函数形式的单调有界原理的证明

函数形式的单调有界原理的证明
函数形式的单调有界原理的证明

龙源期刊网 https://www.360docs.net/doc/ff11467561.html,

函数形式的单调有界原理的证明

作者:刘晓兰

来源:《课程教育研究》2018年第49期

【摘要】引入实数的连续归纳法,用它证明函数极限的单调有界原理,进而数列极限可以作为函数极限的特殊情形讨论。

【关键词】函数极限单调有界原理数学归纳法

【中图分类号】O171 【文献标识码】C 【文章编号】2095-3089(2018)49-0122-01

在微积分教材中,在介绍极限时,不管是在非数学专业的高等数学教材中还是数学专业的数学分析教材中,都是先介绍数列的极限,然后再介绍函数极限,本文引入张景中院士提出的关于实数理论的“连续归纳法”,证明函数极限的单调有界原理,这样数列形式的单调有界原理就可以作为其特例理解,从而教材可以把函数极限和数列极限调整顺序。

1.关于正整数的数学归纳法原理

第二数学归纳法:设有一个与自然数n有关的命题P(n),如果:

(1)当n=1时,命题P(1)成立;

(2)假设对任意自然数1≤n

2.关于实数的连续归纳法原理

定理1 设P(t)是涉及实数t的一个命题,满足:

(1)存在区间[t0,t1),使P(t)在此区间上成立;

(2)对任意区间[t0,s),P(t)在此区间上成立,可推出存在t2>s,P(t)在区间[t0,t2)上成立;P(t)则在[t0,+∞)上成立。

3.函数极限的单调有界定理

定理2(函数极限的单调有界定理)

设函数f(x)在[a,+∞)上单调有界,则极限 f(x)存在。

证明:不妨设f(x)是单调递减的,若 f(x)存在,由f(x)的递减性,可得?坌

x∈[a,+∞),必有f(x)≥ f(x),即 f(x)是f(x)的下界。

函数的单调性 知识点与题型归纳

1.理解函数的单调性、最大值、最小值及其几何意义. 2.会运用基本初等函数的图象分析函数的性质. ★备考知考情 1.函数的单调性是函数的一个重要性质,是高考的热点,常见问题有:求单调区间,判断函数的单调性,求参数的取值,利用函数单调性比较数的大小,以及解不等式等.客观题主要考查函数的单调性,最值的确定与简单应用. 2.题型多以选择题、填空题的形式出现,若与导数交汇命题,则以解答题的形式出现. 一、知识梳理《名师一号》P15 注意: 研究函数单调性必须先求函数的定义域, 函数的单调区间是定义域的子集 单调区间不能并! 知识点一函数的单调性 1.单调函数的定义 1

2 2.单调性、单调区间的定义 若函数f (x )在区间D 上是增函数或减函数,则称函数f (x )在这一区间上具有(严格的)单调性,区间D 叫做f (x )的单调区间. 注意: 1、《名师一号》P16 问题探究 问题1 关于函数单调性的定义应注意哪些问题? (1)定义中x 1,x 2具有任意性,不能是规定的特定值. (2)函数的单调区间必须是定义域的子集; (3)定义的两种变式: 设任意x 1,x 2∈[a ,b ]且x 1-f x f x x x ? f (x )在[a ,b ]上是增函数;

3 1212 ()() 0-<-f x f x x x ? f (x )在[a ,b ]上是减函数. ②(x 1-x 2)[f (x 1)-f (x 2)]>0?f (x )在[a ,b ]上是增函数; (x 1-x 2)[f (x 1)-f (x 2)]<0?f (x )在[a ,b ]上是减函数. 2、《名师一号》P16 问题探究 问题2 单调区间的表示注意哪些问题? 单调区间只能用区间表示,不能用集合或不等式表示; 如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结. 知识点二 单调性的证明方法:定义法及导数法 《名师一号》P16 高频考点 例1 规律方法 (1) 定义法: 利用定义证明函数单调性的一般步骤是: ①任取x 1、x 2∈D ,且x 10,则f (x )在区间D 内为增函数;如果f ′(x )<0,则f (x )在区间D 内为减函数. 注意:(补充) (1)若使得f ′(x )=0的x 的值只有有限个,

闭区间上连续函数的有界性定理证明的新方法-模板

闭区间上连续函数的有界性定理证明的新方法 一、引言 函数是描述客观世界变化规律的重要数学模型,连续函数又是数学分析中非常重要的一类函数。在数学中,连续是函数的一种属性。而在直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。函数极限的存在性、可微性,以及中值定理、积分等问题,都是与函数的连续性有着一定的,而闭区间上连续函数的性质也显得非常重要。在闭区间上连续函数的性质中,有界性定理又是最值定理和介值定理等的基础。 在极限绪论中,我们知道闭区间上连续函数具有5个性质,即:有界性定理、最大值最小值定理、介值定理、零点定理和一致连续定理,零点定理是介值定理的一个重要推论。而闭区间上连续函数的有界性定理的证明,在很多数学教材中,所采用的方法大致相同,一般都是用致密性定理和有限覆盖定理来加以证明的。并且在文献中作者也分别利用闭区间套定理、确界定理、单调有界定理和柯西收敛准则证明了此定理。但是我们知道,分析数学上所列举的实数完备性的7个基本定理是相互等价的,因而从原则上讲,任何一个都可以证明该定理,只不过是有繁简之分,笔者考虑如何能用最简单的方法将闭区间上连续函数的有界性定理证明出来,上述文献中已经用其他6个基本定理证明了闭区间连续函数的有界性定理,下面本文用实数完备性定理中的聚点原则和构造数列的办法给出了该定理的新证明方法。 二、一种新的证明方法 (一)预备知识 (二)有界性定理的新证法下面将给出实数完备性定理中的聚点原则对闭区间连续函数的有界性定理的证明。 三、有界性定理在数学建模中的应用 本文以一道数学建模的问题为例,介绍闭区间上连续函数的有界性定理如何应用于实际问题。 在20XX年“深圳杯”数学建模夏令营D题中,根据题意所述:农业灾害保险是政府为保障国家农业生产的发展,基于商业保险的原理并给予政策扶持的一类保险产品。农业灾害保险也是针对自然灾害,保障农业生产的重要措施之一,是现代农业金融服务的重要组成部分。农业灾害保险险种是一种准公共产品,基

高中一年级函数单调性完整版

函数的单调性 学习目标(1)掌握函数的基本性质(单调性、最大值或最小值、奇偶性),能应 用函数的基本性质解决一些问题。 (2)从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和 单调性定义判断、证明函数单调性的方法. (3)了解奇偶性的概念,回 会利用定义判断简单函数的奇偶性。 重点与难点 (1)判断或证明函数的单调性; (2)奇偶性概念的形成与函数奇偶性的判断。 学习过程 【学习导航】 知识网络 学习要求 1. 从特殊到一般,掌握增函数、减函数、单调区间的概念; 2. 会根据图像说出函数的单调区间,并能指出其增减性; 3. 会用定义证明一些简单函数的单调性. 自学评价 观察函数x x f =)(,2 )(x x f =的图象 从左至右看函数图象的变化规律: (1). x x f =)(的图象是_________的, 2)(x x f =的图象在y 轴左侧是______的,2)(x x f =的图象在y 轴右侧是_______的. (2). x x f =)(在),(+∞-∞上,f (x )随着x 的增大而___________;2 )(x x f =在]0,(-∞ 上,f (x )随着x 的增大而_______;2 )(x x f =在),0(+∞上,f (x )随着x 的增大而________. 一、 函数的单调性 1.单调函数的定义 (1)增函数:一般地,设函数()f x 的定义域为I :如果对于属于I 内某个区间上的任意两个自变量的值1x 、2x ,当1x <2x 时都有12()()f x f x <,那么就说()f x 在这个区间上是增函数。 (2)减函数:如果对于属于I 内某个区间上的任意两个自变量的值1x 、2x ,当1x <2x 时 函数的单调性 单调性的定义 定义法证明函数的单调性 增函数 减函数 单调区间 x y 0 x y 0 x x f =)( 2)(x x f =

用函数单调性定义证明

用函数单调性定义证明 例1、用函数单调性定义证明: (1)为常数)在上是增函数. (2)在上是减函数. 分析:虽然两个函数均为含有字母系数的函数,但字母对于函数的单调性并没有影响,故无须讨论. 证明: (1)设是上的任意两个实数,且, 则 = 由得,由得, . ,,即 . 于是即 . 在上是增函数. (2) 设是上的任意两个实数,且, 则 由得,由得

.又 , . 于是 即 . 在 上是减函数. 小结:由(1)中所得结论可知二次函数的单调区间只与对称轴的位置和开口方向有关,与常数 无关.若函数解析式是分式,通常变形时需要通分,将分子、分母都化成乘积的形式便于判断符号. 根据单调性确定参数 例1、函数 在 上是减函数,求 的取值集合. 分析:首先需要对 前面的系数进行分类讨论,确定函数的类型,再做进一步研究. 解:当 时,函数此时为 ,是常数函数,在 上不 具备增减性. 当 时, 为一次函数,若在 上是减函数,则有 ,解得 .故所求 的取值集合为 . 小结:此题虽比较简单,但渗透了对分类讨论的认识与使用. 例1、 设函数ax x x f -+=1)(2,其中0>a ,求a 的取值范围,使函数)(x f 在 区间[]+∞,0上是单调函数. 分析:由于函数的单调性不易直接判断,而且含有字母系数,求解过程中需要讨论字母的范围,因此可以从单调性定义出发,从定义求解释一种基本的方法,不可忽视. 解: 在[]+∞,0上任取1x ,2x ,使得21x x < )()(21x f x f -

)(11212 221x x a x x --+-+= )(1 12122 212 2 21x x a x x x x --+++-= )1 1)( (22 21 2121a x x x x x x -++++-= (Ⅰ)当1≥a 时,因为11 122 21 21<++++x x x x , 01 122 21 21<-++++a x x x x ,又 021<-x x , 所以0)()(21>-x f x f ,即)()(21x f x f > 所以当1≥a 时,函数)(x f 在区间[]+∞,0上是单调递减函数 (Ⅱ)当10<

函数单调性的判定方法

函数单调性的判定方法 1.判断具体函数单调性的方法 对于给出具体解析式的函数,由函数单调性的定义出发,本文列举的判断函数单调性的方法有如下几种: 1.1 定义法 首先我们给出单调函数的定义。一般地,设f 为定义在D 上的函数。若对任何1x 、 D x ∈2,当21x x <时,总有 (1))()(21x f x f ≤,则称f 为D 上的增函数,特别当成立严格不等)()(21x f x f <时,称f 为D 上的严格增函数; (2))()(21x f x f ≥,则称f 为D 上的减函数,特别当成立严格不等式)()(21x f x f > 时,称f 为D 上的严格减函数。 给出函数单调性的定义,我们就可以利用函数单调性的定义来判定及证明函数的单调性。用单调性的定义判断函数单调性的方法叫定义法。利用定义来证明函数 )(x f y =在给定区间D 上的单调性的一般步骤: (1)设元,任取1x ,D x ∈2且21x x <; (2)作差)()(21x f x f -; (3)变形(普遍是因式分解和配方); (4)断号(即判断)()(21x f x f -差与0的大小); (5)定论(即指出函数 )(x f 在给定的区间D 上的单调性)。 例1.用定义证明)()(3R a a x x f ∈+-=在),(+∞-∞上是减函数。 证明:设1x ,),(2+∞-∞∈x ,且21x x <,则

).)(()()()(212 221123132323121x x x x x x x x a x a x x f x f ++-=-=+--+-=- 由于04 3)2(2 2221212221>++ =++x x x x x x x ,012>-x x 则0))(()()(212 2211221>++-=-x x x x x x x f x f ,即)()(21x f x f >,所以)(x f 在() +∞∞-,上是减函数。 例2.用定义证明函数x k x x f + =)()0(>k 在),0(+∞上的单调性。 证明:设1x 、),0(2+∞∈x ,且21x x <,则 )()()()(221121x k x x k x x f x f +-+ =-)()(2 121x k x k x x -+-= )( )(211221x x x x k x x -+-=)()(212121x x x x k x x ---=))((2 12121x x k x x x x --=, 又210x x <<所以021<-x x ,021>x x , 当1x 、],0(2k x ∈时021≤-k x x ?0)()(21≥-x f x f ,此时函数)(x f 为减函数; 当1x 、),(2+∞∈k x 时021>-k x x ?0)()(21<-x f x f ,此时函数)(x f 为增函数。 综上函数x k x x f + =)()0(>k 在区间],0(k 内为减函数;在区间),(+∞k 内为增函数。 此题函数)(x f 是一种特殊函数(对号函数),用定义法证明时通常需要进行因式分解,由于k x x -21与0的大小关系)0(>k 不是明确的,因此要分段讨论。 用定义法判定函数单调性比较适用于那种对于定义域内任意两个数21,x x 当 21x x <时,容易得出)(1x f 与)(2x f 大小关系的函数。在解决问题时,定义法是最直 接的方法,也是我们首先考虑的方法,虽说这种方法思路比较清晰,但通常过程比较繁琐。 1.2 函数性质法 函数性质法是用单调函数的性质来判断函数单调性的方法。函数性质法通常与我

证明函数单调性的方法总结

证明函数单调性的方法总结 导读:1、定义法: 利用定义证明函数单调性的一般步骤是: ①任取x1、x2∈D,且x1 ②作差f(x1)-f(x2),并适当变形(“分解因式”、配方成同号项的和等); ③依据差式的符号确定其增减性. 2、导数法: 设函数y=f(x)在某区间D内可导.如果f′(x)>0,则f(x)在区间D内为增函数;如果f′(x) 注意:(补充) (1)若使得f′(x)=0的x的值只有有限个, 则如果f ′(x)≥0,则f(x)在区间D内为增函数; 如果f′(x) ≤0,则f(x)在区间D内为减函数. (2)单调性的判断方法: 定义法及导数法、图象法、 复合函数的单调性(同增异减)、 用已知函数的单调性等 (补充)单调性的有关结论 1.若f(x),g(x)均为增(减)函数, 则f(x)+g(x)仍为增(减)函数. 2.若f(x)为增(减)函数, 则-f(x)为减(增)函数,如果同时有f(x)>0,

则 为减(增)函数, 为增(减)函数 3.互为反函数的两个函数有相同的单调性. 4.y=f[g(x)]是定义在M上的函数, 若f(x)与g(x)的'单调性相同, 则其复合函数f[g(x)]为增函数; 若f(x)、g(x)的单调性相反, 则其复合函数f[g(x)]为减函数.简称”同增异减” 5. 奇函数在关于原点对称的两个区间上的单调性相同; 偶函数在关于原点对称的两个区间上的单调性相反. 函数单调性的应用 (1)求某些函数的值域或最值. (2)比较函数值或自变量值的大小. (3)解、证不等式. (4)求参数的取值范围或值. (5)作函数图象. 【证明函数单调性的方法总结】 1.函数单调性的说课稿 2.高中数学函数的单调性的教学设计 3.导数与函数的单调性的教学反思

证明函数单调性的方法总结归纳

证明函数单调性的方法总结归纳 1、定义法: 利用定义证明函数单调性的一般步骤是: ①任取x1、x2∈D,且x1②作差f(x1)-f(x2),并适当变形(“分解因式”、配方成同号项的和等); ③依据差式的符号确定其增减性. 2、导数法: 设函数y=f(x)在某区间D内可导.如果f′(x)>0,则f(x)在区间D 内为增函数;如果f′(x)注意:(补充) (1)若使得f′(x)=0的x的值只有有限个, 则如果f ′(x)≥0,则f(x)在区间D内为增函数; 如果f′(x) ≤0,则f(x)在区间D内为减函数. (2)单调性的判断方法: 定义法及导数法、图象法、 复合函数的单调性(同增异减)、 用已知函数的单调性等 (补充)单调性的有关结论 1.若f(x),g(x)均为增(减)函数, 则f(x)+g(x)仍为增(减)函数. 2.若f(x)为增(减)函数, 则-f(x)为减(增)函数,如果同时有f(x)>0,

则 为减(增)函数, 为增(减)函数 3.互为反函数的两个函数有相同的单调性. 4.y=f[g(x)]是定义在M上的函数, 若f(x)与g(x)的单调性相同, 则其复合函数f[g(x)]为增函数; 若f(x)、g(x)的单调性相反, 则其复合函数f[g(x)]为减函数.简称”同增异减” 5. 奇函数在关于原点对称的两个区间上的单调性相同; 偶函数在关于原点对称的两个区间上的单调性相反. 函数单调性的应用 (1)求某些函数的值域或最值. (2)比较函数值或自变量值的大小. (3)解、证不等式. (4)求参数的取值范围或值. (5)作函数图象. 搜集整理,仅供参考学习,请按需要编辑修改

高中数学教师资格面试《函数的单调性》教案

高中数学教师资格面试《函数的单调性》教案: 函数的单调性 课题:函数的单调性 课时:一课时 课型:新授课 一、教学目标 1.知识与技能: (1)从形与数两方面理解单调性的概念。 (2)绝大多数学生初步学会利用函数图象和单调性定义判断、证明函数单调性的方法。 2.过程与方法: (1)通过对函数单调性定义的探究,提高观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高推理论证能力。 (2)通过对函数单调性定义的探究,体验数形结合思想方法。 (3)经历观察发现、抽象概括,自主建构单调性概念的过程,体会从具体到抽象,从特殊到一般,从感性到理性的认知过程。 3.情感态度价值观:

通过知识的探究过程养成细心观察、认真分析、严谨论证的良好思维习惯;感受用辩证的观点思考问题。 二、教学重点 函数单调性的概念形成和初步运用。 三、教学难点 函数单调性的概念形成。 四、教学关键 通过定义及数形结合的思想,理解函数的单调性。 五、教学过程 (一)创设情境,导入新课 教师活动:分别作出函数y=2x,y=-2x和y=x2+1的图象,并且观察函数变化规律,描述前两个图象后,明确这两种变化规律分别称为增函数和减函数。然后提出两个问题:问题一:二次函数是增函数还是减函数问题二:能否用自己的理解说说什么是增函数,什么是减函数 学生活动:观察图象,利用初中的函数增减性质进行描述,y=2x的图象自变量x在实数集变化时,y随x增大而增大,y=-2x的图象自变量x在实数集变化时,y随x增大而减小。在此基础上描述y=x2+1在(-∞,0]上y随x增大而减小,在

(0,+∞)上y随x增大而增大。理解单调性是函数的局部性质,在一个区间里,y随x增大而增大,则是增函数;y随x增大而减小就是减函数。 设计意图:数学课程标准中提出“通过已学过的函数特别是二次函数理解函数的单调性”,因此在本环节的设计上,从学生熟知的一次函数和二次函数入手,从初中对函数增减性的认识过渡到对函数单调性的直观感受。通过一次函数认识单调性,再通过二次函数认识单调性是局部性质,进而完善感性认识。 (二)初步探索,形成概念 教师活动:(以y=x2+1在(0,+∞)上单调性为例)让学生理解如何用精确的数学语言(随着、增大、任取)来描述函数的单调性,进而得到增(减)函数的定义。并进一步提出如何判断的问题。 学生活动:通过交流、提出见解,提出质疑,相互补充理解函数定义的解释,讨论表示大小关系时,理解如何取值,明白任取的意义。 设计意图:通过启发式提问,实现学生从“图形语言”到“文字语言”到“符号语言”认识函数的单调性,实现“形”到“数”的转换。 (三)概念深化,延伸扩展 教师活动:提出下面这个问题:能否说f(x)=在它的定义域上是减函数从这个例子能得到什么结论并给出例子进行说明: 进一步提问:函数在定义域内的两个区间A,B上都是增(减)函数,何时函数在A∪B上也是增(减)函数,最后再一次回归定义,强调任意性。

闭区间上连续函数的有界性定理证明的新方法_1

闭区间上连续函数的有界性定理证明的新方法连续函数是数学分析中非常重要的一类函数,下面是小编搜集整理的一篇探究闭区间上连续函数的有界性定理证明的论文范文,欢迎阅读参考。 一、引言 函数是描述客观世界变化规律的重要数学模型,连续函数又是数学分析中非常重要的一类函数。在数学中,连续是函数的一种属性。而在直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。函数极限的存在性、可微性,以及中值定理、积分等问题,都是与函数的连续性有着一定联系的,而闭区间上连续函数的性质也显得非常重要。在闭区间上连续函数的性质中,有界性定理又是最值定理和介值定理等的基础。 在极限绪论中,我们知道闭区间上连续函数具有5个性质,即:有界性定理、最大值最小值定理、介值定理、零点定理和一致连续定理,零点定理是介值定理的一个重要推论。而闭区间上连续函数的有界性定理的证明,在很多数学教材中,所采用的方法大致相同,一般都是用致密性定理和有限覆盖定理来加以证明的。并且在文献中作者也分别利用闭区间套定理、确界定理、单调有界定理和柯西收敛准则证明了此定理。但是我们知道,分析数学上所列举的实数完备性的7个基本定理是相互等价的,因而从原则上讲,任何一个都可以证明该定理,只不过是有繁简之分,笔者考虑如何能用最简单的方法将闭区间上连续函数的有界性定理证明出来,上述文献中已经用其他6个基

本定理证明了闭区间连续函数的有界性定理,下面本文用实数完备性定理中的聚点原则和构造数列的办法给出了该定理的新证明方法。 二、一种新的证明方法 (一)预备知识 (二)有界性定理的新证法下面将给出实数完备性定理中的聚点原则对闭区间连续函数的有界性定理的证明。 三、有界性定理在数学建模中的应用 本文以一道数学建模的问题为例,介绍闭区间上连续函数的有界性定理如何应用于实际问题。 在2013年“深圳杯”数学建模夏令营D题中,根据题意所述:农业灾害保险是政府为保障国家农业生产的发展,基于商业保险的原理并给予政策扶持的一类保险产品。农业灾害保险也是针对自然灾害,保障农业生产的重要措施之一,是现代农业金融服务的重要组成部分。农业灾害保险险种是一种准公共产品,基于投保人、保险公司和政府三方面的利益,按照公平合理的定价原则设计,由保险公司经营的保险产品,三方各承担不同的责任、义务和风险。根据题目中附件所给的P省的具体情况,可以将有界性定理灵活的用在自然灾害保险的风险评估和费率拟定上。假设时间是一个连续状态,则以时间t为自变量,根据题中所给数据,以日最高最低气温为例,很明显它与时间t是呈周期性变化的,以一年为一个周期,故只考虑在某一年内的变化规律,即. 将日最高最低气温拟合成一个关于时间的函数f(t),则由于自变量

《函数的单调性》教材分析

《函数的单调性》教材分析 一、内容结构 1、通过观察几个不同的函数图像,直观感受图像的变化 教材中通过以下三个不同的函数图像,让学生去发现它的变化规律,从而体验函数图像的上升与下降的变化。 2、结合直观图像和列表,归纳函数值的变化规律 教材中以二次函数为例,先从图像直观函数图像的上升与下降的变化,再结合列表归纳函数在某个区间上函数值与自变量的变化规律。 3、由特殊过渡到一般,得出增(减)函数的定义 教材中先由函数在某个区间上函数值与自变量的变化规律定义出该函数在某个区间是增函数还是减函数,再由特殊向一般转变,从而得出一般的增(减)函数的定义。 4、利用增(减)函数的定义,证明函数的单调性 教材中通过证明玻意耳定理,让学生得知如何利用定义证明函数的增减性,从而归纳证明函数单调性的一般证明方法与步骤。 二、教学目标与教学重、难点 依据课程标准的具体要求以及基于教材内容的具体分析,制定本节课的教学目标为: 1.通过函数单调性的学习,让学生通过自主探究活动,体会数学概念的形成过程的真谛,学会运用函数图像理解和研究函数的性质。 2.理解并掌握函数的单调性及其几何意义,掌握用定义证明函数的单调性的步骤,会求函数的单调区间,提高应用知识解决问题的能力。 3.能够用函数的性质解决生活中简单的实际问题,使学生感受到学习单调性的必要性与重要性,增强学生学习函数的紧迫感,激发其积极性。

在本节课的教学中以函数的单调性的概念为线,它始终贯穿于教师的整个课堂教学过程和学生的学习过程;利用函数的单调性的定义证明简单函数的单调性是对函数单调性概念的深层理解,且“取值、作差与变形、判断、结论”过程学生不易掌握。所以对教学的重点、难点确定如下 教学重点:函数的单调性的判断与证明; 教学难点:增、减函数形式化定义的形成及利用函数单调性的定义证明简单函数的单调性。 三、地位与作用 《函数的单调性》选自人教版高中数学必修一的内容,该内容包括函数的单调性的定义与判断及其证明。在初中学习函数时,借助图像的直观性研究了一些函数的增减性。这节内容是初中有关内容的深化、延伸和提高。这节通过对具体函数图像的归纳和抽象,概括出函数在某个区间上是增函数或减函数的准确含义,明确指出函数的增减性是相对于某个区间来说的。教材中判断函数的增减性,既有从图像上进行观察的直观方法,又有根据其定义进行逻辑推理的严格方法,最后将两种方法统一起来,形成根据观察图像得出猜想结论,进而用推理证明猜想的体系。函数的单调性是函数众多性质中的重要性质之一,函数的单调性一节中的知识是前一节内容函数的概念和图像知识的延续,它和后面的函数奇偶性,合称为函数的简单性质,是今后研究指数函数、对数函数、幂函数及其他函数单调性的理论基础;在解决函数值域、定义域、不等式、比较两数大小等具体问题中均需用到函数的单调性;同时在这一节中利用函数图象来研究函数性质的数形结合思想将贯穿于我们整个高中数学教学。 四、教学建议 函数的单调性是描述函数的整体特征之一,因此观察函数的图像时,首先应注意图像的升降变化,还有某些特殊位置的函数值的状态。让学生观察图像获得图像的变化规律时,应注意使用数形结合的思想。此外教学时,要特别重视从几个实例的共同特征过渡到一般性质的概括过程,引导学生用数学语言表示出来,生成数学概念。具体的,研究函数单调性应遵循“三步曲”: 第一步:观察图像,直观感知图像的变化 第二步:结合图表,用自然语言描述函数图像的变化规律 第三步:用数学语言定义函数的单调性

函数单调性地判断或证明方法

函数单调性的判断或证明方法. ( 1)定义法。用定义法证明函数的单调性的一般步骤是①取值,设,且;②作差,求;③变形(合并同类项、通分、分解因式、 配方等)向有利于判断差值符号的方向变形;④定号,判断的正负符号,当符号不确定时,应分类讨论;⑤下结论,根据函数单调性的定义下结论。 例 1. 判断函数在(-1,+∞ )上的单调性,并证明. 解:设- 10, x2+ 1>0. ∴当 a>0 时, f(x 1) - f(x 2)<0 ,即 f(x 1)0 ,即 f(x 1)>f(x ∴函数 y= f(x) 在 ( - 1,+∞ ) 上单调递减. 2),2), 例 2.证明函数在区间和上是增函数;在上为减函数。(增两端,减中间) 证明:设,则 因为,所以, 所以,

所以 所以 设 则, 因为, 所以 所以 所以 , 同理,可得 (2)运算性质法 . ①在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数, 增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.(增 +增=增;减 +减 =减;增 -减=增,减 -增=减) ②若. ③当函数 ④ 函数 . 二者有相 反的单调性。 ⑤运用已知结论,直接判断函数的单调性,如一次函数、反比例函数等。( 3)图像法 . 根据函数图像的上升或下降判断函数的单调性。 例 3. 求函数的单调区间。 解:

闭区间上连续函数性质证明

§2 闭区间上连续函数性质的证明 教学目的:掌握闭区间上连续函数性质证明思路与方法,加深对实数完备性若干定理的理解。 重点难点:重点与难点为其证明思路与方法。 教学方法:讲练结合。 在本节中,我们利用实数完备性的基本定理,来证明闭区间上连续函数的基本性质. 有界性定理 若函数f 在闭区间[]b a ,上连续,则f 在[]b a ,上有界. 证 [证法一](应用有限覆盖定理) 由连续函数的局部有界性(定理4.2),对每一点[],,b a x ∈'都存在邻域);(x x U ''δ及正数x M ',使得[].,);(,)(b a x U x M x f x x '''∈≤δ 考虑开区间集 []{} b a x x U H x ,);(∈''='δ, 显然H 是[]b a ,的一个无限开覆盖.由有限覆盖定理,存在H 的一个有限子集 ()[]{}k i b a x x U i i i ,,2,1,,;* =∈=H δ 覆盖了[]b a ,,且存在正数k M M M ,,,21 ,使得对一切()[]b a x U x i i ,; δ∈有 ().,,2,1,k i M x f i =≤ 令 ,m a x 1i k i M M ≤≤= 则对任何[]b a x ,∈,x 必属于某()()M M x f x U i i i ≤≤?δ;.即证得f 在[]b a ,上有界. [证法二](应用致密性定理) 倘若f 在[]b a ,上无上界,则对任何正整数n ,存在[]b a x n ,∈,使得()n x f n >.依次取 ,2,1=n ,则得到数列{}[]b a x n ,?.由致密性定理,它含有收敛子列{} k n x ,记ξ=∞ →k n k x lim 。由b x a k n ≤≤及数列极限的保不等式性,[]b a ,∈ξ.利用f 在点ξ连续,推得 () ()+∞<=∞ →ξf x f k n k lim 另一方面,由n x 的选取方法又有()() +∞=?+∞→≥>∞ →k k n k k n x f k n x f lim 与(1)式矛盾.所以f 在[]b a ,有上界.类似可证f 在[]b a ,有下界,从而f 在[]b a ,上有界. 最大、最小值定理 若函数f 在闭区间[]b a ,上连续,则f 在[]b a ,上有最大值与最小值. 证 (应用确界原理) 已证f 在[]b a ,上有界,故由确界原理,f 的值域[]()b a f ,有上确界,记为M .以下我们证明:存在[]b a ,∈ξ,使()M f =ξ.倘若不然,对一切[]b a x ,∈都有()M x f <.令

函数的单调性证明

函数的单调性证明 一.解答题(共40小题) 1.证明:函数f(x)=在(﹣∞,0)上是减函数. 2.求证:函数f(x)=4x+在(0,)上递减,在[,+∞)上递增.3.证明f(x)=在定义域为[0,+∞)是增函数. 4.应用函数单调性定义证明:函数f(x)=x+在区间(0,2)上是减函数.

5.证明函数f(x)=2x﹣在(﹣∞,0)上是增函数. 6.证明:函数f(x)=x2+3在[0,+∞)上的单调性. 7.证明:函数y=在(﹣1,+∞)上是单调增函数. 8.求证:f(x)=在(﹣∞,0)上递增,在(0,+∞)上递增.9.用函数单调性的定义证明函数y=在区间(0,+∞)上为减函数.

10.已知函数f(x)=x+. (Ⅰ)用定义证明:f(x)在[2,+∞)上为增函数; (Ⅱ)若>0对任意x∈[4,5]恒成立,数a的取值围. 11.证明:函数f(x)=在x∈(1,+∞)单调递减. 12.求证f(x)=x+的(0,1)上是减函数,在[1,+∞]上是增函数.13.判断并证明f(x)=在(﹣1,+∞)上的单调性. 14.判断并证明函数f(x)=x+在区间(0,2)上的单调性.

15.求函数f(x)=的单调增区间. 16.求证:函数f(x)=﹣﹣1在区间(﹣∞,0)上是单调增函数. 17.求函数的定义域. 18.求函数的定义域. 19.根据下列条件分别求出函数f(x)的解析式 (1)f(x+)=x2+(2)f(x)+2f()=3x.

20.若3f(x)+2f(﹣x)=2x+2,求f(x). 21.求下列函数的解析式 (1)已知f(x+1)=x2求f(x)(2)已知f()=x,求f(x)(3)已知函数f(x)为一次函数,使f[f(x)]=9x+1,求f(x) (4)已知3f(x)﹣f()=x2,求f(x)

函数极限的性质证明(精选多篇)

函数极限的性质证明 函数极限的性质证明 x1=2,xn+1=2+1/xn,证明xn的极限存在,并求该极限求极限我会 |xn+1-a|<|xn-a|/a 以此类推,改变数列下标可得|xn-a|<|xn-1-a|/a; |xn-1-a|<|xn-2-a|/a; |x2-a|<|x1-a|/a; 向上迭代,可以得到|xn+1-a|<|xn-a|/(a^n) 2 只要证明{x(n)}单调增加有上界就可以了。 用数学归纳法: ①证明{x(n)}单调增加。 x(2)=√=√5>x(1); 设x(k+1)>x(k),则 x(k+2)-x(k+1))=√-√(分子有理化) =/【√+√】>0。 ②证明{x(n)}有上界。 x(1)=1<4, 设x(k)<4,则 x(k+1)=√<√(2+3*4)<4。 3 当0

当0 构造函数f(x)=x*a^x(0 令t=1/a,则:t>1、a=1/t 且,f(x)=x*(1/t)^x=x/t^x(t>1) 则: lim(x→+∞)f(x)=lim(x→+∞)x/t^x =lim(x→+∞)(分子分母分别求导) =lim(x→+∞)1/(t^x*lnt) =1/(+∞) =0 所以,对于数列n*a^n,其极限为0 4 用数列极限的定义证明 3.根据数列极限的定义证明: (1)lim=0 n→∞ (2)lim=3/2 n→∞ (3)lim=0 n→∞ (4)lim0.999…9=1 n→∞n个9 5几道数列极限的证明题,帮个忙。。。lim就省略不打了。。。n/(n^2+1)=0

√(n^2+4)/n=1 sin(1/n)=0 实质就是计算题,只不过题目把答案告诉你了,你把过程写出来 就好了 第一题,分子分母都除以n,把n等于无穷带进去就行 第二题,利用海涅定理,把n换成x,原题由数列极限变成函数 极限,用罗比达法则(不知楼主学了没,没学的话以后会学的) 第三题,n趋于无穷时1/n=0,sin(1/n)=0 不知楼主觉得我的解法对不对呀 limn/(n^2+1)=lim(1/n)/(1+1/n^2)=lim(1/n)/(1+lim(1+n^2)=0/1=0 lim√(n^2+4)/n=lim√(1+4/n^2)=√1+lim(4/n^2)=√1+4lim(1/n ^2)=1 limsin(1/n)=lim=lim(1/n)*lim/(1/n)=0*1=0 第二篇:函数极限的性质 §3.2 函数极限的性质 §2函数极限的性质 ⅰ. 教学目的与要求 1.理解掌握函数极限的唯一性、局部有界性、局部保号性、保不 等式性,迫敛性定理并会利用这些定理证明相关命题. 2.掌握函数极限四则运算法则、迫敛性定理,会利用其求函数极限. ⅱ. 教学重点与难点: 重点: 函数极限的性质. 难点: 函数极限的性质的证明及其应用. ⅲ. 讲授内容

函数的有界性和最值

第一节:函数的有界性和最值 一、有界性 定义1:设A 为函数()f x 定义域的子集,若M ?,使得x A ?∈有()f x M ≤(或()f x M ≥), 则称()f x 在A 上有上(或下)界.称M 为它的一个上(或下)界. 定义2:设A 为函数()f x 定义域的子集,若()M x ?,使得x A ?∈有()()f x M x ≤(或()()f x M x ≥),则称()f x 在A 上有上(或下)界函数.称()M x 为它的一个上(或下)界函数. 二、最值 略 三、例题讲解 例1、求证函数11()sin f x x x =在1(0,)2 x ∈上无上界. 证明:对于任意的0M >,只需证明01(0,)2 x ?∈使得()f x M >. 为此:取001,,()(2)sin(2)2,22222 x k N f x k k k k N k ππππππππ++=∈=++=+∈+ 要使得:2,2k M k N ππ++>∈,只需要1()22k M ππ>-,可取1[()]122 k M ππ=-+ 故函数11()sin f x x x =在1(0,)2x ∈上无上界. 例2、(北约2010) 1=的实根的个数. 3== 5== 所以:方程左边3521=- +≥>,从而方程无实根. 例3、2(),,f x x px q p q R =++∈,若()f x 在[1,1]x ∈-上的最大值为M ,则M 的最小值为 . 解:11max ()x M f x -≤≤=,(1)1,(1)1,(0)M f p q M f p q M f q ≥=++≥-=-+≥= 则4112(1)(1)22M p q p q q p q p q q ≥+++-++-≥+++-+-=

证明若函数在有界闭区域上可积

1. 证明:若函数(,)f x y 在有界闭区域D 上可积,则(,)f x y 在D 上有界. 证 设(,)f x y 在D 上可积,故存在D 的分割1,2{,,},n T σσσ= 使得 1 |()|1,n i i i f p I σ=?-<∑ (1) 其中(,).D I f x y dxdy = ?? 若(,)f x y 在D 上无界,则对上述D 的分割1,2{,,},n T σσσ= (,)f x y 必在某个小区域k σ上无界. 当i k ≠时,取定,i i p σ∈令|()|,i i i k G f p σ≠=?∑因(,)f x y 在k σ无界,存在,k k p σ∈使得 ||1 |()|,k k I G f p σ++>?进而 1 |()||()()| ||1|()||()|||||1, n i i i i k k i i k k k i i k i k k f p I f p f p I I G f p f p I G I σσσσσσσ=≠≠?-=?+?-++≥?-?-> ??--=?∑∑∑ 与(1)式矛盾,故(,)f x y 在D 上有界. 2. 若(,)f x y 为有界闭区域D 上的非负连续函数,且在D 上不恒为零,则(,)0.D f x y dxdy >?? 证 由题设,存在000(,),P x y D ∈使00(,)0,f x y >而(,)f x y 在D 上连续,由连续函数的保号性,存在 1,D D ?使得001(,)(,),2 f x y f x y > 进而有 1 1 1 0011(,)(,)(,)(,)(,)0,2 D D D D D f x y dxdy f x y dxdy f x y dxdy f x y dxdy f x y D -= + ≥ > ?>?? ?? ?? ?? 其中1D ?为区域1D 的面积. 3. 若(,)f x y 在有界闭区域D 上连续,且在D 内任一子区域D D '?上有 (,)0,D f x y d x d y ' =?? 则 (,)0,(,).f x y x y D ≡∈ 证 直接用題2的结论即得. 4. 设(,)f x y 在区域D 上连续,试将积分(,)D f x y dxdy ??化为(直角坐标下)不同顺序的累次积分: (1) D 由不等式22 ,0,1y x y x y ≤≥+≤所确定的区域;

1.3.1函数的单调性例题

1.3.1函数的单调性 题型一、利用函数的图象确定函数的单调区间 例1.作出下列函数的图象,并写出函数的单调区间 (1)12-=x y ; (2)322++-=x x y ; (3)2 )2(1-++=x x y ; (4)969622++++-=x x x x y 相应作业1:课本P32第3题. 题型二、用定义法证明函数的单调性 用定义法证明函数的单调性步骤:取值 作差变形 定号 下结论 ①取值,即_____________________________; ②作差变形,作差____________,变形手段有__________、_____、_____、_______等; ③定号,即____________________________________________________________; ④下结论,即______________________________________________________。 例2.用定义法证明下列函数的单调性 (1)证明:1)(3 +-=x x f 在()+∞∞-,上是减函数.

▲定义法证明单调性的等价形式: 设[]b a x x ,21∈、,21x x ≠,那么 [])(0) ()(0)()()(2 1212121x f x x x f x f x f x f x x ?>--? >--在[]b a ,上是增函数; [])(0) ()(0)()()(2 1212121x f x x x f x f x f x f x x ?<--? <--在[]b a ,上是减函数. (2)证明:x x x f -+=1)(2在其定义域内是减函数; (3)证明:21 )(x x f = 在()0,∞-上是增函数; 法一: 作差 法二:作商

函数的单调性和奇偶性

函数的单调性和奇偶性 一、学习目标 1.理解函数的单调性概念,能根据函数单调性定义证明函数在给定区间上的增减性。 2.会判定函数的单调性,会求单调区间。 3.准确掌握一次函数、二次函数的单调性。 4.解奇函数、偶函数的概念及图像物征,能判断某些函数的奇偶性; 二、例题分析 第一阶梯 [例1]什么叫函数f (x)在区间[a,b]上是增函数(减函数)? [解] 设任意的x 1,x 2 ∈[a,b],当x 1 f(x 2 ),都有f(x 1 )>f(x 2 ), 那么就说f(x)在区间 [a,b] 上是减函数。 [评注] 1.f(x)在某个区间上是增函数或减函数,那么就说函数f(x)在这一区间具有(严格的)单调性, 这一区间叫做f(x)的单调区间。 2.函数的单调性相对于区间而言,这个区间当然是函数定义域的子集。 例如,的定义域A=(-∞,0)∪(0,+∞),那么,下列说法正确的是 (把正确说法的代号都填上) ①f(x)在其定义域A上是增函数

②f(x)是单调函数 ③f(x)在区间(-∞,0)上是增函数 ④f(x)在区间(0,+∞)上是减函数 ⑤f(x)的单调增区间有(-∞,0),(0,+∞) 答:正确说法是③、⑤,其它说法都是错误的,我们着重论证说法①是错误 的:设x 1=1,x 2 =1,则x 1 , x 2 ∈A,但 [例2]怎样根据函数单调性定义,证明函数的增减性?试举一例。[解]根据单调性定义证明函数增减性的步骤是: (1)设x 1,x 2 :即设x 1 、x 2 是该区间上的任意二值,且x 1

相关文档
最新文档