满堂支架杆件受力验算书及相关附图

满堂支架杆件受力验算书及相关附图
满堂支架杆件受力验算书及相关附图

满堂支架杆件受力验算书及相关附图

一、工程概况

1、高速枢纽互通立交工程共有桥梁10座,其中K220+883.628跨高速桥为现浇预应力箱梁桥。其结构形式为:左右幅各1联(共两联),跨径布置为(22+2×30+22)m;K220+883.628桥左幅箱梁顶板宽9m,底板宽度5.5m,右幅箱梁顶板宽12.75m,底板宽度9.25m,梁高1.8m;翼缘板悬臂长度1.75m,翼缘板根部厚0.45m,端部0.18m,箱梁内顶板厚度0.25cm,底板厚度0.25m,外腹板厚度0.45m,中腹板厚度0.45m。平均柱高7.2m。

2、本桥上部箱梁拟采用碗扣式脚手架满堂支架现浇施工。第二孔及第三孔跨径最大(同为30m),且右幅比左幅箱梁体积、重量要大。因此,全桥仅对右幅第二联进行受力计算即可。

二、支架方案初步设计

1、立杆及横杆的初步设计

经粗略计算,来选定立杆间距。腹板重Q1=26*1.8=46.8kn/m2,空心段重

Q2=26*0.7=18.2kn/m2,底板宽b=9.25m,箱梁长s=104m,单根立杆允许承载力保守取[N]=40kn。

腹板处每平方米需要立杆根数:1.2Q1/[N]=1.4;取安全系数1.3,则为1.82;

空心段每平方米需要立杆根数:1.2Q2/[N]=0.55;取安全系数1.3,则为0.72;

选定空心段底板立杆纵横向间距为:0.9×0.9=0.81m2<1/0.72=1.4 m2

满足要求;墩顶、腹板及中、端横梁等实心处立杆间距为:0.6×0.6=0.36 m2<1/1.82=0.55 m2,满足要求。

2、底模、纵横梁的初步确定

底模采用竹胶板,选用1.5cm厚的高强度竹胶板。纵横梁均采用方木,宽度均为0.1m,纵梁高为h1,横梁高为h2。横梁间距一般选择0.3m。

3、支架验算

碗扣式脚下手架满堂支架竖向力传递过程:箱梁钢筋砼和内模系统的自重

及施工临时荷载能过底模传递到横梁上,横梁以集中荷载再传递给纵梁,纵梁以支座反力传递到每根立杆,立杆通过底托及方木传递至钢筋砼基础、地基。以下分别对支架的底模、横梁、纵梁、立杆、地基承载力进行验算。

(1)竖向荷载计算

1)钢筋砼配筋率大于2%,故钢筋砼自重取26kn/m3,以本桥第二联为例,箱梁砼体积为995 m3,所以按照最不利工况,将翼缘板部分重量折算到地板上,砼的自重如下计算:

腹板实心段砼自重:F1a=F1*h1=46.8kpa

箱梁空心段砼自重:F1b=F1*h2=18.2kpa

2)模板自重:一块1.22*2.44m竹胶板的质量为32kg;

F2=32*9.8/(1.22*2.44)=105.35pa

3)纵横梁方木荷载:

10*10cm方木:g1=0.1*0.1*6.5*(1/0.25+1)*r/(6.5*1)=0.375kpa

10*15cm方木:g2=0.1*0.15*12*r/6.5=0.21kpa

4)内模及支撑荷载,取2kpa,F3=2kpa

5)临时荷载

施工人员及机具,G1=2.5kpa

振捣荷载:G2=2.0kpa

则临时荷载为:G=4.5kpa

(2)箱梁底模验算

1)模板力学性能

E=4500Mpa,0=60Mpa,τ0=0.8Mpa,

1m宽竹胶板的截面几何特性计算结果如下:

W=bh2/6=1000*152/6=37500mm3

I=bh3/12=1000*153/12=281250mm4

2)实心段底模竹胶板应力验算

墩顶部分底模竹胶板简化为4*0.25米跨度的连续梁进行计算,取1米板宽。

线性荷载q=(46.8+0.105+0.375+0.21+2)*1.2+4.5=63.89Kpa

由《路桥施工计算手册》查得:弯曲系数M0=0.107,剪力系数Q0=0.607 Mmax=0.107*63.89*0.252=0.427kn.m

= Mmax /W=11.4<0=60Mpa

不考虑方木尺寸,剪应力按照跨径0.25m计算为:

Qmax=0.607*63.89*0.25=9.7kn

τ= Qmax*s/(I*b)=0.97Mpa>τ0=0.8Mpa

考虑方木尺寸,剪应力按照净跨径0.15m计算为:

Qmax=0.607*63.89*0.15=5.82kn

τ= Qmax*s/(I*b)=0.582Mpa<τ0=0.8Mpa

故实际施工时竹胶板的净跨径为0.15m,采用1.5cm竹胶板,在底部方木中心距为25cm时能够满足受力要求。

3)墩顶底模竹胶板刚度验算

q=(46.8+0.105+0.375+0.21+2)*1.2=59.39 Kpa

单位板宽线性荷载q1=59.39kn/m

挠度f=5*ql4/(384*EI)=0.309mm<[f]=l/400=0.375mm

满足要求(其中净宽l=150mm)

腹板部分底模竹胶板受力与墩顶部分相同。

4)空心段箱梁底模竹胶板应力验算

箱梁底板部分竹胶板简化为4*0.3米跨度的连续梁进行计算,取1m板宽;

线性荷载q2=(18.2+0.105+0.3+0.21+2)*1.2+4.5=29.478kn/m

由《路桥施工计算手册》查得:弯曲系数M0=0.107,剪力系数Q0=0.607 Mmax=0.107*29.478*0.32=0.284kn.m

= Mmax /W=7.86<0=60Mpa dfgd

不考虑方木尺寸,剪应力按照跨径0.3m计算为:

Qmax=0.607*29.478*0.3=5.37kn

τ= Qmax*s/(I*b)=0.537Mpa<τ0=0.8Mpa

满足受力要求。

5)箱梁底模竹胶板刚度验算

单位板宽线性荷载q=(18.2+0.105+0.3+0.21+2)*1.2=24.978kn/m

挠度f=5*ql4/(384*EI)=0.411mm<[f]=l/400=0. 5mm

满足要求(其中l=200mm)

腹板部分底模竹胶板受力与墩顶部分相同。

(3)底模下纵横向木方强度和刚度验算

1)实心段梁体纵向方木的强度验算

a、荷载的取值

P=63.19kN/m2,q=63.19×0.25=15.8 kN/m

b、跨度的取值

纵向方木分配梁最大间距为0.6m,取lq=0.6m

c、跨数的取值

因施工中有可能出现单跨受力,故取跨数n=1。

d、计算最大弯矩及剪力值

Mmax=1/8×ql2=0.125×15.8×0.62=0.71kN.m

Qmax=1/2×ql=0.5×15.8×0.6=4.74kN

e、正应力及剪应力验算

W=1/6bh2=1÷6×10×102=167cm3,b=10 cm,h=10 cm

σmax=Mmax÷W=0.71×106÷(167×103)=4.25Mpa<[σ]=13.0Mpa(木材的容许弯拉强度值)

实心段梁体正应力满足要求。

τ=QmaxS/(Ib)

其中S=1/8bh2=1/8×10×102=125 cm3,I=1/12bh3=1/12×10×103=834 cm4,b=10cm, h=10cm

τ=(4.74×103×125×103)÷(834×104×10×10)=0.71Mpa<[τ]=2.0Mpa(木材的容许剪应力值)

实心段梁体方木的剪应力满足要求。

2)实心段梁体纵向方木的刚度验算

fmax=5ql4/(384EI)

=0.32mm

其中E=10×103Mpa,I=834 cm4,q=15.8 kN/m,l=0.6m

实心段梁体木方的刚度满足要求。

3)空心段梁体纵向方木的强度验算

a、荷载的取值

P=29.12 kN/m2,q=29.12×0.3=8.74kN/m

b、跨度的取值

纵向方木分配梁最大间距为0.9m,取lq=0.9m

c、跨数的取值

因施工中有可能出现单跨受力,故取跨数n=1。

d、计算最大弯矩及剪力值

Mmax=1/8×ql2=0.125×8.74×0.92=0.885kN.m

Qmax=1/2×ql=0.5×8.74×0.9=3.933kN

e、正应力及剪应力验算

W=1/6bh2=1÷6×10×102=167cm3,b=10 cm,h=10 cm

σmax=Mmax÷W=0.885×106÷(167×103)=5.30Mpa<[σ]=13.0Mpa(木材的容许弯拉强度值)

空心段梁体正应力满足要求。

τ=QmaxS/(Ib)

其中S=1/8bh2=1/8×10×102=125 cm3,I=1/12bh3=1/12×10×103=834 cm4,b=10cm, h=10cm

τ=(3.933×103×125×103)÷(834×104×10×10)=0.6Mpa<[τ]=2.0Mpa(木材的容许剪应力值)

空心段梁体方木的剪应力满足要求。

4)空心段梁体纵向方木的刚度验算

fmax=5ql4/(384EI)

=0.895mm

其中E=10×103Mpa,I=834 cm4,q=8.74 kN/m,l=0.9m

空心段梁体木方的刚度满足要求。

同理,横向10*15cm木方也满足强度和刚度要求。

(4)横向承重梁方木的强度和刚度计算

1)实心段梁体横向承重梁方木的强度验算

a、荷载的取值

P=63.19 kN/m2,q=63.19×0.9=56.87kN/m

b、跨度的取值

实心段梁体横向承重梁支点间距为0.6m,取lq=0.6m

c、跨数的取值

因施工中有可能出现单跨受力,故取跨数n=1。

d、计算最大弯矩及剪力值

Mmax=1/8×ql2=0.125×56.87×0.62=2.56kN.m

Qmax=1/2×ql=0.5×56.87×0.6=17.06kN

e、正应力及剪应力验算

W=1/6bh2=1÷6×10×152=375cm3,b=10 cm,h=15 cm

σmax=Mmax÷W=2.56×106÷(375×103)=6.83Mpa<[σ]=13.0Mpa(木材的容许弯拉强度值)

实心段梁体横向承重梁正应力满足要求。

τ=QmaxS÷(Ib)

其中S=1/8bh2=1/8×10×152=218.25 cm3,I=1/12bh3=1/12×10×153=2812.5cm4,b=10cm, h=15cm

τ=(17.06×103×218.25×103)÷(2812.5×104×10×10)=1.324Mpa<[τ]=2.0Mpa(木材的容许剪应力值)

实心段梁体横向承重梁方木的剪应力满足要求。

2)实心段梁体横向承重梁方木的刚度验算

fmax=5ql4÷(384EI)

其中E=10×103Mpa,I=2812.5cm4,q=56.87kN/m,l=0.6m

fmax=(5×56.87×6004)÷(384×10×103×1440×104)=0.67mm<[L/400]=1.5mm

实心段梁体横向承重梁方木的刚度满足要求。

3)空心段梁体横向承重梁方木的强度验算

a、荷载的取值

P=29.12kN/m2,q=29.12×0.9=26.21kN/m

b、跨度的取值

横向承重梁方木支点间距为0.9m,取lq=0.9m

c、跨数的取值

因施工中有可能出现单跨受力,故取跨数n=1。

d、计算最大弯矩及剪力值

Mmax=1/8×ql2=0.125×26.21×0.92=2.948kN.m

Qmax=1/2×ql=0.5×26.21×0.9=11.795kN

e、正应力及剪应力验算

W=1/6bh2=1÷6×10×152=375cm3,b=10 cm,h=15 cm

σmax=Mmax÷W=2.948×106÷(375×103)=7.86Mpa<[σ]=13.0Mpa(木材的容许弯拉强度值)

所以空心段梁体横向承重梁方木的正应力满足要求。

τ=QmaxS÷(Ib)

其中S=1/8bh2=1/8×10×152=218.25 cm3,I=1/12bh3=1/12×10×153=2812.5cm4,b=10cm, h=15cm

τ=(13.941×103×218.25×103)÷(2812.5×104×10×10)=1.08Mpa<[τ]=2.0Mpa(木材的容许剪应力值)

所以空心段梁体横向承重梁方木的剪应力满足要求。

4)空心段梁体横向承重梁方木的刚度验算

fmax=5ql4÷(384EI)

其中E=10×103Mpa,I=2812.5cm4,q=26.21kN/m,l=0.9m

fmax=(5×26.21×9004)÷(384×10×103×2812.5×104)=0.80mm<[L/400]=2.25mm

所以空心段梁体横向承重梁方木的刚度满足要求。

(5)立杆强度验算

1)实心段梁体支架立杆的强度验算

实心段支架立杆(φ48×3.5)的纵向间距为0.6m,横向间距为0.6m。由于大横杆步距为1.2m,长细比为:λ=ι/I=1200/15.78=76.04;查表可得φ=0.676(纵向弯曲系数)

[N]=φA[σ]=0.676×489×215=71071N=71kN

实际最大荷载P=63.19 kN/m2

实际单根立杆受力N=P×A=63.19×0.6×0.6=22.75 kN

可见单根立杆受力Nmax=22.75kN小于计算所得容许力[ N ] 71kN,同时也小于《计算手册》之规定的φ48×3.5大横杆步距为1.2m布设方式单根立杆容许力[ N ]30kN的强制要求。所以实心段梁体支架立杆的抗压强度满足要求。

2)空心段梁体支架立杆的强度验算

空心段支架立杆(φ48×3.5)的纵向间距为0.9m,横向间距为0.9m。由于大横杆步距为1.2m,长细比为:λ=ι/I=1200/15.78=75.23;查表可得φ=0.676(纵向弯曲系数)

[N]=φA[σ]=0.676×489×215=71071N=71kN

实际最大荷载P=29.48kN/m2

实际单根立杆受力:N=P×A=29.12×0.9×0.9=23.59kN,较实心段支架立杆N<[N]=71KN小,同时也小于《计算手册》之规定的φ48×3.5大横杆步距为1.2m布设方式单根立杆容许力[N]30kN的强制要求,所以空心段梁体支架立

杆的抗压强度满足要求。

碗扣型支架立杆按两端铰接的压弯构件来计算,钢管参数如下表:

钢材的强度和弹性模量(N/mm2)

钢管截面特性

(6)地基承载力验算

桥跨下为粘土基础,经验所知地基承载力范围为0.1Mpa—0.2Mpa。

经验算粘土基础下支撑面的地基承载力不能满足施工要求,需进行地基处理。

先用20T压路机进行碾压,碾压后浇筑C20砼20cm厚。

三、门洞验算

对主线上跨桥第2、3孔进行上部结构施工时,在北半幅搭设两个门洞,南半幅搭设1个门洞,每个门洞净宽为8m,净空5m。为防止过往车辆对支架的冲撞,基础用钢筋砼浇筑并用钢筋锚固在路面上,砼基础上下各一层Φ12的钢筋网片,宽度100cm,净高150cm,长2450cm(经验算,路基宽度满足搭设门洞要求)。砼基础上固定Φ50cm钢管(间距1.2m),钢管顶设45a工字钢,门洞顶用45a工字钢做横梁(腹板位置间距0.3m,底板、翼板位置间距0.6m),横梁上满铺10*10cm方木,方木上方设高度调节杆。特别说明:在距门洞1km东、西双向通行车道位置设置限高杆,限高5米。

工字钢采用A3钢材:抗弯强度[σ]=145MPa;抗剪强度[τ]=85MPa;弹性模量E=2.1*105MPa

1、腹板下部工字钢变形与强度验算:

腹板处工字钢中心间距30cm

模板、方木荷载:0.5kN/m2

梁体荷载:26kN/m3*1.8m=46.8kN/m2

人机荷载:2.5kN/m2

振捣荷载:2kN/m2

总荷载:(46.8+0.5)*1.2+(2+2.5)*1.4=63.06kN/m2

单位长度荷载设计值q=63.06kN/m2*0.3m=18.9kN/m

工字钢跨中最大弯矩Mmax=q*L2/8=18.9*82/8=151.2kN.m

截面抵抗矩W=Mmax/[σ]=151.2/145=1042cm3

查GB/T706-2008得:选择45a工字钢:截面模量W=1432.9cm3;惯性矩Ix=32241cm4;Sx=836.4cm3;理论重量m=80.38kg/m;内圆弧半径r=13.5mm(或选用40a工字钢但安全系数较小);

工字钢自重:80.38kg/m*10N/kg=0.8038kN/m;工字钢自重产生的弯矩Mg=q*L2/8=0.8038*8.52/8=7.26kN.m

总弯矩Mx=151.2+7.26=158.46kN.m

1.1强度验算:σ=Mx/W=158.46kN.m/0.0014329m3=110.6MPa<[σ]=145MPa;强度满足要求。

1.2剪力验算:Q=qL/2+0.3m*0.8038kN/m=18.9*8.5/2+0.3m*0.8038kN/m

=80.6kN

τmax=Q*Sx/Ix/r=80.6kN*0.0008364m3/32241cm4/0.0135m=15.5MPa

<[τ]=85MPa;剪力满足要求。

1.3刚度、挠度验算:

f=5q*L4/384/E/Ix=5*(18.9kN/m+0.8038kN/m)*8.54m4/384/2.1*108kPa/3 2241*10-8m4=20mm<L/400=21mm;刚度、挠度满足要求。

2、箱室、翼板下部工字钢变形与强度验算:

箱室、翼板下部工字钢中心间距60cm

模板、方木荷载:3kN/m2

梁体荷载:26kN/m3*(0.45+0.25)m=18.2kN/m2

人机荷载:2.5kN/m2

振捣荷载:2kN/m2

总荷载:(18.2+3)*1.2+(2+2.5)*1.4=31.8kN/m2

单位长度荷载设计值q=31.8kN/m2*0.6m=19.1kN/m

工字钢自重:0.8038kN/m

总弯矩Mmax=q*L2/8=(19.1+0.8038)*8.52/8=180kN.m

强度验算:σ=Mx/W=180kN.m/0.0014329m3=125.6MPa<[σ]=145MPa;强度满足要求。

剪力验算:

Q=qL/2+0.6m*0.8038kN/m=19.1*8.5/2+0.6m*0.8038kN/m=81.7kN

τmax=Q*Sx/Ix*r=81.7kN*0.0008364m3/0.00032241m4/0.0135m=15.7MPa <[τ]=85MPa;剪力满足要求。

刚度验算:f=5q*L4/384/E/Ix=5*(19.1kN/m+0.8038kN/m)*8.54m4/384/2.1*108kPa/32241*10-8m4=20mm<L/400=21mm;刚度亦满足要求。

根据计算:门洞顶用45a工字钢做横梁。

满堂式碗扣支架支架设计计算知识讲解

满堂式碗扣支架支架设计计算 杭州湾跨海大桥XI合同段中G70~G76墩的上部结构为预应力混凝土连续箱梁,该区段连续箱梁结构设计有两种形式,一为等高段,一为变高段,G70~G70为变高段连续箱梁。为此,依据设计图纸、杭州湾跨海大桥专用施工技术规范、水文、地质情况,并充分结合现场的实际施工状况,为便于该区段连续箱梁的施工,保证箱梁施工的质量、进度、安全,我部采用满堂式碗扣支架组织该区段连续箱梁预应力混凝土逐段现浇施工。 一、满堂式碗扣件支架方案介绍 满堂式碗扣支架体系由支架基础(厚50cm宕渣、10cm级配碎石面层)、Φ48×3mm碗扣立杆、横杆、斜撑杆、可调节顶托、10cm×15cm底垫木、10cm×15cm或10cm×10cm木方做横向分配梁、10cm×10cm木方纵向分配梁;模板系统由侧模、底模、芯模、端模等组成。10cm×15cm木方分配梁沿横桥向布置,直接铺设在支架顶部的可调节顶托上,箱梁底模板采用定型大块竹胶模板,后背10cm×10cm木方,然后直接铺装在10cm×15cm、10cm×10cm 木方分配梁上进行连接固定;侧模、翼缘板模板为整体定型钢模板。(主线桥30m跨等高连续梁一孔满堂支架结构示意图见附图XL-1、2、3所示)。 根据箱梁施工技术要求、荷载重量、荷载分布状况、地基承载力情况等技术指标,通过计算确定,每孔支架立杆布置:纵桥向为:3*60cm+30*90cm +2*60cm,共计36排。横桥向立杆间距为:120cm+3*90cm+3*60cm +6*90cm +3*60cm +3*90 cm+120cm,即腹板区为60cm,两侧翼缘板(外侧)为120cm,其余为90cm,共21排;支架立杆步距为120cm,在横梁和腹板部位的支架立杆步距加密为60cm,支架在桥纵向每360cm间距设置剪刀撑;支架两端的纵、横杆系通过垫木牢固支撑在桥墩上;立杆顶部安装可调节顶托,立杆底部支立在底托上,底托安置在支架基础上的10cm×15cm木垫板上。以确保地基均衡受力。 二、支架计算与基础验算 (一)资料 (1)WJ碗扣为Φ48×3.5 mm钢管; (2)立杆、横杆承载性能: 立杆横杆 步距(m)允许载荷(KN)横杆长度(m)允许集中荷载 (KN)) 允许均布荷载 (KN) 0.6 40 0.9 4.5 12

满堂支撑架结构计算书

扣件式满堂支撑架安全计算书 一、计算依据 1、《建筑施工扣件式钢管脚手架安全技术规范》JGJ130-2011 2、《混凝土结构设计规范》GB50010-2010 3、《建筑结构荷载规范》GB50009-2012 4、《钢结构设计规范》GB50017-2003 5、《建筑施工临时支撑结构技术规范》JGJ300-2013 6、《建筑施工高处作业安全技术规范》JGJ80-1991

二、计算参数

(图1)平面图 (图2)纵向剖面图1 (图3)纵向剖面图2

三、次楞验算 恒荷载为: g1=1.2[g kc+g1k e]=1.2×(0.022+0.35×250/1000)=0.131kN/m 活荷载为: q1=1.4(Q1+Q2)e=1.4×(2+2)×250/1000=1.4kN/m 次楞按三跨连续梁计算符合工况。计算简图如下: (图4)可变荷载控制的受力简图 1、强度验算 (图5)次楞弯矩图(kN·m) M max=0.124kN·m σ=M max/W=0.124×106/(1×85.333×103)=1.454N/mm2≤[f]=15N/mm2 满足要求 2、抗剪验算

(图6)次楞剪力图(kN) V max=0.827kN τmax= V max S0/(Ib) =0.827×103×40.5×103/(341.333×104×4×10)=0.245N/mm2≤[τ]=125N/mm2 满足要求 3、挠度验算 挠度验算荷载统计: q k=g kc+g1k e+(Q1+Q2)e =0.022+0.3×250/1000+(2+2)×250/1000=1.097kN/m (图7)挠度计算受力简图 (图8)次楞变形图 (mm) νmax=0.145mm≤[ν]=max(1000×0.9/150,10)=10mm 满足要求 4、支座反力计算 承载能力极限状态下支座反力为:R=1.516kN 正常使用极限状态下支座反力为:R k=1.086kN 五、主楞验算 按三跨连续梁计算符合工况,偏于安全,计算简图如下:

满堂支架计算

精心整理 满堂支架计算 1、荷载计算 根据支架布置方案,采用满堂支架,对其刚度、强度、稳定性必须进行检算。 钢管的内径Ф41mm 外径Ф48mm 、壁厚3.5mm 。 截面积 转动惯量 1A W 砼B ((C 、人员及机器重 W=1KN/m 2(《JGJ166-2008建筑施工碗扣式脚手架安全技术规范》) D 、振捣砼时产生的荷载 W=2KN/m 2(《JGJ166-2008建筑施工碗扣式脚手架安全技术规范》) E 、倾倒混凝土时冲击产生的荷载 W=3KN/m 2(采用汽车泵取值3.0KN/m 2) F 、风荷载 W 模板W 方木22222893.44)1.48.4(14.34/)(cm d D A =÷-?=-=π2/144444187.1264)1.48.4(14.364/)(cm d D J =÷-?=-=π2/12.0105.33 .01m kN kg W =??=钢管

按照《建筑施工碗扣式脚手架安全技术规范》,风荷载W k =0.7u z u s W o 其中u z 为风压高度变化系数,按照《建筑结构荷载规范》取值为1; u s 为风荷载体型系数,按照《建筑结构荷载规范》取值为0.8; W o 为基本风压,按照贵阳市市郊离地高度5m 处50年一遇值为0.3KN/m 2。 风荷载W k =0.7×1×0.8×3=1.68KN/m 2 由风荷载产生立杆弯矩值: 式中: w M k ωα0l 22.1(1)βγW E N ——欧拉临界力; (2)立杆稳定验算 结论:立杆满足强度及稳定性要求。 (3)横向钢管(次楞)强度和刚度验算 次楞荷载组合N=1.2×(27.2+0.4)+0.9×1.4×(1+2+3+1.68)=42.8KN/m 2 按照次楞最不利位置0.3m 间距布置,单根次楞荷载q=42.8×0.3=12.8KN/m A 、横向钢管抗弯强度验算 []MPa f MPa 1704.761712.278.0108.515.12.019.01089.4728.0102.2743=≤=?-????+???=-)(σ

满堂脚手架设计计算法(最新)

满堂脚手架设计计算方法 钢管脚手架的计算参照《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2011)、 《钢结构设计规范》(GB50017-2003)、《冷弯薄壁型钢结构技术规范》(GB50018-2002)、 《建筑地基基础设计规范》(GB 50007-2002)、《建筑结构荷载规范》(2006年版)(GB 50009-2001)等编制。 一、参数信息: 1.脚手架参数 计算的脚手架为满堂脚手架, 横杆与立杆采用双扣件方式连接,搭设高度为4米,立杆采用单立管。 搭设尺寸为:立杆的纵距l a= 1.20米,立杆的横距l b= 1.20米,立杆的步距h= 1.50米。 采用的钢管类型为Φ48×3.5。 横向杆在上,搭接在纵向杆上的横向杆根数为每跨2根 2.荷载参数砼板厚按均布250mm计算 2400X0.25X1=6.0KN/mm2 施工均布荷载为6.0kN/m2,脚手板自重标准值0.30kN/m2, 脚手架用途:支撑混凝土自重及上部荷载。 满堂脚手架平面示意图

二、横向杆的计算: 横向杆钢管截面力学参数为 截面抵抗矩 W = 5.08cm3; 截面惯性矩 I = 12.19cm4; 横向杆按三跨连续梁进行强度和挠度计算,横向杆在纵向杆的上面。 按照横向杆上面的脚手板和活荷载作为均布荷载计算横向长杆的最大弯矩和变形。 考虑活荷载在横向杆上的最不利布置(验算弯曲正应力和挠度)。 1.作用横向水平杆线荷载 (1)作用横向杆线荷载标准值 q k=(3.00+0.30)×1.20/3=1.32kN/m (2)作用横向杆线荷载设计值 q=(1.4×3.00+1.2×0.30)×1.20/3=1.82kN/m 横向杆计算荷载简图 2.抗弯强度计算 最大弯矩为 M max= 0.117ql b2= 0.117×1.82×1.202=0.307kN.m σ = M max/W = 0.307×106/5080.00=60.49N/mm2 横向杆的计算强度小于205.0N/mm2,满足要求! 3.挠度计算 最大挠度为 V=0.990q k l b4/100EI = 0.990×1.32×12004/(100×2.06×105×121900.0) = 1.079mm 横向杆的最大挠度小于1200.0/150与10mm,满足要求! 三、纵向杆的计算:

满堂支架设计与验算方案

一.编制依据 1.1 《建筑施工碗扣式脚手架安全技术规范》JGJ 166-2008 1.2 《房建工程施工与质量验收规范》(CJJ2-2008) 1.3 《建筑施工安全检查标准》(JGJ59-99) 1.4 《广西省<建筑施工安全检查标准>实施细则》及图纸等 1.5《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2001) 二.工程概况 新建云桂铁路引入南宁枢纽南环线工程施工设计邕宁站综合行车室工程总建筑面积为730m2,现场实测中心里程为NK765+283.55。邕宁站综合行车室采用全现浇框架结构,基础采用条形基础,房屋一层为框架结构(信号楼),二层为砖混结构(办公楼)。信号楼净空尺寸为4.3m,总长为46.7m,宽为7.9m。 三.支架结构设计 3.1扣件钢管脚手架的材质要求 (1)钢管采用外径48mm, 壁厚35mm焊接钢管,其质量符合先行国家标准《碳素结构钢》(GB/T700)中Q235-A级钢的规定。 (2)扣件采用可锻铸铁制造的扣件,其材质应符合先行国家标准《钢管脚手架扣件》)(GB15831)的规定。 (3)脚手架下,立杆使用垫板尺寸为:30cm×30cm。 3.2支架构件 满堂支架主体构件包括: 纵向水平杆、横向水平杆、立杆、顶托、底座、剪刀撑等。 3.3支架布置 根据房屋设计高度和承重要求,根据梁体混凝土的自重荷载,考虑施工荷载以及其它荷载的影响,预留足够的施工安全储备,进行现浇梁支架的检算(检算资料详见满堂支架设计计算书)。 现浇支架自下而上由钢管立柱,分配梁、模板肋及底模、侧模、内模、防护栏及施工平台等组成。 满堂支架采用Φ48δ3.5小钢管,碗扣连接。

满堂支架设计计算

满堂支架计算书 一、设计依据 1.《小乌高速公路BK2+12 2.6互通桥工程施工图》 2.《公路钢筋砼及预应力砼桥涵设计规范》JTJ023-85 3.《公路桥涵施工技术规范》JTJ041-2004 4.《扣件式钢管脚手架安全技术规范》JGJ130-2001 5.《公路桥涵钢结构及木结构设计规范》JTJ025-86 6.《简明施工计算手册》 二、地基容许承载力 本桥实际施工已新建土模为基础,在原地面清表后采用砾类土分层填筑,分层填筑层厚不大于30cm。要求碾压后压实度不小于95%,经检测合格后再进行下一层的填筑,填筑至砾类土顶面,然后填筑厚30cm的砾石土,以提高地基承载力。 为了增加土模表面的强度,保证地基承载力不小于12t/㎡。浇注一层10cm 厚C30垫层。钢管支架和模板铺设好后,按120%设计荷载进行预压,避免不均匀沉降。 三、箱梁砼自重荷载分布 根据BK2+122.6互通立交桥设计图纸,上部结构为25+35×2+25m一联现浇预应力连续箱梁。箱梁采用碗扣式支架现场浇筑施工,箱梁下部宽8.50 m,顶宽13.00 m,梁高2.0m。箱梁采用C50混凝土现浇,箱梁混凝土数量为1186.6m3。25m边跨梁单重为704.67t(247.21×2.6+61.92);35m中跨梁

单重为986.52t(346.09×2.6+86.68)。 墩顶实心段砼由设于墩顶的底模直接传递给墩身,此部分不予检算。对于空心段箱梁,箱梁顶板厚0.25m,底板厚0.22m,翼缘板前端厚0.20m,根部0.45m,翼板宽2.0m,腹板厚0.5m,根据荷载集度分部情况的分析,腹板处荷载集度最大为最不利位置,故取腹板下杆件进行检算。 四、模板、支架、枕木等自重及施工荷载 本桥箱梁底模、外模均采用δ=12mm厚竹胶板,芯模采用δ=10mm竹胶板。底模通过纵横向带木支撑在钢管支架顶托上,支架采用Φ48mm×3.5mm钢管,通过顶托调整高度。在立杆下方纵桥向布设15cm宽方木;采用方木垫块时,方木应沿纵桥向连续布设,以保证立杆荷载均匀传至地基。 受力计算以25米跨径的箱梁数据为例进行验算: 1、底模面积共:8.50×25=212.5m2 共重:212.5×0.012×0.85=2.17t 2、外模面积共:3.71×2×25=185.5m2 共重:185.5×0.012×0.85=1.89t 3、内膜面积共:6.15×25×2 =307.5 m2 共重:307.5×0.01×0.85=2.61t 4、模板底层横向带木采用100mm×100mm方木(间距按0.2m布置) 共重:(25÷0.2)×(9.5+1.6×2+2.3×2+0.2×2)×0.1×0.1× 0.65=14.38t 5、模板底层纵向带木采用150mm×150mm方木 共重:25×16×0.15×0.15×0.65=5.85t

满堂支架计算

办公楼满堂支架施工方案 一、满堂支架方案 2.1、支架设计的要求 2.1.1、支架结构必须有足够的强度、刚度、稳定性。 2.1.2、支架在承重后期弹性和塑性变形应控制在15mm以内。 2.1.3、支架部分地基的沉降量控制在5mm以内,地基承载(压)力达200kPa。 2.1.4、支架顶面与梁底的高差应控制在理想值范围内,且应与预留应变通盘考虑。 2.2、支架基础 按通过后满堂支架的设计方案,要求地基承载力大于200MPa,因此必须对地基作特殊处理。 2.2.1、将原地面腐植地表层上耕植土清除15cm,然后用挖掘机挖松50cm,用强夯分两层压实,底层压实度>80%,顶层压实度>85%。 2.2.2、按2%横向排水坡(主体结构边缘四周排水)填筑宕渣30cm,填筑分两层进行,每层压实厚度为15cm,用强夯压实,底层压实度>90%,顶层压实度>95%。 2.2.3、为了防止浇筑混凝土时,流水软化支架的地基,浇筑厚5cm的C10细石混凝土封闭层。 2.3、满堂支架 在混凝土硬化好的基础顶面放置40*40*7cm C30砼预制块作为支架立杆底座,在已放置好的底座上搭设碗扣式多功能钢支架,支架布置为:底板立杆按0.9m×1.2m进行布置,即立杆纵向间距1.2m,横向间距0.9m,内排距主体0.3m,横向7排,纵向56排,步距1.2m; 支架外围四周设剪刀撑,内部沿主体结构纵向每4排立杆搭设一排横向剪刀撑,横向剪刀撑间距不大于5m,支架高度通过可调托座和可调底座调节。

满堂支架平面布置示意图 满堂支架纵立面布置示意图 满堂支架横立面布置示意图

2.4、模板结构及支撑体系 模板结构是否合适将直接影响该悬挑结构造型的外观,底模面板均采用厚为18mm 的竹胶板,面板尺寸1.2m ×2.8m ,以适应立杆布置间距,面板直接钉在横向方木上,横向方木采用100×100mm 方木,间距25cm ;横向方木置于纵向100×160mm 方木上,纵向方木间距应与立杆横向间距一致。在钉面板时,每块面板应从一端赶向另一端,以保证面板表面平整。 二、支架结构检算 3.1、拟采用的材料截面特性 根据上图的布置方案,采用碗扣式多功能钢支架,对其刚度、强度、稳定性必须进行检算。拟采用钢管外径D=48mm ,壁厚3.5mm ,即内径d=44.5mm 。 断面积2222254.24)45.48.4(14.34/)(cm d D A =÷-?=-=π 转动惯量4444481.664)45.48.4(14.364/)(cm d D J =÷-?=-=π 回转半径cm d D i 64.14)45.48.4(4/)(2/1222/122=÷+=+= 截面模量)32/()(44D d D W -=π 34484.2)8.432()]45.48.4(14.3[cm =?÷-?= 钢材弹性系数MPa E 5101.2?= 钢材容许应力MPa f 170][= 3.2、荷载计算及荷载的组合 计算单元荷载(按受荷较大的梁处计算) A 、钢筋混凝土梁重:2/6.15266.0m kN h W p =?==钢筋砼砼ρ(钢筋混凝土梁重量按 26kN/m 3计算) B 、支架模板重 ① 模板重量: 2/4498.099.24018.0m kN h W p =?==模板模板ρ(竹胶板重量按24.99kN/m 3计算) ② 方木重量: 2/40.01.2 0.98.33)21.20.160.1+30.90.1(0.1m kN h W p =????????==方木方木ρ(方木重量按8.33KN/m3计算) ③ 支架重量: 根据现场情况以21米高支架,步距1.2m 进行检算 2/68.201.0*84.3*18*2*1.2 0.9)9.0(1.2m kN W W W =?+=+=横杆立杆支架(48*3.5杆重量3.84kg/m) C 、人员及机器重 2/2.1m kN W =人员机器

满堂脚手架设计计算方法(最新)

满堂脚手架设计计算方法(新) 钢管脚手架的计算参照《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2011)、 《钢结构设计规范》(GB50017-2003)、《冷弯薄壁型钢结构技术规范》(GB50018-2002)、 《建筑地基基础设计规范》(GB 50007-2002)、《建筑结构荷载规范》(2006年版)(GB 50009-2001)等编制。 一、参数信息: 1.脚手架参数 计算的脚手架为满堂脚手架, 横杆与立杆采用双扣件方式连接,搭设高度为18.0米,立杆采用单立管。 搭设尺寸为:立杆的纵距l a= 1.20米,立杆的横距l b= 1.20米,立杆的步距h= 1.50米。 采用的钢管类型为Φ48×3.5。 横向杆在上,搭接在纵向杆上的横向杆根数为每跨2根 2.荷载参数 施工均布荷载为3.0kN/m2,脚手板自重标准值0.30kN/m2, 同时施工1层,脚手板共铺设2层。 脚手架用途:混凝土、砌筑结构脚手架。

满堂脚手架平面示意图 二、横向杆的计算: 横向杆钢管截面力学参数为

截面抵抗矩 W = 5.08cm3; 截面惯性矩 I = 12.19cm4; 横向杆按三跨连续梁进行强度和挠度计算,横向杆在纵向杆的上面。 按照横向杆上面的脚手板和活荷载作为均布荷载计算横向长杆的最大弯矩和变形。 考虑活荷载在横向杆上的最不利布置(验算弯曲正应力和挠度)。 1.作用横向水平杆线荷载 (1)作用横向杆线荷载标准值 q k=(3.00+0.30)×1.20/3=1.32kN/m (2)作用横向杆线荷载设计值 q=(1.4×3.00+1.2×0.30)×1.20/3=1.82kN/m 横向杆计算荷载简图 2.抗弯强度计算 最大弯矩为 M max= 0.117ql b2= 0.117×1.82×1.202=0.307kN.m σ = M max/W = 0.307×106/5080.00=60.49N/mm2 横向杆的计算强度小于205.0N/mm2,满足要求! 3.挠度计算 最大挠度为 V=0.990q k l b4/100EI = 0.990×1.32×12004/(100×2.06×105×121900.0) = 1.079mm 横向杆的最大挠度小于1200.0/150与10mm,满足要求! 三、纵向杆的计算: 纵向杆钢管截面力学参数为 截面抵抗矩 W = 5.08cm3; 截面惯性矩 I = 12.19cm4; 纵向杆按三跨连续梁进行强度和挠度计算,横向杆在纵向杆的上面。

满堂支架计算

中交二航局硚孝高速第QXTJ-6标 标准跨径现浇砼箱梁支架结构计算书 编制 审核 中交第二航务工程局

2010年7月 标准跨径(20m)砼箱梁现浇支架结构设计和计算书 一、设计与验算条件 1、设计与验算假定及原则 为简化计算,对于连续结构按简支结构计算,这样偏于安全;其结构形式及构件型号选用宜结合现场条件尽量采用原有,即可周转和便于采购,租赁以及便于运输的材料;施工简单和便于装拆,节省费用,加快施工进度,确保交通,施工安全及施工质量。 2、设计与验算依据 (1)硚口至孝感高速第QXTJ-06合同段设计说明及相关施工图; (2)《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2001); (3)公路桥涵技术规范(JTJ041—2000); (4)路桥施工计算手册; 3、工程概况 武汉硚口至孝感高速公路时武汉城市圈中武汉(汉口中心城区)至孝感(孝南区)的快速通道,是武汉城市圈实施交通一体化建设的重要组成部分,同时也是武汉市西北方向环线公路之间的一条快速联络通道,沿线经过武汉市下辖的硚口区、东西湖区以及孝感市下辖的孝南区。第QXTJ-6合同段位于位于武汉市东西湖区的东山农场灯塔大队和胜利大队范围内,为上跨京港澳高速的一个互通(灯塔互通)。主线全长 2.393km(K20+107-K22+500)、其中路基只有24米,主线宽26米。主线通过 A、B、C、D、E、F6条匝道桥与京港澳高速互通,匝道总长4.618Km,其中桥梁长度3.008Km、路基长度1.61Km,宽8.5米。

4、桥型及结构特点 全桥分主线桥、A 、B 、C 、D 、E 和F 六条匝道桥。本项目共有现浇箱梁365孔。箱梁顶宽8.5m-15.54m ,有单室、双室、三室和四室。高度为1.4m 。为非预应力连续箱梁,3跨-6跨为一联。本项目跨越5口鱼塘,一条灌溉渠,10条水沟,其余均为旱地,因此本项目所有旱地均采用满堂脚手架作为临时支撑,鱼塘、沟渠、跨路处采用少支架。 二、现浇箱梁满堂支架设计与验算 由于本工程现浇箱梁跨径不一,但以20m 跨径居多,所以采用20m 跨径、宽12.75m 、梁高为1.4m 、净空为10m 的箱梁为标准跨径箱梁进行计算。采用φ48轮扣式满堂支架搭设,底模、侧模采用竹胶合板、钢模组合模板。经验算满堂支架脚手管的布置型式为: ①箱梁底板下脚手管横桥向布距:箱梁腹板位置为0.6m ,底板及翼缘板区为0.9~1.2m ,层间0.9m 。每根立杆顶端设60cm 顶托,在其上横向铺设I10横向分配梁,箱梁底模面板采用竹胶合板mm 12=δ,纵向次肋为10×10cm 硬杂枋木,箱梁下布置间距均为@=30cm 。外侧模及翼缘底模为面板δ=12mm ;横纵梁均为10×10木枋,横向间距300mm ,顺桥向间距100mm ;内模为δ=12mm 竹胶合板加10×10木枋纵横向主次肋。 ②脚手管纵桥向排距为60cm 。具体布置见图一。 ③同时支架横向采用φ80×3.5mm 普通脚手管设置剪刀撑,以增加支架整体稳定性,剪刀撑均上、下到底。

满堂脚手架计算方法

L --长杆总长度(m);N2 --直角扣件数(个); N3 --对接扣件数(个);

N4 --旋转扣件数(个); S --脚手板面积(m2); n --立杆总数(根) n=121; H --搭设高度(m) H=18; n1 --纵向跨度n1=10; n2 --横向跨度n2=10; h --步距(m) h=; la--立杆纵距(m) la=; lb --立杆横距(m) lb=; 长杆总长度(m) L =×18×(121+×121/× 直角扣件数(个) N2=×18/×121=3485 对接扣件数(个) N3=6=1075 旋转扣件数(个) N4=×6=322 脚手板面积(m2) S=×10×10××= 根据以上公式计算得长杆总长米;直角扣件3485个;对接扣件1075个;旋转扣件322个;脚手板。 九、脚手架的搭设要求: 1、满堂脚手架搭设在建筑物楼面上时,脚手架自重及施工荷载应在楼面设计荷载许可范围内, 否则须经验算后制定加固方案;

2、立杆搭设应符合下列规定: (1)当立杆基础不在同一高度上时,必须将高处的纵向扫地杆向低处延长两跨与立杆固定,高低差不应大于1m;靠边坡上方的立杆轴线到边坡的距离不应小于500mm,如下图所示: (2)立杆接长除顶层顶步外,其余各层各步接头必须采用对接扣件连接; (3)立杆顶端宜高出女儿墙上皮1m,高出檐口上皮m; 3、水平杆搭设应符合下列规定,如图所示: (1)纵向水平杆应设置在立杆内侧,其长度不宜小于3跨; (2)纵向水平杆接长宜采用对接扣件连接,也可采用搭接; (3)横向水平杆应放置在纵向水平杆上部,靠墙一端至墙装饰面距离不宜大于100mm; (4)主节点处必须设置横向水平杆; (5)杆件接头应交错布置,两根相邻杆件接头不应设置在同步或同跨内,接头位置错开距离不应小于500mm, 各接头中心至主节点的距离不宜大于纵距的1/3; (6)搭接接头的搭接长度不应小于1m,应采用不少于3个旋转扣件固定; 4、扫地杆设置应符合下列要求: (1)纵向扫地杆必须连续设置,钢管中心距地面不得大于200mm; (2)脚手架底部主节点处应设置横向扫地杆,其位置应在纵向扫地杆下方;5、扣件安装应符合下列规定:

满堂支架计算.(DOC)

东乌-包西铁路联络线工程格德尔盖公路中桥 现浇箱梁模板及满堂支架计算书 一、荷载计算1.1荷载分析 根据本桥现浇箱梁的结构特点,在施工过程中将涉及到以下荷载形式: ⑴ q1——箱梁自重荷载,新浇混凝土密度取2600kg/m3。 ⑵q2——箱梁内模、底模、内模支撑及外模支撑荷载,按均布荷载计算,经计算取q2 =1.0kPa(偏于安全)。 ⑶q3——施工人员、施工材料和机具荷载,按均布荷载计算,当计算模板及其下肋条 时取2.5kPa;当计算肋条下的梁时取1.5kPa;当计算支架立柱及替他承载构 件时取1.0kPa。 ⑷ q4——振捣混凝土产生的荷载,对底板取2.0kPa,对侧板取4.0kPa。 ⑸ q5——新浇混凝土对侧模的压力。 ⑹ q6——倾倒混凝土产生的水平荷载,取2.0kPa。 ⑺ q7——支架自重,经计算支架在不同布置形式时其自重如下表所示: 满堂钢管支架自重 1.2荷载组合 模板、支架设计计算荷载组合

1.3荷载计算 1.3.1 箱梁自重——q 1计算 根据跨G208国道现浇箱梁结构特点,我们取5-5截面(桥墩断面两侧)、6-6截面(跨中横隔板梁)两个代表截面进行箱梁自重计算,并对两个代表截面下的支架体系进行检算,首先分别进行自重计算。 ① 预应力箱梁桥墩断面q 1计算 根据横断面图,用CAD 算得该处梁体截面积A=12.7975m 2则: q 1 = B W =B A c ?γ=kPa 365.445.77975 .1226=? 取1.2的安全系数,则q 1=44.365×1.2=53.238kPa 注:B —— 箱梁底宽,取7.5m ,将箱梁全部重量平均到底宽范围内计算偏于安全。 ② 预应力箱梁跨中断面q 1计算 1200 4080 100 15 75025 200 145 113 60 1.5% 1.5% 25 200 连续梁支点断面图 1200 22 2040 15 75020 25 200 145 113 22 20 20 1.5% 1.5% 25 200 连续梁跨中断面图

满堂支架计算材料

新建武汉至咸宁城际铁路二标连续梁满堂支架临时结构检算资料 中国铁建 中铁十一局集团武咸城际铁路二标项目经理部 二〇一一年十一月

目录 一、项目概况 (1) 二、临时结构方案 (3) 三、支架布置图 (6) 四、支架计算书 (9) 五、相片资料 (23)

一、项目概况 1. 概况 武咸城际铁路位于湖北省南部,北连"九省通衢"武汉,南接鄂南著名的生态城市咸宁,自武汉枢纽武昌站引出,途经东湖新技术开发区、庙山经济开发区,江夏区纸纺镇、于贺站进入咸宁市境内。全线运营长度90.12km,新建正线长度77km,其中武汉市境内长51.6km,咸宁市境内长25.4km。 WXSG-2标段位于湖北省咸宁市境内,起点桩号为DK53+500,终点桩号为DK76+062,全长22.562公里。十六潭特大桥位于湖北省咸宁市甘鲁村以及咸安区经济开发区境内,在DK69+960-DK70+000处采用(40+64+40)m连续梁跨越横温路,银泉大道行车道为双向4车道,正宽约24m,与线路夹角144°。 图1 线路关系图 连续箱梁全长145.2m,计算跨径40+64+40m,为单箱单室、变高度、变截面结构。中支点处梁高5.4m,跨中2m直线段及边跨7.6m直线段处梁高均为3.00m,梁底下缘按二次抛物线变化;箱梁顶宽12.2米,箱梁底宽为变截面,中支点处为6.91m,其余按5.54m~6.150m线性变化;顶板厚度除梁端附近外均为37cm;底板厚度44~72cm,按圆曲线线性变化;腹板厚度50~70cm,按折线变化。全梁在端支点、中跨中及中支点处共设5个横隔板,横隔板设有过人门洞,供检查人员通过。 箱梁采用纵、横、竖三向预应力体系。主桥箱梁共分7个节段,其中2A0#块长27m、2A1#块长17.5m、2A2#块长27.1m、中跨合拢段2m。

满堂支架及门洞支架验算(最终版)

重庆市轨道交通十号线(建新东路~王家庄)工程 环山公园站~长河站区间(高架段) 箱梁满堂支架及门洞支架 安全检算报告 重庆市轨道交通设计研究院有限责任公司 二〇一五年一月

重庆市轨道交通十号线(建新东路~王家庄)工程 环山公园站~长河站区间(高架段) 箱梁满堂支架及门洞支架 安全检算报告 审查: 复核: 审核: 重庆市轨道交通设计研究院有限责任公司 二〇一五年一月

目录 第一章概述 (1) 1.1工程概况 (1) 1.2主要计算依据 (6) 第二章简支箱梁支架结构受力计算 (6) 2.1方木检算 (9) 2.2立柱检算 (14) 2.3支座检算 (17) 第三章连续箱梁支架结构受力计算 (18) 3.1方木检算 (20) 3.2立柱检算 (26) 3.3支座检算 (29) 第四章连续箱梁门洞支架结构受力计算 (30) 4.1贝雷梁上部型钢计算 (30) 4.2贝雷梁计算 (31) 4.3贝雷梁下部型钢验算 (32) 4.4钢管立柱计算 (34) 4.5基础计算 (34) 第五章结论及建议 (35) 5.1结论 (35) 5.2建议 (35)

第一章概述 1.1工程概况 本工程(建新东路-王家庄段)线路长度33.42km,其中地下段长度为27.04km,高架段长度为6.38km。环山公园站至长河站区间高架总长1130.906m,共29跨,均为群桩基础;1#为桥台,2#~21#墩为花瓣式桥墩,22#~30#为矩形双肢墩(上设盖梁),墩柱高度1.8~15米;其中11#~14#墩、27#~30#墩为现浇连续箱梁,其余为预应力简支箱梁,标准梁宽10.4m(1~21#墩,21#至30#墩梁宽渐变)。高架段箱梁参数统计表如下: 表1:桥梁箱梁参数统计表 2m梁高双线单箱单室箱梁断面图如下(腹板加厚段): 图1.1:双线简支梁标准断面箱梁 1

支架受力计算

支架受力计算 7.1 碗扣式满堂支架计算 7.1.1 材料技术参数 (1)钢管截面特性 外径 (Φd ) 壁厚 (t ) 截面积A (cm 2) 惯性矩 I (cm 4) 截面模量W (cm 3) 回转半径 i (cm ) 每米重 (kg/m ) Φ48 3.5 4.89 12.19 5.08 1.58 3.84 Q235钢钢材的强度设计值与弹性模量 抗拉、抗弯f 抗 压fc 弹性模量E 205MPa 205MPa 2.06?105MPa (3)12mm 竹胶板力学特征: A=1000*12=12×10-3m2 ; W=1/6*b*h^2=24*10^-6m3 ; I=1/12*b*h^3=144×10-9m4 EI=10×10^6×144×10^-9=1.44KN.m2 EA=10×10^6×12×10-3=120000KN 竹胶板:弯应力[ ]13MPa σ=弯曲剪应力 [ ] 1.7MPa τ= 7.1.3 荷载取值与组合 荷载分项系数 序号 荷 载 类 别 大小 γi P1 模板及支撑系统 1000 Pa 1.2 支架相关自重 P2 新浇筑混凝土、钢筋混凝土自重46.185*2.45+19.484=132.64t ,面积120.69m2,10770Pa 容重按2.45计算 1.2 P3 施工人员及施工机具运输或堆放的荷载 2500 Pa 1.4 P4 倾倒混凝土时产生的竖向荷载 2000 Pa 1.4 P5 振捣混凝土时产生的竖向荷载 2000 Pa 1.4 (1)计算满堂架强度:采用P1+P2+P3+P4+P5组合。 (2)计算满堂架刚度:采用P1+P2组合。 7.1.4 荷载计算 12345p () 1.2(+) 1.4P P P P P =+?++?

满堂支架计算

东乌-包西铁路联络线工程格德尔盖公路中桥 现浇箱梁模板及满堂支架计算书 一、荷载计算1.1荷载分析 根据本桥现浇箱梁的结构特点,在施工过程中将涉及到以下荷载形式: ⑴ q 1—— 箱梁自重荷载,新浇混凝土密度取2600kg/m 。 ⑵ q 2—— 箱梁内模、底模、内模支撑及外模支撑荷载,按均布荷载计算,经计算取q 2 ⑶ =1.0kPa (偏于安全)。 q 3—— 施工人员、施工材料和机具荷载,按均布荷载计算,当计算模板及其下肋条 时取2.5kPa ;当计算肋条下的梁时取1.5kPa ;当计算支架立柱及替他承载构 件时取1.0kPa 。 ⑷ q 4—— 振捣混凝土产生的荷载,对底板取2.0kPa ,对侧板取4.0kPa 。 ⑸ q 5—— 新浇混凝土对侧模的压力。 ⑹ q 6 —— 倾倒混凝土产生的水平荷载,取2.0kPa 。 ⑺ q 7 —— 支架自重,经计算支架在不同布置形式时其自重如下表所示: 1.2荷载组合 3

1.3荷载计算 1.3.1 箱梁自重——q 1计算 根据跨G208国道现浇箱梁结构特点,我们取5-5截面(桥墩断面两侧)、6-6截面( 跨中横隔板梁)两个代表截面进行箱梁自重计算,并对两个代表截面下的支架体系进行检算 ,首先分别进行自重计算。 ① 预应力箱梁桥墩断面q 1 计算 连续梁支点断面图 连 续梁1200支点断面图 1.5% 1.5% 1200 1.5% 200 200 2580 25 100 750 1.5% 25 200 25 200 根据横断面图,用C AD 算得该处梁体截面积A =12.7975m 则: q 1 = W γc A = = B B 26 12.7975 7.5 44.365kPa 取1.2的安全系数,则q 1=44.365×1.2=53.238kPa 注:B —— 箱梁底宽,取7.5m ,将箱梁全部重量平均到底宽范围内计算偏于安全。 ② 预应力箱梁跨中断面q 1 计算 连续梁跨中断面图 1200 1.5% 1.5% 20 40 20 200 25 750 25 200 2 ⑸+⑹ ⑸ 15 145 113 侧模计算 40 15 145 113 60 750 22 15 145 113 22 20 20

满堂支架结构验算

满堂支架结构验算 一、总体设计说明 采用Φ48×3.5mm碗扣式钢管支架。梁重分配原则为:假定箱梁腹板的重量仅由腹板下的立杆承受,顶板和底板的重量之和仅由底板下的立杆承受,翼缘板的重量仅由翼缘板下的立杆承受。 具体布置为: ①在全桥长度范围内,底板下的立杆布置为(纵距×横距)90cm×30cm;翼缘板下的立杆布置为90cm×90cm。考虑到腹板较重,腹板下立杆布置为90cm×30cm。立杆步距均为90 cm。 ②纵木采用10cm×10cm方木,间距20cm沿横桥向满铺,横木采用15cm ×15cm方木。 ③剪刀撑设置:横向剪刀撑每间隔6m设置一道,纵向剪刀撑在两个腹板下及两侧外围均需设置一道,共计4道。 支架的详细布置见设计图。 二、支架基本承载力与设计荷载 1、支架基本承载力 Φ48×3.5mm碗扣式钢管,立杆、横杆承载性能见表1。 表1立杆、横杆承载性 2、设计荷载 (1)箱梁自重,箱梁混凝土容重26KN/m3; (2)模板荷载,按 5.5 KN/m2计; (3)施工荷载,按3.0 KN/m2计; (4)砼振捣荷载,按2.5 KN/m2计; (5)倾倒混凝土荷载,按3KN/m2计;

(2)~(5)荷载合计为14 KN/m2。 三、立杆竖向承载力验算 1、0#-1#梁段(梁高3.05m)腹板下立杆荷载分析: 碗扣式立杆分布90cm×30cm,层距60cm。 图中三个截面分别代表纵断面不同部位:1、端头截面1为0#端头向大里程方向200cm处,2、端头截面2为1#端头向小里程方向100cm处,3、跨中截面为梁体跨中处。综合考虑,则: 端头截面1 连续梁单侧截面翼板面积:g1=1.48m2; 连续梁单侧截面腹板面积:g2=5.02m2; 连续梁单侧截面中板面积:g3=2.56m2; 连续梁单侧截面中板面积:g4=6.75m2; 1、中板处断面面积为6.75 m2,6.75×26/3.1=56.61KN/m2, 荷载组合:1.2×56.61+1.4×14.0=87.5KN/m2, 则单根立杆受力为:N=87.5×0.9×0.3=23.62KN<[ 35 KN](满足)。2、梁段翼缘板下立杆荷载分析 碗扣立杆分布90cm×90cm,横杆层距(即立杆步距)90cm。 翼缘板处断面面积为1.48 m2,1.04×26/3 .34=8.09KN/m2, 荷载组合:1.2×8.09+1.4×14.0=29.308KN/m2,

满堂支架计算DOC

满堂支架计算.(DOC)

————————————————————————————————作者:————————————————————————————————日期:

东乌-包西铁路联络线工程格德尔盖公路中桥 现浇箱梁模板及满堂支架计算书 一、荷载计算1.1荷载分析 根据本桥现浇箱梁的结构特点,在施工过程中将涉及到以下荷载形式: ⑴ q1——箱梁自重荷载,新浇混凝土密度取2600kg/m3。 ⑵q2——箱梁内模、底模、内模支撑及外模支撑荷载,按均布荷载计算,经计算取 q2=1.0kPa(偏于安全)。 ——施工人员、施工材料和机具荷载,按均布荷载计算,当计算模板及其下肋 ⑶q 3 条时取2.5kPa;当计算肋条下的梁时取1.5kPa;当计算支架立柱及替 他承载构件时取1.0kPa。 ——振捣混凝土产生的荷载,对底板取2.0kPa,对侧板取4.0kPa。 ⑷q 4 ⑸ q5——新浇混凝土对侧模的压力。 ——倾倒混凝土产生的水平荷载,取2.0kPa。 ⑹ q 6 ⑺q7——支架自重,经计算支架在不同布置形式时其自重如下表所示: 满堂钢管支架自重 立杆横桥向间距×立杆纵桥向间距×横杆步 支架自重q7的计算值(kPa) 距 60cm×60cm×120cm 2.94 60cm×90cm×120cm 2.21 1.2荷载组合 模板、支架设计计算荷载组合 荷载组合 模板结构名称 强度计算刚度检算 底模及支架系统计算⑴+⑵+⑶+⑷+⑺⑴+⑵+⑺ 侧模计算⑸+⑹⑸

1.3荷载计算 1.3.1 箱梁自重——q 1计算 根据跨G208国道现浇箱梁结构特点,我们取5-5截面(桥墩断面两侧)、6-6截面(跨中横隔板梁)两个代表截面进行箱梁自重计算,并对两个代表截面下的支架体系进行检算,首先分别进行自重计算。 ① 预应力箱梁桥墩断面q1计算 根据横断面图,用CAD 算得该处梁体截面积A=12.7975m 2则: q 1 = B W =B A c ?γ=kPa 365.445.77975 .1226=? 取1.2的安全系数,则q 1=44.365×1.2=53.238kPa 注:B —— 箱梁底宽,取7.5m ,将箱梁全部重量平均到底宽范围内计算偏于安全。 ② 预应力箱梁跨中断面q 1计算 1200 4080 100 15 75025 200 145 113 60 1.5% 1.5% 25 200 连续梁支点断面图 1200 22 2040 15 75020 25 200 145 113 22 20 20 1.5% 1.5% 25 200 连续梁跨中断面图

满堂脚手架计算书

满堂脚手架计算书计算依据: 1、《建筑施工扣件式钢管脚手架安全技术规范》JGJ130-2011 2、《建筑施工高处作业安全技术规范》JGJ80-91 3、《建筑地基基础设计规范》GB50007-2011 4、《建筑结构荷载规范》GB50009-2012 5、《钢结构设计规范》GB50017-2003 」、架体参数

州、,夹 、何载参数 三、设计简图 搭设示意图: 平台水平支撑钢管布置图 平面图

侧立面图 G ik=g ik=0.04kN/m G 2k=g2k Xl b/(n+1)=0.35 X 1.0/(2+1)=0.12kN/m Q ik=q ik Xl b/(n+1)=1 X 1. 0/(2+1)=0.33kN/m Q 2k=q2k Xl b/(n+1)=3 X 1.0/(2+1)=1.0kN/m 1 、强度验算 板底支撑钢管按照均布荷载下简支梁计算 满堂脚手架平台上的无集中力 q=1.2 X ?+G k)+1.4 X (Q1k+Q k)=1.2 X (0.04+0.1 2)+1.4 X( 1.0+0.33)=2.054

板底支撑钢管计算简图 M ma>=ql 78=2.054 X 1. 02/8=0.257 kN ?m R ma>=ql/2=2.054 X 1.0/2=1.027kN (T =MUW=0.257X 106/(5.26 X 103)=48.86N/mmf w [f]=205N/mm2 满足要求! 满堂脚手架平台上增加集中力最不利计算 q=1 .2 X (G1k+G2k)+1 .4 X (Q1k+Q2k)=1 .2 X (0.04+0.1 2)+1.4X(1.0+0.33)=2.054 q 2=1.4 XF1=1.4 X 1=1.4kN 板底支撑钢管计算简图 弯矩图 M ma>=0.607kN ?m 剪力图 R maxf=1.727kN (T =MUW=0.607X 106/(5.26 X 103)=115.399N/mni< [f]=205N/mm2 满足要求! 2 、挠度验算

满堂支架计算

东乌-包西铁路联络线工程格德尔盖公路中桥现浇箱梁模板及满堂支架计算书 一、荷载计算1.1荷载分析 根据本桥现浇箱梁的结构特点,在施工过程中将涉及到以下荷载形式: ⑴ q1——箱梁自重荷载,新浇混凝土密度取2600kg/m3。 ⑵q2——箱梁内模、底模、内模支撑及外模支撑荷载,按均布荷载计算,经计算取q2 =1.0kPa(偏于安全)。 ⑶q3——施工人员、施工材料和机具荷载,按均布荷载计算,当计算模板及其下肋条 时取2.5kPa;当计算肋条下的梁时取1.5kPa;当计算支架立柱及替他承载构 件时取1.0kPa。 ⑷ q4——振捣混凝土产生的荷载,对底板取2.0kPa,对侧板取4.0kPa。 ⑸ q5——新浇混凝土对侧模的压力。 ⑹ q6——倾倒混凝土产生的水平荷载,取2.0kPa。 ⑺ q7——支架自重,经计算支架在不同布置形式时其自重如下表所示: 满堂钢管支架自重 1.2荷载组合

模板、支架设计计算荷载组合 1.3荷载计算 1.3.1 箱梁自重——q 1计算 根据跨G208国道现浇箱梁结构特点,我们取5-5截面(桥墩断面两侧)、6-6截面(跨中横隔板梁)两个代表截面进行箱梁自重计算,并对两个代表截面下的支架体系进行检算,首先分别进行自重计算。 ① 预应力箱梁桥墩断面q 1计算 根据横断面图,用CAD 算得该处梁体截面积A=12.7975m 2则: q 1 = B W =B A c ?γ=kPa 365.445.77975.1226=? 取1.2的安全系数,则q 1=44.365×1.2=53.238kPa 注: B —— 箱梁底宽,取7.5m ,将箱梁全部重量平均到底宽范围内计算偏于安全。 ② 预应力箱梁跨中断面q 1计算 根据横断面图,用CAD 算得梁体截面积A=5.342m 2则: q 1= B W =B A c ?γ= 18.52kPa 5 .75.342 26=? 取1.2的安全系数,则q 1=18.52×1.2=22.224kPa 注:B —— 箱梁底宽,取6.7m ,将箱梁全部重量平均到底宽范围内计算偏于安全。 120015 750 25200145 113 1.5% 1.5% 25 200 连续梁支点断面图

相关文档
最新文档