元有:单元和单元。10.薄壳单元中的应力可看成平面应力问题和问题中两种应力的叠加。 11.求解结构系统的动力响应时,常用的两种求解方法为:和 12.在有限元分析中,为了描述几何模型和有限元模型,需要用到几种坐标系: (1) (2) (3) 和(4)

《汽车有限元基础》2009-2010第二学期考试试卷 二、 问答题 1.某一薄板矩形单元的节点编号按照逆时针依次为i 、j 、m 和p 。假设该单元每个节点的位移表示为{}{}T yi xi i i w θθδ=, (i, j, m, p );该单元每个节点的载荷表示为{}{}T iy ix i i T T Z F θθ=,(i, j, m, p )。请写出该单元的单元节点位移列阵和单元 节点载荷列阵。 2.请写出使用有限元分析软件时,进行数据前处理的主要工作内容。 3.右下图为一典型三节点三角形平面单元,节点按照逆时针依次编号为i 、j 和m ,节点的坐标依次为(x i ,y i ),(x j ,y j )、(x m ,y m )。假设单元内任意一点的两个位移分量分别表示u 和v 。请写出该单元位移模式的多项式形式,并简述待定常数个数的确定理由。 4. 请简述针对动力问题的有限元分析的基本步骤。

ABAQUS中扩展有限元(XFEM)功能简介

ABAQUS中扩展有限元(XFEM)功能简介 扩展有限元(Extended Finite Element Method)是一种解决断裂力学问题的新的有限元方法,其理论最早于1999年,由美国西北大学的教授Belyschko和Black首次提出,主要是采用独立于网格剖分的思想解决有限元中的裂纹扩展问题,在保留传统有限元所有优点的同时,并不需要对结构内部存在的裂纹等缺陷进行网格划分。 ABAQUS基于在非线性方面的突出优势,在其6.9的版本中开始加入了扩展有限元功能,到6.13做了一些修正,加入了一些可以被CAE支持的关键字。目前为止,除了手动编程,能够实现扩展有限元常用的商业软件只有ABAQUS,今天,我们就来谈谈ABAQUS 中如何实现扩展有限元。 1. XFEM理论 在XFEM理论出现之前,所有对裂纹的静态模拟(断裂)都基本上是采用预留裂缝缺角,通过细化网格仿真裂缝的轮廓。而动态的模拟(损伤)基本上都是基于统计原理的Paris 方法。然而,断裂和损伤的结合问题却一直没有得到有效的解决,究其原因,在于断裂力学认可裂纹尖端的应力奇异现象(就是在靠近裂尖的区域应力值会变无穷大),并且尽可能的绕开这个区域。而损伤力学又没有办法回避这个问题(裂纹都是从尖端开裂的)。 从理论上讲,其实单元内部的位移函数(形函数)可以是任意形状的,但大多数的计算软件都采用了多项式或者插值多项式作为手段来描述单元内部的位移场,这是因为采用这种方法更加便于在编程中进行处理。但是这种方法的缺点就是,由于形函数的连续性,导致单元内部不可能存在间断。直到Belytschko提出采用水平集函数作为手段,其基本形式为 和 上面左边的等式描述了单元内裂缝的位置,右边的等式描述了裂尖的位置。与之对应的形函数便是

基于ABAQUS平台的扩展有限元方法

基于ABAQUS平台的扩展有限元方法 断裂是一种失效模式。在工程领域中,经常发生起源于断裂或终结于裂纹扩展的灾难性破坏事故,如压力管道的裂纹失稳扩展,机械构件的断裂,地震引起的地面开裂和房屋倒塌等,这些事故对我们的生命和生活造成了很大的影响。由于产生裂纹的原因难以量化,因此裂纹出现后是否会继续扩展或发生止裂的断裂力学具有很重要的意义。 传统的断裂力学在剖分单元网格的时候必须考虑物体内部的缺陷,如裂纹,界面等,使单元边界与几何界面一致,这也就会形成局部网格加密,而其余区域稀疏的非均匀网格分布。ABAQUS中单元的最小尺寸决定了显示计算时间增量的临界步长,过小的最小尺寸无疑会增加计算的成本;再有就是需要预先给定裂纹的扩展路径,裂纹只能沿单元边界扩展,难以形成任意裂纹路径。 扩展有限元方法(XFEM,extended finite element method,以下简称XFEM)的核心思想是用扩充的带有不连续性质的形函数基来代表计算域内的间断,因此在计算过程中,不连续场的描述完全独立于网格边界,这使其在处理断裂问题上具有很大的优势。XFEM可以充分利用已知解析解答构造形函数基,在较粗网格上即能得到较精确的解答。利用XFEM,还可以方便地模拟裂纹沿任意路径扩展。ABAQUS中的XFEM可以用来研究裂纹的产生及模拟沿任意路径的裂纹扩展,而无需对模型进行网格重构。XFEM可以用于三维实体模型、二维平面模型,不能用于三维的壳模型。 ABAQUS在Interaction模中定义XFEM裂纹,可以指定裂纹的初始位置,也可以不指定,让ABAQUS在分析过程中根据计算断裂区域的最大初始应力或应变确定裂纹的位置。在ABAQUS中执行XFEM断裂分析,必须指定:断裂区域,裂纹生长(可选),裂纹初始位置(可选),富集半径,接触交互属性,损伤起始准则和分析类型,如静态分析,或隐式动态分析。下面以一个例子演示ABAQUS中使用XFEM方法对平板中的边缘裂纹进行动态裂纹扩展预测。 1.几何和模型 本文研究的是一个带边缘裂纹的平板,如下图所示,其中L=0.003m,W=0.0015m,初始裂纹长度a=0.0015m,板的下部受到一个沿水平方向的脉冲载荷,载荷作用的速度为: 其中=25m/s,s。右图为装配完成的模型。

有限元复习题答案

1、何为有限元法?其基本思想是什么? 有限元法是一种基于变分法而发展起来的求解微分方程的数值计算方法,该方法以计算机为手段,采用分片近似,进而逼近整体的研究思想求解物理问题。 基本思想是化整为零集零为整。 2、为什么说有限元法是近似的方法,体现在哪里? 有两点:用离散单元的组合体来逼近原始结构,体现了几何上的近似;而用近似函数逼近未知变量在单元内的真实解,体现了数学上的近似。 3、单元、节点的概念? 节点:表达实际结构几何对象之间相互连接方式的概念 单元:网格划分中的每一个小部分称为单元,网格间相互联结点称为节点 4、有限元法分析过程可归纳为几个步骤? 结构离散化、单元分析、整体分析 5、有限元方法分几种?本课程讲授的是哪一种? 位移法、力法、混合法本课程讲授位移法 6、弹性力学的基本变量是什么?何为几何方程、物理方程及虚功方程?弹性矩阵的特点? 弹性力学变量:外力、应力、应变和位移。 描述弹性体应变分量与位移分量之间的方程称为几何方程;物理方程描述应力分量与应变分量之间的关系;弹性体上外力在虚位移发生过程中所做的虚功与储存在弹性体内的需应变能相等。 弹性矩阵由材料的弹性模量和泊松比确定,与坐标位置无关。 7、何为平面应力问题和平面应变问题? 平面应力问题:在结构上满足a几何条件:研究对象是等厚度薄板。b载荷条件:作用于薄板上的载荷平行于板平面且沿厚度方向均匀分布,而在两板面无外力作用。 平面应变问题:满足a几何条件:长柱体,即长度方向的尺寸远远大于横截面的尺寸,且横截面沿长度方向不变。b载荷条件:作用于长柱体结构上的载荷平行于横截面且沿纵向方向均匀分布,两端面不受力两条件的弹性力学问题。 1、何为结构的离散化?离散化的目的?何为有限元模型? ①离散化:把连续的结构看成由有限个单元组成的集合体。②目的:建立有限元计算模型③通常把由节点,单元及相应的节点载荷和节点约束构成的模型称为有限元模型2、结构离散化时,划分单元数目的多少以及疏密分布,将直接影响到什么?确定单元数量的原则?通常如何设置节点?

裂纹扩展的扩展有限元(xfem)模拟实例详解

基于ABAQUS 扩展有限元的裂纹模拟 化工过程机械622080706010 李建 1 引言 1.1 ABAQUS 断裂力学问题模拟方法 在abaqus中求解断裂问题有两种方法(途径):一种是基于经典断裂力学的模型;一种是基于损伤力学的模型。 断裂力学模型就是基于线弹性断裂力学及其基础上发展的弹塑性断裂力学等。如果不考虑裂纹的扩展,abaqus可采用seam型裂纹来分析(也可以不建seam,如notch型裂纹),这就是基于断裂力学的方法。这种方法可以计算裂纹的应力强度因子,J积分及T-应力等。 损伤力学模型是指基于损伤力学发展而来的方法,单元在达到失效的条件后,刚度不断折减,并可能达到完全失效,最后形成断裂带。这两个模型是为解决不同的问题而提出来的,当然他们所处理的问题也有交叉的地方。 1.2 ABAQUS 裂纹扩展数值模拟方法 考虑模拟裂纹扩展,目前abaqus有两种技术:一种是基于debond的技术(包括VCCT);一种是基于cohesive技术。 debond即节点松绑,或者称为节点释放,当满足一定得释放条件后(COD 等,目前abaqus提供了5种断裂准则),节点释放即裂纹扩展,采用这种方法时也可以计算出围线积分。 cohesive有人把它译为粘聚区模型,或带屈曲模型,多用于模拟film、裂纹扩展及复合材料层间开裂等。cohesive模型属于损伤力学模型,最先由Barenblatt 引入,使用拉伸-张开法则(traction-separation law)来模拟原子晶格的减聚力。这样就避免了裂纹尖端的奇异性。Cohesive 模型与有限元方法结合首先被用于混凝土计算和模拟,后来也被引入金属及复合材料。Cohesive界面单元要服从cohesive 分离法则,法则范围可包括粘塑性、粘弹性、破裂、纤维断裂、动力学失效及循环载荷失效等行为。 此外,从abaqus6.9版本开始还引入了扩展有限元法(XFEM),它既可以模拟静态裂纹,计算应力强度因子和J积分等参量,也可以模拟裂纹的开裂过程。被誉为最具有前途的裂纹数值模拟方法。本文将利用abaqus6.9版本中的扩展有限元法功能模拟常见的Ⅰ型裂纹的扩展。 2 Ⅰ型裂纹的扩展有限元分析 本文针对断裂力学中的平面Ⅰ型裂纹扩展问题用abaqus中的扩展有限元方法进行数值模拟,获得了裂纹扩展的整个过程,裂尖单元的应力变化曲线,以及裂纹尖端塑性区的形状。在此基础上绘制裂纹扩展的能量历史曲线变化趋势图。

基于ANSYS有限元软件裂纹扩展模拟

万方数据

万方数据

56基于ANSYS有限元软件裂纹扩展模拟 【鬈I2子模型有限几删韬幽 (plane82),如图1所示。模型中裂纹长度为10mm,几何尺寸如图2所示。材料的弹性模量在2.017×105MPa上下变化,泊松比为o.3。顶端从侧端的一端起在长度为20mm的线上承受一200N/mm的压力。侧端从距裂纹处10mm开始在长度为20nlm的线上承受looN/mm的压力。这只是其中某一种状态,可以根据构件的实际受力状况,改变子模型的边界条件和受 匝墨巫巫匦圃 I得到应变能仞始值【,o ’ 图3ANsYs二次tH:发模拟流程力状况。 3ANSYS二次开发程序基本思路和模拟结果用上述的八NsYS二次开发的源程序对图1所示的子模型结构的疲劳裂纹扩展进行模拟,模拟流程见图3。由于模拟构件疲劳裂纹扩展从开始到失稳,裂纹扩展长度大,因而程序运行时间长。为此笔者只模拟了五步,模拟的结果见表1和图4。图4中的粗黑线为裂纹扩展路径。 表1疲劳裂纹扩展模拟所得的路径参数 (a)模拟一步裂纹扩展路径 (b)模拟二步裂纹扩展路径 (c)模拟三步裂纹扩展路径 万方数据

《化工装备技术》第27卷第1期2006年57 (d)模拟四步裂纹扩展路径 【e)模拟止步裂纹扩展路径剧4订限厄模拟的裂纹扩展路径 (a)一步裂纹扩展竖A疗向的应力云图(b,二步裂纹扩腱竖A方f川的臆力西矧(c)三步裂纹扩展悭直方向的应力云图 (d)四步裂纹扩展竖^力‘向的应JJ云图 (e)五步裂纹扩展竖直方向的应力云图 图5模拟裂纹扩展过程巾竖直方向的应力云图 4结束语 ANSYS软件是一个功能非常强大的有限元计算软件,其本身又是一个开放型软件,可以进行二次开发。利用最大能量释放率作为判 断方向基准,笔者对ANSYS进行二次开发,能动态地描述2D构件在复合加载状况下疲劳裂纹的扩展路径。对ANsYs软件进行二次开发来模拟疲劳裂纹的扩展迄今未见报道。本文通过对2D构件疲劳裂纹扩展路径的模拟,为下一步3D构件的模拟打下了好的基础。 参考文献 1W01fgangBrocks.Num时icaIinves“gatlonsonthesignifi~ canceofJforlargestablecrad‘growth.E“gineeri“gFrac~tureMech.1989,32:459~468 2杨庆生,杨卫.断裂过程的有限元模拟.计算力学学报, 1997,14(4):407412 3HellenT.0nthemethodofvirtualcrackextensions.Int JNumMethEngn,1975(9):187—207 4傅祥炯,周岳泉.何字廷.疲劳裂纹扩展全寿命模型.第八届全国断裂学术会议论文集,1996:155~252 5011the ene。gy releaserateandtheJ—int。gralfor3一Dcrackconfiguratiolls.IntJournofFracture.1982,l9:183~1936ClaydonPW.MaximumenergvreleaseratedistributionfromageneraIized3Dvirtualcrackextensionmethod.En~ginee““gFractureMechanics,1992,42(6):96l~9697TimbrellC.eta1.Simulationofcrackpropagationinrub~ber.ThirdEuroDeanConferenceonConstitutiveModelsforRubber.1517SeDtember2003London,UK. (收稿日期:2005一07—28) 万方数据

北京科技大学有限元试题及答案

一 判断题(20分) (×)1. 节点的位置依赖于形态,而并不依赖于载荷的位置 (√)2. 对于高压电线的铁塔那样的框架结构的模型化处理使用梁单元 (×)3. 不能把梁单元、壳单元和实体单元混合在一起作成模型 (√)4. 四边形的平面单元尽可能作成接近正方形形状的单元 (×)5. 平面应变单元也好,平面应力单元也好,如果以单位厚来作模型化 处理的话会得到一样的答案 (×)6. 用有限元法不可以对运动的物体的结构进行静力分析 (√)7. 一般应力变化大的地方单元尺寸要划的小才好 (×)8. 所谓全约束只要将位移自由度约束住,而不必约束转动自由度 (√)9. 同一载荷作用下的结构,所给材料的弹性模量越大则变形值越小 (√)10一维变带宽存储通常比二维等带宽存储更节省存储量。 二、填空(20分) 1.平面应力问题与薄板弯曲问题的弹性体几何形状都是 薄板 ,但前者受力特点是: 平行于板面且沿厚度均布载荷作用 ,变形发生在板面内; 后者受力特点是: 垂直于板面 的力的作用,板将变成有弯有扭的曲面。 2.平面应力问题与平面应变问题都具有三个独立的应力分量: σx ,σy ,τxy ,三个独立的应变分量:εx ,εy ,γxy ,但对应的弹性体几何形状前者为 薄板 ,后者为 长柱体 。3.位移模式需反映 刚体位移 ,反映 常变形 ,满足 单元边界上位移连续 。 4.单元刚度矩阵的特点有:对称性 , 奇异性 ,还可按节点分块。 5.轴对称问题单元形状为:三角形或四边形截面的空间环形单元 ,由于轴对称的特性,任意一点变形只发生在子午面上,因此可以作为 二 维问题处理。 6.等参数单元指的是:描述位移和描述坐标采用相同的形函数形式。等参数单元优点是:可以采用高阶次位移模式,能够模拟复杂几何边界,方便单元刚度矩阵和等效节点载荷的积分运算。 7.有限单元法首先求出的解是 节点位移 ,单元应力可由它求得,其计算公式为 {}{} [][]e D B σδ=。(用符号表示即可) 8.一个空间块体单元的节点有 3 个节点位移: u ,v ,w 9.变形体基本变量有位移应变应力 基本方程 平衡方程 物理方程 几何方程 10.实现有限元分析标准化和规范化的载体就是单元

有限元复习精彩试题库

有限元复习 一、选择题(每题1分,共10分) 二、判断题(每空1分,共10分) 三、填空题(每空1分,共10分) 三、简答题(共44分)共6题 四、综述题(共26分)两题 一.基本概念 1. 平面应力/平面应变问题;空间问题/轴对称问题;杆梁问题;线 性与非线性问题 平面应力问题 (1) 均匀薄板(2)载荷平行于板面且沿厚度方向均匀分布 在六个应力分量中,只需要研究剩下的平行于XOY 平面的三个应力分量,即x y xy yx σσττ=、、 (000z zx xz zy yz σττττ=====,,)。 一般0z σ=,z ε并不一定等于零,但可由x σ及y σ求得,在分析问题时不必考虑。于是只需要考虑 x y xy εεγ、、三个应变分量即可。 平面应变问题

(1) 纵向很长,且横截面沿纵向不变。(2)载荷平行于横截面且沿纵向 均匀分布 z yz zx εγγ===只剩下三个应变分量x y xy εεγ、、。也只需要考虑x y xy σστ、、三个应力分量即可 轴对称问题 物体的几何形状、约束情况及所受外力都对称于空间的某一根轴。 轴对称单元的特点(与平面三角形单元的区别):轴对称单元为圆环体,单元与单元间为节圆相连接;节点力与节点载荷是施加于节圆上的均布力;单元边界是一回转面;应变不是常量。 在轴对称问题中,周向应变分量θε是与r 有关。 板壳问题 一个方向的尺寸比另外两个方向尺寸小很多,且能承受弯矩的结构称为板壳结构,并把平分板壳结构上下表面的面称为中面。如果中面是平面或平面组成的折平面,则称为平板;反之,中面为曲面的称为壳。 杆梁问题 杆梁结构是指长度远大于其横断面尺寸的构件组成的系统。在结构力学中常将承受轴力或扭矩的杆件称为杆,而将承受横向力和弯矩的杆件称为梁。 平面(应力应变)问题与板壳问题的区别与联系 平面应力问题是指很薄的等厚度薄板,只在板边上受有平行于板面并且不沿厚度变化的面力,同时,体力也平行于板面并且不沿厚度变化。而平面应变问题是指很长的柱形体,在柱面上受有平行于横截面并且不沿长度变化的面力,同时

有限元试题及答案

有限元试题及答案

一判断题(20分) (×)1. 节点的位置依赖于形态,而并不依赖于载荷的位置 (√)2. 对于高压电线的铁塔那样的框架结构的模型化处理使用梁单元 (×)3. 不能把梁单元、壳单元和实体单元混合在一起作成模型 (√)4. 四边形的平面单元尽可能作成接近正方形形状的单元 (×)5. 平面应变单元也好,平面应力单元也好,如果以单位厚来作模型化 处理的话会得到一样的答案 (×)6. 用有限元法不可以对运动的物体的结构进行静力分析 (√)7. 一般应力变化大的地方单元尺寸要划的小才好 (×)8. 所谓全约束只要将位移自由度约束住,而不必约束转动自由度 (√)9. 同一载荷作用下的结构,所给材料的弹性模量越大则变形值越小(√)10一维变带宽存储通常比二维等带宽存储更节省存储量。 二、填空(20分) 1.平面应力问题与薄板弯曲问题的弹性体几何形状都是薄板,但前者受力特点是:平行于板面且沿厚度均布载荷作用,变形发生在板面内; 后者受力特点是:垂直于板面的力的作用,板将变成有弯有扭的曲面。 2.平面应力问题与平面应变问题都具有三个独立的应力分量:σx,σy,τxy ,三个独立的应变分量:εx,εy,γxy,但对应的弹性体几何形状前者为薄板,后者为长柱体。3.位移模式需反映刚体位移,反映常变形,满足单元边界上位移连续。 4.单元刚度矩阵的特点有:对称性,奇异性,还可按节点分块。

5.轴对称问题单元形状为:三角形或四边形截面的空间环形单元,由于轴对称的特性,任意一点变形只发生在子午面上,因此可以作为二维问题处理。6.等参数单元指的是:描述位移和描述坐标采用相同的形函数形式。等参数单元优点是:可以采用高阶次位移模式,能够模拟复杂几何边界,方便单元刚度矩阵和等效节点载荷的积分运算。 7.有限单元法首先求出的解是节点位移,单元应力可由它求得,其计算公式为。(用符号表示即可) 8.一个空间块体单元的节点有 3 个节点位移: u,v,w 9.变形体基本变量有位移应变应力基本方程平衡方程物理方程几何方程 10.实现有限元分析标准化和规范化的载体就是单元

扩展有限元方法和裂纹扩展

扩展有限元方法和裂纹扩展 1.1 扩展有限元方法(XFEM )基本理论 1999年,美国Northwestern University 的Belytschko 和Black 领导的研究小 组提出了扩展有限元方法,为解决裂纹这类强不连续问题带来了曙光。他们正式 应用扩展有限元法(XFEM )这一专业术语是在2000年,截止到目前,扩展有 限元法(XFEM )成为我们解决强不连续力学问题的最有效的数值计算方法,也 成为计算断裂力学的重要分支。XFEM 在有限元的框架下进行求解,无需对构件 内部的物理界面进行网格划分,具有常规有限元方法的所有优点。它最明显的特 点是用已知的特征函数作为形函数来使传统有限元的位移得到逼近,进而克服了 在裂纹尖端和变形集中处进行高密度网络划分产生的困难,方便地模拟裂纹的任 意路径,而且计算精度和效率得到了显著的提高[6]。 扩展有限元方法是将已知解析解的特征函数作为插值函数增强传统有限元 的位移逼近,来使得单元内的真实位移特性得以体现,裂纹尖端和物理或几何界 面独立于有限元网格。XFEM 主要包括以下三部分内容:首先是不考虑构件的任 何内部细节,按照构件的几何外形尺寸生成有限元网格;其次,采用水平集方法 跟踪裂纹的实际位置;根据已知解,改进影响区域的单元的形函数,来反映裂纹 的扩展。最后通过引入不连续位移模式来表示不连续几何界面的演化。因为改进 的插值函数在单元内部具有单元分解的特性,其刚度矩阵的特点与常规有限元法 的刚度矩阵特性保持一致。单元分解法(Partition Of Unity Method)和水平集法 (Level Set Method )、节点扩展函数构成了扩展有限元法的基本理论,其中,单 元分解法是通过引入加强函数计算平面裂纹扩展问题,保证了XFEM 的收敛性; 水平集法是跟踪裂纹的位置和模拟裂纹扩展的常用数值方法,任何内部几何界面 位置都可用它的零水平集函数来表示。 (1)单元分解法的基本思想是任意函数()x φ都可以用子域内一组局部函数 ()()x x N I ?表示,满足如下等式: ()()()x x N x I I ?φ∑= (1) 其中,它们满足单位分解条件:f I I ?x ()=1 ()x N I 是有限元法中的形函数,根 据上述理论,便可以根据需要对有限元的形函数进行改进。在XFEM 中,单元 分解的目的是进行数值积分,达到不引人额外的自由度的目的[7-8]。 (2)水平集法 使用水平集法来描述几何间断性。在一般情形下,多用来追踪

有限元复习题答案

1、何为有限元法?其基本思想是什么? 有限元法是一种基于变分法而发展起来的求解微分方程的数值计算方法,该方法以计算机为手段,采用分片近似,进而逼近整体的研究思想求解物理问题。 基本思想是化整为零集零为整。 2、为什么说有限元法是近似的方法,体现在哪里? 有两点:用离散单元的组合体来逼近原始结构,体现了几何上的近似;而用近似函数逼近未知变量在单元内的真实解,体现了数学上的近似。 3、单元、节点的概念? 节点:表达实际结构几何对象之间相互连接方式的概念 单元:网格划分中的每一个小部分称为单元,网格间相互联结点称为节点 4、有限元法分析过程可归纳为几个步骤? 结构离散化、单元分析、整体分析 5、有限元方法分几种?本课程讲授的是哪一种? 位移法、力法、混合法本课程讲授位移法 6、弹性力学的基本变量是什么?何为几何方程、物理方程及虚功方程?弹性矩阵的特点? 弹性力学变量:外力、应力、应变和位移。 描述弹性体应变分量与位移分量之间的方程称为几何方程;物理方程描述应力分量与应变分量之间的关系;弹性体上外力在虚位移发生过程中所做的虚功与储存在弹性体内的需应变能相等。 弹性矩阵由材料的弹性模量和泊松比确定,与坐标位置无关。 7、何为平面应力问题和平面应变问题? 平面应力问题:在结构上满足a几何条件:研究对象是等厚度薄板。b载荷条件: 作用于薄板上的载荷平行于板平面且沿厚度方向均匀分布,而在两板面无外力作用。 平面应变问题:满足a几何条件:长柱体,即长度方向的尺寸远远大于横截面的尺寸,且横截面沿长度方向不变。b载荷条件:作用于长柱体结构上的载荷平行于横截面且沿纵向方向均匀分布,两端面不受力两条件的弹性力学问题。 1、何为结构的离散化?离散化的目的?何为有限元模型? ①离散化:把连续的结构看成由有限个单元组成的集合体。②目的:建立有限元计算模型③通常把由节点,单元及相应的节点载荷和节点约束构成的模型称为有限元模型 2、结构离散化时,划分单元数目的多少以及疏密分布,将直接影响到什么?确定单元数量的原则?通常如何设置节点?

1有限元法简介

1有限元法简介 1.1有限单法的形成 在工程技术领域内,经常会遇到两类典型的问题。其中的第一类问题,可以归结为有限个已知单元体的组合。例如,材料力学中的连续梁、建筑结构框架和桁架结构。我们把这类问题,称为离散系统。如图1-1所示平面桁架结构,是由6个承受轴向力的“杆单元”组成。尽管离散系统是可解的,但是求解图1-2所示这类复杂的离散系统,要依靠计算机技术。 图1-1 平面桁架系统

图1-2 大型编钟“中华和钟”的振动分析及优化设计(曾攀教授) 第二类问题,通常可以建立它们应遵循的基本方程,即微分方程和相应的边界条件。例如弹性力学问题,热传导问题,电磁场问题等。由于建立基本方程所研究的对象通常是无限小的单元,这类问题称为连续系统。 图1-3 V6引擎的局部 下面是热传导问题的控制方程与换热边界条件: t T c Q z T z y T y x T x ??=+??? ??????+??? ? ??????+??? ??????ρλλλ (1- 1) 初始温度场也可以是不均匀的,但各点温度值是已知的: () 00 x,y,z T T t == (1- 2) 通常的热边界有三种,第三类边界条件如下形式: ()f T-T h n T λ=??- (1- 3) 尽管我们已经建立了连续系统的基本方程,由于边界条件的限制,通常只能得到少数简单问题的精确解答。对于许多实际的工程问题,还无法给出精确的解答,例如,图1-3所示V6引擎在工作中的温度分布。这为解决这个困难,工程师们和数学家们提出了许多近似方法。 在寻找连续系统求解方法的过程中,工程师和数学家从两个不同的路线得到了相同的结果,即有限元法。有限元法的形成可以回顾到二十世纪50年代,来源于固体力学中矩阵结构法的发展和工程师对结构相似性的直觉判断。从固体力学的角度来看,桁架结构等标准离散系统与人为地分割成有限个分区后的连续系统在结构上存在相似性。 1956年M..J.Turner, R.W.Clough, H.C.Martin, L.J.Topp 在纽约举行的航空学会年会上介

有限元考试试题及答案

一、 简答题(共40分,每题10分) 1. 论述单元划分应遵循的原则。 2. 说明形函数应满足的条件。 3. 说明四边形等参数单元中“等参数”的含义,即为什么要引入等参数单元。 4. 阐述边界元法的主要优缺点。 二、 计算题(共60分,每题20分) 1. 一杆件如图3所示,杆件上方固定后,在下方受垂直向下的集中力作用,已 知:杆件材料的杨氏模量2 721/100.3in lbf E E ?==,截面积2125.5in A =, 2275.3in A =,长度in L L 1221==,集中力lbf P 100=,用有限元方法求解B 点 和C 点位移。备注:(1)1 lbf (磅力,libra force ) = N 。(2)杨氏模量、弹性 模量、Young 氏弹性模量具有相同含义(10分) 2. 如图2 所示,有一正方形薄板,沿对角承受压力作用,厚度t=1m ,载荷 F=20KN/m ,设泊松比μ=0,材料的弹性模量为E ,试求它的应力分布。(15分) 学院 专业 学号 姓名 y 图1

图2 3. 图示结点三角形单元的124边作用有均布侧压力q,单元厚度为t,求单元的等效结点荷载。 图3

一、简答题 1. 答: 1)合理安排单元网格的疏密分布 2)为突出重要部位的单元二次划分 3)划分单元的个数 4)单元形状的合理性 5)不同材料界面处及荷载突变点、支承点的单元划分 6)曲线边界的处理,应尽可能减小几何误差 7)充分利用结构及载荷的对称性,以减少计算量 2. 答: 形函数应满足的三个条件: a.必须能反映单元的刚体位移,就是位移模式应反映与本单元形变无关的由 其它单元形变所引起的位移。 b.能反映单元的常量应变,所谓常量应变,就是与坐标位置无关,单元内所 有点都具有相同的应变。当单元尺寸取小时,则单元中各点的应变趋于相 等,也就是单元的形变趋于均匀,因而常量应变就成为应变的主要部分。 c.尽可能反映位移连续性;尽可能反映单元之间位移的连续性,即相邻单元 位移协调。 3. 答: 含义:所谓的等参数单元,就是在确定单元形状的插值函数和确定单元位移场的插值函数中采用了完全相同的形函数。 意义:构造出一些曲边地高精度单元,以便在给定地精度下,用数目较少地单元,解决工程实际地具体问题。 4. 答: 有限单元法是基于变分原理的里兹(Ritz)法的另一种形式,从而使里兹法分析的所有理论基础都适用子有限单元法,确认了有限单元法是处理连续介质问题的一种普遍方法.利用变分原理建立有限元方程和经典里兹法的主要区别是有限单元法假设的近似函数不是在全求解域而是在单元上规定的,面且事先不要求满足任何边界条件,因此它可以用来处理很复杂的连续介质问题。有限单元法中所利用的主要是伽辽金(Galerkin)法。它可以用于已经知道问题的微分方程和

有限元考试试题及答案第一组

有限元考试试题及答案 一、简答题(5道,共计25分)。 1.有限单元位移法求解弹性力学问题的基本步骤有哪些?(5分) 答:(1)选择适当的单元类型将弹性体离散化; (2)建立单元体的位移插值函数; (3)推导单元刚度矩阵; (4)将单元刚度矩阵组装成整体刚度矩阵; (5)代入边界条件和求解。 2. 在划分网格数相同的情况下,为什么八节点四边形等参数单元精度大于四边形矩形单元?(5分) 答:在对于曲线边界的边界单元,其边界为曲边,八节点四边形等参数单元边上三个节点所确定的抛物线来代替原来的曲线,显然拟合效果比四边形矩形单元的直边好。 3.轴对称单元与平面单元有哪些区别?(5分) 答:轴对称单元是三角形或四边形截面的空间的环形单元,平面单元是三角形或四边形平面单元;轴对称单元内任意一点有四个应变分量,平面单元内任意一点非零独立应变分量有三个。 4.有限元空间问题有哪些特征?(5分) 答:(1)单元为块体形状。常用单元:四面体单元、长方体单元、直边六面体单元、曲边六面体单元、轴对称单元。(2)结点位移3个分量。(3)基本方程比平面问题多。3个平衡方程,6个几何方程,6个物理方程。 5.简述四节点四边形等参数单元的平面问题分析过程。(5)分) 答:(1)通过整体坐标系和局部坐标系的映射关系得到四节点四边形等参单元的母单元, 并选取单元的唯一模式; (2)通过坐标变换和等参元确定平面四节点四边形等参数单元的几何形状和位移模式;

(3)将四节点四边形等参数单元的位移模式代入平面问题的几何方程,得到单元应变 分量的计算式,再将单元应变代入平面问题的物理方程,得到平面四节点等参 数单元的应力矩阵; (4)用虚功原理求得单元刚度矩阵,最后用高斯积分法计算完成。 二、论述题(3道,共计30分)。 1. 简述四节点四边形等参数单元的平面问题分析过程。(10分) 答:(1)通过整体坐标系和局部坐标系的映射关系得到四节点四边形等参单元的母单元,并选取单元的唯一模式; (2) 通过坐标变换和等参元确定平面四节点四边形等参数单元的几何形状和位移模式; (3)将四节点四边形等参数单元的位移模式代入平面问题的几何方程,得到单元应变 分量的计算式,再将单元应变代入平面问题的物理方程,得到平面四节点等参 数单元的应力矩阵; (4)用虚功原理求得单元刚度矩阵,最后用高斯积分法计算完成。 2.轴对称问题的简单三角形单元是否是常应力,常应变?为什么?(10分) 答:不是常应力和常应变。 因为应变与位移分量的关系式为: ? ?????????????? ? ?????????????? ???? =????????????????????????+??????=??? ???????????=w u 010r r u r u }{rz z r r z z r r w z u z w γεεεεθ,这里除含有微分算符外,还包含了r 的倒数项1/r ,则即使位移模式为线性的,但由于该项的存在,使得应变与坐标有关, 即不会是常应变。应力应变的物理关系为{ }[]{}εσD = ,由于应变不是常应变,则所求得的应力也不会是常应力。

相关文档
最新文档