电厂水处理中背压阀与阻尼器的应用

电厂水处理中背压阀与阻尼器的应用
电厂水处理中背压阀与阻尼器的应用

龙源期刊网 https://www.360docs.net/doc/fd6206308.html,

电厂水处理中背压阀与阻尼器的应用

作者:佘鹏勃

来源:《科技视界》2013年第18期

【摘要】本文以某火电厂水的预处理中的加药管道为例,主要针对电厂水处理预处理中

加混凝剂管道中的背压阀及阻尼器,对加药系统的影响的实验探讨;通过此实验,我们得出结论,阻尼器和背压阀在水的预处理加药管道中不可缺少,其作用不但是调节加药泵的脉冲作用出口压力,对泵的出力也有着比较大的影响,加入阻尼器和背压阀后,加药量和泵的频率呈线性,也就是说在取水浊度变化时,可以根据这个线性关系调节加药量,即调节加药泵的加药频率,从而改善水的预处理效果。虽然加入背压阀及阻尼器会增加一定的成本,但是对于水质的调节改善效果是直接的,可以保证更合理的加药量,更好的池水浊度,保证水的后续处理。因此,在水的预处理加药管道中必须有背压阀和阻尼器。

【关键词】水的预处理;混凝剂加药管道;背压阀;阻尼器

0 引言

大家都知道在电厂水的预处理中,加药管道中有两个设备不可缺少,就是背压阀和阻尼器,但是可能会有一些人不知道为什么一定要有这两个设备的存在,本文就主要针对这个问题做解答,使大家对这两个设备更全面的了解。

1 火力电厂水处理中预处理原理

天然水中含有泥砂、粘土、腐殖质等悬浮物和胶体,在对原水进行深度处理之前,必须将它们去除。悬浮颗粒的直径大于0.1μm,而胶体的粒径处于0.001-0.1μm之间。尺寸较大的杂质可以依靠自然沉降除去,而尺寸较小的悬浮物和胶体在停留时间有限的水处理构建物中无法依靠重力沉降下来。处于长期悬浮的稳定状态,可通过混凝处理使它们聚集成大颗粒而除去。因此在火力电厂水处理中,最初的处理是预处理,即混凝处理,原理是:利用混凝剂形成带正电的胶体与水中带负电的胶体发生电中和作用,使水中的有机物和胶体凝聚成大颗粒而下沉,从而使水中的悬浮物、胶体物、有机物、微生物、铁、锰、等杂质除去或是含量降低到一定的程度。一般会在水中加入混凝剂,本文主要是针对混凝剂加入管道中的背压阀与阻尼器的作用的讨论。阻尼器的位置设在加药泵的出口门之后,然后加入一个压力表,用于反应阻尼器的出口压力,再加入背压阀,用来调剂出口压力。

2 脉动阻尼器及背压阀的原理和作用

阻尼器的原理及作用:阻尼器是消除管路内往复泵引起的脉动和水锤现象的一个常用装置。它利用腔体内气体的可压缩性,存储和释放液体,达到减小管路中压力和流量波动的目的。其工作原理是在泵的排出冲程,脉冲缓冲器内气体被压缩,脉冲缓冲器内的液体量增加,

某教学楼应用阻尼器的抗震性能分析

龙源期刊网 https://www.360docs.net/doc/fd6206308.html, 某教学楼应用阻尼器的抗震性能分析 作者:徐倩 来源:《建筑与装饰》2016年第06期 摘要传统的抗震结构体系通常是加大结构本身的性能来抵御地震作用,消能减震结构体系是通过给结构添加消能减震装置来耗散地震能量达到抗震目的。黏滞阻尼器具有构造简单、材料经济、环境影响小、便于施工、减震效果明显、对原结构干扰小的优点,目前在很多领域都有应用。 关键词黏滞阻尼器;弹性时程分析;弹塑性时程分析 1 前言 黏滞耗能阻尼器的研发和应用,等于给建筑或桥梁装上了"安全气囊"。在地震来临时,阻尼器最大限度吸收和消耗了地震对建筑结构的冲击能量,大大缓解了地震对建筑结构造成的冲击和破坏。 2 工程概况 小学教学楼2#楼占地1087.68平方米,建筑面积5510.06平方米。本工程抗震设防烈度为8(0.2g),地震分组:第三组,场地类别:Ⅱ类。教学楼的3D模型图如图1所示。 3 确定阻尼器的参数和数量及安装位置和型式 阻尼器的安装位置:楼层平面内的布置遵循“均匀、分散、对称”的原则[1]。阻尼器竖向布置应先对非减震结构进行计算分析,确定层间位移角最大楼层,将阻尼器安装在此楼层处,安装数量根据具体情况而定,然后再对安装了阻尼器的结构进行分析,再将阻尼器安装到此时层间位移角最大楼层,如此循环直到将所有阻尼器安装完毕[2-3]。阻尼器连接单元在模型中的模拟形式如下图2所示,表1 黏滞阻尼器技术参数及布置表: 4 结构弹性时程分析 《建筑抗震设计规范》(GB50011-2010)[4]5.1.2条规定,采用5条天然波2条人工波《建筑抗震设计规范》(GB50011-2010)[4]5.1.2条规定,采用5条天然波2条人工波 在表2和图3. 在ETABS分析中,弹性时程分析采用软件所提供的快速非线性分析(FNA)方法,得出层间位移角表3 。

二阶弹簧-阻尼系统PID控制器参数整定

《控制系统仿真与CAD》大作业 二阶弹簧—阻尼系统的PID控制器设计及参数整定 学校:上海海事大学 学院:物流工程学院 专业:电气工程及其自动化 班级:电气173班 学号:************ 姓名:李** 老师:** 时间:2020年6月13日

1. 题目与要求 考虑弹簧-阻尼系统如图1所示,其被控对象为二阶环节,传递函数()G s 如下,参数为M=1kg ,b=2N.s/m ,k=25N/m ,()1F s =。设计要求:用.m 文件和simulink 模型完成。 图 1 弹簧--阻尼系统 (1)控制器为P 控制器时,改变比例系数大小,分析其对系统性能的影响并绘制相应曲线。 (2)控制器为PI 控制器时,改变积分系数大小,分析其对系统性能的影响并绘制相应曲线。(例如当Kp=50时,改变积分系数大小) (3)设计PID 控制器,选定合适的控制器参数,使闭环系统阶跃响应曲线的超调量σ%<20%,过渡过程时间Ts<2s, 并绘制相应曲线。 2. 分析: (1)根据受力分析可得系统合力与位移之间微分方程: F kx x b x M =++&&& (2)对上得微分方程进行拉普拉斯变换,转化后的系统开环传递函数: 25211)()()(22++= ++== s s k bs Ms s F s X s G (3)系统输入为力R(S)=F(S),系统输出C(S)为位移X(S),系统框图如下: 图 2 闭环控制系统结构图 3. 控制器为P 控制器时: 控制器的传递函数p p K s G =)(,分别取p K 为1,10,20,30,40,50,60,70,80, (1)simulink 构建仿真模型如图3,文件名为:P_ctrl ;

背压阀工作原理

背压阀工作原理 背压阀其作用主要是使回油管路保持一定压力,使执行机构动作平稳,还有用在中位卸荷的电液换向阀的回油路上,一般溢流阀,单向阀,顺序阀等可以用作背压阀

一、概述 计量泵等容积泵在低系统压力下工作时,都会出现过量输送。为防止类似问题,必须在 计量泵的进出口至少0.7Bar的背压。通过在计量泵出口管道中安装背压阀就能达到目

的。 二、主要功能 1. 为背压阀两端管路提供压力差 2. 在要求不是很严格的系统中可作为安全阀使用。 3. 和脉动阻尼器配合使用减小水锤对系统的危害,减小流速波动的峰值,保护管路、弯头、接头不受压力波动的冲击。 4. 为计量泵创造良好的工作环境并改善泵的工作性能。 三、工作原理 背压阀是通过弹簧的弹力来工作的。当系统压力比设定压力小时,膜片在弹簧弹力的作用下堵塞管路;当系统压力比设定压力大时,膜片压缩弹簧,管路接通,液体通过背压阀。 四、背压阀的使用 在出口管路中,背压阀应和脉动阻尼器同时使用,用脉动阻尼器吸收泵和背压阀之间的流量峰值。没有脉动阻尼器时,背压阀将随着每次泵冲程的进行而快速打开和关闭。有脉动阻尼器时,背压阀将在半开和半关的位置上振荡,因而脉动阻尼器可以减少背压阀的磨损速度。 对于大流量的泵,且出口管路长而细,背压阀的安装位置应靠近加注点,以减小虹吸的趋势。 当输送含有悬浮状固体的介质,在背压阀入口端应安装带管堵的三通(或四通),使管路在不拆卸的情况下能够进行清洗。 背压阀只是一种管路元件,只有与其它管路元件(如脉动阻尼器、安全阀、止回阀、截止阀)配合使用才能发挥最大效用。 五、选型指南 管路通径有DN6、8、10、15、20、25、32、40、50、65、80、100十二个型号。 入口端压力有0.3MPa与1.0MPa两个系列,进出口端压力差可以通过调节弹簧长度调节。 材质有PVC(P)、SS304/316不锈钢(S)、碳钢(A) 进出口联接方式提供内螺纹、法兰、软管接头三种方式供选择。 基于公司先前的经验,可获得的专业信息及用户提供的工艺信息,我公司将向用户推荐物料接触部件材质,由用户决定材料的选用。广州拓跃环保设备有限公司不承担由于磨损或腐蚀所造成的损失及损坏部件或产品的保修。 六、注意事项 1、避免与系统发生共振。 2、与脉动阻尼器同时使用时,脉动阻尼器应安在泵与背压阀间,以吸收泵与背压阀间的流量峰值。减缓背压阀的磨损速度。 3、室外使用应加防护棚或防护罩。 4、对背压阀进行任何维护以前,应停止运转设备,释放压力,关闭背压阀与系统相联的阀门,同时确认脉动阻尼器内没有压力。维修时注意防止被输送液体伤害人体。 5、若背压阀进出口接反,背压将会成倍增加,给系统带来危害并可能发生危险。 6、运转中发现背压阀发生故障应及时切断电源。 7、若有疑问,请与我公司联系。 警告:对背压阀进行任何维护以前,应停止运转设备,释放压力,关闭背压阀与系统相联的阀门,同时确认脉动阻尼器内没有压力。维修时注意防止被输送液体伤害人体。

二阶弹簧—阻尼系统,PID控制器设计,参数整定

二阶弹簧—阻尼系统的PID控制器设计及参数整定

一、PID 控制的应用研究现状综述 PID 控制器(按闭环系统误差的比例、积分和微分进行控制 的调节器)自20世纪30年代末期出现以来,在工业控制领域得到了很大的发展和广泛的应用。它的结构简单,参数易于调整,在长期应用中已积累了丰富的经验。特别是在工业过程控制中,由于被控制对象的精确的数学模型难以建立,系统的参数经常发生变化,运用控制理论分析综合不仅要耗费很大代价,而且难以得到预期的控制效果。在应用计算机实现控制的系统中,PID 很容易通过编制计算机语言实现。由于软件系统的灵活性,PID 算法可以得到修正和完善,从而使数字PID 具有很大的灵活性和适用性。 二、研究原理 比例控制器的传递函数为:()P P G s K = 积分控制器的传递函数为:11()PI P I G s K T s =+ ? 微分控制器的传递函数为:11 ()PID P D I G s K T s T s =+ ?+? 三、设计题目 设计控制器并给出每种控制器控制的仿真结果(被控对象为二阶环节,传递 函数()G S ,参数为M=1 kg, b=2 N.s/m, k=25 N/m, F(S)=1);系统示意图如图1所示。

图1 弹簧-阻尼系统示意图 弹簧-阻尼系统的微分方程和传递函数为: F kx x b x M =++ 25 21 1)()()(22++= ++== s s k bs Ms s F s X s G 四、设计要求 通过使用MATLAB 对二阶弹簧——阻尼系统的控制器(分别使用P 、PI 、PID 控制器)设计及其参数整定,定量分析比例系数、积分时间与微分时间对系统性能的影响。同时、掌握MATLAB 语言的基本知识进行控制系统仿真和辅助设计,学会运用SIMULINK 对系统进行仿真,掌握PID 控制器参数的设计。 (1)控制器为P 控制器时,改变比例带或比例系数大小,分析对系统性能的影响并绘制响应曲线。 (2)控制器为PI 控制器时,改变积分时间常数大小,分析对系统性能的影响并绘制相应曲线。(当kp=50时,改变积分时间常数)

二阶弹簧阻尼系统ID控制器设计参数整定

二阶弹簧阻尼系统I D控制器设计参数整定 This model paper was revised by the Standardization Office on December 10, 2020

二阶弹簧—阻尼系统的PID 控制器设计及参数整定 一、PID 控制的应用研究现状综述 PID 控制器(按闭环系统误差的比例、积分和微分进行控制的调节器)自20世纪30年代末期出现以来,在工业控制领域得到了很大的发展和广泛的应用。它的结构简单,参数易于调整,在长期应用中已积累了丰富的经验。特别是在工业过程控制中,由于被控制对象的精确的数学模型难以建立,系统的参数经常发生变化,运用控制理论分析综合不仅要耗费很大代价,而且难以得到预期的控制效果。在应用计算机实现控制的系统中,PID 很容易通过编制计算机语言实现。由于软件系统的灵活性,PID 算法可以得到修正和完善,从而使数字PID 具有很大的灵活性和适用性。 二、研究原理 比例控制器的传递函数为: ()P P G s K = 积分控制器的传递函数为: 11()PI P I G s K T s =+? 微分控制器的传递函数为: 11()PID P D I G s K T s T s =+?+? 三、设计题目 设计控制器并给出每种控制器控制的仿真结果(被控对象为二阶环节,传递 函数()G S ,参数为M=1 kg, b=2 m, k=25 N/m, F(S)=1);系统示意图如图1所示。 图1 弹簧-阻尼系统示意图 弹簧-阻尼系统的微分方程和传递函数为: 四、设计要求

通过使用MATLAB 对二阶弹簧——阻尼系统的控制器(分别使用P 、PI 、PID 控制器)设计及其参数整定,定量分析比例系数、积分时间与微分时间对系统性能的影响。同时、掌握MATLAB 语言的基本知识进行控制系统仿真和辅助设计,学会运用SIMULINK 对系统进行仿真,掌握PID 控制器参数的设计。 (1)控制器为P 控制器时,改变比例带或比例系数大小,分析对系统性能的影响并绘制响应曲线。 (2)控制器为PI 控制器时,改变积分时间常数大小,分析对系统性能的影响并绘制相应曲线。(当kp=50时,改变积分时间常数) (3)设计PID 控制器,选定合适的控制器参数,使阶跃响应曲线的超调量%20%σ<,过渡过程时间2s t s <,并绘制相应曲线。 图2 闭环控制系统结构图 五、设计内容 (1)P 控制器:P 控制器的传递函数为: ()P P G s K =(分别取比例系数K 等于1、10、30和50,得图所示) Scope 输出波形: 仿真结果表明:随着Kp 值的增大,系统响应超调量加大,动作灵敏,系统的响应速度加快。Kp 偏大,则振荡次数加多,调节时间加长。随着Kp 增大,系统的稳态误差减小,调节应精度越高,但是系统容易产生超调,并且加大Kp 只能减小稳态误差,却不能消除稳态误差。 (2)PI 控制器:PI 控制器的传递函数为: 11()PI P I G s K T s =+? (K=50, 分别取积分时间Ti 等于10、1和得图所示)

液压阻尼器工作原理

液压阻尼器是上世纪70年代发展起来的一种对速度反应灵敏的减振装置,它借助特殊结构阀门控制液压缸活塞移动以抑制管道或设备周期性载荷和冲击载荷影响。其主要用于防止管道或设备因地震、水锤、汽锤、风载、安全阀排汽及其它冲击载荷所造成的破坏。 液压阻尼器的工作过程可以用“刚柔相济”来描述,在管道或设备正常热膨胀时能随之缓慢移动,此时其几乎没有阻尼力,此时表现为“柔”;在载荷瞬变时液压阻尼器的阀门被激活,此时其产生出与振动力同样大小的反向阻力,扼制管道或设备产生较大的振动,减少振幅,从而起到保护管道或设备的作用,此时表现为“刚”。 液压阻尼器是一种速度敏感性的装置。当由力所引起的运动超过允许速度时,阻尼器将锁定、带载,并将速度限制在一个叫做闭锁后速度或渗漏率(bleed rate)的速度值。因此,测试液压阻尼器时,所感兴趣的参数如下:为额定载荷下的闭锁速度(lock-up velocity)、闭锁后速度或渗漏率、等值弹簧刚度(Stiffness)。 ?正常工况下活塞杆速度V<闭锁速度V闭,对管道的作用力很小,f低≤ 1~2%FN; ?当发生瞬间冲击载荷时,V增大达到V闭时,液压油推动阀芯,使阀芯克服弹簧力关闭,液压油只能从阻尼小孔(节流阀)流过,形成阻尼力FN,使阻尼器闭锁。从而实现减振、抗振动的目的。 ?对于抗安全阀排汽型阻尼器,由于阀芯不设阻尼小孔,液压介质无法流动,因此,闭锁后速度V闭后=0。从而实现阻尼器对管道的持续拉力。 液压阻尼器的应用场合 液压阻尼器可广泛应用于核电、火电、钢铁、石化等各行业。液压阻尼器可以保护的对象,常见的有:管道系统、主泵、重要的阀、重要压力容器、汽轮机、主承梁等。 液压阻尼器可保护设备免受以下工况事故的破坏: 内部工况事故: 水锤、汽锤 安全阀排汽 主汽门快速关闭 锅炉爆炸 破管等 外部工况事故:

脉冲阻尼器原理及选型

脉动阻尼器 脉动阻尼器是一种用于消除管道内液体压力脉动或者流量脉动的压力容器。可起到稳定流体压力和流量、消除管道振动、保护下游仪表和设备、增加泵容积效率等作用。 脉动阻尼器的原理主要有两种。 1.气囊式:利用气囊中惰性压缩气体的收缩和膨胀来吸收液体的压力或者流量脉动, 此类脉动阻尼器适用于脉动频率小于7Hz的应用,因为如果频率太高则膜片或气囊来不及响应,起不到消除脉动的效果; 2.无移动部件式:利用固体介质直接拦截流体从而达到缓冲压力脉动或流量脉动的效果,此类脉动阻尼器适用于高频脉动的应用。 脉动阻尼器分类: 1.按照缓冲介质分类: 分为压缩惰性气体缓冲式和无移动部件式,其中压缩惰性气体缓冲式又分为膜片式和气囊式等,无移动部件式分为金属结构式和陶瓷结构式等: 分为三元乙丙橡胶、丁纳橡胶、氟橡胶、聚四氟、金属、陶瓷等内部材质类型; 分为单孔式和双孔式; 分为直通式和非直通式; 消除管道振动;减小压力脉动;减小流量浮动;保护下游仪器和设备;装在泵的前端,增加泵的容积效率,提高输出功率。 选择适合的脉动阻尼器,应首先根据现场实际情况和工艺要求确定所需达到的脉动消除率指标,然后根据此技术指标进行定量选型。 准确的脉动阻尼器选型应根据流量、压力、泵类型、泵转速、泵缸数、泵相位差(多级泵)、脉动消除率、应用目的、管道流体成分、管道流体密度、管道流体粘度、管道流体温度等参数综合计算和分析后确定。 通过以上参数,关键需要计算出流体的脉冲量(即1次脉冲所输送的液体体积)和脉动频率。再结合脉动消除率指标,即可初步计算出所需要的脉动阻尼器类型和容积。

例如,要求残余脉动控制在10%以内、脉冲量为1升/次、脉动频率为2次/秒,则脉动阻尼器可选用膜片式或气囊式,容积至少为10升。 根据客户不同的实际应用,最高可以达到99.9%以上的脉动消除率,即残余脉动控制在0.1%以内。 例如:用于消除管道振动推荐残余压力脉动控制在3%以内; 用于保证涡街流量计精度则推荐残余流量脉动控制在0.75%以内。 脉动阻尼器是一种压力容器,由于材料、制造技术及实际应用的限制,脉动阻尼器一般承压在500公斤/平方厘米左右(特殊应用也可以更高),耐温大约数百摄氏度。

二阶弹簧—阻尼系统,PID控制器设计,参数整定

*** 二阶弹簧—阻尼系统的PID控制器设计及参数整定

一、PID 控制的应用研究现状综述 PID 控制器(按闭环系统误差的比例、积分和微分进行控制的调节器)自20 世纪30 年代末期出现以来,在工业控制领域得到了很大的发展和广泛的应用。它的结构简单,参数易于调整, 在长期应用中已积累了丰富的经验。特别是在工业过程控制中, 由于被控制对象的精确的数学模型难以建立,系统的参数经常发生变化,运用控制理论分析综合不仅要耗费很大代价,而且难以得到预期的控制效果。在应用计算机实现控制的系统中,PID 很容易通过编制计算机语言实现。由于软件系统的灵活性,PID 算法可以得到修正和完善,从而使数字PID 具有很大的灵活性和适用性。 二、研究原理 比例控制器的传递函数为:G (s) K P P G (s) K PI P 1 1 T s I 积分控制器的传递函数为: 1 1 G (s) K T s PID P D T s I 微分控制器的传递函数为: 三、设计题目 设计控制器并给出每种控制器控制的仿真结果(被控对象为二阶环节,传递函数G S ,参数为M=1 kg, b=2 N.s/m, k=25 N/m, F(S)=1 );系统示意图如图 1 所示。

图1 弹簧-阻尼系统示意图弹簧-阻尼系统的微分方程和传递函数为:M x bx kx F G( s) X F ( ( s) s) Ms 1 1 2 bs k s2 s 2 25 四、设计要求 通过使用MATLAB 对二阶弹簧——阻尼系统的控制器(分别使用P、PI、PID 控制器)设计及其参数整定,定量 分析比例系数、积分时间与微分时间对系统性能的影响。同 时、掌握MATLAB 语言的基本知识进行控制系统仿真和辅 助设计,学会运用SIMULINK 对系统进行仿真,掌握PID 控制器参数的设计。 (1)控制器为P 控制器时,改变比例带或比例系数大小,分析对系统性能的影响并绘制响应曲线。 (2)控制器为PI 控制器时,改变积分时间常数大小, 分析对系统性能的影响并绘制相应曲线。(当kp=50 时,改变积分时间常数)

调谐高质量阻尼器(TMD)在高层抗震中地应用

调谐质量阻尼器(TMD)在高层抗震中的应用 摘要:随着经济的发展,高层建筑大量涌现,TMD系统被广泛应用。越来越多的学者对TMD系统进行研究和改进。本文介绍了TMD系统的基本工作原理,总结了其各种新形式,分析了它的研究现状,并指出了两个新的研究方向等。 关键词:TMD系统高层建筑抗震原理发展应用 The use of the tuned mass damper in the seismic resistance of the high-rise building Abstract:With the economic development, the high-rise buildings spring up, then, the tuned mass dampers are extensively used. More and more scholars research and improve the tuned mass damper. This thesis introduces the operating principle of the tuned mass damper,summarizes many new forms of the tuned mass damper, analyzes its research status and even points out two new research directions. Keyword: the tuned mass damper the high-rise building seismic resistance principle development use 1.引言 随着社会经济的快速发展,城市人口密度不断增长,城市建筑用地日益紧张,高层建筑成为城市化发展的必然趋势[1-3]。高层及超高层建筑的不断涌现,加上建筑物的高度和高宽比的增加以及轻质高强材料的应用,导致结构刚度和阻尼不断下降。建筑物在强风或地震等激励作用下的动力反应强烈,难以满足建筑结构安全性、舒适性和使用性的要求。传统的采用提高结构强度和刚度来抗风抗震的设计方法,存在着一定的弊端[1]:(1)经济性差;(2)安全性难以保证。这主

弹簧 质量 阻尼系统的建模与控制系统设计

分数: ___________ 任课教师签字:___________ 华北电力大学研究生结课作业 学年学期:第一学年第一学期 课程名称:线性系统理论 学生姓名: 学号:

提交时间:目录

弹簧-质量-阻尼系统的建模与控制系统设计 1 研究背景及意义 弹簧、阻尼器、质量块是组成机械系统的理想元件。由它们组成的弹簧-质量-阻尼系统是最常见的机械振动系统,在生活中具有相当广泛的用途,缓冲器就是其中的一种。缓冲装置是吸收和耗散过程产生能量的主要部件,其吸收耗散能量的能力大小直接关系到系统的安全与稳定。缓冲器在生活中处处可见,例如我们的汽车减震装置和用来消耗碰撞能量的缓冲器,其缓冲系统的性能直接影响着汽车的稳定与驾驶员安全;另外,天宫一号在太空实现交会对接时缓冲系统的稳定与否直接影响着交会对接的成功。因此,对弹簧-质量-阻尼系统的研究有着非常深的现实意义。 2 弹簧-质量-阻尼模型 数学模型是定量地描述系统的动态特性,揭示系统的结构、参数与动态特性之间关系的数学表达式。其中,微分方程是基本的数学模型,不论是机械的、液压的、电气的或热力学的系统等都可以用微分方程来描述。微分方程的解就是系统在输入作用下的输出响应。所以,建立数学模型是研究系统、预测其动态响应的前提。通常情况下,列写机械振动系统的微分方程都是应用力学中的牛顿定律、质量守恒定律等。 弹簧-质量-阻尼系统是最常见的机械振动系统。机械系统如图所示,

图2-1弹簧-质量-阻尼系统机械结构简图 其中、表示小车的质量,表示缓冲器的粘滞摩擦系数,表示弹簧的弹性系数,表示小车所受的外力,是系统的输入即,表示小车的位移,是系统的输出,即,i=1,2。设缓冲器的摩擦力与活塞的速度成正比,其中,, ,,,。系统的建立 由图,根据牛顿第二定律,分别分析两个小车的受力情况,建立系统的动力学模型如下: 对有: 对有:

背压阀工作原理

背压阀工作原理 背压阀 一、概述 计量泵等容积泵在低系统压力下工作时,都会出现过量输送。为防止类似问题,必须在计量泵的进出口至少0.7Bar的背压。通过在计量泵出口管道中安装背压阀就能达到目的。 二、主要功能 1. 为背压阀两端管路提供压力差 2. 在要求不是很严格的系统中可作为安全阀使用。 3. 和脉动阻尼器配合使用减小水锤对系统的危害,减小流速波动的峰值,保护管路、弯头、接头不受压力波动的冲击。 4. 为计量泵创造良好的工作环境并改善泵的工作性能。 三、工作原理 背压阀是通过弹簧的弹力来工作的。当系统压力比设定压力小时,膜片在弹簧弹力的作用下堵塞管路;当系统压力比设定压力大时,膜片压缩弹簧,管路接通,液体通过背压阀。 四、背压阀的使用 在出口管路中,背压阀应和脉动阻尼器同时使用,用脉动阻尼器吸收泵和背压阀之间的流量峰值。没有脉动阻尼器时,背压阀将随着每次泵冲程的进行而快速打开和关闭。有脉动阻尼器时,背压阀将在半开和半关的位置上振荡,因而脉动阻尼器可以减少背压阀的磨损速度。 对于大流量的泵,且出口管路长而细,背压阀的安装位置应靠近加注点,以减小虹吸的趋势。 当输送含有悬浮状固体的介质,在背压阀入口端应安装带管堵的三通(或四通),使管路在不拆卸的情况下能够进行清洗。 背压阀只是一种管路元件,只有与其它管路元件(如脉动阻尼器、安全阀、止回阀、截止阀)配合使用才能发挥最大效用。 五、注意事项 1、避免与系统发生共振。 2、与脉动阻尼器同时使用时,脉动阻尼器应安在泵与背压阀间,以吸收泵与背压阀间的流量峰值。减缓背压阀的磨损速度。 3、室外使用应加防护棚或防护罩。 4、对背压阀进行任何维护以前,应停止运转设备,释放压力,关闭背压阀与系统相联的阀门,同时确认脉动阻尼器内没有压力。维修时注意防止被输送液体伤害人体。 5、若背压阀进出口接反,背压将会成倍增加,给系统带来危害并可能发生危险。 6、运转中发现背压阀发生故障应及时切断电源。

(完整word版)建筑消能减震-阻尼器

一、消能减震结构的发展与应用: 利用阻尼器来消能减震并不是什么新技术,在航天航空、军工枪炮等行业中早已得到应用。从20世纪70年代后,人们开始逐步地把这些技术专用到建筑、桥梁、铁路等工程中。 在美国,20世纪80年代开始,美国东西两个地震研究中心等单位做了大量试验研究,发表了几十篇有关论文。90年代美国科学基金会和土木工程协会组织了两次大型联合,给出了权威性的试验报告,供工程师参考。 在我国,1997年,沈阳市政府大楼的抗震加固中首次采用了摩擦耗能装置,其后北京饭店、北京火车站和北京展览馆等多座建筑中应用消能减震技术。 在日本,目前已有超过100多栋的建筑物采用消能减震技术。 现代高层建筑日益增多,结构受地震和风振影响十分明显,减小结构所受的地震和风振反应,成为结构设计的一个重要方面。消能减震阻尼器,通过增加结构阻尼,耗散结构的振动能量来达到减小结构所受振动。 (1)“阻尼”是指任何振动系统在振动中,由于外界作用或系统本身固有的原因引起的振动幅度逐渐下降的特性,以此一特性的 量化表征。 (2)《高层建筑混凝土结构技术规程》JGJ3-2010中: 2.1.1 高层建筑:10层及10层以上或房屋高度大于28m的住宅 建筑和房屋高度大于24米的其他高层民用建筑。

(3)《民用建筑设计通则》GB50352-2005中: 3.1.2建筑高度大于1OOm的民用建筑为超高层建筑。 二、阻尼器耗能减震原理: 耗能减震的原理可以从能量的角度来描述。 传统结构:Ei =Er+Ed+Es 耗能结构:Ei =Er+Ed+Es+Ea Ei为地震时输入结构的总能量; Er为结构在地震过程中存储的动能和弹性应变能; Ed为结构本身阻尼消耗的能量; Es为结构产生弹塑性变形吸收的能量; Ea为耗能装置消耗的能量; (其中Er为能量转换,并不是能量的消耗。) (1)传统结构中: 构件在利用其自身弹塑性变形消耗地震能量的同时,构件本身将遭到损伤甚至破坏。 (2)在消能减震结构中: 耗能(阻尼)装置在主体结构进入耗能状态前率先进入耗能工作状态,耗散大量输入结构体系的地震、风振能量,则结构本身需消耗的能量很少,主体结构反应将大大减小,从而有效地保护了主体结构,使其不再受到损伤或破坏。 三、阻尼器的种类: 阻尼器种类繁多,我国将其分为位移相关型和速度相关型。

耗能阻尼器的减振及其在实际工程中的应用

耗能阻尼器的减振及其在实际工程中的应用 摘要:本文介绍了多种阻尼器的力学性能和其优缺点,为不同环境下选用合适的阻尼器减震装置提供方便。 关键词:耗能减震阻尼器工程应用 从动力学观点看,耗能装置的作用相当于增大结构的阻尼,从而减小结构的反应。由于其装置简单、材料经济、减振效果好、使用范围广等特点,在实际结构控制中具有广泛的应用前景。耗能减震装置的种类繁多,其常用的主要有:金属耗能阻尼器、摩擦耗能阻尼器、粘弹性阻尼器和粘滞阻尼器。 1金属耗能阻尼器 金属耗能阻尼器是利用金属不同形式的弹性滞回变形来消耗能量。由于金属在进入塑性状态后具有良好的滞回特性,并在弹塑性滞回变形过程中吸收大量能量,因而被用来制造不同类型和构造的耗能减震器。目前已开发和利用的主要有:扭转梁耗能器、弯曲梁耗能器、U行钢板耗能器、钢棒耗能器、圆环耗能器、双圆环耗能器、加劲圆环耗能器、X型和三角形耗能器等。 金属耗能阻尼器在实际工程中的应用:金属耗能阻尼器中的无粘结支撑在日本、台湾和美国都得到推广应用【1】。低屈服点钢耗能器、蜂窝状耗能器在日本多栋建筑中得到应用【2】。台湾金华休闲购物中心。本工程采用三角形加劲耗能装置,共270组。在地震(PGA=0.39)作用下,最大层间位移也未超过规范规定的0.014rad。潮汕星河大厦。大厦为地下一层,地上原设计为22层。后来在施工过程中业主要求增加3层。为了使加层后的结构满足抗震设防要求,安装了28组耗能阻尼器。装上阻尼器后,在大震作用下,结构的顶层位移和层间位移角均满足要求。2000年建成的日本新住友医院,采用低屈服点剪切板耗能器进行结构减震控制。结构在短边方向采用低屈服点剪切板耗能器,采用附加短柱的形式布置。在加入耗能器后,结构的层间位移减小30%,控制效果明显。 2摩擦阻尼器 摩擦阻尼器是应用较早和较广泛的阻尼器之一。摩擦阻尼器是一种位移相关型的阻尼器,它是利用两块固体之间相对滑动产生的摩擦力来耗散能量。其基本理论是建立在以下假设的基础上: (1)总的摩擦力不依赖于物体接触面的面积; (2)总的摩擦力与在接触面上的总的法向力成比例;

二阶弹簧—阻尼系统PID控制器设计参数整定

二阶弹簧—阻尼系统P I D控制器设计参数整 定 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

二阶弹簧—阻尼系统的PID控制器设计及参数整定 一、PID控制的应用研究现状综述 PID控制器(按闭环系统误差的比例、积分和微分进行控制的调节器)自20世纪30年代末期出现以来,在工业控制领域得到了很大的发展和广泛的应用。它的结构简单,参数易于调整,在长期应用中已积累了丰富的经验。特别是在工业过程控制中,由于被控制对象的精确的数学模型难以建立,系统的参数经常发生变化,运用控制理论分析综合不仅要耗费很大代价,而且难以得到预期的控制效果。在应用计算机实现控制的系统中,PID很容易通过编制计算机语言实现。由于软件系统的灵活性,PID算法可以得到修正和完善,从而使数字PID具有很大的灵活性和适用性。 二、研究原理 比例控制器的传递函数为: () P P G s K = 积分控制器的传递函数为: 11 () PI P I G s K T s =+? 微分控制器的传递函数为: 11 () PID P D I G s K T s T s =+?+? 三、设计题目 设计控制器并给出每种控制器控制的仿真结果(被控对象为二阶环节,传递函数() G S,参数为M=1 kg, b=2 N.s/m, k=25 N/m, F(S)=1);系统示意图如图1所示。 图1 弹簧-阻尼系统示意图 弹簧-阻尼系统的微分方程和传递函数为: 四、设计要求

通过使用MATLAB 对二阶弹簧——阻尼系统的控制器(分别使用P 、PI 、PID 控制器)设计及其参数整定,定量分析比例系数、积分时间与微分时间对系统性能的影响。同时、掌握MATLAB 语言的基本知识进行控制系统仿真和辅助设计,学会运用SIMULINK 对系统进行仿真,掌握PID 控制器参数的设计。 (1)控制器为P 控制器时,改变比例带或比例系数大小,分析对系统性能的影响并绘制响应曲线。 (2)控制器为PI 控制器时,改变积分时间常数大小,分析对系统性能的影响并绘制相应曲线。(当kp=50时,改变积分时间常数) (3)设计PID 控制器,选定合适的控制器参数,使阶跃响应曲线的超调量%20%σ<,过渡过程时间2s t s <,并绘制相应曲线。 图2 闭环控制系统结构图 五、设计内容 (1)P 控制器:P 控制器的传递函数为: ()P P G s K =(分别取比例系数K 等于 1、10、30和50,得图所示) Scope 输出波形: 仿真结果表明:随着Kp 值的增大,系统响应超调量加大,动作灵敏,系统的响应速度加快。Kp 偏大,则振荡次数加多,调节时间加长。随着Kp 增大,系统的稳态误差减小,调节应精度越高,但是系统容易产生超调,并且加大Kp 只能减小稳态误差,却不能消除稳态误差。 (2)PI 控制器:PI 控制器的传递函数为: 11()PI P I G s K T s =+? (K=50, 分别取积分时间Ti 等于10、1和0.1得图所示) Scope 输出波形:

背压阀

上海荣兴泵业(龙猛机械)有限公司 背压阀产品系列

一、 概述 计量泵等容积泵在低系统压力下工作时,都会出现过量输送。为防止类似问题,必须在计量泵的进出口至少0.7Bar的背压。通过在计量泵出口管道中安装背压阀就能达到目的。 二、 主要功能 1.为背压阀两端管路提供压力差 2.在要求不是很严格的系统中可作为安全阀使用。 3.和脉动阻尼器配合使用减小水锤对系统的危害,减小流速波动的峰值, 保护管路、弯头、接头不受压力波动的冲击。 4.为计量泵创造良好的工作环境并改善泵的工作性能。 三、 工作原理 背压阀是通过弹簧的弹力来工作的。当系统压力比设定压力小时,膜片在弹簧弹力作用下堵塞管路;当系统压力比设定压力大时,膜片压缩弹簧,管路接通,液体通过背压阀。 四、 背压阀的使用 在出口管路中,背压阀应和脉动阻尼器同时使用,用脉动阻尼器吸收泵和背压阀之间的流量峰值。没有脉动阻尼器时,背压阀将随着每次泵冲程的进行而快速打开和关闭。有脉动阻尼器时,背压阀将在半开和半关的位置上振荡,因而脉动阻尼器可以减少背压阀的磨损速度。 对于大流量的泵,且出口管路长而细,背压阀的安装位置应靠近加注点,以减小虹吸的趋势。 当输送含有悬浮状固体的介质,在背压阀入口端应安装带管堵的三通(或四通),使管路在不拆卸的情况下能够进行清洗。 背压阀只是一种管路元件,只有与其它管路元件(如脉 动阻尼器、安全阀、止回阀、截止阀)配合使用才能发挥最大效用。

五、 选型指南 型号规格编制说明 示例 管路通径有DN6、8、10、15、20、25、40、50、65、80、100十一个型号。 入口端压力有0.3MPa与1.0MPa两个系列,进出口端压力差可以通过调节弹簧长度调节。 进出口联接方式提供内螺纹、法兰、软管接头三种方式供选择。 基于公司先前的经验,可获得的专业信息及用户提供的工艺信息,我公司将向用户推荐物料接触部件材质;由用户决定材料的选用,上海荣兴泵业有限公司不承担由于磨损或腐蚀所造成的损失及损坏部件或产品的保修。 六、注意事项 1、避免与系统发生共振。 2、与脉动阻尼器同时使用时,脉动阻尼器应安在泵与背压阀间,以吸收泵与背压阀间的流量峰值。减缓背压阀的磨损速度。 3、室外使用应加防护棚或防护罩。 对背压阀进行任何维护以前,应停止运转设备,释放压力,关闭背压阀与系统相联的阀门,同时确认脉动阻尼器内没有压力。维修时注意防止被输送液体伤害人体。 4、若背压阀进出口接反,背压将会成倍增加,给系统带来危害并可能发生危险。 5、运转中发现背压阀发生故障应及时切断电源。 6、若有疑问,请与我公司联系。

阻尼器在结构抗震中的应用

阻尼器在结构抗震中的应用研究 摘要:本文介绍了结构抗震控制理论及主要控制形式,阐述了粘弹性阻尼器的耗能减震原理和有限元计算算模型,并且运用midas软件对一五层钢筋混凝土框架结构设置粘弹性阻尼器前后进行模拟分析,通过对其动力性能进行对比,对抗震性能进行了评估,为粘弹性阻尼器在结构抗震中的应用提供参考。 关键词:阻尼器 ;抗震; 控制 abstract: this paper introduces the structural seismic control theory and control form, elaborated the viscoelastic damper energy dissipation principle and finite element calculation model, and use midas software to one five storey reinforced concrete frame structure with viscoelastic dampers and simulation analysis, based on its dynamic performance are compared, the seismic performance is evaluated, for viscoelastic dampers for seismic application provides the reference. key words: damper; seismic; control 中图分类号:tu352.1+1文献标识码:a 文章编号:2095-2104(2012) 1 前言 地震是危及人民生命和财产的突发式自然灾害。因此,结构控制在结构工程中的应用越来越重要。结构振动控制(简称为结构控

二阶弹簧—阻尼系统PID控制器设计参数整定

二阶弹簧—阻尼系统的PID 控制器设计及参数整定 一、PID 控制的应用研究现状综述 PID 控制器(按闭环系统误差的比例、积分和微分进行控制的调节器)自20世纪30年代末期出现以来,在工业控制领域得到了很大的发展和广泛的应用。它的结构简单,参数易于调整,在长期应用中已积累了丰富的经验。特别是在工业过程控制中,由于被控制对象的精确的数学模型难以建立,系统的参数经常发生变化,运用控制理论分析综合不仅要耗费很大代价,而且难以得到预期的控制效果。在应用计算机实现控制的系统中,PID 很容易通过编制计算机语言实现。由于软件系统的灵活性,PID 算法可以得到修正和完善,从而使数字PID 具有很大的灵活性和适用性。 二、研究原理 比例控制器的传递函数为: ()P P G s K = 积分控制器的传递函数为: 11()PI P I G s K T s =+? 微分控制器的传递函数为: 11()PID P D I G s K T s T s =+?+? 三、设计题目 设计控制器并给出每种控制器控制的仿真结果(被控对象为二阶环节,传递 函数()G S ,参数为M=1 kg, b=2 N.s/m, k=25 N/m, F(S)=1);系统示意图如图1所示。 图1 弹簧-阻尼系统示意图 弹簧-阻尼系统的微分方程和传递函数为: 四、设计要求

通过使用MATLAB 对二阶弹簧——阻尼系统的控制器(分别使用P 、PI 、PID 控制器)设计及其参数整定,定量分析比例系数、积分时间与微分时间对系统性能的影响。同时、掌握MATLAB 语言的基本知识进行控制系统仿真和辅助设计,学会运用SIMULINK 对系统进行仿真,掌握PID 控制器参数的设计。 (1)控制器为P 控制器时,改变比例带或比例系数大小,分析对系统性能的影响并绘制响应曲线。 (2)控制器为PI 控制器时,改变积分时间常数大小,分析对系统性能的影响并绘制相应曲线。(当kp=50时,改变积分时间常数) (3)设计PID 控制器,选定合适的控制器参数,使阶跃响应曲线的超调量%20%σ<,过渡过程时间2s t s <,并绘制相应曲线。 图2 闭环控制系统结构图 五、设计内容 (1)P 控制器:P 控制器的传递函数为: ()P P G s K =(分别取比例系数K 等 于1、10、30和50,得图所示) Scope 输出波形: 仿真结果表明:随着Kp 值的增大,系统响应超调量加大,动作灵敏,系统的响应速度加快。Kp 偏大,则振荡次数加多,调节时间加长。随着Kp 增大,系统的稳态误差减小,调节应精度越高,但是系统容易产生超调,并且加大Kp 只能减小稳态误差,却不能消除稳态误差。 (2)PI 控制器:PI 控制器的传递函数为: 11()PI P I G s K T s =+? (K=50, 分别取积分时间Ti 等于10、1和0.1得图所示)

浅谈阻尼器的类型和原理分析

广州大学 研究生文献综述论文题目浅谈阻尼器的类型 学院土木工程学院 班级名称2016级专硕一班 学号2111616149 学生姓名陆富龙 2016 年12 月18 日

关于阻尼器的类型总结 摘要:随着抗震在结构中的重要性越来越重要,高强轻质材料的采用,高层、超高层等高柔结构及特大跨度桥梁不断涌现,相关的研究也越来越多,从结构抗震到结构的减震再到结构的隔振,各种的理念层出不穷,然在抗震中,现在比较方便和比较常用的就是在建筑结构上加入阻尼器,用以吸收地震或风震产生的能量,以提高结构的抗震性能,随着科技的发展,各种阻尼器不断的更新创新,运用各种的原理来优化阻尼器,对于形式多样、要求各异的工程结构,如何在推广应用消能技术时,选择适合的阻尼器类型并进行阻尼器的合理优化设计将关系到这一技术的发展前景,具有重要的现实意义,值得进一步探讨研究。 关键词:阻尼器,类型,适用 Abstract:with the earthquake is becoming more and more important in the importance of the structure, high-strength lightweight material used, high-rise structure and extra long-span Bridges and super-tall soft, related research also more and more, from the structure seismic to structure of shock absorption and vibration isolation of the structure, various LiNianCeng out one after another, but in the earthquake, is now more convenient and more commonly used in building structures with dampers, earthquake or wind to absorb energy, to improve the seismic performance of structure, with the development of science and technology, the updating and innovation of various dampers, use all kinds of the principle to optimize damper, for a variety of forms and requirements of different engineering structure, how to promote application of energy dissipation technology, select the appropriate type of damper and the optimization of damper design will be related to the development prospects of this technology, has important practical significance and worthy of further research are discussed. Keywords:damper,type,apply

相关文档
最新文档