水泥窑协同处理污泥 这项技术真给力

水泥窑协同处理污泥 这项技术真给力
水泥窑协同处理污泥 这项技术真给力

水泥窑协同处理污泥这项技术真给力!

1.从长远看,污泥处理有着意要的意义

如果污泥未及时处理,将导致污水处理厂大量污泥积压,这可能导致污水处理系统整体瘫痪,并将使河流污染控制多年的努力去浪费。因此,污泥处理和处置设施的建设是城市基础设施建设不可或缺的一部分,是与数百万户相关的重要环保项目。

2.水泥窑协同处理现状及工艺路线

2.1污泥处理现状

2.1.1我国水泥窑协同处理污泥现状

传统的污泥处理方法主要包括土地利用,垃圾填埋和焚烧。随着环境标准的提高,传统方法已不能满足环保要求。污泥处理正朝着无害化,减少和再循环的方向发展。水泥窑协同处理污泥是一种经济可行的循环处理方式。

相关研究表明,城市生污泥的化学特性与水泥生产中使用的原料基本相似。由污泥和污泥焚烧灰制成的水泥在粒度,相对密度,稳定性,膨胀密度和凝固时间方面与普通硅酸盐水泥相似。采用水泥回转窑处理城市污泥不仅具有减量减量和焚烧减量的特点。此外,烧成的残渣经过煅烧和固化,成为水泥熟料的一部分。不需要二次处理,这是水泥生产的好方法。

2.1.2水泥协同处理焚烧原理

实验结果表明,水泥窑污泥进料的最佳方式是分解炉。在正常运行条件下,应在6%的水泥厂旋转焚烧炉中控制最大污泥量。炉内材料的温度为1450摄氏度,材料在炉中的停留时间为30-40分钟。燃烧期间产生的烟道气的停留时间在炉温高于1300摄氏度的区域中较长。在4秒内。窑污泥中的有害有机物可以充分燃烧,焚烧率可达99.999%,二恶英等有机污染物可完全分解。

2.1.3处置方案

水泥窑处置废物的方法一般有两种:

一种是从原料中加入研磨成分。通过该方法处理一般的无机废物,例如飞灰和炉渣。该方法的优点是可以控制生料均质化成分,并且熟料烧制系统几乎没有影响。但是,由于原料研磨的温度高(约200℃),可能导致污泥中有机污染物的挥发,因此原料成分的添加尚未得到广泛应用。

其次,它是从预热器的煅烧炉中添加的。虽然这种处置方案对生产有一些不利影响,但它适用于处理含有有机污染物的物质,特别是挥发性有机污染物。由于污泥含有一定的挥发性物质,污泥是从预热器分解炉中加入的,而烟气室喷嘴上方的气体速度被认为更快。最后,选择烟道喷嘴上方的污泥添加点。

污泥从窑尾气室进入水泥回转窑。气体停留时间超过20秒,可以保证污泥中有机污染物的完全燃烧和分解。在水泥窑高温条件下,污泥中的有机污染物迅速蒸发和气化。高温气流与碱性物质接触,具有高温,高细度,高浓度,高吸附性和高均匀度分布。它有效地抑制酸性物质的排放,使SO2和Cl等有机化学成分合成无机盐并固定。

熟料率的控制指标在处理前后没有变化。加入约6%的污泥后,通过降低其他原料的碱含量,污泥带来的碱可以部分抵消,使水泥熟料中的钠当量可以满足内控指标小于0.8%的要求。为保证水泥产品质量,减少污泥含水量对水泥窑工作条件的影响,降低污泥处理成本,兼顾水泥生产计划和质量安全隐患,污泥一般按污泥添加量少于6%处理。

2.2 工艺路线

整个污泥输送系统由污泥储存系统、泵送系统及PLC自动控制系统组成。工艺流程详见下图。

由水处理厂产生的原始污泥通过汽车装入水泥厂的封闭污泥储

存箱中。同时,污泥储存箱内的气味通过管道排放到篦冷却器的风扇入口,在风扇的作用下排入回转窑并烧坏。污泥通过卸料闸和变频进料螺杆进入浆料泵的进料端。在浆料泵两个柱塞的挤压下,它连续进入污泥输送管道。通过窑中间的进料器将污泥均匀地送入炉子的高温区。通过调节进料螺杆的速度和浆料泵的流速可以实现输送量的调节。所有控制系统均由PLC微电脑控制,可与窑控制系统连接。污泥运输量可以无级调节,远程调节,使整个运输过程中无人值守。

3、水泥窑协同处理污泥优势

垃圾填埋场和污泥堆肥需要大量土地,存在潜在的二次污染风险和地质风险。特殊焚烧炉建设投资高,能耗高,会产生粉煤灰,矿渣等危险废物,难以完全分解有害气体。相比之下,水泥窑污泥处理技术在无害化,资源综合利用和经济性方面具有诸多优势。

a.最终转化为水泥熟料产品,没有废物残留;

b.水泥窑热容量大,温度高,稳定性好。它可以消除有害气体并大量处理污泥。

c.不占用土地资源;

d.充分利用一次能源和资源;

e.投资少,施工周期短。

结束语

总之,根据我国目前的工业技术水平和发展趋势,污泥处理的最佳方式是水泥窑对污泥的协同处理。我国的环保和水泥行业也受到了极大的关注。现在一些水泥企业正在积极探索和积累运营经验。未来,污泥水泥窑处理将成为我国污泥处理的主要方式。

水泥窑协同处置

1/ 7水泥窑协同处置 01 什么是水泥窑协同处置? 水泥窑协同处置是水泥工业提出的一种新的废弃物处置手段,是指将满足或经过预处理后满足入窑要求的固体废物投入水泥窑,在进行水泥熟料生产的同时实现对固体废物的无害化处置过程。 曲阜中联日处理污泥100吨水泥窑无害化协同处置项目

02 水泥窑协同处置有哪些优势?水泥窑协同处置固废优势突出: 利用现有工业设施,不增加土地,环境扰动小,建设投资相对较少。 水泥窑具有高温煅烧和强碱性气氛,能够有效抑制二噁英等二次污染物的产生,只要控制得当就不会有二次污染的隐患。 不仅能够实现固废危废减量和资源化,还能促使水泥行业向绿色环保产业发展。 山东德州《新闻联播》播出德州中联大坝水泥窑协同处置废弃物项目 03 水泥窑可以协同处置哪些固体废物?水泥窑可以处理的废物包括生活垃圾,各种污泥(下水道污泥、造纸厂污泥、河道污泥、污水处理厂污泥),工业危险废物,各种有机废物(废轮胎、废橡胶、废塑料、废油等),动植物加工废物,受污染土壤、应急事件废物等固体废物。 但是,放射性废物、爆炸物及反应性废物、未经拆解的废电池、废家用电器和电子产品、含汞的温度计、血压计、荧光灯管和开关、2/ 7

铬渣、未知特性和未经鉴定的废物禁止入窑进行协同处置。 中材萍乡水泥窑协同处置中心采用新型干法回转窑焚烧污泥技术,年处置污泥2.64万吨 04 固体废物在水泥生产过程中有哪些用途?根据成分与性质,不同的废物在水泥生产过程中的用途不同,主要包括: 替代燃料:主要为高热值有机废物 替代原料:主要为低热值可作为水泥生产原料的无机矿物材料废物混合材料:改善水泥的某种性能,调节水泥的强度等级,提高水泥产量,降低水泥生产成本,适宜在水泥粉磨阶段添加的成分单一的 废物 3/ 7

全面解析水泥窑协同处置污泥方案

全面解析水泥窑协同处置污泥方案 1.城市污泥处理的必要性和难度 随着城市人口的不断增加及生活污水处理率的提高,市政污水污泥的产出量也随之不断增加。市政污泥的环境污染已成为广大市民关注的焦点。市政污泥是一种由有机残片、细菌菌体、无极颗粒、胶体等组成的极其复杂的非均质体,含有大量病原菌、寄生虫(卵),铜、锌、铬、汞等重金属、盐类,以及多氯联苯、二恶英、放射性核素等难降解的有毒有害物。污泥还含有很高的附着水和结合水,尽管污水处理厂已采用真空过滤或离心脱水等机械脱水,污泥含水率仍达80%以上。由于污泥所具有的物理化学性质,污泥的彻底无害化处置 极其困难,已成为当今世界难题。目前所采用的填埋、农用、焚烧等处置方式均存在很高的环保风险.要真正达到彻底无害化处置需要付出极高的成本。 2.利用水泥窑处置污泥的可能性 广州市江苏绿森水泥有限公司(下称江苏绿森公司)从2007年就开始研究建设利用水泥窑无害化处置污泥项目。由于水泥窑处置污泥具有处理温度高、焚烧空间大、焚烧停留时间长、处理规模大、无二次渣排放问题等显着优点,来自污水处理厂的污泥含水率约80%,在水泥厂配套建设一个烘干预处理系统,利用出预热器废气余热(温度约280℃)将污泥烘干至含水率低30%。含水率低于30%污泥已成散状物料,经输送及喂料设

备送入分解炉焚烧。在分解炉喂料口处设有撒料板,将散状污泥充分分散在热气流中,由于分解炉的温度高、热熔大,使得污泥能快速、完全燃烧。污泥烧尽后的灰渣随物料一起进入窑内煅烧。 2007年12月22日~24日,江苏绿森公司进行了含水量30%的漂染污泥在6000t/d生产线上的工业试验工作。试验期间漂染污泥的空气干燥基热值平均为1445kCal/kg,入窑平均水分%,喂料量。试验结果表明,新型干法水泥窑系统完全可以处置具有较高硫含量的工业污泥。对水泥窑工艺过程的研究可知,利用水泥回转窑处理污泥具有以下特性: (1)有机物分解彻底 在回转窑中内温度一般在1350℃-1650℃之间,甚至更高,燃烧气体在此停留时间>8s,高于l100℃时停留时间>3s。燃烧气体的总停留时间为20s左右,且窑内物料呈高湍流化状态。因此窑内的污泥中有害有机物可充分燃烧,焚烧率可达%,即使是稳定的有机物如二恶英等也能被完全分解。 (2)抑制二恶英形成 由于干化污泥喂入点处在高于850℃的分解炉,分解炉内热容大且温度稳定,有效地抑制了二恶英前躯体的形成。从国内外水泥窑处置有毒有害废弃物的实践表明,废弃物焚烧后产生的二恶英排放浓度远低于排放限值。

水泥窑协同处置固废方案

水泥窑协同处置固废方案 城市生活垃圾处理是城市环境卫生治理的一大难点,而利用新型干法水泥窑协同处置生活垃圾技术在处置成本、污染控制上有明显的优势,是目前实现垃圾减量化、无害化、资源化、能源化的有效手段之一。本文介绍了水泥窑协同处置生活垃圾技术的几种方式和发展历程,并重点对几种协同处置方式进行了对比分析。 一、背景 改革开放以来,随着我国经济的快速发展,人民生活水平迅速提高,城镇化进程不断加快,城市生活垃圾产量一直在增加。近年来,我国的城市生活垃圾排放量以每年10%以上的速度增长[1],此外,国内存量垃圾堆放量已超过80亿吨,既占用土地又污染环境。另外,由于我国垃圾分类收集重视不够,垃圾基本是混合收集,垃圾含水量高、热值低、有机成分高,垃圾成分随地区、季节等变化较大。 目前,我国城市生活垃圾无害化处理方式包括:卫生填埋、高温堆肥和焚烧,图1为2014年我国垃圾处理方式比例,显示我国仍然以填埋为主[2]。但焚烧凭借其减量效果最明显、无害化最彻底、且焚烧热量可以有效利用的特点,近年来比例上升很快,可以预见,焚烧正逐步成为处理城市垃圾的最主要方式。 与传统的垃圾焚烧相比,焚烧发电所需建设与运营的费用较高,且产生的灰渣需要二次处理。城市生活垃圾单独焚烧后产生的灰渣包

括底灰和飞灰,其主要化学成分与水泥原料相似,且具有一定的胶凝活性二、水泥窑协同处置生活垃圾的几种方案介绍及对比2.1 国内外水泥窑协同处置生活垃圾的现状 国际上水泥窑协同处置废物技术开始于20世纪70年代,首次试验于1974年加拿大Lawrence水泥厂,随后美国的Peerless、德国Ruderdorf等十多家水泥厂先后进行了试验。截止到目前,在欧洲、北美、日本等发达国家已经有30多年的研究应用历史,在替代燃料研究和生态水泥生产方面积累了许多经验。据统计,2007年荷兰的燃料替代率已达85%以上,2013年日本、比利时、瑞士、奥地利等燃料替代率达50%以上,美国为30%左右。 我国水泥窑协同处置生活垃圾技术推广至今,仅有南京凯盛、海螺、中材、金隅、华新、华润、中信、中建材等几家领先的水泥企业集团和水泥装备集团开展了水泥窑协同处置生活垃圾工作,仅有贵州等少数省份组织推动了水泥窑协同处置生活垃圾工作。目前,全国已建成投产水泥窑协同处置生活垃圾生产线30 多条,占水泥生产线的比重不足2%。 2.2 水泥窑协同处置生活垃圾的主要方案 水泥窑协同处置生活垃圾的核心是在水泥的生产过程中,充分利用城市生活垃圾中的可燃成分和灰渣材料,结合水泥窑的生产特点,

水泥窑协同处置固废成本分析

水泥窑协同处置固废成本分析 近年来,水泥窑协同处理固体废物已成为业界研究和开发应用的重点。2012 年,《建材行业节能减排先进适用技术目录》将采用预分解窑协同处理危险废物技术,预分解窑协同处理污泥,协同处理通过预分解窑从废物焚烧炉中飞灰。2014 年12 月,工业和信息化部,科技部和环境保护部联合发布了《国家鼓励发展的重大环保技术装备目录(2014 年版)》,鼓励国家发展。水泥窑协调无害化处理的全套设备包括在固体废物处理设备的推广项目中。2015 年,工业和信息化部等六部委联合发布了水泥窑共处理生活垃圾试点项目的通知。 水泥窑协同处置技术早已成为德国、日本等国家的主要处理方式。由于我国还处于发展阶段,水泥窑协同处置技术面临初始投资成本高、运行成本高、政府补贴低等主要难题。本文拟就水泥窑协同处置固体废物技术中3 种协同处置工艺,即水泥窑协同处置城市生活垃圾(RDF)、水泥窑协同处置城市生活垃圾(联合气化炉)和水泥窑协同处置城市污水污泥(干化),以5 000 t/d 生产线为基准,综合考虑减排量、减排成本指标,进行技术节能减排潜力和成本的分析,并给出技术发展的政策建议。 1 水泥窑协同处置固体废物概况 1.1 水泥窑协同处置城市生活垃圾(RDF)技术 水泥窑协同处置城市生活垃圾(RDF)技术,即把城市生活垃圾经筛分、粉碎、发酵、干燥、加工成型等预处理工艺,加工成热值更高、更稳定的垃

圾衍生燃料(RDF),结合水泥分解炉燃烧特点,达到资源化处置与利用的技术。它适用于新型干法水泥生产线协同处置城市生活垃圾技术改造。需要注意的是:垃圾处理站或RDF预处理站与水泥生产企业的距离不宜过远; 垃圾引入的有害元素对水泥窑正常生产的影响等问题。F.L.Sth 的“热盘”技术和Polysius 的预燃烧室技术,就属于RDF协同处置技术的范畴。国内华新水泥、中材国际开发了此类相关技术,过程预燃技术和设备也在研发过程中。华新水泥窑协同处置的商业运作模式是集合生活垃圾的收集、转运,垃圾的预处理和水泥窑协同处置于一体的创新性模式。经估算,若5 000 t/d 水泥熟料生产线利用此类技术日处理200~500 t 的生活垃圾,可实现吨熟料煤耗降低3%~6%,电耗增加3~5 kWh,折算成吨熟料CO2排放量降低4.02~13.23 kg ,吨熟料NOx排放量降低0.02~0.06 kg 。初始投资平均增加约8 000万元,单位熟料运行成本降低3.36~6.72 元/t 。生活垃圾补贴费用因各地政府标准不统一(50~200 元/t) ,假设每吨生活垃圾补贴100 元,预计投资回收期超过10年。 1.2 水泥窑协同处置城市生活垃圾(联合气化炉)技术 水泥窑协同处置城市生活垃圾(联合气化炉)技术,即将城市生活垃圾发酵、均化、破碎、称量等工序后,先送入气化炉,汽化后形成可燃性气体送入水泥分解炉内焚烧,气化炉底渣经分离后作为水泥配料。这种技术是联合水泥窑炉和气化炉的双重优势,对由此产生的废气、炉底渣及渗滤液进行无害化处理的全新的环境保护技术。它适用于新型干法水泥生产线协同处置城市生活垃圾技术改造。需要注意的是:垃圾处理站与水泥生产企业的距离

某水泥有限公司水泥窑协同处置危险废物项目可行性研究报告1

某水泥有限公司 水泥窑协同处置危险废物项目 可 行 性 研 究 报 告

目录 前言 (1) 第 1 章概述 (1) 1.1 项目名称 (1) 1.2 项目建设单位 (1) 1.3 项目主管单位 (1) 1.4 处理工艺 (1) 1.5 处理规模 (1) 1.6 总投资及资金来源 (1) 第 2 章编制依据原则和范围 (2) 2.1 编制目的 (2) 2.2 编制依据 (2) 2.3 编制原则 (4) 2.4 编制范围 (4) 第 3 章工程背景 (5) 3.1 项目所在位置概况 (5) 3.2 项目建设的背景 (5) 3.3 企业概况 (6) 第 4 章项目建设的必要性 (7) 4.1 项目的实施符合国家及环保主管部门的相关要求 (7) 4.2 项目的建设符合可持续发展的战略 (8) 4.3 项目的实施是保护生态环境提高居民生活条件的需要 (10) 第 5 章工程建设规模 (12) 5.1 危险废物来源 (12)

5.2 项目主要建设规模 (12) 5.3 项目主要建设内容 (14) 第 6 章工艺方案的确定 (15) 6.1 工艺选择原则 (15) 6.2 工艺对比 (15) 6.3 处理工艺的确定 (18) 第 7 章场址建设条件 (19) 7.1 选址的基本要求 (19) 7.2 场址的介绍 (19) 7.3 建场条件 (19) 第 8 章综合处理工艺介绍 (20) 8.1 工艺设备说明 (20) 8.2 主要设备选型 (24) 8.3 设计和设备选型原则 (26) 8.4 工艺设备说明 (26) 8.4 烟气净化方案论证 (27) 第 9 章工程设计 (36) 9.1 危险废物接收及贮运 (36) 9.2 预处理系统 (37) 9.3 危险废物烧结系统 (38) 9.4 废气处理系统 (40) 9.5 在线监测系统 (43) 9.6 通风工程 (43) 9.7 主要设备表 (44)

水泥窑协同处置危险废物经营许可证审查指南设计

水泥窑协同处置危险废物经营许可证 审查指南 (试行) 为贯彻落实《中华人民国固体废物污染环境防治法》、《危险废物经营许可证管理办法》等法律法规,进一步规水泥窑协同处置危险废物经营许可证审批工作,提升水泥窑协同处置危险废物行业的整体水平,制定《水泥窑协同处置危险废物经营许可证审查指南》(以下简称《指南》)。 《指南》按照《危险废物经营许可证管理办法》第五条的有关许可条件,针对水泥窑协同处置危险废物经营单位的特点和存在的主要问题,进一步细化了相关要求。 一、适用围 《指南》适用于环境保护主管部门对水泥窑协同处置危险废物单位申请危险废物经营许可证(包括新申请、重新申请领取和换证)的审查。 二、术语和定义 (一)水泥窑协同处置危险废物,是指将满足或经预处理后满足入窑(磨)要求的危险废物投入水泥窑或水泥磨,在进行熟料或水泥生产的同时,实现对危险废物的无害化处置的过程。

(二)水泥磨,是指将熟料、石膏和混合材等材料混合研磨生产水泥的设备。 (三)窑灰,是指水泥窑及窑尾余热利用系统烟气(以下简称窑尾烟气)布袋除尘器捕获以及在增湿塔和窑尾余热锅炉沉积的颗粒物。 (四)旁路放风粉尘,是指通过水泥窑窑尾旁路放风设施排出水泥窑系统的颗粒物。 (五)窑尾烟室,是指水泥窑分解炉底部与回转窑尾端(物料入口端)之间的衔接空间(包括上升烟道)。 (六)预处理,是指为了满足水泥窑协同处置的入窑(磨)要求,对危险废物进行干燥、破碎、筛分、中和、搅拌、混合、配伍、预烧等前期处理的过程。 (七)危险废物预处理中心,是指在水泥生产企业厂区外设置的,用于对收集的危险废物进行预处理的专门场所。 (八)分散联合经营模式,是指水泥生产企业和危险废物预处理中心分属不同的法人主体的情况下,危险废物在预处理中心经预处理满足水泥窑协同处置入窑(磨)要求后,运送至水泥生产企业不再进行其他预处理而直接入窑(磨)协同处置的经营模式。 (九)分散独立经营模式,是指水泥生产企业和危险废物预处理中心属于同一法人主体的情况下,危险废物在预处理中心经预处理满

利用水泥窑协同处置废弃物技术研究.

利用水泥窑协同处置废弃物 胡芝娟* (天津水泥工业设计研究院有限公司,天津300400) 摘要 在经济合作与发展组织国家中,现代焚化工厂和安全的垃圾填埋是普遍采用的处理方式,但投资和运行成本非常高,而且需要有资质的管理和运行人员。高效水泥窑能为许多种废物提供环境友好且低成本的处理/回收方案。与其不做能源回收而直接将废物白白烧掉或处理掉,还不如用废物来代替化石燃料和原始原料(AFR),这还可以进一步降低CO2的总排放量。使用替代性燃料和原料能减少废物对环境的影响,能安全地处置危险废物,能减少温室气体排放,减少废物处理成本,降低水泥工业生产成本。 在《巴塞尔公约》的条文中,水泥生产过程中危险废物的协同处理方法已被认为是对环境无害的处理方法。这说明了水泥生产过程中对危险废物进行协同处理的适用性,以及协同处理的先决条件。水泥工业消耗了大量的自然资源和能源。同时也为全世界城市和基础设施的发展和现代化做出了贡献。水泥工业及其行业协会通过优化自然资源的使用和减少整体的能源消耗,在不断改善环境质量。 天津水泥工业设计研究院有限公司经过十余年潜心研究,结合水泥窑炉操作条件,针对中国固废处置客观环境,研发出一整套针对城镇污水处理厂污泥,生活垃圾,污染土等废弃物的水泥窑协同处置技术并在实践中的到检验和推广。 关键词:水泥窑;协同处置;污泥;生活垃圾;污染土 引言 全球水泥消耗量正在增加,特别是发展中国家和处于转型期的国家。由于发展中 国家和转型期国家的巨大需求,全世界的水泥产量从2001年的16.9亿公吨开始,以 年均3.6%的速度稳步增长,2003年全世界的水泥产量为19.4亿公吨。欧洲的消耗量 占14.4%;美国占4.7%;美洲其他国家占6.6%;亚洲占67.5%(中国占41.9%);非洲 占4.1%,世界其他国家占2.7%。预计2004年的水泥消耗量为人均260千克。 在经济合作与发展组织国家中,现代焚化工厂和安全的垃圾填埋是普遍采用的处 理方式,但投资和运行成本非常高,而且需要有资质的管理和运行加拿大以及澳大利

华新宜都水泥窑协同处置污染土项目

华新宜都水泥窑协同处置污染土项目 环境影响报告书简本 1.1项目基本情况 华新宜都水泥窑协同处置污染土项目位于宜昌市宜都市枝城镇华新路1号,在现有厂区内建设。项目为技改项目,依托现有的K1水泥窑和K2水泥窑建设,新建污染土暂存大棚等。 项目为污染土处理项目,其设计处理量为700t/d(即255500t/a),其中K1水泥窑的处理量为400t/d(146000t/a)、K2水泥窑的处理量为300t/d(109500t/a)。且污染土主要用于替代水泥生产的砂石原料使用,且经焚烧处理后留存于水泥产品中。 项目为水泥窑协同处置生活垃圾项目,属于环保项目,总投资为1200万元。结合本项目而言,其环保设施投资为55万元,占总投资的4.6%。 1.2项目与产业政策和相关规划相符性 项目为水泥窑协同处置污染土项目,属于《产业结构调整指导目录2011》(2013年修订)中“第一类鼓励类十二、建材1、利用现有2000吨/日及以上新型干法水泥窑炉处置工业废弃物、城市污泥和生活垃圾,纯低温余热发电;粉磨系统等节能改造”和“第一类鼓励类三十八、环境保护与资源节约综合利用20、城镇垃圾及其他固体废弃物减量化、资源化、无害化处理和综合利用工程”,符合国家产业政策。 项目为水泥窑协同处置污染土项目,依托现有的1条2500t/d新型干法水泥窑和1条3500t/d新型干法水泥窑建设,且该项目不增加水和《水泥窑协同处置固体废物污染防治技术政策》中的相关要求。 1.3环境质量现状调查结论 (1)项目所在地区环境空气质量良好,常规因子各监测点位SO2、NO2、PM10均符合GB3095-2012《环境空气质量标准》的二级标准要求。 (2)项目附近主要地表水体为长江宜都段,其各项水质指标均能满足《地表水环境质量标准》(GB3838-2002)Ⅲ类标准;项目区地下水水质监测指标均能满足《地下水质量标准》(GB/T14848-93)中Ⅲ类标准。 (3)项目所在地声环境昼夜间监测现状值均满足GB3096-2008《声环境质量标准》“3类区”标准要求。 1.4环境影响预测分析结论 (1)运营期空气环境影响 环境影响预测结果可知,以2016年全年逐时地面、高空气象资料和考虑地形影响的条件下,HCl、HF、重金属(Ti+Cd+Pb+As、Be+Cr+Sn+Cu+Co+Mn+Ni+V)、二噁英等最大预测落地小时浓度均未超标,各关心点处最大小时浓度与现状监测最大值的叠加值也均满足相关的标准要求。 项目的卫生防护距离为以生产区为边界向外设置500m的卫生防护距离。据调查,目前在该防护距离内有28户居民住宅分布,但企业承诺近期将对其进行搬迁。 (2)运营期地表水影响 项目不新增员工,故项目运营期无生活废水产生。另结合项目实际情况,项目运营过程中的废水主要为土壤堆放过程中产生的渗滤液,经收集后掺入污泥喷入水泥窑,进行焚烧处理。 (3)运营期声环境影响

水泥窑协同处置危险废物经营许可证审查指南

水泥窑协同处置危险废物经营许可证审查指南 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

水泥窑协同处置危险废物经营许可证 审查指南 (试行) 为贯彻落实《中华人民共和国固体废物污染环境防治法》、《危险废物经营许可证管理办法》等法律法规,进一步规范水泥窑协同处置危险废物经营许可证审批工作,提升水泥窑协同处置危险废物行业的整体水平,制定《水泥窑协同处置危险废物经营许可证审查指南》(以下简称《指南》)。 《指南》按照《危险废物经营许可证管理办法》第五条的有关许可条件,针对水泥窑协同处置危险废物经营单位的特点和存在的主要问题,进一步细化了相关要求。 一、适用范围 《指南》适用于环境保护主管部门对水泥窑协同处置危险废物单位申请危险废物经营许可证(包括新申请、重新申请领取和换证)的审查。 二、术语和定义 (一)水泥窑协同处置危险废物,是指将满足或经预处理后满足入窑(磨)要求的危险废物投入水泥窑或水泥磨,在进行熟料或水泥生产的同时,实现对危险废物的无害化处置的过程。 (二)水泥磨,是指将熟料、石膏和混合材等材料混合研磨生产水泥的设备。

(三)窑灰,是指水泥窑及窑尾余热利用系统烟气(以下简称窑尾烟气)布袋除尘器捕获以及在增湿塔和窑尾余热锅炉沉积的颗粒物。 (四)旁路放风粉尘,是指通过水泥窑窑尾旁路放风设施排出水泥窑系统的颗粒物。 (五)窑尾烟室,是指水泥窑分解炉底部与回转窑尾端(物料入口端)之间的衔接空间(包括上升烟道)。 (六)预处理,是指为了满足水泥窑协同处置的入窑(磨)要求,对危险废物进行干燥、破碎、筛分、中和、搅拌、混合、配伍、预烧等前期处理的过程。 (七)危险废物预处理中心,是指在水泥生产企业厂区外设置的,用于对收集的危险废物进行预处理的专门场所。 (八)分散联合经营模式,是指水泥生产企业和危险废物预处理中心分属不同的法人主体的情况下,危险废物在预处理中心经预处理满足水泥窑协同处置入窑(磨)要求后,运送至水泥生产企业不再进行其他预处理而直接入窑(磨)协同处置的经营模式。 (九)分散独立经营模式,是指水泥生产企业和危险废物预处理中心属于同一法人主体的情况下,危险废物在预处理中心经预处理满足水泥窑协同处置入窑(磨)要求后,运送至水泥生产企业不再进行其他预处理而直接入窑(磨)协同处置的经营模式。

水泥公司利用水泥窑协同处置20000吨年危险废物项目环境影响报告书

目录 第一章概述------------------------------------------------------------------------------------------------ 1 1.1项目建设背景及特点 -------------------------------------------------------------------------------------- 1 1.2 环境影响评价工作过程----------------------------------------------------------------------------------- 2 1.3 项目选址及相关政策判定结果 ------------------------------------------------------------------------- 3 1.4 主要环境问题及环境影响 ------------------------------------------------------------------------------- 4 1.5 环境影响评价的主要结论 ------------------------------------------------------------------------------- 4第二章总则 ---------------------------------------------------------------------------------------------- 7 2.1 编制依据 ----------------------------------------------------------------------------------------------------- 7 2.2 评价目的 ---------------------------------------------------------------------------------------------------- 11 2.3 评价因子与评价标准------------------------------------------------------------------------------------- 11 2.4 评价工作等级及评价重点-------------------------------------------------------------------------------- 15 2.5 评价范围和环境敏感区----------------------------------------------------------------------------------- 19 2.6 建设方案的环境可行性---------------------------------------------------------- 错误!未定义书签。第三章建设项目工程分析------------------------------------------------------------------------------ 21 3.1依托工程概况 ----------------------------------------------------------------------------------------------- 21 3.2建设项目概况 ----------------------------------------------------------------------------------------------- 25 3.3协同处置危废工程分析 ---------------------------------------------------------- 错误!未定义书签。 3.4 污染源及治理措施分析----------------------------------------------------------------------------------- 28 3.5工程主要污染物排放量估算 ---------------------------------------------------- 错误!未定义书签。 3.6 清洁生产分析----------------------------------------------------------------------------------------------- 35第四章环境现状调查及评价--------------------------------------------------------------------------- 43 4.1环境现状调查方法---------------------------------------------------------------------------------------- 43 4.2 自然环境现状调查及评价-------------------------------------------------------------------------------- 43 4.3 环境保护目标调查--------------------------------------------------------------------------------------- 52 4.4 环境质量现状调查与评价------------------------------------------------------- 错误!未定义书签。第五章环境影响预测与评价--------------------------------------------------------------------------- 52 5.1 建设期环境影响分析------------------------------------------------------------------------------------ 52 5.2 环境空气影响预测与评价 ---------------------------------------------------- 错误!未定义书签。 5.3 地表水环境影响分析------------------------------------------------------------------------------------ 57 5.4 地下水环境影响评价----------------------------------------------------------- 错误!未定义书签。 5.5 声环境影响预测与评价--------------------------------------------------------------------------------- 58

全面解析水泥窑协同处置技术【建议收藏】

全面解析水泥窑协同处置技术 国际上水泥窑协同处置废物技术发源于20世纪70年代,第一次真正用于实践是1974年在加拿大劳伦斯水泥厂进行,随后在美国的Peerless,Ruderdorf,德国等十多家水泥厂进行。到目前为止,欧洲,北美,日本等发达国家已有30多年的研究和应用历史,在替代燃料研究和生态水泥生产方面积累了许多经验。据统计,2007年荷兰的燃料替代率达到85%以上,2013年,日本,比利时,瑞士,奥地利等燃料替代率达到50%以上,而在美国约为30%。 我国水泥窑协同处置生活垃圾技术推广至今,仅有江苏绿森、海螺、中材、中信、中建材等几家领先的水泥企业集团和水泥装备集团开展了水泥窑协同处置生活垃圾工作,仅有贵州等少数省份组织推动了水泥窑协同处置生活垃圾工作。目前,全国已建成投产水泥窑协同处置生活垃圾生产线30 多条,占水泥生产线的比重不足2%。 技术名称:水泥窑协同处置 1. 水泥窑协同技术适用性 1.1 适用的介质:污染土壤。 1.2 可处理的污染物类型:有机污染物及重金属。 1.3 应用限制条件。 不宜用于汞、砷、铅等重金属污染较重的土壤;由于水泥生产对进料中氯、硫等元素的含量有限值要求,在使用该技术时需慎重确定污染土的添加量。 2. 水泥窑协同技术介绍

2.1 原理 利用水泥回转窑内的高温、气体长时间停留、热容量大、热稳定性好、碱性环境、无废渣排放等特点,在生产水泥熟料的同时,焚烧固化处理污染土壤。有机物污染土壤从窑尾烟气室进入水泥回转窑,窑内气相温度最高可达1800℃,物料温度约为1450℃,在水泥窑的高温条件下,污染土壤中的有机污染物转化为无机化合物,高温气流与高细度、高浓度、高吸附性、高均匀性分布的碱性物料(CaO、CaCO3 等)充分接触,有效地抑制酸性物质的排放,使得硫和氯等转化成无机盐类固定下来;重金属污染土壤从生料配料系统进入水泥窑,使重金属固定在水泥熟料中。 2.2系统构成和主要设备 水泥窑协同处置包括污染土壤贮存、预处理、投加、焚烧和尾气处理等过程。在原有的水泥生产线基础上,需要对投料口进行改造,还需要必要的投料装置、预处理设施、符合要求的贮存设施和实验室分析能力。 水泥窑协同处置主要由土壤预处理系统、上料系统、水泥回转窑及配套系统、监测系统组成。 土壤预处理系统在密闭环境内进行,主要包括密闭贮存设施(如充气大棚),筛分设施(筛分机),尾气处理系统(如活性炭吸附系统等),预处理系统产生的尾气经过尾气处理系统后达标排放。 上料系统主要包括存料斗、板式喂料机、皮带计量秤、提升机,整个上料过程处于密闭环境中,避免上料过程中污染物和粉尘散发到空气中,造成二次污染。 水泥回转窑及配套系统主要包括预热器、回转式水泥窑、窑尾高温风机、三次风管、回转窑燃烧器、篦式冷却机、窑头袋收尘器、螺旋输送机、槽式输送机。监测系统主要包括氧气、粉尘、氮氧化物、二氧化碳、水分、温度在线监测以及水泥窑尾气和水泥熟料的定期监测,保证污染土壤处理的效果和生产安全。

水泥窑协同处置危险废物重磅文件发布

水泥窑协同处置危险废物重磅文件发布近日,随着环保形势趋于变好,国家环保部连续发布关于水泥窑协同处置危险废物行业的指导文件,用于鼓励和指导水泥窑协同危废行业向着有利方向长期发展。江苏绿森觉得,水泥窑协同技术是一项有着巨大市场价值和有益社会的技术,能过合理应用可促使国内水泥企业更好转型,同时对垃圾固废、淤泥飞灰也有着实实在在的价值。 关于发布《水泥窑协同处置危险废物经营许可证审查指南(试行)》的公告 为贯彻落实《中华人民共和国固体废物污染环境防治法》《危险废物经营许可证管理办法》等法律法规,规范水泥窑协同处置危险废物经营许可证审批工作,提升水泥窑协同处置危险废物行业的整体水平,我部制定了《水泥窑协同处置危险废物经营许可证审查指南(试行)》,现予发布。该公告自发布之日起施行。 特此公告。 环境保护部 2017年5月27日 环境保护部办公厅2017年5月31日印发水泥窑协同处置危险废物经营许可证审查指南(试行)

为贯彻落实《中华人民共和国固体废物污染环境防治法》《危险废物经营许可证管理办法》等法律法规,进一步规范水泥窑协同处置危险废物经营许可证审批工作,提升水泥窑协同处置危险废物行业的整体水平,制定《水泥窑协同处置危险废物经营许可证审查指南》(以下简称《指南》)。 《指南》按照《危险废物经营许可证管理办法》第五条的有关许可条件,针对水泥窑协同处置危险废物经营单位的特点和存在的主要问题,进一步细化了相关要求。 一、适用范围 《指南》适用于环境保护主管部门对水泥窑协同处置危险废物单位申请危险废物经营许可证(包括新申请、重新申请领取和换证)的审查。 二、术语和定义 (一)水泥窑协同处置危险废物,是指将满足或经预处理后满足入窑(磨)要求的危险废物投入水泥窑或水泥磨,在进行熟料或水泥生产的同时,实现对危险废物的无害化处置的过程。 (二)水泥磨,是指将熟料、石膏和混合材等材料混合研磨生产水泥的设备。

水泥窑协同处置生活垃圾与污泥现状

水泥窑协同处置生活垃圾与污泥工艺 一、污泥 水泥窑协同处置生活污泥工艺通常由污泥干化和水泥窑焚烧两大工艺组成:生活污泥先进行干化处理,再作为生产水泥的原料和燃料输送入水泥窑进行焚烧处理,最终以熟料及水泥产品产出。总结各已建项目的工艺流程区别,主要体现在污泥干化所采用的技术的不同、干化后的污泥入窑位置的不同,入窑投料方式、设备的不同等几个方面。 1、广州越堡水泥厂污泥处理项目 该项目2009年正式与运营,日处理污泥600t(含水率80%),利用窑尾废气余热将污泥烘干至含水<30%,然后通过新建的接口设备将污泥送入6000t/d生产线水泥熟料烧成系统中焚烧处理。主要建设内容包括:(1)污泥收集及输送;(2)污泥来料称重计量系统;(3)污泥来料接收仓系统;(4)污泥储存料仓系统;(5)污泥输送系统;(6)污泥干燥车间;(7)成品污泥料仓系统;(8)成品污泥输送系统;(9)配套电气、自控仪表、暖通、消防、除臭、卫生等系统。工艺流程见下图:

该工艺主要特点是利用窑尾废气,直接与污泥接触进行半干化(将污泥的含水率降至30%以下),然后入窑焚烧。技术要点在于干化设备和入窑衔接设备。 2、北京水泥厂污泥处理系统: 污泥干化和水泥窑焚烧系统分为湿污泥的储存和输送、污泥干化、热能交换三部分组成。来自厂外的全部湿污泥经计量后倒入接收仓,然后利用接收仓底部的链板输送机送入湿污泥料仓储存,污泥料仓中的污泥再被送入干燥处理装置。抽自窑尾烟室的高温烟气产生的热量经热交换器传递给导热油, 导热油被循环加热,最终将热量传递给湿污泥,使污泥干燥。在干燥机内污泥被加热干燥, 水分从80%降低到35%(半干化时)或10%(全干化)。干燥后的颗粒和气体经过旋风分离器后颗粒从工艺气体中分离出来, 经螺旋冷却后污泥颗粒送入水泥窑中焚烧。干燥分离的蒸汽经过离心机抽取循环后经热交换器 重新被加热返至干燥器的始端。

水泥窑协同处理垃圾危废利润怎样

水泥窑协同处理垃圾危废利润怎样? 随着我国经济社会和城镇化的快速发展,城市人口保有量逐渐呈现上升趋势,随着人口的逐年增加,城市生活垃圾量也不断增长。据有关部门不完全统计,2013 年初我国城镇生活垃圾产生量超过1.8 亿吨,堆存量70 多亿吨,占地5 亿多平方米,“垃圾围城”问题日益显现。水泥窑协同处置生活垃圾已成为部分工业化国家消纳生活垃圾的主要方式之一。 经过百度,小编了解到在国外,水泥窑协同处置是固废危废处置的主要手段之一,已经有40多年的发展历史。德国在焚烧垃圾方面就一直采用水泥窑协同处置和垃圾发电两条途径。而且水泥工业中燃料替代率保持了迅猛增长势头,处理废物种类主要为废旧轮胎、废弃油、废木材以及工业废物。同时,固废处置产业链也较为完善,在水泥厂附近有配套的垃圾分选处理厂,把热值高、宜焚烧的成分分选出来进行破碎,再运到水泥厂,以确保焚烧时的燃料添加达到最小化,又能控制二恶英产生。 随着国家政策对水泥窑协同处置固废危废的鼓励,加上水泥窑协同处置日益成熟的技术,海螺、华新、金隅等传统水泥生产企业纷纷涉足固体废物处置,利用水泥窑协同处置生活垃圾。同时,环保企业也纷纷联手水泥企业,实现强强联合,共同推进水泥窑协同处置产业。

根据记者的粗略计算,危废行业盈利能力强,毛利率平均在35%以上,净利率20%左右。据不完全统计,各地平均处理垃圾费用在3000-5000元/吨之间,以3500元/吨为例,5000吨水泥窑每年处理3000吨来算,一年有近2亿元左右的净利润。这笔钱对水泥企业来说可是非常可观的,为企业在国内外市场竞争中提供绝对优势。 水泥窑协同处理技术在国内个别水泥生产企业已开始实践,有国家政策扶持,也有行业专家团队的技术支持,经过一段时间的摸索和创新必然会找到适合国内水泥企业生产特色的新工艺,不但给水泥生产企业带来可观的经济效益,更可长期的造福社会和人民!江苏绿森相信,任何有可能造福社会的新技术都值得我们研究和积极探索,同时始终坚信水泥窑协同处理城市垃圾技术会迎来灿烂的明天! 本文“水泥窑协同处理垃圾危废利润怎样?”相关资讯,如果您有任何疑问,可以随时联系客服!

事实证明水泥窑协同处置危废已占据半壁江山

事实证明水泥常协同处置危废已占据半壁江山本文梳理了全国各省危废产能数据,并根据相应的环评、经营许可描述,对生产工艺进行手动分类。2018年全国水泥窑协同处置产能规模快速扩张,产能规模已与传统焚烧较接近。其中浙江、河南与广西规模居前。 一、水泥窑协同处置工艺占焚烧产能总量的45% 截止 2018年11月底,我国已经获得经营许可的水泥窑协同处置危险废物资质共计57个,规模合计368万吨/年。其中,剔除陕西与河南区域8个资质仅包含HW33的项目后(由于HW33曾经是部分水泥厂的重要原料,随着危险废物管理规范化,政府为水泥厂颁发资质以完成对危废管理的全面覆盖,但实际产能利用率较低),综合类危废处置项目合计49个,处置规模284万吨。较之目前全国传统无害化焚烧产能规模350万吨/年,两者规模已较为接近。因此,目前我国焚烧类危险废物处置合计产能634万吨/年,其中传统焚烧工艺占比55%,水泥窑协同处置占比45%。 1.1.水泥窑协同处置危废产能进入产能加速释放期 2017-2018水泥窑协同处置危废规模累积增加262万吨 2017-2018年,我国水泥窑协同处置危废项目分别新增19个与26个,新增规模分别为104万吨/年和166万吨/年,产能进入加速释放期。这主要得益于①环保督查启动,显著提升各省危险废物合规处置的监管力度,产能建设进入加速期。 ②2017年多项行业标准颁布,推动了行业的合法合规发展,也打消了地方政府对其技术稳定性与效果合法性的疑虑。 先天条件决定了水泥窑协同处置工艺的产能释放速度快审批周期短: 由于危废协同处置的设施直接建设在水泥厂内,而水泥厂本身卫生防护距离800米,群众阻力较小,不存在选址难度。 水泥窑协同处置危废项目,从项目备案到终投运,周期在2-3年之间,较 之传统焚烧节约3年左右时间。 单体项目产能规模大:

利用水泥窑协同处置市政污泥投资建设项目可行性研究报告-广州中撰咨询

利用水泥窑协同处置市政污泥投资建设 项目 可行性研究报告 (典型案例·仅供参考) 广州中撰企业投资咨询有限公司 中国·广州

目录 第一章利用水泥窑协同处置市政污泥项目概论 (1) 一、利用水泥窑协同处置市政污泥项目名称及承办单位 (1) 二、利用水泥窑协同处置市政污泥项目可行性研究报告委托编制单位 (1) 三、可行性研究的目的 (1) 四、可行性研究报告编制依据原则和范围 (2) (一)项目可行性报告编制依据 (2) (二)可行性研究报告编制原则 (2) (三)可行性研究报告编制范围 (4) 五、研究的主要过程 (5) 六、利用水泥窑协同处置市政污泥产品方案及建设规模 (6) 七、利用水泥窑协同处置市政污泥项目总投资估算 (6) 八、工艺技术装备方案的选择 (6) 九、项目实施进度建议 (6) 十、研究结论 (7) 十一、利用水泥窑协同处置市政污泥项目主要经济技术指标 (9) 项目主要经济技术指标一览表 (9) 第二章利用水泥窑协同处置市政污泥产品说明 (15) 第三章利用水泥窑协同处置市政污泥项目市场分析预测 (15) 第四章项目选址科学性分析 (15) 一、厂址的选择原则 (15) 二、厂址选择方案 (16) 四、选址用地权属性质类别及占地面积 (17) 五、项目用地利用指标 (17) 项目占地及建筑工程投资一览表 (17)

六、项目选址综合评价 (18) 第五章项目建设内容与建设规模 (19) 一、建设内容 (19) (一)土建工程 (20) (二)设备购置 (20) 二、建设规模 (20) 第六章原辅材料供应及基本生产条件 (21) 一、原辅材料供应条件 (21) (一)主要原辅材料供应 (21) (二)原辅材料来源 (21) 原辅材料及能源供应情况一览表 (21) 二、基本生产条件 (23) 第七章工程技术方案 (24) 一、工艺技术方案的选用原则 (24) 二、工艺技术方案 (25) (一)工艺技术来源及特点 (25) (二)技术保障措施 (25) (三)产品生产工艺流程 (25) 利用水泥窑协同处置市政污泥生产工艺流程示意简图 (26) 三、设备的选择 (26) (一)设备配置原则 (26) (二)设备配置方案 (27) 主要设备投资明细表 (28) 第八章环境保护 (28) 一、环境保护设计依据 (29) 二、污染物的来源 (30) (一)利用水泥窑协同处置市政污泥项目建设期污染源 (30)

污泥水泥的协同处置

1污泥水泥窑协同处置典型工艺 (1)废气热干化污泥水泥窑协同焚烧 主要包括直接接触干燥和间接换热干燥工艺。其中直接接触干燥工艺完全利用生产废气干化污泥,干污泥入窑替代燃料利用,典型工艺应用于广州越堡水泥厂污泥水泥窑协同处置工程;间接换热干燥工艺利用生产过程烟气加热,依靠换热锅炉加热导热油作为热源,采用涡流薄层干燥工艺干化污泥,干污泥入窑替代燃料利用,典型工艺应用于北京水泥厂污泥水泥窑协同处置工程。典型工艺流程有:①含水率80%的污泥运输到水泥厂先烘干再治理臭气,达到含水率30%~40%后入窑焚烧。②含水率80%的污泥运输到水泥厂先烘干再治理臭气、恶臭冷凝水,达到半干污泥(25%~30%)后入窑焚烧。③污泥经预处理脱水至含水率10%~40%后入窑焚烧。 (2)水泥窑直接处置污泥 将含水率80%的污泥直接运输到水泥厂,然后泵送入窑,典型工程包括拉法基集团南山水泥厂生活污泥水泥窑协同处置工程。 2污泥水泥窑协同处置原则 为了更好地促进城镇污泥水泥窑协同处置行业的发展,规范行业发展,污泥水泥窑协同处置过程中应遵守以下原则: (1)必须建立污泥处置成本最优化原则,同时保证水泥工业自身的经济效益不受影响。 (2)确保污染物的排放不高于采用传统燃料的污染物排放与污泥单独处置污染物排放总和。 (3)水泥窑产品必须达到品质指标要求,并应通过浸析试验,证明产品对环境不会造成任何负面影响。 (4)污泥水泥窑协同处置时,应保证建立起污泥从产生到处置的记录,在全处置过程确保污染物的达标排放和相关人员健康和安全,确保符合所有要求。 3目前污泥水泥窑协同处置存在的问题 污泥水泥窑协同处置行业优势明显,应用前景广阔,但是与大多数污泥处理处置工艺一样,污泥水泥窑协同处置行业也存在着“成长中的烦恼”,主要表现

相关文档
最新文档