理论力学万能解题法(静力学)

理论力学万能解题法(静力学)
理论力学万能解题法(静力学)

理论力学万能解题法(未完手稿,内部资料,仅供华中科技大学2009级学生参考)

郑慧明编

华中科技大学理论力学教研室

序言

理论力学是工科机械、能源、动力、交通、土木、航空航天、力学等专业的一门重要基础课程,一方面可解决实际问题,此外,培养学生对物理世界客观规律内在联系的理解,有助于培育出新的思想和理论,并为后续专业课程打基础。但其解题方法众多,不易掌握。有时为了了解系统的更多信息,取质点为研究对象,其计算复杂。有时仅需要了解系统整体某方面信息,丢失部分信息使问题计算简单,有时又将局部和整体分析方法结合在一起,用不太复杂的方法获得我们关心的信息。解题方法众多的根本原因是,静力学所有定理都是由5大公理得到,动力学三大定理都是由公理和牛顿第2定理得到。因为这些定理起源有很多相同之处,故往往可用来求解同一个问题,导致方法众多。正是因为方法众多,但因为起源可能相同,对于复杂题目,往往需要列出多个多立方程才能求解。若同时应用多个定理解题时,往往列出线形相关的方程,而他们的相关性有时很难看出来,而却未列出该列的方程,或列方程数目过多,使解题困难,一些同学感到理论力学不好学,感觉复杂的理论力学题目。虽然可以条条大路通罗马,但因为可选择的途径太多,有时象进入迷宫,绕来绕去,不知下一步路如何走,甚至回到同一点,比如用功率方程和动静法列出的方程表面上不同,实际上是同

一个,一些学生会感到困惑,因为有些教科书上并未直接说明功率方程可由动静法推导得到,其本质上也是一个力/矩方程。

我们组织编写了本辅导书,主要目的是帮助那些对理论力学解题方法多样性无所适从的同学,了解各解题方法的内在关联和差异,容易在众多的解题方法中找到适合自己的技巧性不高的较简单方法,而该方法可以推广到一种类型的题目。大学阶段要学的东西很多,为了高效率掌握一门课程的主要思想,对许多题目可能用同一种较合理的方法来解决,也是同学们所期望的,对于理论力学的学习,因为其方法的多样性,这种追求同一性的求知愿望可能更强烈。理论力学所研究的客观物理世界具备多样性和同一性,为这种追求解题方法的同一性提供了可能。

故本书判断一种解题方法的优劣及给出的解题方法遵循如下原则:

(1)一种解题方法若计算量不大,又可以推广到任意位置、任意力/矩、任意速度、加速度的复杂系统,则本书认为是较好的举一反三的方法。那些只对此道具体题目才使用的方法,虽然简单,但与本书的“同一性”宗旨不一致,我们也不推荐使用,目的使学生通过反复的应用在有限时间内熟练掌握本课程的主要方法。这一点可能与以往一些理论力学教材作者观点不同,他们可能侧重于强调物理世界的多样性和

解题方法的多样性。本书主要是用于那些水平不高的学生尽快提高理论力学解题能力,并侧重于对世界同一性的强调。因篇幅有限,本书难以兼顾物质世界多样性与同一性的统一,不适于追求更高解题技巧的读者,提请读者注意。(2)对同一类问题,给出如何在众多方法中找到同一种较容易想到的方法求解。

(3)优先考虑尽量避免引入不需求的位置量,使所列的方程个数尽量最少,其次,才考虑尽量用一个方程解出一个未知量。

前几年,一本“英语万能作文法”风靡一时,成为考验宝典,并引起一些批评。我们认为,“英语万能作文法”对一些英语水平不高者有较大帮助,而本书的目的是希望那些刚接触理论力学的本科生克服“菜鸟”阶段面对理论力学解题方法众多的无所适从,且本书只是一个教学辅导参考书,无需教科书的刻板和严肃,故本书取名为万能解题法,目的是突出其用同一种方法解题的宗旨和思想,并使读者能在众多的理论力学参考书中因为名称的标新立异而投以一点关注的目光,也许你因此发现本书正适合你。正如“英语万能作文法”,专家褒贬不一,但勿庸置疑,它对那些初学水平的学习者,还是非常有帮助。同样,本书命名了一个哗众取宠的万能解题法,其实是言过其实的,也并不适合所有读者,特此说明。

本书许多内容是材料李智宇、机械李梦阳、能源海腾蛟等同学根据本课堂内容整理的,武汉科技大学力学系李明博士提供宝贵意见,在此表示感谢。因时间仓促、水平有限,难免有错误和不妥之处,敬请指教。

郑慧明

2011 年于华工园

前言:同一道理论力学习题,解题方法众多,容易造成思路混乱,为了使解题思路清晰和简单,并加深对理论力学各原理的优缺点的深刻了解,本书解题出发点遵循如下原则:尽量用同一种方法解题,优先考虑尽量避免引入不待求的未知量,使得列出的独立方程数目最少。其次才追求尽量用一个方程即可求出一个待求量(对于动力学问题,用一个方程即可求出一个待求量是不可能的。)。采用此方法,即可容易将不同的复杂的机械系统看成一个类似系统,采用同一种思路分析,这是本书解题思路与众不同的根源。

第1章 静力学公式和物体的受力分析

一 问题

问题1:有哪五大公理,该注意哪些问题

答:五大公理(静力学) (1)平行四边形法则

(2)二力平衡公理(一个刚体)

?

?

?共线大小相等,方向相反,一个刚体

②① (3)力系加减平衡原理(一个,刚体)

力的可传递性(一个刚体)

三力汇交定理 1.通过汇交面 2.共面 (4)作用与反作用力(运动学、变形体) (5)刚化原理

问题2:画受力图步骤及应注意的问题

答:画受力图方法 原则:尽量减少未知力个数 步骤:

a )根据要求,选取研究对象,去掉约束,先画主动力

b )在去掉约束点代替等效的约束反力

c )用二力轩、三力汇交,作用力与反作用力方法减少未知量个数,应用三力汇交时从整体到局部或从局部到整体来思考。

d )用矢量标识各力,注意保持标识的一致性。

二典型习题

以下通过例题来演示上述介绍的方法。

[例1]由哈工大1-2(k)改编;如图,各处光滑,不计自重。

1)画出整体,AC(不带销钉C),BC(不带销钉C),销钉C的受力图。

2)画出整体,AC(不带销钉C),BC(带销钉C)。

3)画出整体,AC(带销钉C),BC(不带销钉C)。

[解法提示]:应用三力汇交时从整体到局部或从局部到整体来思考,尽量减少未知力个数。1)由整体利用三力汇交确定F A方向,则AC(不带销钉C)可用三力汇交。BC(不带销钉C)也三力汇交。

(a)(b) (c) (d) 2)由整体利用三力汇交确定F A方向,则AC(不带销钉C)可用三力汇交。BC(带销钉C)不能用三力汇交。具体参考1)

3)由整体利用三力汇交确定F A方向,BC(不带销钉C)不能用三力汇交。AC(带销钉C)不能用三力汇交。

[例2]由何锃1.4.3改编;如图,各处光滑,不计自重。

1)画出整体,AB(不带销钉B),BC(不带销钉B),销钉B的受力图。

2)画出整体,AB(不带销钉B),BC(带销钉B)。

3)画出整体,AB(带销钉B),BC(不带销钉B)。。

[解法提示]:1)由B点的特点,可用三力汇交确定F A方向。

(a)(b) (c) (d) 2),3)当销钉处没有集中力时,带不带销钉都一样,可把销钉处AB和BC间的力当作作用力与反作用力。注意,当销钉处有集中力时,则不能如此。

[例3] 如图,求静平衡时,AB对圆盘c的作用力方向。各处不光滑,考虑自重,圆盘c自重为P。

[解法提示]:1)由E点的特点,可用三力汇交确定为DE方向。

[例4] 何锃1.4.9;如图. 各处光滑,不计自重。

画受力图:构架整体、杆AB、AC、BC(均不包括销钉A、C)、销钉A、销钉C

[解法提示]:先对整体用用三力汇交确定地面对销钉C的力方向。依次由a)~f)作图。

(a)(b)

(c)(d)

(e) (f)

第2章 平面力系的简化和平衡 一 问题

问题1:本章注意问题有哪些

1)找出二力轩 2)约束力画正确

3)①平面汇交力系:2个方程?能且只能求得2个未知量(以下“未知量”用表示)

1n

平面力偶系: 1个方程?2个 2n 平面平行力系:2个方程?2个 3n 平面任意力系:3个方程?3个 4n

?一个系统总的独立方程个数为:

?+++4321322n n n n 能且只能求得相应数目

②任意力学列方程方法 a) 一矩式

b )二矩式 y AB ⊥不(力投影轴)

c )三矩式 ABC 不共线

③具体对一个问题分析时注意

(1)所列方程必须线性无关,局部:方程1;局部 :方程2

方程1+方程2=整体方程 是不行的

(2)因此尽量选择一个对象列所有的方程,看未知力与方程数差数目再找其他物体列对

应方程

问题2:如何取研究对象,如何列方程

答:㈠、原则:(1)尽量列最少数目的方程 只包含待求未知量(优先) 尽量让每个方程能解出一个未知量 ㈡、解题思路(重要):

a)先整体,看能从3个方程中列几个有用方程,把能求出的未知量当作已知,方便以后分析,但不必具体求出其中的未知量的大小,以后须用到某个未知量,再回头求。 b)从待求量出发,向其周围前后左右,由近及远,延伸到光滑铰链连接点D 处,对点D 取矩,依次类推。若碰到其他不待求未知量,表明很可能此路不通,不要再从此处突破。一般常用此方法。(本书称为顺藤摸瓜法)。 ㈢、如何用一个方程解一个未知量:

(1)向不待求未知量垂线投影 (2)在不待求未知量交点处取矩

问题3:平面桁架关键问题有哪些

答:解题方法

1)?

??------个独立方程能且只能列截面法:平面任意力系个独立方程。能且只能列节点法:汇交力系32

2)先找出零力杆。

3)(从整体 局部)先看整体能求出几个未知量(备用),找出零力杆 4)再从局部出发,一般先采用截面法。采用截面法应从以下原则入手:

a )一次切出3个未知量(因为平面任意力系最多只能列出3个方程),并最大限度包含待求未知量(目的是使方程个数最少)。

b )在使用截面法,截出3个未知量后,若求其中一个未知量,则另2个未知量要么平行,要么相交。则可

解出一个未知量尽量一个方程取矩对不待求未知量汇交点影对不待求未知量垂线投

??

?

?②①

①②

③①

F 5)注意零力杆判别

`

`

二典型习题

以下通过例题来演示上述介绍的方法。

(一)平面任意力系例题

【例1】由何锃例;如图.各处光滑,不计自重。结构尺寸如图,C、E处为铰接;已知:P = 10 kN,M = 12 kNm。求A、B、D处的支座反力。

[解法提示]:总共5个,先对整体3个方程,再从局部(顺藤摸瓜)补充2个方程:【DE杆】

E

M0

=

∑,【BC杆】C M0=

∑。

答案:FD=12KN,FAX=-6KN,FAY=1KN,FBX=2KN,FBY=5KN

【说明】何锃课后习题与此类似解法。

【例2】由何锃例改编;如图.各处光滑,不计自重。静定刚架尺寸如图所示,作用有分布力和集中力,集中力作用在销钉C上。

1)求销钉C对AC杆的约束力。

[解法提示]: 总共2个,先对整体3个方程没用,故从局部(顺藤摸瓜)补 充2个方程即可:【销钉C+BC 杆】B M 0=∑,【AC 杆不带销钉C 】A M 0=∑。 答案:FCAX=-10KN,FCAY=-10KN

2)若仅求销钉C 对B C 杆的约束力。与上述类似,【销钉C+AC 杆】A M 0=∑, 【BC 杆不带销钉C 】B M 0=∑。

3)若仅求A 约束力。【AC 杆】C M 0=∑,【AC+BC 】B M 0=∑。 4)若仅求B 约束力。【BC 杆】C M 0=∑,【AC+BC 】A M 0=∑。

4)若同时求A 、B 约束力。总共4个,先对整体3个方程,再从局部(顺藤摸 瓜)补充1个方程即可:如【BC 杆】C M 0=∑。

【说明】哈工大第6版课后习题3-12,3-13,3-26,3-29与此类似解法。 [3-29改编]:

1)仅求A 的约束反力。

[解法提示]: 总共3个,按顺藤摸瓜法,尽量不引入不待求未知量,补充3个

方程即可:【AB 】B M 0=∑,【ABC 】C M 0=∑,【ABCD 】D M 0=∑, 2)若仅求B 对AB 约束力。取【AB 】将引入不待求未知量MA,故【带销钉B+BC 杆】C M 0=∑,【带销钉B+BCD 杆】D M 0=∑.

【例3】由何锃例改编;如图. 均质小车重P ,如图所示放在组合梁ACB 上,BD

杆上作用形状为直角三角形、强度为q 的分布力;杆重不计,求支座A 、D 的反力。

[解法提示]: 总共5个,先对整体3个方程,再从局部(顺藤摸瓜)补 充2个方程,但因为小车与AC 、CB 形成闭合回路,不可避免引入CB 与小车间F K ,故需补充3个方程:【BD 杆】B M 0=∑,【CBD 】C M 0=∑。【小车】H M 0=∑。 答案:MA=GL-Ga,FAX=ql/3+Ga/(2L ),FDX= ql/6+Ga/(2L ),FDY= Ga/(2L ) 【说明】哈工大第6版课后习题3-11; 何锃课后习题与此类似解法。

【例4】由何锃例改编; 结构及其尺寸、载荷如图。已知Q = 1000 N ,P = 500 N ,力偶矩m = 150 Nm 。

1)求销钉B 对杆BC 的作用力。

[解法提示]: 总共2个,先对整体3个方程没用,故从局部(顺藤摸瓜)补 充2个方程即可:【不带销钉B 的BC 杆】C M 0=∑,【不带销钉B 的BC 杆+轮C+绳+Q+DC 杆】D M 0=∑。 答案:FBCX=500N,FBCY=500N.

2)若仅求B 对杆BA 的作用力。与上述类似,但须引入FA ,故从局部(顺藤摸 瓜)补充3个方程。【不带销钉B 的BA 杆】D M 0=∑,【不带销钉B 的BA 杆+ DC 杆】C M 0=∑.为了得到FA, 【整体】B M 0=∑。

3)若仅求销钉C 对杆D C 的作用力。与上述1)类似,总共2个,先对整体3个方程没用,故从局部(顺藤摸瓜)补充2个方程。【BD 杆】D M 0=∑【BC 杆+ 轮C+绳+Q 】B M 0=∑。

4)若仅求销钉C 对杆B C 的作用力。与上述1)类似,总共2个,先对整体3个方程没用,故从局部(顺藤摸瓜)补充2个方程。【BC 杆】B M 0=∑【DC 杆+

轮C+绳+Q 】D M 0=∑。

5)若仅求销钉D 对杆DC 的作用力。与上述1)类似,总共2个,先对整体3个方程没用,故从局部(顺藤摸瓜)补充2个方程。【DC 杆】C M 0=∑,【BC 杆+轮C+绳+Q+DC 杆】B M 0=∑

【说明】何锃课后习题与此类似解法

【例5】何锃课后习题.如图. 构架ABC 由三杆AB 、AC 和DF 组成,杆DF 上的销子E 可在杆AB 光滑槽内滑动,构架尺寸和载荷如图示,已知2400 N m m =?,

200 N P =,试求固定支座B 和C 的约束反力。

[解法提示]: 总共4个,先对整体3个方程,再从局部(顺藤摸瓜)补 充1个方程,但因为AEG 形成闭合回路,不可避免引入F E ,故需补充2个方程:【BA 杆】A M 0=∑,【DF+AC 】G M 0=∑。 共5个方程即可。 答案:FBX=-325N,FBY=-400N,FCX=325N,FCY=600N 【说明】1)哈工大第6版课后习题3-20与此类似解法。 2)何锃课后习题. 与此类似解法。

[] 物体重12 kN Q =,由杆AB 、BC 和CE 组成的支架和滑轮E 支持如图示,已知

2 m AD BD ==, 1.5 m CD DE ==,不计杆与滑轮的重量,求支座A 的约束力以及BC 的内力。

[解法提示]: 总共3个,先对整体2个有用方程, 尽量不引入F B , 【整体】

B M 0=∑,X 0=∑,再从局部(顺藤摸瓜)补充1个方程,

【整体去掉BA 杆后 的部分】D M 0=∑, 共3个方程即可。

【例6】哈工大第6版课后习题3-19:

[解法提示]: 总共6个, 因为AB 包含所有未知力,取[AB]可列3个独立方程,还差3个。按顺藤摸瓜法,【整体】C M 0=∑,【DF+AC 】G M 0=∑,【DF 】E M 0=∑。 共6个方程即可。

答案:FAX=0,FAY=-M/2a,FDX=0,FDY=M/a,FBX=0,FBY=-M/2a. 【说明】1)哈工大第6版课后习题3-24与此类似解法:

[解法提示]: 总共5个, 因为AB 包含所有未知力,取[AB]可列3个独立方程,还差2个。按顺藤摸瓜法,【整体】E M 0=∑,【DB 】D M 0=∑。 共5个方程即可。

【例7】何锃课后习题. AB 、AC 、BC 、AD 四杆连接如图示。水平杆AB 上有铅垂向下的力P 作用。求证不论P 的位置如何,AC 杆总是受到大小等于P 的压力。(只允许列三个方程求解)。

[解法提示]:求F AC ,但F AC 与[AD]、[AB]相关,单独分别取[AD]或[AB],必将引入A 点AD 或AB 的作用力,不能直接求出F AC 。按顺藤摸瓜法,为了不引入A 点

AD 或AB 的作用力,故取[DAB],则将在点B 、D 、 E 引入未知力。而E 点力最多,故【DAB 】E M 0=∑。对引入的F B 、F D ,再次把其当作待求量,按顺藤摸瓜法, 得到【BA 杆】A M 0=∑,【整体】C M 0=∑。共3个方程即可。

【例8】哈工大第6版课后习题3-25:

[解法提示]: 总共2个,但因为DGC 形成闭合回路,不可避免引入F B ,故需列3个方程:按顺藤摸瓜法,【DCB 】C M 0=∑,【DCB+FC 】E M 0=∑,【整体】A M 0=∑。 共3个方程即可。 答案:FDX=,FDY=75N

【例9】何锃课后习题. 组合结构的荷载及尺寸如图,长度单位为m ,求支座反力及二力杆1,2,3,4的内力。

[解法提示]: 总共7个,先对整体3个方程,可求出支座反力。再从局部(顺藤摸瓜)补充4个方程。因为二力杆1,2,3,4与DE 相关,故取【DE 杆】可列3个方程,再补充一个即可。同样,顺藤摸瓜,取【3,4+CB 杆】: C M 0=∑.

(二)平面桁架例题

【例1】哈工大第6版课后习题3-35:

[解法提示]: 按解题套路,先确定[DE]为0杆(去掉)。【切断AD 、CD 、CF ,取右边部分】:B M 0=∑。 答案:F D =3/2-F

【例2】何锃例题. 桁架由边长为a 的等腰直角三角形为基本单元构成,已知外力110F = kN ,2320F F == kN 。求4、5、7、10各杆的内力。

[解法提示]: 按解题套路,先由整体得到F B ,尽量用最少方程求解。故 【切断4、5、6,取右边部分】:K M 0=∑得到F4, Y 0=∑得到F5. 【切断6、7、8,取右边部分】:Y 0=∑得到F7. 【切断8、9、10,取右边部分】:G M 0=∑得到F10. 答案:F4=,F5=,F7=,F10=.

【例3】哈工大第6版课后习题3-38。求1、2、3杆的内力

[解法提示]: 按解题套路,尽量用最少方程(3个)求解。故 【切断AB 、3、FB ,取上边】:K M 0=∑得到F2, 由点F 得到F1,F2. 答案:F1=-4F/9,F2=-2F/3,F3=0.

【说明】1)哈工大第6版课后习题3-37与此相同。3-34,3-36类似解法:

2)若求F AB ,F BC ,F3,(何锃课后习题(b)),与此类似:求出F BF 和地面对B 点的力后,用节点法即可求得F AB ,F BC 。

(三)其他题型

答:应用合力矩定理求合力作用线方程。参考何锃例。

【例1】何锃例题. 如图平衡系统中,大小相同的矩形物块AB 和BC 上分别作用力偶1M 、2M ,12M M M ==。不计重力,求支座A 、C 的约束力。

[解法提示]:1) 若按一般常规方法,A 、C 点总共4个,先对整体3个方程,再 对【AB 杆】: B M 0=∑。此方法与以前方法一样,思路清晰,故本书推荐此法。 2)方法2:利用二力平衡,确定F A 、F C 方向, 再用力偶平衡理论作。此方法不易想到,仅对特殊题目适用。

【例2】合力作用线方程,何锃例题. 如图的平面一般力系由力123,,F F F 和力偶M 组成,已知各力173N F =,2100N F =,3200N F =,汇交点A 的坐标为(5,5),单位为m ,力偶矩400Nm M =。求该力系的合力作用线方程。

理论力学(静力学)

大学 《理论力学》课程 教案 2005版 机械、土木等多学时各专业用 2005年8月

使用教材:《理论力学》,祥东主编,大学2002年 《理论力学》,工业大学,高等教育2004年 《Engineering Mechanics理论力学》,昌棋等缩编, 大学2005年 参考文献 [1]同济大学理论力学教研室,理论力学,同济大学,2001年 [2]乔宏洲,理论力学,中国建筑工业,1997年 [3]华东水利学院工程力学教研室,理论力学,高等教育,1984年 [4]理论力学(第六版)工业大学理力教研室编. 普通高等教育“十五”国家级规划教材高等教育.2002年8月 [5]理论力学(第3版)郝桐生编.教育科学“十五”国家规划课题研究成果高等教育.2003年9月 [6]理论力学(第1版)武清玺奇主编. 教育科学“十五”国家规划课题研究成果高等教育.2003年8月

第1篇静力学 第1章静力学基本知识与物体的受力分析 一、目的要求 1.深入地理解力、刚体、平衡和约束等基本概念。 2.深入地理解静力学公理(或力的基本性质)。 3.明确和掌握约束的基本特征及约束反力的画法。 4.熟练而正确地对单个物体与物体系统进行受力分析,画出受力图。 二、基本容 1.重要概念 1)平衡:物体机械运动的一种特殊状态。在静力学中,若物体相对于地面保持静止或作匀速直线平动,则称物体处于平衡。 2)刚体:在力作用下或运动过程中不变形的物体。刚体是理论力学中的理想化力学模型。 3)约束:对非自由体的运动预加的限制条件。在刚体静力学中指限制研究对象运动的物体。约束对非自由体施加的力称为约束反力。约束反力的方向总是与约束所能阻碍的物体的运动或运动趋势的方向相反。 4)力:物体之间的一种相互机械作用。其作用效果可使物体的运动状态发生改变和使物体产生变形。前者称为力的运动效应或外效应,后者称为力的变形效应或效应,理论力学只研究力的外效应。力对物体作用的效应取决于力的大小、方向、作用点这三个要素,且满足平行四边形法则,故力是定位矢量。 5)力的分类: 集中力、分布力(体分布力、面分布力、线分布力) 主动力、约束反力 6)力系:同时作用于物体上的一群力称为力系。按其作用线所在的位置,力系可以分为平面力系和空间力系;按其作用线的相互关系,力系分为共线力系、平行力系、汇交力系和任意力系等等。 7)等效力系:分别作用于同一刚体上的两组力系,如果它们对该刚体的作用效果完全相同,则此两组力系互为等效力系。 8)平衡力系:若物体在某力系作用下保持平衡,则称此力系为平衡力系。

理论力学万能解题法

理论力学万能解题法(未完手稿,内部资料,仅供华中科技大学2009级学生参考) 郑慧明编 华中科技大学理论力学教研室

序言 理论力学是工科机械、能源、动力、交通、土木、航空航天、力学等专业的一门重要基础课程,一方面可解决实际问题,此外,培养学生对物理世界客观规律内在联系的理解,有助于培育出新的思想和理论,并为后续专业课程打基础。但其解题方法众多,不易掌握。有时为了了解系统的更多信息,取质点为研究对象,其计算复杂。有时仅需要了解系统整体某方面信息,丢失部分信息使问题计算简单,有时又将局部和整体分析方法结合在一起,用不太复杂的方法获得我们关心的信息。解题方法众多的根本原因是,静力学所有定理都是由5大公理得到,动力学三大定理都是由公理和牛顿第2定理得到。因为这些定理起源有很多相同之处,故往往可用来求解同一个问题,导致方法众多。正是因为方法众多,但因为起源可能相同,对于复杂题目,往往需要列出多个多立方程才能求解。若同时应用多个定理解题时,往往列出线形相关的方程,而他们的相关性有时很难看出来,而却未列出该列的方程,或列方程数目过多,使解题困难,一些同学感到理论力学不好学,感觉复杂的理论力学题目。虽然可以条条大路通罗马,但因为可选择的途径太多,有时象进入迷宫,绕来绕去,不知下一步路如何走,甚至回到同一点,比如用功率方程和动静法列出的方程表面上不同,实际上是同

一个,一些学生会感到困惑,因为有些教科书上并未直接说明功率方程可由动静法推导得到,其本质上也是一个力/矩 方 程。 我们组织编写了本辅导书,主要目的是帮助那些对理论力学解题方法多样性无所适从的同学,了解各解题方法的内在关联和差异,容易在众多的解题方法中找到适合自己的技巧性不高的较简单方法,而该方法可以推广到一种类型的题目。大学阶段要学的东西很多,为了高效率掌握一门课程的主要思想,对许多题目可能用同一种较合理的方法来解决,也是同学们所期望的,对于理论力学的学习,因为其方法的多样性,这种追求同一性的求知愿望可能更强烈。理论力学所研究的客观物理世界具备多样性和同一性,为这种追求解题方法的同一性提供了可能。 故本书判断一种解题方法的优劣及给出的解题方法遵循如下原则: (1)一种解题方法若计算量不大,又可以推广到任意位置、任意力/矩、任意速度、加速度的复杂系统,则本书认为是较好的举一反三的方法。那些只对此道具体题目才使用的方法,虽然简单,但与本书的“同一性”宗旨不一致,我们也不推荐使用,目的使学生通过反复的应用在有限时间内熟练掌握本课程的主要方法。这一点可能与以往一些理论力学教

3静力学第三章习题答案

第三章 部分习题解答 3-10 AB ,AC 和DE 三杆连接如图所示。杆DE 上有一插销H 套在杆AC 的导槽内。试求在水平杆DE 的一端有一铅垂力F 作用时,杆AB 所受的力。设DE BC HE DH DB AD ===,,,杆重不计。 解: 假设杆AB ,DE 长为2a 。取整体为研究对象,受力如右图所示,列平衡方程: ∑=0C M 02=?a F By 0=By F 取杆DE 为研究对象,受力如图所示,列平衡方程: ∑=0H M 0=?-?a F a F Dy F F Dy = ∑ =0B M 02=?-?a F a F Dx F F Dx 2= 取杆AB 为研究对象,受力如图所示,列平衡方程: ∑=0y F 0=++By Dy Ay F F F F F Ay -=(与假设方向相反) ∑=0A M 02=?+?a F a F Bx Dx F F Bx -=(与假设方向相反) ∑=0B M 02=?-?-a F a F Dx Ax F F Ax -=(与假设方向相反) 3-12AD AC AB ,,和BC 四杆连接如图所示。在水平杆AB 上作用有铅垂向下的力F 。接触面和各铰链均为光滑的,杆重不计,试求证不论力F 的位置如何,杆AC 总是受到大小等于F 的压力。 解: 取整体为研究对象,受力如图所示,列平衡方程: ∑=0C M 0=?-?x F b F D F b x F D = F C F C y F D F Cx F Cy F Bx F By F Dx F Dy F Hy F Bx F By F Dy F Dx F Ax F A y

《理论力学》动力学典型习题+答案

《动力学I 》第一章 运动学部分习题参考解答 1-3 解: 运动方程:θtan l y =,其中kt =θ。 将运动方程对时间求导并将0 30=θ代入得 34cos cos 22lk lk l y v ====θ θθ 938cos sin 22 3 2lk lk y a =-==θ θ 1-6 证明:质点做曲线运动,所以n t a a a +=, 设质点的速度为v ,由图可知: a a v v y n cos ==θ,所以: y v v a a n = 将c v y =,ρ 2 n v a = 代入上式可得 ρ c v a 3 = 证毕 1-7 证明:因为n 2 a v =ρ,v a a v a ?==θsin n 所以:v a ?= 3 v ρ 证毕 1-10 解:设初始时,绳索AB 的长度为L ,时刻t 时的长度 为s ,则有关系式: t v L s 0-=,并且 222x l s += 将上面两式对时间求导得: 0v s -= ,x x s s 22= 由此解得:x sv x -= (a ) (a)式可写成:s v x x 0-= ,将该式对时间求导得: 2 02 v v s x x x =-=+ (b) 将(a)式代入(b)式可得:32 20220x l v x x v x a x -=-== (负号说明滑块A 的加速度向上) 1-11 解:设B 点是绳子AB 与圆盘的切点,由于绳子相对圆盘无滑动,所以R v B ω=,由于绳子始终处 于拉直状态,因此绳子上A 、B 两点的速度在 A 、B 两点连线上的投影相等,即: θcos A B v v = (a ) 因为 x R x 2 2cos -= θ (b ) 将上式代入(a )式得到A 点速度的大小为: 2 2 R x x R v A -=ω (c ) 由于x v A -=,(c )式可写成:Rx R x x ω=--22 ,将该式两边平方可得: 222222)(x R R x x ω=- 将上式两边对时间求导可得: x x R x x R x x x 2232222)(2ω=-- 将上式消去x 2后,可求得:2 22 42) (R x x R x --=ω 由上式可知滑块A 的加速度方向向左,其大小为 2 22 42) (R x x R a A -=ω 1-13 解:动点:套筒A ; 动系:OA 杆; 定系:机座; 运动分析: 绝对运动:直线运动; 相对运动:直线运动; 牵连运动:定轴转动。 根据速度合成定理 r e a v v v += 有:e a cos v v =?,因为AB 杆平动,所以v v =a , o v o v a v e v r v x o v x o t

理论力学-静力学部分

静力学部分总结 姓名:孟庆宇班级:15工9 学号:20150190218静力学是研究物体的受力分析与力系简化及平衡。 平面力系:1、平面汇交力系;2、平面力偶系;3、平面任意力系。 空间力系:1、空间汇交力系;2、空间力偶系;3、空间任意力系。 一、基本概念 1、静力学; 2、刚体; 3、变形体; 4、力; 5、力系; 6、等效力系;7平衡;8、平衡力系;9、平衡条件;10、平衡方程; 11、力系简化;12、合力;13分力;14、二力构件;15、自由体;16非自由体;1 7、约束;1 8、约束力;19主动力;20、被动力;21、施力体;22、受力体。 物体在受到力的作用后,产生的效应可以分为两种: (1)外效应也称为运动效应——使物体的运动状态发生改变; (2)内效应也称为变形效应——使物体的形状发生变化。 静力学研究物体的外效应。材料力学主要研究力对物体的内效应。 23、平面力系;24、平面汇交力系;25、平面力对点的矩;26、平面力偶矩;27、平面任意力系;28、主矢;29、主矩;30、平面力系平衡条件;31、平面力系平衡方程;32、平面物体系统;33、平面物体系统的平衡;34、静定问题;35、超静定问题;36、平面桁架。37、空间力系;38、空间汇交力系;39、空间力对点、对轴的矩;40、空间力偶矩;41、空间任意力系;42、主矢;43、主矩;43、空间力系平衡条件;44、空间力系平衡方程。 二、基本理论 1、五大公理、两个推论及其应用。 2、工程中常见的八大约束类型及约束反力。 (1)光滑约束;(2)柔索约束;(3)圆柱销光滑铰链约束;(4)固定铰支座约束;(5)滚动支座约束;(6)球铰链约束;(7)止推轴承约束;(8)固定端约束。 3、力的投影定理及性质(平面、空间); 4、力矩、力偶矩的定义及性质(平面、空间); 5、合力投影定理及合力矩定理(平面、空间); 6、力的平移定理;

理论力学1 解题技巧总结

静力学总结 1,必须牢记各种约束及对应的约束力及其画法。 2,弄清楚题目的待求量,首先优选整体法进行力分析,再根据已知条件次选已知力较多的一个或多个刚体组成的系统进行力分析。 3,对某个系统进行受力分析时,尽量不要出现新的未知参数,该点在列力矩方程中对点的选择尤为明显。 4,要第一时间找到二力杆、三力平衡汇交等便于快速解题的线索并加以充分利用。 5,牢记均布载荷和线性载荷的力的大小和作用点。 6,力偶或外力矩可在该刚体上任意移动,但是不可以移动到其他刚体上去。 7,在不知道力的大小和方向的情况下,可将力分解为坐标轴方向的力,方向设为正,并视计算结果最终确定该力的真实作用方向。 8,注意销钉在受力分析中的处理,尤其是销钉上作用有外力、销钉连接3个以上刚体的情况的处理,牢记作用力与反作用力的关系。 运动学总结(一点二系三运动) 两物体之间有相对运动,只能用合成运动分析它们之间的速度和加速度关系。 a e r v v v =+ a r e c a a a a =++ 2c e r a w v =?? 其中,如果某种运动为曲线运动,则该加速度可分解为n a a a τ=+ 同一构件上的两点做平面运动,用基点法分析其速度和加速度。 B A BA v v v =+ n B A B A B A a a a a τ=++ 1,首先分析题目中所有物体的运动形式; 2,速度和加速度的分析思路是一脉相承的; 3,分析加速度,一般情况下必须先分析速度,因为加速度分析中的向心加速度,必须由速度分析中提供角速度信息; 4,加速度和角加速度的方向在不知道具体方向的情况下,可以假设,但是经后续分析可以确定的情况下,必须按真实方向重新给定和计算。 5,根据题目的待求量,要清楚地知道对应的物理量,如角速度,角加速度。

初中物理力学经典例题难题

1..如图22所示装置,杠杆OB 可绕O 点在竖直平面内转动,OA ∶AB =1∶2。当在杠杆A 点挂一质量为300kg 的物体甲时,小明通过细绳对动滑轮施加竖直向下的拉力为F 1,杠杆B 端受到竖直向上的拉力为T 1时,杠杆在水平位置平衡,小明对地面的压力为N 1;在物体甲下方加挂质量为60kg 的物体乙时,小明通过细绳对动滑轮施加竖直向下的拉力为F 2,杠杆B 点受到竖直向上的拉力为T 2时,杠杆在水平位置平衡,小明对地面的压力为N 2。已知N 1∶N 2=3∶1,小明受到的重力为600N ,杠杆OB 及细绳的质量均忽略不计,滑轮轴间摩擦忽略不计,g 取10N/kg 。求: (1)拉力T 1; (2)动滑轮的重力G 。 39.解: (1)对杠杆进行受力分析如图1甲、乙所示: 根据杠杆平衡条件: G 甲×OA =T 1×OB (G 甲+G 乙)×OA =T 2×OB 又知OA ∶AB = 1∶2 所以OA ∶OB = 1∶3 N 300010N/kg kg 300=?==g m G 甲甲 N 600N/kg 10kg 60=?==g m G 乙乙 N 0001N 0300311=?==甲G OB OA T N 2001N 03603 1)(2=?= += 乙甲G G OB OA T (1分) (2)以动滑轮为研究对象,受力分析如图2甲、乙所示 因动滑轮处于静止状态,所以: T 动1=G +2F 1,T 动2=G +2F 2 又T 动1=T 1,T 动2=T 2 所以: G G G T F 21N 5002N 1000211-=-=-= (1分) G G G T F 2 1N 6002 N 12002 22- =-= -= (1分) 以人为研究对象,受力分析如图3甲、乙所示。 人始终处于静止状态,所以有: F 人1+ N 1, = G 人, F 人2+N 2, =G 人 因为F 人1=F 1,F 人2=F 2,N 1=N 1, ,N 2=N 2, 且G 人=600N 所以: 图22 甲 乙 图1 T B T 动2 F 2 动1 F 1 人 人1 人2 人 图3 甲 乙

理论力学知识点总结—静力学篇

静力学知识点 第一章静力学公理和物体的受力分析 本章总结 1.静力学是研究物体在力系作用下的平衡条件的科学。 2.静力学公理 公理1 力的平行四边形法则。 公理2 二力平衡条件。 公理3 加减平衡力系原理 公理4 作用和反作用定律。 公理5 刚化原理。 3.约束和约束力 限制非自由体某些位移的周围物体,称为约束。约束对非自由体施加的力称为约束力。约束力的方向与该约束所能阻碍的位移方向相反。 4.物体的受力分析和受力图 画物体受力图时,首先要明确研究对象(即取分离体)。物体受的力分为主动力和约束力。要注意分清内力与外力,在受力图上一般只画研究对象所受的外力;还要注意作用力和反作用力之间的相互关系。 常见问题 问题一画受力图时,严格按约束性质画,不要凭主观想象与臆测。 第二章平面力系 本章总结 1. 平面汇交力系的合力 ( 1 )几何法:根据力多边形法则,合力矢为

合力作用线通过汇交点。 ( 2 )解析法:合力的解析表达式为 2. 平面汇交力系的平衡条件 ( 1 )平衡的必要和充分条件: ( 2 )平衡的几何条件:平面汇交力系的力多边形自行封闭。 ( 3 )平衡的解析条件(平衡方程): 3. 平面内的力对点O 之矩是代数量,记为 一般以逆时针转向为正,反之为负。 或 4. 力偶和力偶矩 力偶是由等值、反向、不共线的两个平行力组成的特殊力系。力偶没有合力,也不能用一个力来平衡。 平面力偶对物体的作用效应决定于力偶矩M 的大小和转向,即 式中正负号表示力偶的转向,一般以逆时针转向为正,反之为负。

力偶对平面内任一点的矩等于力偶矩,力偶矩与矩心的位置无关。 5. 同平面内力偶的等效定理:在同平面内的两个力偶,如果力偶相等,则彼此等效。力偶矩是平面力偶作用的唯一度量。 6. 平面力偶系的合成与平衡 合力偶矩等于各分力偶矩的代数和,即 平面力偶系的平衡条件为 7、平面任意力系 平面任意力系是力的作用线可杂乱无章分布但在同一平面内的力系。当物体(含物体系)有一几何对称平面,且力的分别关于此平面对称时,可简化为平面力系计算。还有其他情况也可按平面任意力系计算。 本章用力的平移定理对平面任意力系进行简化,得到主矢主矩的概念,并进一步对力系简化结果进行讨论;然后得出平面任意力系的平衡条件,得出平衡方程的三种形式,并用平衡方程求解一些平衡问题;介绍静定超静定问题的概念,对物体系的平衡问题进行比较多的训练;最后介绍平面简单桁架的概念和内力计算。 常见问题 问题一不要因为这一章的内容简单,就认为理论力学容易学,而造成轻视理论力学的印象,这将给后面的学习带来影响。 问题二本章一开始要掌握好单个物体的平衡问题与解题技巧,这样才能熟练掌握物体系平衡问题的解法与解题技巧。 问题三在平时做题时,要注意解题技巧的训练,能用一个方程求解的就不用两个方程,但考试时则不一定如此。 第三章空间力系 本章总结 1. 力在空间直角坐标轴上的投影 ( 1 )直接投影法

《理论力学》静力学典型习题+答案

1-3 试画出图示各结构中构件AB的受力图 1-4 试画出两结构中构件ABCD的受力图

1-5 试画出图a和b所示刚体系整体各个构件的受力图 1-5a 1-5b

1- 8在四连杆机构的ABCD 的铰链B 和C 上分别作用有力F 1和F 2,机构在图示位置平衡。试求二力F 1和F 2之间的关系。 解:杆AB ,BC ,CD 为二力杆,受力方向分别沿着各杆端点连线的方向。 解法1(解析法) 假设各杆受压,分别选取销钉B 和C 为研究对象,受力如图所示: 由共点力系平衡方程,对B 点有: ∑=0x F 045cos 0 2=-BC F F 对C 点有: ∑=0x F 030cos 0 1=-F F BC 解以上二个方程可得:2 2163.13 62F F F ==

解法2(几何法) 分别选取销钉B 和C 为研究对象,根据汇交力系平衡条件,作用在B 和 C 点上的力构成封闭的力多边形,如图所示。 对B 点由几何关系可知:0245cos BC F F = 对C 点由几何关系可知: 0130cos F F BC = 解以上两式可得:2163.1F F = 2-3 在图示结构中,二曲杆重不计,曲杆AB 上作用有主动力偶M 。试求A 和C 点处的约束力。 解:BC 为二力杆(受力如图所示),故曲杆AB 在B 点处受到约束力的方向沿BC 两点连线的方向。曲杆AB 受到主动力偶M 的作用,A 点和B 点处的约束力必须构成一个力偶才能使曲杆AB 保持平衡。AB 受力如图所示,由力偶系作用下刚体的平衡方程有(设力偶逆时针为正): 0=∑M 0)45sin(100=-+??M a F A θ a M F A 354.0= 其中:31 tan =θ 。对BC 杆有:a M F F F A B C 354.0=== A ,C 两点约束力的方向如图所示。 2-4 F F

理论力学复习公式

静力学知识点 静力学公理和物体的受力分析 本章总结 1.静力学是研究物体在力系作用下的平衡条件的科学。 2.静力学公理 公理1 力的平行四边形法则。 公理2 二力平衡条件。 公理3 加减平衡力系原理 公理4 作用和反作用定律。 公理5 刚化原理。 3.约束和约束力 限制非自由体某些位移的周围物体,称为约束。约束对非自由体施加的力称为约束力。约束力的方向与该约束所能阻碍的位移方向相反。 4.物体的受力分析和受力图 画物体受力图时,首先要明确研究对象(即取分离体)。物体受的力分为主动力和约束力。要注意分清内力与外力,在受力图上一般只画研究对象所受的外力;还要注意作用力和反作用力之间的相互关系。 常见问题 问题一画受力图时,严格按约束性质画,不要凭主观想象与臆测。 平面力系 本章总结 1. 平面汇交力系的合力 ( 1 )几何法:根据力多边形法则,合力矢为 合力作用线通过汇交点。 ( 2 )解析法:合力的解析表达式为 2. 平面汇交力系的平衡条件 ( 1 )平衡的必要和充分条件: ( 2 )平衡的几何条件:平面汇交力系的力多边形自行封闭。 ( 3 )平衡的解析条件(平衡方程): 3. 平面内的力对点O 之矩是代数量,记为 一般以逆时针转向为正,反之为负。 或

4. 力偶和力偶矩 力偶是由等值、反向、不共线的两个平行力组成的特殊力系。力偶没有合力,也不能用一个力来平衡。 平面力偶对物体的作用效应决定于力偶矩M 的大小和转向,即 式中正负号表示力偶的转向,一般以逆时针转向为正,反之为负。 力偶对平面内任一点的矩等于力偶矩,力偶矩与矩心的位置无关。 5. 同平面内力偶的等效定理:在同平面内的两个力偶,如果力偶相等,则彼此等效。力偶矩是平面力偶作用的唯一度量。 6. 平面力偶系的合成与平衡 合力偶矩等于各分力偶矩的代数和,即 平面力偶系的平衡条件为 7、平面任意力系 平面任意力系是力的作用线可杂乱无章分布但在同一平面内的力系。当物体(含物体系)有一几何对称平面,且力的分别关于此平面对称时,可简化为平面力系计算。还有其他情况也可按平面任意力系计算。 本章用力的平移定理对平面任意力系进行简化,得到主矢主矩的概念,并进一步对力系简化结果进行讨论;然后得出平面任意力系的平衡条件,得出平衡方程的三种形式,并用平衡方程求解一些平衡问题;介绍静定超静定问题的概念,对物体系的平衡问题进行比较多的训练;最后介绍平面简单桁架的概念和内力计算。 常见问题 问题一不要因为这一章的内容简单,就认为理论力学容易学,而造成轻视理论力学的印象,这将给后面的学习带来影响。 问题二本章一开始要掌握好单个物体的平衡问题与解题技巧,这样才能熟练掌握物体系平衡问题的解法与解题技巧。 问题三在平时做题时,要注意解题技巧的训练,能用一个方程求解的就不用两个方程,但考试时则不一定如此。 第三章空间力系 本章总结 1. 力在空间直角坐标轴上的投影 ( 1 )直接投影法 ( 2 )间接投影法(图形见课本) 2. 力矩的计算 ( 1 )力对点的矩是一个定位矢量, ( 2 )力对轴的矩是一个代数量,可按下列两种方法求得: ( a )

理论力学静力学随堂试卷2016带答案

《理论力学*静力学》随堂考试 (考试时间:120分钟) 题 序 一 二 三 四 五 六 总分 得 分 一.选择题(每题3分,共15分。请将答案的序号填入划线内。) 1.若平面力系由三个力组成(设这三个力互不平行),下述说法正确的是( D ) (A) 若力系向某点简化,主矩为零,则此三个力必然汇交于一点 (B) 若主矢为零,则此三个力必然汇交于一点 (C) 此力系绝不能简化为一个合力偶 (D) 若三个力不汇交于一点,则此力系一定不平衡 2.物块重kN 5,放置于水平面上,与水平面间的摩擦角o m 35=?,今用与铅垂线成o 60角的力F 推动物 块,若kN F 5=,则物块将( A )。 (A) 不动 (B) 滑动 (C) 处于临界状态 (D) 滑动与否无法确定 3. 空间任意力系向某一定点O 简化,若主矢0≠'R ,主矩0 0≠M ,则此力系简化的最后结果是 C 。 (A )可能是一个力偶,也可能是一个力; (B )一定是一个力; (C )可能是一个力,也可能是力螺旋; (D )一定是力螺旋。 4. 空间力偶矩是 D 。 (A )代数量; (B )滑动矢量; (C )定位矢量; (D )自由矢量。 5. 倘若曲杆重不计,其上作用一力偶矩为M 的力偶,则图(a )中B 点的反力比图(b )中的反力 B 。 (A )大; (B )小 ; (C )相同; (D )条件不足,不能确定。 二.填空题(每空3分,共30分。请将答案填入划线内。) 1.作用在刚体上的力可沿其作用线任意移动,而不改变力对刚体的 作用效果 ,所以,在静力学中,力是 滑 移 矢量。 2.作用在刚体上的力平行移动时,必须附加一个力偶,附加力偶的矩等于 原力对新的作用点之矩 。 . 系 班 姓名 座号 成绩 . ...................................................... 密 .................................... 封 ................................ 线 ...................................................... o 60F

理论力学第七版答案 第九章

9-10 在瓦特行星传动机构中,平衡杆O 1A 绕O 1轴转动,并借连杆AB 带动曲柄OB ;而曲柄OB 活动地装置在O 轴上,如图所示。在O 轴上装有齿轮Ⅰ,齿轮Ⅱ与连杆AB 固连于一体。已知:r 1=r 2=0.33m ,O 1A =0.75m ,AB =1.5m ;又平衡杆的角速度ωO 1=6rad/s 。求当γ=60°且β=90°时,曲柄OB 和齿轮Ⅰ的角速度。 题9-10图 【知识要点】 Ⅰ、Ⅱ两轮运动相关性。 【解题分析】 本题已知平衡杆的角速度,利用两轮边缘切向线速度相等,找出ωAB ,ωOB 之间的关系,从而得到Ⅰ轮运动的相关参数。 【解答】 A 、B 、M 三点的速度分析如图所示,点C 为AB 杆的瞬心,故有 AB A O CA v A A B ??== 21ωω ωω?= ?=A O CD v AB B 12 3 所以 s rad r r v B OB /75.32 1=+= ω s rad r v CM v M AB M /6,1 == ?=I ωω 9-12 图示小型精压机的传动机构,OA =O 1B =r =0.1m ,EB =BD =AD =l =0.4m 。在图示瞬时,OA ⊥AD ,O 1B ⊥ED ,O 1D 在水平位置,OD 和EF 在铅直位置。已知曲柄OA 的转速n =120r/min ,求此时压头F 的速度。

题9-12图 【知识要点】 速度投影定理。 【解题分析】 由速度投影定理找到A 、D 两点速度的关系。再由D 、E 、F 三者关系,求F 速度。 【解答】 速度分析如图,杆ED 与AD 均为平面运动,点P 为杆ED 的速度瞬心,故 v F = v E = v D 由速度投影定理,有A D v v =?θcos 可得 s l l r n r v v A F /30.1602cos 2 2m =+??==πθ 9-16 曲柄OA 以恒定的角速度ω=2rad/s 绕轴O 转动,并借助连杆AB 驱动半径为r 的轮子 在半径为R 的圆弧槽中作无滑动的滚动。设OA =AB =R =2r =1m ,求图示瞬时点B 和点C 的速度与加速度。 题9-16图 【知识要点】 基点法求速度和加速度。 【解题速度】 分别对A 、B 运动分析,列出关于B 点和C 点的基点法加速度合成方程,代入已知数据库联立求解。 【解答】 轮子速度瞬心为P, AB 杆为瞬时平动,有

高中物理力学典型例题

高中物理力学典型例题 1、如图1-1所示,长为5米的细绳的两端分别系于竖立在地面上相距 为4米的两杆顶端A、B。绳上挂一个光滑的轻质挂钩。它钩着一个重 为12牛的物体。平衡时,绳中张力T=____ 分析与解:本题为三力平衡问题。其基本思路为:选对象、分析力、画 力图、列方程。对平衡问题,根据题目所给条件,往往可采用不同的方 法,如正交分解法、相似三角形等。所以,本题有多种解法。 解法一:选挂钩为研究对象,其受力如图1-2所示,设细绳与水平夹角 为α,由平衡条件可知:2TSinα=F,其中F=12牛,将绳延长,由图 中几何条件得:Sinα=3/5,则代入上式可得T=10牛。 解法二:挂钩受三个力,由平衡条件可知:两个拉力(大小相等均为T) 的合力F’与F大小相等方向相反。以两个拉力为邻边所作的平行四边形 为菱形。如图1-2所示,其中力的三角形△OEG与△ADC相似,则: 得:牛。 想一想:若将右端绳A 沿杆适当下移些,细绳上张力是否变化? (提示:挂钩在细绳上移到一个新位置,挂钩两边细绳与水平方向夹角仍相等,细绳的张力仍不变。) 2、如图2-1所示,轻质长绳水平地跨在相距为2L的两个小定滑轮A、 B上,质量为m的物块悬挂在绳上O点,O与A、B两滑轮的距离相 等。在轻绳两端C、D分别施加竖直向下的恒力F=mg。先托住物块, 使绳处于水平拉直状态,由静止释放物块,在物块下落过程中,保持 C、D两端的拉力F不变。 (1)当物块下落距离h为多大时,物块的加速度为零? (2)在物块下落上述距离的过程中,克服C端恒力F做功W为多少? (3)求物块下落过程中的最大速度Vm和最大距离H? 分析与解:物块向下先作加速运动,随着物块的下落,两绳间的夹角 逐渐减小。因为绳子对物块的拉力大小不变,恒等于F,所以随着两 绳间的夹角减小,两绳对物块拉力的合力将逐渐增大,物块所受合力 逐渐减小,向下加速度逐渐减小。当物块的合外力为零时,速度达到 最大值。之后,因为两绳间夹角继续减小,物块所受合外力竖直向上, 且逐渐增大,物块将作加速度逐渐增大的减速运动。当物块下降速度 减为零时,物块竖直下落的距离达到最大值H。 当物块的加速度为零时,由共点力平衡条件可求出相应的θ角,再由θ角求出相应的距离h,进而求出克服C端恒力F所做的功。 对物块运用动能定理可求出物块下落过程中的最大速度Vm和最大距离H。 (1)当物块所受的合外力为零时,加速度为零,此时物块下降距离为h。因为F恒等于mg,所以绳对物块拉力大小恒为mg,由平衡条件知:2θ=120°,所以θ=60°,由图2-2知: h=L*tg30°= L [1] (2)当物块下落h时,绳的C、D端均上升h’,由几何关系可得:h’=-L [2] 克服C端恒力F做的功为:W=F*h’[3]

静力学名词解释

浮性——船舶在一定装载情况下浮于一定水平位置的能力而不致沉没。 稳性——在外力作用下船舶发生倾斜而不致倾覆, 当外力的作用消失后仍能回复到原来平衡位置的能力。 抗沉性——当船体破损, 海水进入舱室时, 船舶仍能保持一定的浮性和稳性而不致沉没或倾覆的能力, 即船舶在破损以后的浮性和稳性。 快速性——船舶在主机额定功率下, 以一定速度航行的能力。通常包括船舶阻力和船舶推进两大部分, 前者研究船舶航行时所遭受的阻力, 后者研究克服阻力的推进器及其与船体和主机之间的相互协调一致。 干舷[ F] ———在船侧中横剖面处自设计水线至上甲板边板上表面的垂直距离。因此,干舷F 等于型深D 与吃水d 之差再加上甲板及其

敷料的厚度。 对于民用船舶来说, 在最基本的两种典型装载情况下, 其相应的排水量有: (1 ) 空载排水量: 系指船舶在全部建成后交船时的排水量, 即空船重量。此时, 动力装置系统有可供动车用的油和水, 但不包括航行所需的燃料、润滑油和炉水储备以及其他的载重量。 (2 ) 满载排水量: 系指在船上装载设计规定的载重量( 即按照设计任务书要求的货物、旅客和船员及其行、粮食、淡水、燃料、润滑油、锅炉用水的储备以及备品、供应品等均装载满额的重量)的排水量。 在空载排水量和满载排水量之中又可分为出港和到港两种。前者指燃料、润滑油、淡水、粮食及其他给养物品都按照设计所规定的数量带足, 后者则假定这些消耗品还剩余10%。通常所谓设计排水量, 如无特别注明, 就是指满载出港的排水量, 简称满载排水量。 对于军用舰艇来说, 规定了五种典型的装载情况, 其相应的排水量有下述五种: (1 ) 空载排水量: 是指建造全部完工后军舰的排水量。舰上装有机器、武器和其他规定的战斗装备, 但不包括人员和行、粮食、供应品、弹药、燃料、润滑油、炉水及饮用水等。 (2 ) 标准排水量: 是指人员配备齐全, 必需的供应品备足, 做好出

理论力学三大类问题的基本求解方法

理论力学三大类问题的基本求解方法 2009-12 1 求解静力平衡问题的基本方法(平面问题为重点) (1)选取研究对象,进行受力分析,并画受力图。 一般针对所求,先对整体进行初步的受力分析,若所求未知量小于或等于独立平衡方程的个数,则只研究整体即可;反之,若所求未知量个数大于独立平衡方程的个数,则必须取分离体进行受力分析。可以采取整体+分离体的解决方案,也可采取分离体+分离体的解决方案;另外,若所求的未知量有系统内力,也必须取分离体研究,以暴露出所要求的内力;画受力图注意将各力画在原始的作用点处,分布力原样画出,待列方程计算时,再作简化处理。再有,注意二力杆的判别,及摩擦力方向的判定。 (2)列平衡方程求解。 首先根据受力图,判断是何种力系的平衡问题。再针对所求用尽可能少的平衡方程得出所求。 (3)结果校核——利用多余的平衡方程校核所得的结果。对用符号表示的结果,可采用量纲分析的方法进行校核。 2 求解运动学问题的基本方法(以平面运动为重点) 首先正确判断问题类型,尤其注意正确区分点的合成运动问题与刚体平面运动问题。判断的依据是,点的合成运动的问题中,运动机构的不同构件之间有相对滑动。而刚体平面运动理论用来分析同一平面运动刚体上两个不同点间的速度和加速度的关系。此时,运动机构的不同构件之间有相对转动,却无相对滑动。另外,注意点的合成运动与刚体平面运动的综合问题。 2.1 点的运动学问题——注意在一般位置建立点的运动方程; 2.2 点的合成运动问题 (1)首先是机构中各构件的运动分析; (2)再针对所求,正确选择动点、动系和定系。注意动点相对于动系和定系都要有相对运动,即动点、动系、定系要分属于不同的构件。同时,尽可能使动点的相对轨迹清楚易判断;求解加速度时,尽量将动系固连在平动的物体上,避免求科氏加速度; (3)分析三种运动及其相应的三种速度和加速度,正确画出速度矢量图或加速度矢量图。注意速度合成的平行四边形关系; (4)利用速度或加速度合成定理进行求解。注意速度和加速度是矢量,除计算大小外,还要标明方向。而平面问题中,角速度和角加速度是标量,除大小外,还需注明转向。另外,进行加速度合成时,当点的运动轨迹是已知曲线时,一般将加速度沿切线和法线方向分解;而当点的运动轨迹是未知曲线时,亦可将加速度沿x和y轴方向分解; 2.3 刚体平面运动问题 (1)首先是机构中各构件的运动分析(平动、转动或平面运动);

理论力学学习心得五篇

理论力学学习心得五篇 篇一:理论力学学习体会 学习每一门科目都会给我们带来一种能力的培养,学习数学是去学习思维,学习历史是去学习智慧。。。。。。那么学习理论力学呢? 很多人觉得理论力学很枯燥,学起来的时候感觉彻底颠覆了自己的思维,像高中学习的物理什么的都变成错的了,有时候解下一道题时又感觉上一道的理论是错的,最后都不知道到底该用哪种方法去理解了。其实,这只是在初学的时候所有的感觉。开始对概念的偏解使你无法让现在所学的与以前的思维统一,等真正理解后才发现是多么的神奇。 理论力学的学习本身就是一种思维的学习,不过又不仅仅是这样,其中的实际问题的探讨又能帮助我们提高解决实际问题的能力,看待事物的灵活性等等。下面我就我的学习体会浅谈一下对学习理论力学后我们所能获得的能力。 通过一题多解培养思维的灵活性。力学问题中一题多解比较普遍.静力学中处理物体系的平衡,可以先取整体然后取部分为研究对象进行求解,也可以逐个取物体系的组成部分为研究对象进行求解.运动学中有些问题,可以用点的运动学知识求解;也可以利用复合运动知识或刚体的平面平行运动知识求解.动力

学中,一题多解的例子更多,可以用动力学普遍定理求解,也可以用达朗贝尔原理求解,或用动力学普遍方程求解.我们在学习过程中,相同题型尽量用不同方法求解,做到各种方法融会贯通.久而久之,就会使我们的思维变得灵活,遇到问题勤于思考、善于思考,广开思路,通过自己的探索,找出最佳方案. 利用知识之间的内在联系增强创新意识。达朗贝尔原理和虚位移原理是创造性思维的具体体现.用动力学普遍定理分析时比较繁琐,于是就另辟思路,提出惯性力,将动力学问题变为静力学问题来处理;对一些复杂结构,用静力学平衡方程求解过程较长而复杂,为此,提出“虚位移”和“虚功”的概念,将静力学问题转为动力学问题来处理,简化计算。 抓住概念与定理之间的逻辑关系培养逻辑思维能力。由力的概念到力系的平衡条件;由牵连运动、绝对运动、相对运动的概念到速度、加速度合成定理;由动量的概念到动量定理及动量守恒定理等等,每个概念的提出,每一个定理的推导和应用,一环扣一环,层层递进,形成一个严密的逻辑链.透过这些知识的学习和联系,可以培养我们严密的逻辑思维能力。因此,多掌握一些重要定理的推导过程,并做相关的练习.经过严格的训练,对培养逻辑思维能力大有好处.

静力学的基本概念

第一章静力学的基本概念 第一节力和平衡的概念 一、力的概念 力的运动效应和变形效应 1、力的定义:力是物体间的相互机械作用,这种作用使物体的运动状态或形状发生改变。 物体间的相互机械作用可分为两类:一类是物体间的直接接触的相互作用,另外一类是物和物体间的相互作用。 力的两种作用效应为: (1)外效应,也称为运动效应——使物体的运动状态发生改变; (2)内效应,也称为变形效应——使物体的形状发生变化。 静力学研究物体的外效应。 2、力的三个要素:力的大小、方向和作用点。 力的大小反映物体之间相互机械作用的强度,在国际单位制(SI)中,力的单位是牛(N);在工程单位制中,力的单位是千克力(kgf)。两种单位制之间力的换算关系为:1kgf=9.8N。 力的作用线:[力的方向是指静止物体在该力作用下可能产生的运动(或运动趋势)的方向。]沿该方向画出的直线。力的方向包含力的作用线在空间的方位和指向。 二、刚体和平衡的概念 刚体:在受力作用后而不产生变形的物体称为,刚体是对实际物体经过科学的抽象和简化而得到的一种理想模型。而当变形在所研究的问题中成为主要因素时(如在材料力学中研究变形杆件),一般就不能再把物体看作是刚体了。 平衡:指物体相对于地球保持静止或作匀速直线运动的状态。显然,平衡是机械运动的特殊形态,因为静止是暂时的、相对的,而运动才是永衡的、绝对的。 三、力系、等效力系、平衡力系 力系:作用在物体上的一组力。按照力系中各力作用线分布的不同形式, 力系可分为: (1)汇交力系力系中各力作用线汇交于一点; (2)力偶系力系中各力可以组成若干力偶或力系由若干力偶组成; (3)平行力系力系中各力作用线相互平行; (4)一般力系力系中各力作用线既不完全交于一点,也不完全相互平行。 按照各力作用线是否位于同一平面内,上述力系各自又可以分为平面力系和 空间力系两大类,如平面汇交力系、空间一般力系等等。 等效力系:两个力系对物体的作用效应相同,则称这两个力系互为等效力系。当一个力与一个力系等效时,则称该力为力系的合力;而该力系中的每一个力称为其合力的分力。把力系中的各个分力代换成合力的过程,称为力系的合成;反过来,把合力代换成若干分力的过程,称为力的分解。 平衡力系:若刚体在某力系作用下保持平衡。在平衡力系中,各力相互平衡,或者说,诸力对刚体产生的运动效应相互抵消。可见,平衡力系是对刚体作用效应等于零的力系。 第二节静力学基本公理 静力学公理是人们从实践中总结得出的最基本的力学规律,这些规律的正确性已为实

结构静力分析边界条件施加方法与技巧—约束条件

在结构的静力分析中载荷与约束的施加方案对计算结果有较大的影响,甚至导致计算结果不可信,笔者在《结构设计CAE主业务流程》的博文中也提到这一点。那么到底如何施加载荷与约束呢?归根到底要遵循一个原则——尽量还原结构在实际中的真实约束和受力情况。本文着重介绍几种约束的施加方法与技巧,并通过具体例子来进一步说明。 1 销轴约束 销轴连接在结构中是很常见的一种形式,其约束根据具体的结构形式有所不同,下面以一个走行装置为例具体介绍一下。 走行装置是连接平动轨道与上部结构的,其约束应是轨道通过车轮对走行装置的约束,但是通常对于车轮只要验证其轮压满足要求即可,因此在模型中往往将车轮简化掉,因此对于走行装置的约束就变为销轴约束。 图1 某走行装置 图1 中1-10是与车轮相连接的轴孔,车轮行驶于轨道上,约束位置在10对轴孔处,如果把整个轴孔都约束则约束刚度太大,结果会导致圆孔周围应力过大,因此应简化为约束轴孔中心点,将中心点与轴孔边缘通过刚性单元连接,简化为点约束。首先y方向(竖直向上)是应该约束的(此处假设车轮及轴为刚体),其次由于轨道与轮缘的相互作用,z方向(侧向)也应该是约束的,然后由于走行装置在向下的压力下会产生沿x方向(运行方向)的位移,因此x方向约束应放开,但是如果10对轴孔中心x方向的约束全放开则会导致约束不全无法计算,因此应在1轴孔或10轴孔中心处施加x方向的约束,这样实现全自由度约束。 2 转动轨道约束 图2是一个翻车机模型,该结构通过电机驱动,托辊支撑,2个端环在轨道上转动来实现翻卸功能。

图2 翻车机 由于翻车机托辊支撑端环,由电机驱动不断地翻转卸车,造成其约束位置方向不断变化,针对一个具体翻转角度,翻车机端环在与托辊接触处(线接触)应约束沿翻车机端环径向,另外,由于翻车机在荷载作用下会产生沿翻车机轴向的位移,所以两端环中要约束一个端环的轴向自由度。 3 对称面约束 图3是某钢水罐模型,该模型关于y-z面对称,下面介绍一下该结构的约束处理。 图3 钢水罐 首先在1处由于受到钢水罐起吊装置的限制,其竖直方向y及水方向z无法变形,应施加z 方向及y方向的约束,而x方向是没有约束的,此时因缺少约束无法计算,应注意到该结构(包

理论力学解题方法与技巧

理论力学解题方法与技巧 教学目标: 1、知识目标:掌握各类力系的平衡条件与平衡方程 及应用,掌握理论力学计算题的解题方法与技巧。 2、能力目标:能快速准确地解答中等难度的计算题。 3、情感目标:以能找到最佳解题方法而产生自豪感, 对高考计算题的解答充满自信。 教学重点与难点: a 解题技巧分析,即如何选择研究对象、建立适当的坐标系、合理选 择矩心,使问题得到简化。 教学过程: 、复习引入 1、理论力学解题方法与步骤:1)确定研究对象并画 受力图,2)建立适当坐标系并确定力系类型,3)列平衡方程并求解。 2、平面各种力系的平衡条件及平衡方程

例1、图中两物体重量分别为 G 1=100N,G 2=100N ,置 于倾角a =30°的光滑斜面上,绳索与斜面平行,求绳索的拉 G 力。 1m 3m 2m 二、例题分析 例2、如图所示,梁上有一起重机,设起重机本身重 G = 50KN,重物P=10KN,不计梁重,①求支座对梁的约束反 力N A 、N B ;②问起重机的左轮与支座 A 的距离多大时,两 支座上的力将相等。 例3、梯子的两部分 AB 和AC 在点A 铰接,又在D 、 E 两点用水平绳连接(如图所示),梯子放在光滑的水平面上, 人重100Kg ,当人位于右梯的中间位置时, 求绳的拉力F 。 1m 3m 2m 3m A 。

(梯重不计)

三、 练习 图中球重为G=2KN ,斜面倾角为a =30°,求绳索 的拉力。 图示 AB 、CD 、AE 三杆组成的构架,在 A 、C 、 D 三处用铰链联接,B 端悬挂重物 G = 5KN ,试 求 A 、 C 、 D 三处铰链所受的约束反力。 四、总结 1、研究对象的选择:从已知力作用的物体出发,再 进一步分析所求未知力作用的物体,分析他们之间的联系, 通常选取整个物系,如不能求出题中所求,则再另取单个物 体为研究对象。 2、合理建立坐标系:尽量使最多的未知力与坐标轴 平行或垂直 (包括重合 0)。可减少所列方程数目或降低解方 程的难度。 3、合理选择矩心:尽量使最多的未知力通过矩心, 减少力矩方程中的未知量,解方程会容易些。往往还可以减1、 2、

相关文档
最新文档