闭区间上连续函数的有界性定理证明的新方法-模板

闭区间上连续函数的有界性定理证明的新方法-模板
闭区间上连续函数的有界性定理证明的新方法-模板

闭区间上连续函数的有界性定理证明的新方法

一、引言

函数是描述客观世界变化规律的重要数学模型,连续函数又是数学分析中非常重要的一类函数。在数学中,连续是函数的一种属性。而在直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。函数极限的存在性、可微性,以及中值定理、积分等问题,都是与函数的连续性有着一定的,而闭区间上连续函数的性质也显得非常重要。在闭区间上连续函数的性质中,有界性定理又是最值定理和介值定理等的基础。

在极限绪论中,我们知道闭区间上连续函数具有5个性质,即:有界性定理、最大值最小值定理、介值定理、零点定理和一致连续定理,零点定理是介值定理的一个重要推论。而闭区间上连续函数的有界性定理的证明,在很多数学教材中,所采用的方法大致相同,一般都是用致密性定理和有限覆盖定理来加以证明的。并且在文献中作者也分别利用闭区间套定理、确界定理、单调有界定理和柯西收敛准则证明了此定理。但是我们知道,分析数学上所列举的实数完备性的7个基本定理是相互等价的,因而从原则上讲,任何一个都可以证明该定理,只不过是有繁简之分,笔者考虑如何能用最简单的方法将闭区间上连续函数的有界性定理证明出来,上述文献中已经用其他6个基本定理证明了闭区间连续函数的有界性定理,下面本文用实数完备性定理中的聚点原则和构造数列的办法给出了该定理的新证明方法。

二、一种新的证明方法

(一)预备知识

(二)有界性定理的新证法下面将给出实数完备性定理中的聚点原则对闭区间连续函数的有界性定理的证明。

三、有界性定理在数学建模中的应用

本文以一道数学建模的问题为例,介绍闭区间上连续函数的有界性定理如何应用于实际问题。

在20XX年“深圳杯”数学建模夏令营D题中,根据题意所述:农业灾害保险是政府为保障国家农业生产的发展,基于商业保险的原理并给予政策扶持的一类保险产品。农业灾害保险也是针对自然灾害,保障农业生产的重要措施之一,是现代农业金融服务的重要组成部分。农业灾害保险险种是一种准公共产品,基

于投保人、保险公司和政府三方面的利益,按照公平合理的定价原则设计,由保险公司经营的保险产品,三方各承担不同的责任、义务和风险。根据题目中附件所给的P省的具体情况,可以将有界性定理灵活的用在自然灾害保险的风险评估和费率拟定上。假设时间是一个连续状态,则以时间t为自变量,根据题中所给数据,以日最高最低气温为例,很明显它与时间t是呈周期性变化的,以一年为一个周期,故只考虑在某一年内的变化规律,即.

将日最高最低气温拟合成一个关于时间的函数f(t),则由于自变量t是连续状态的,故f(t)在定义域[0,365]内是一个连续函数。保险的定价与费率的拟定跟被保农作物受气候灾害的情况有关,而受气候灾害的情况则由f(t)所决定,即f(t)也是的一个连续函数,用spss软件将农作物受灾情况进行聚类分析,将气温划分为4个等级,即为四个在值域上的闭区间

根据闭区间连续函数的有界性定理可知

都有|t|≤M,则找到了一个f(t)为落在闭区间

的最大时间长度,将被保险农作物的生长周期与此时间长度结合进行保险定价与费率的拟定。

四、结论

上述用聚点原则证明了闭区间上连续函数的有界性定理,从侧面反映了实数完备性的7个基本定理的相互等价性,并且根据《数学分析》书及文献中所给出的证明,总结出如下规律:

(一)闭区间上连续函数的有界性定理的证明一般都是采用反证法。

(二)本证明方法结合Heine定理和聚点原则,更加精炼的采用反证法证明了有界性定理,并且将函数转换成数列极限问题来解决。

(三)利用聚点原则证明有界性定理好处在于不用对一个闭区间不断的进行等分(构造一个闭区间套),只需找到一个收敛的子列即可证明。

(四)在实际问题中,往往的数据都是一个离散的时间序列,根据这样离散的数据集拟合出来的一个近似连续的函数,从而根据闭区间上连续函数的有界性定理找到一个最大的定义区间和一个值域范围。

参考文献:

陈传璋.数学分析[M].上海

:复旦大学出版社,1983.

胡亚红.用实数完备性证明闭区间上连续函数的有界性[J].丽水学院学报,20XX,32(5):8-10.

闭区间上连续函数的有界性定理证明的新方法-模板

闭区间上连续函数的有界性定理证明的新方法 一、引言 函数是描述客观世界变化规律的重要数学模型,连续函数又是数学分析中非常重要的一类函数。在数学中,连续是函数的一种属性。而在直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。函数极限的存在性、可微性,以及中值定理、积分等问题,都是与函数的连续性有着一定的,而闭区间上连续函数的性质也显得非常重要。在闭区间上连续函数的性质中,有界性定理又是最值定理和介值定理等的基础。 在极限绪论中,我们知道闭区间上连续函数具有5个性质,即:有界性定理、最大值最小值定理、介值定理、零点定理和一致连续定理,零点定理是介值定理的一个重要推论。而闭区间上连续函数的有界性定理的证明,在很多数学教材中,所采用的方法大致相同,一般都是用致密性定理和有限覆盖定理来加以证明的。并且在文献中作者也分别利用闭区间套定理、确界定理、单调有界定理和柯西收敛准则证明了此定理。但是我们知道,分析数学上所列举的实数完备性的7个基本定理是相互等价的,因而从原则上讲,任何一个都可以证明该定理,只不过是有繁简之分,笔者考虑如何能用最简单的方法将闭区间上连续函数的有界性定理证明出来,上述文献中已经用其他6个基本定理证明了闭区间连续函数的有界性定理,下面本文用实数完备性定理中的聚点原则和构造数列的办法给出了该定理的新证明方法。 二、一种新的证明方法 (一)预备知识 (二)有界性定理的新证法下面将给出实数完备性定理中的聚点原则对闭区间连续函数的有界性定理的证明。 三、有界性定理在数学建模中的应用 本文以一道数学建模的问题为例,介绍闭区间上连续函数的有界性定理如何应用于实际问题。 在20XX年“深圳杯”数学建模夏令营D题中,根据题意所述:农业灾害保险是政府为保障国家农业生产的发展,基于商业保险的原理并给予政策扶持的一类保险产品。农业灾害保险也是针对自然灾害,保障农业生产的重要措施之一,是现代农业金融服务的重要组成部分。农业灾害保险险种是一种准公共产品,基

函数的对称性

函数的对称性 知识梳理 一、对称性的概念及常见函数的对称性 1、对称性的概念 ①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。 ②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。 2、常见函数的对称性(所有函数自变量可取有意义的所有值) ①常数函数;②一次函数;③二次函数;④反比例函数;⑤指数函数;⑥对数函数;⑦幂函数;⑧正弦函数; ⑨正弦型函数sin()y A x ω?=+既是轴对称又是中心对称;⑩余弦函数;⑾正切函数;⑿耐克函数; ⒁绝对值函数:这里主要说的是(||)y f x =和|()|y f x =两类。前者显然是偶函数,它会关于y 轴对称;后者是把x 轴下方的图像对称到x 轴的上方,是否仍然具备对称性,这也没有一定的结论,例如|ln |y x =就没有对称性,而|sin |y x =却仍然是轴对称。 ⒂形如(0,)ax b y c ad bc cx d +=≠≠+的图像是双曲线,其两渐近线分别直线d x c =- (由分母为零确定)和直线a y c =(由分子、分母中x 的系数确定),对称中心是点(,)d a c c -。 二、抽象函数的对称性 【此类问题涉及到了函数图象的两种对称性,一种是同一函数自身的对称性,我们称其为自对称;另一种是两个函数之间的对称性 ,我们称其为互对称。】 1、函数)(x f y =图象本身的对称性(自对称问题) (1)轴对称 ①)(x f y =的图象关于直线a x =对称 ?)()(x a f x a f -=+ ?)2()(x a f x f -= ?)2()(x a f x f +=-

例 1 用单调有界定理证明区间套定理.

例 1 用单调有界定理证明区间套定理.即已知: 1 )单调有界定理成立; 2 )设为一区间套. 欲证:且惟一. [ 证] 证明思想:构造一个单调有界数列,使其极限即为所求的. 为此,可就近取数列(或).由于 因此为递增数列,且有上界(例如).由单调有界定理,存在,且 . 又因,而,故 ; 且因递减,必使.这就证得. 最后,用反证法证明如此的惟一.事实上,倘若另有一个,则由 , 导致与相矛盾.[ 证毕] 例 2 用区间套定理证明单调有界定理.即已知: 1 )区间套定理成立. 2 )设为一递增且有上界M的数列. 欲证:存在极限. [ 证]证明思想:设法构造一个区间套,使其公共点即为的极限. 为此令。记,并取 再记, 同理取 如此无限进行下去,得一区间套. 根据区间套定理,.下面用数列 极限定义证明: ,一方面,由于恒为的上界,因此

; 另一方面,由 ; 而由区间套的构造,任何不是的上界,故;再由为递增数列, 当时,必有.这样,当时,就有 , 即.[ 证毕] 例3 用确界定理证明区间套定理.即已知: 1 )确界定理成立(非空有上界的数集必有上确界); 2 )设为一区间套. 欲证:存在惟一的点. [ 证] 证明思想:给出某一数集,有上界,使得的上确界即为所求的. 为此,取,其上界存在(例如).由确界定理,存在. 首先,由为的一个上界,故.再由是的最小上 界,倘有某个,则不会是的上界,即,这与为区 间套相矛盾()。所以任何.这就证得 . 关于的惟一性,与例1中的证明相同.[ 证毕] 注本例在这里所作的证明比习题解答中的证明更加清楚. 例4 证明连续函数的局部有界性——若处连续,则和 ,使得. [ 证]据在连续的定义,满足 . 现取,相应存在,就有 .[ 证毕] 注类似可证连续函数的其余局部性质,例如四则连续性质、局部保号性质等等.例5 证明上一致连续的充要条件是:上连续,且 存在. [ 证] 先证充分性:令

闭区间套定理的证明、推广及应用

重庆三峡学院数学分析课程论文 闭区间套定理的证明、推广及应用 院系数学与统计学院 专业数学与应用数学(师范) 姓名姜清亭 年级 2009级 学号 200906034129 指导教师刘学飞 2011年5月

闭区间套定理的证明、推广及应用 姜清亭 (重庆三峡学院 数学与统计学院 09级数本(1)班) 摘 要 闭区间套定理是数学分析中一个重要定理,可以应用到数学教学、科学研究及日常生活中。同时得到与之相应的若干定理,并使闭区间套定理得到推广。其中在数学教学中的应用最突出的地方是证明某些数学定理,如零点定理。 关键词 开区间套定理 闭区闭套定理 聚点定理证明 有界性定理证明 1 空间上的区间套定理 定理1 (闭区间套定理) 设有闭区间列{[],n n a b }若 1 [][][]1122,,....,....n n a b a b a b ??? 2 lim()0 n n n b a →∞ -= 则存在唯一数属于l 。。所有的闭区间(即 []1 ,n n n a b l ∞ == ) ,且lim lim n n n n a b l →∞ →∞ == 证明:由条件1可知,数列增加有上界1b ,数列{n b }单调减少有下界1a , 1221.........n n a a a b b b ≤≤≤≤≤≤根据公理,数列{n a }收敛,设lim n n a →∞ =l .由条件2 有 ()lim lim ()lim lim 0n n n n n n n n nx n n b b a a b a a l l →∞ →∞ →∞ →∞ =-+=-+=+=于是,lim lim n n n n a b l →∞ →∞ ==, 对任意取定的,n k N k +∈? ,有k n n k a a b b ≤≤ ,从而,lim lim k n n k n n a a l b b →∞ →∞ ≤==≤, 或k k a l b ≤≤,即l 属于所有的闭区间. 证明l 唯一性.假设还有一个' l 也属于所有的闭区间,从而 '',,,,n n n n n N l l a b l l b a +???∈∈-≤-?? 有有有条件2),有'l l =即l 是唯一的. 2 闭区间套定理的推广 定理2 (开区间套定理)若开区间列{() ,n n a b },若 1 [][][]1122,,....,....n n a b a b a b ??? 2 )(lim n n n a b -∞ →= n n a b 2lim -∞→=0 对每个闭区间[n n b a ,],有)()(n n b f a f <0,根据闭区间套定理知,存在唯一数l 属于所有

函数的对称性

函数的对称性 新课标高中数学教材上就函数的性质着重讲解了单调性、奇偶性、周期性,但在考试测验甚至高考中不乏对函数对称性、连续性、凹凸性的考查。尤其是对称性,因为教材上对它有零散的介绍,例如二次函数的对称轴,反比例函数的对称性,三角函数的对称性,因而考查的频率一直比较高。 一、对称性的概念及常见函数的对称性 1、对称性的概念: ①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。 ②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。 2、常见函数的对称性(所有函数自变量可取有意义的所有值) ①常数函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ②一次函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ③二次函数:是轴对称,不是中心对称,其对称轴方程为a b x 2-=。 ④反比例函数:既是轴对称又是中心对称,其中原点为它的对称中心,y=x 与y=-x 均为它的对称轴。 ⑤指数函数:既不是轴对称,也不是中心对称。 ⑥对数函数:既不是轴对称,也不是中心对称。 ⑦幂函数:显然幂函数中的奇函数是中心对称,对称中心是原点;幂函数中的偶函数是轴对称,对称轴是y 轴;而其他的幂函数不具备对称性。 ⑧正弦函数:既是轴对称又是中心对称,其中(kπ,0)是它的对称中心,2π π+=k x 是它的对称轴。 ⑨正弦型函数:正弦型函数y=Asin(ωx+φ)既是轴对称又是中心对称,只需从ωx+φ=kπ中解出x ,就是它的对称中心的横坐标,纵坐标当然为零;只需从ωx+φ=kπ+π/2中解出x ,就是它的对称轴;需要注意的是如果图像向上向下平移,对称轴不会改变,但对称中心的纵坐标会跟着变化。 ⑩余弦函数:既是轴对称又是中心对称,其中x=kπ是它的对称轴,)0,2(ππ+k 是它的对称中心。 (11)正切函数:不是轴对称,但是是中心对称,其中)0,2(π k 是它的对称中心, 容易犯错误的是可能有的同学会误以为对称中心只是(kπ,0)。 (12)对号函数:对号函数y=x+a/x(其中a>0)因为是奇函数所以是中心对称,原点是它的对称中心。但容易犯错误的是同学们可能误以为最值处是它的对称轴。 (13)三次函数:显然三次函数中的奇函数是中心对称,对称中心是原点,而其他的三次函数是否具备对称性得因题而异。

(整理)函数、极限、连续重要概念公式定理

一、函数、极限、连续重要概念公式定理 (一)数列极限的定义与收敛数列的性质 数列极限的定义:给定数列{}n x ,如果存在常数A ,对任给0ε>,存在正整数N ,使当n N >时,恒有 n x A ε-<,则称A 是数列{}n x 的当n 趋于无穷时的极限,或称数列{}n x 收敛于A ,记为lim n n x A →∞ =.若 {}n x 的极限不存在,则称数列{}n x 发散. 收敛数列的性质: (1)唯一性:若数列{}n x 收敛,即lim n n x A →∞ =,则极限是唯一的. (2)有界性:若lim n n x A →∞ =,则数列{}n x 有界,即存在0M >,使得对n ?均有n x M ≤. (3)局部保号性:设lim n n x A →∞ =,且()00A A ><或,则存在正整数N ,当n N >时,有()00n n x x ><或. (4)若数列收敛于A ,则它的任何子列也收敛于极限A . (二)函数极限的定义 (三)函数极限存在判别法 (了解记忆) 1.海涅定理:()0 lim x x f x A →=?对任意一串0n x x →()0,1,2, n x x n ≠=,都有 ()l i m n n f x A →∞ = . 2.充要条件:(1)()()0 lim ()lim lim x x x x x x f x A f x f x A +- →→→=?==; (2)lim ()lim ()lim ()x x x f x A f x f x A →∞ →+∞ →-∞ =?==.

3.柯西准则:()0 lim x x f x A →=?对任意给定的0ε>,存在0δ>,当 100x x δ<-<,200x x δ<-<时,有()()12f x f x ε-<. 4.夹逼准则:若存在0δ>,当00x x δ<-<时,有)()()x f x x ?φ≤≤(,且0 lim ()lim (),x x x x x x A ?φ→→==则 lim ()x x f x A →=. 5.单调有界准则:若对于任意两个充分大的1212,,x x x x <,有()()12f x f x <(或()()12f x f x >),且存在 常数M ,使()f x M <(或()f x M >),则()lim x f x →+∞ 存在. (四)无穷小量的比较 (重点记忆) 1.无穷小量阶的定义,设lim ()0,lim ()0x x αβ==. (1)若() lim 0() x x αβ=,则称()x α是比)x β(高阶的无穷小量. (2)() lim ,())() x x x x ααββ=∞若则是比(低阶的无穷小量. (3)() lim (0),())() x c c x x x ααββ=≠若则称与(是同阶无穷小量. (4)() lim 1,())() x x x x ααββ=若则称与(是等价的无穷小量,记为()()x x αβ~. (5)() lim (0),0,())() k x c c k x x k x ααββ=≠>若则称是(的阶无穷小量 2.常用的等价无穷小量 (命题重点,历年必考) 当0x →时, sin arcsin tan ~,arctan ln(1)e 1x x x x x x x ? ?? ?? ? ? ? +? -?? () 2 11c o s ~2(1)1~x x x x ααα-+- 是实常数 (五)重要定理 (必记内容,理解掌握) 定理1 0 00lim ()()()x x f x A f x f x A -+→=?==. 定理2 0 lim ()()(),lim ()0x x x x f x A f x A a x a x →→=?=+=其中. 定理3 (保号定理):0 lim (),0(0),0x x f x A A A δ→=>设又或则一个,当 000(,),()0(()0)x x x x x f x f x δδ∈-+≠><且时,或. 定理4 单调有界准则:单调增加有上界数列必有极限;单调减少有下界数列必有极限. 定理5 (夹逼定理):设在0x 的领域内,恒有)()()x f x x ?φ≤≤(,且 lim ()lim (),x x x x x x A ?φ→→==则0 lim ()x x f x A →=.

函数的对称性82459

函数的对称性 一、教学目标 函数图象的对称性是一类函数的特性,是函数性质的重要方面,它包括自身对称和两个函数图象之间的对称,理解掌握函数对称性,对数学问题的解决有很大的帮助,对也是数形结合思想的重要体现。 1.自身对称函数,函数图象本身具有对称轴或是对称中心,该函数的图象是轴对称图形或是中心对称图形,奇函数与偶函数是最典型的两类函数,其它自身对称的函数都可以由奇偶函数平移得到; 2.两个函数图象的对称,是指两个图形之间的关系,它们之间存在某种关联,即它们关于某一点对称或是关于某一条直线对称,研究其中一个函数的性质就可知另一个函数的特点(互为反函数的两个函数图象)。 二、举例分析 例1. 设()f x 是定义在R 上的函数, (1)若对任意x R ∈,都有()()f a x f b x -=+成立,则函数()f x 的图象关于直线2 a b x +=对称; (2)若对任意x R ∈,都有()()22f x f a x b +-=,则函数()f x 的图象关于点(),a b 成中心对称。 选题目的:通过此题的学习,让学生明白一个道理,函数()f x 的图象是轴对称或是中心对称,函数解析式()f x 应满足一关系式是什么,并能通过奇偶函数的平移获得理解这种关系式的钥匙。 思路分析: (1)要证明()f x 图象上任意一点()00,P x y 关于直线2 a b x +=对称的点()00,Q a b x y +-也在()f x 的图象上。 事实上,()()()()00000y f x f a a x f b a x f a b x ==--=+-=+-????????,即得点()00,Q a b x y +-也在()f x 的图象上。

浅析定理闭区间套的推广及简单应用

本科毕业论文 (设计) 如果写作的是论文就删设计,如果写作的是设计就删论文 题目数学课堂教学 系别数学系 专业数学与应用数学 指导教师(姓名居中) 评阅教师(姓名居中) 班级2003级1班 姓名(姓名居中) 学号(学号居中) 年月日

目录 摘要(四号黑体不加粗) (Ⅰ) Abstract(四号Times New Roman体加粗) (Ⅰ) 1引言(四号黑体不加粗) (1) 1.1(小四号黑体不加粗) (1) 1.1.1(小四号仿宋体加粗) (1) 2闭区间套定理在1R的推广 (2) 3闭区间套定理在一般度量空间上的推广 (4) 4闭区间套定理在n R上的推广 (5) 5闭区间套定理的应用举例 (6) 结束语 (8) 参考文献 (8) 致谢 (9) (注:①目录不加页码; ②中、英文摘要加页码,用罗马数字:Ⅰ,Ⅱ…; ③正文另行加页码,用阿拉伯数字:1,2,3,….)

摘要(四号黑体不加粗):在介绍了闭区间套定理的基础上,通过综合应用类比法、分析法、演绎推理法将闭区间套定理进行了推广,得到了严格开区间套定理和严格半开半闭区间套定理以及一般完备度量空间上的闭集套定理和常用完备度量空间上的闭集套定理,并给出了这些定理的证明.结合典型例题,分析、讨论了闭区间套定理及推广后的闭集套定理的实际应用,说明了闭区间套定理不仅具有重要的理论意义,而且还有很好的应用价值.(小四号仿宋体不加粗,“摘要”字数须300字以上)关键词(四号黑体不加粗):闭区间套定理;严格开区间套定理;推广;应用(小四号仿宋体不加粗,关键词的个数:3—5个) Abstract(四号Times New Roman体加粗):The theorem of nested closed interval was extended on the basis of its definition with synthetic application of analogy analysis and deductive reasoning, and got a series of theorems such as the theorem of strict open nested interval, the theorem of strict open and closed nested interval and the theorem of closed nested set on ordinary and popular metric space, which were also testified. The real application of the theorem of nested closed interval and the theorem of closed nested set after extension was discussed by analysis of some typical examples so as to demonstrate its important theoretical meaning and useful application.(小四号Times New Roman体不加粗) Key words(四号Times New Roman体加粗): theorem of nested closed interval; theorem of strict open nested interval; extension; application(小四号Times New Roman体不加粗,每个关键词开头字母均不大写,结尾处无标点符号)

函数的周期和对称性

专题:函数的周期性对称性 1、周期函数的定义 一般地,对于函数)(x f y =,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有)()(x f T x f =+,那么函数)(x f y =就叫做周期函数,非零常数T 叫做这个函数的一个周期。如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。 显然,若T 是函数的周期,则)0,(≠∈k z k kT 也是)(x f 的周期。如无特别说明,我们后面一般所说的周期是指函数的最小正周期。 说明:1、周期函数定义域必是无界的。 2、周期函数不一定都有最小正周期。 推广:若)()(b x f a x f +=+,则)(x f 是周期函数,a b -是它的一个周期; )2 ()2(T x f T x f -=+,则)(x f 周期为T ; ()f x 的周期为)(x f T ω?的周期为 ω T 。 2、常见周期函数的函数方程: (1)函数值之和定值型,即函数)()()(b a C x b f x a f ≠=+++ 对于定义域中任意x 满足)()()(b a C x b f x a f ≠=+++,则有)()]22([x f a b x f =-+,故函数)(x f 的周期是)(2a b T -= 特例:()()f x a f x +=-,则()x f 是以2T a =为周期的周期函数; (2)两个函数值之积定值型,即倒数或负倒数型 若)()()(可正可负,C b a C x b f x a f ≠=+?+,则得 )]22()2[()2(a b a x f a x f -++=+,所以函数)(x f 的周期是)(2a b T -=

连续函数性质

§ 连续函数的性质 ? 连续函数的局部性质 若函数f 在点0x 连续,则f 在点0x 有极限,且极限值等于函数值0()f x 。从而,根据函数极限的性质能推断出函数f 在0()U x 的性态。 定理1(局部有界性) 若函数f 在点0x 连续,,则f 在某0()U x 内有界。 定理2(局部保号性) 若函数f 在点0x 连续,且0()0f x >(或0<),则对任何正数0()r f x < (或0()r f x <-),存在某0()U x ,使得对一切 0()x U x ∈有()f x r >(或()f x r <-)。 注: 在具体应用局部保号性时,常取01 ()2 r f x =, 则当0()0f x >时,存在某0()U x ,使在其内有01 ()()2 f x f x > 。 定理3(四则运算) 若函数f 和g 在点0x 连续,则,, f f g f g g ±?(这里0()0g x ≠)也都在点0x 连续。 关于复合函数的连续性,有如下定理: 定理4 若函数f 在点0x 连续,g 在点0u 连续,00()u f x =,则复合 函数g f 在点0x 连续。 证明:由于g 在点0u 连续,10,0εδ?>?>,使得当01||u u δ-<时有 0|()()|g u g u ε-<。 (1)

又由00()u f x =及()u f x =f 在点0x 连续,故对上述1δ,存在0δ>, 使得当0||x x δ-<时有001|||()()|u u f x f x δ-=-<,联系(1)式得:对任 给的0ε>,存在0δ>,使得当0||x x δ-<时有 0|(())(())|g f x g f x ε -<。 这就证明了g f 在点0x 连续。 注:根据连续必的定义,上述定理的结论可表为 0lim (())(lim ())(())x x x x g f x g f x g f x →→== 定理 5 ()x f x x 0 lim →存在的充要条件是()() 0lim 00 0+=+→x f x f x x 与 ()()0lim 00 0-=-→x f x f x x 存在并且相等. 证明:必要性显然,仅须证充分性.设()A x f x x =+→0 0lim ()x f x x 00 lim -→=,从 而对任给的0>ε,存在01>δ和02 >δ,当 100δ<-=δδδ 时,当δ<-<00x x 时,则 δ <-<00x x 和 00<-<-x x δ 二者必居其一,从而满足①或②,所以 ()ε<-A x f . 定理 6 函数()x f 在0x 点连续的充要条件是()x f 左连续且右连续. 证明:()x f 在0x 点连续即为()()00 lim x f x f x x =→.注意左连续即为()()000x f x f =-,右连续即为()()000x f x f =+,用定理5即可证. 此外,在讨论函数的极限时往往必须把连续变量离散化,下面我们来讨论这方面的问题.

闭区间上连续函数的有界性定理证明的新方法_1

闭区间上连续函数的有界性定理证明的新方法连续函数是数学分析中非常重要的一类函数,下面是小编搜集整理的一篇探究闭区间上连续函数的有界性定理证明的论文范文,欢迎阅读参考。 一、引言 函数是描述客观世界变化规律的重要数学模型,连续函数又是数学分析中非常重要的一类函数。在数学中,连续是函数的一种属性。而在直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。函数极限的存在性、可微性,以及中值定理、积分等问题,都是与函数的连续性有着一定联系的,而闭区间上连续函数的性质也显得非常重要。在闭区间上连续函数的性质中,有界性定理又是最值定理和介值定理等的基础。 在极限绪论中,我们知道闭区间上连续函数具有5个性质,即:有界性定理、最大值最小值定理、介值定理、零点定理和一致连续定理,零点定理是介值定理的一个重要推论。而闭区间上连续函数的有界性定理的证明,在很多数学教材中,所采用的方法大致相同,一般都是用致密性定理和有限覆盖定理来加以证明的。并且在文献中作者也分别利用闭区间套定理、确界定理、单调有界定理和柯西收敛准则证明了此定理。但是我们知道,分析数学上所列举的实数完备性的7个基本定理是相互等价的,因而从原则上讲,任何一个都可以证明该定理,只不过是有繁简之分,笔者考虑如何能用最简单的方法将闭区间上连续函数的有界性定理证明出来,上述文献中已经用其他6个基

本定理证明了闭区间连续函数的有界性定理,下面本文用实数完备性定理中的聚点原则和构造数列的办法给出了该定理的新证明方法。 二、一种新的证明方法 (一)预备知识 (二)有界性定理的新证法下面将给出实数完备性定理中的聚点原则对闭区间连续函数的有界性定理的证明。 三、有界性定理在数学建模中的应用 本文以一道数学建模的问题为例,介绍闭区间上连续函数的有界性定理如何应用于实际问题。 在2013年“深圳杯”数学建模夏令营D题中,根据题意所述:农业灾害保险是政府为保障国家农业生产的发展,基于商业保险的原理并给予政策扶持的一类保险产品。农业灾害保险也是针对自然灾害,保障农业生产的重要措施之一,是现代农业金融服务的重要组成部分。农业灾害保险险种是一种准公共产品,基于投保人、保险公司和政府三方面的利益,按照公平合理的定价原则设计,由保险公司经营的保险产品,三方各承担不同的责任、义务和风险。根据题目中附件所给的P省的具体情况,可以将有界性定理灵活的用在自然灾害保险的风险评估和费率拟定上。假设时间是一个连续状态,则以时间t为自变量,根据题中所给数据,以日最高最低气温为例,很明显它与时间t是呈周期性变化的,以一年为一个周期,故只考虑在某一年内的变化规律,即. 将日最高最低气温拟合成一个关于时间的函数f(t),则由于自变量

高中的函数对称性的总结

高中函数对称性总结 新课标高中数学教材上就函数的性质着重讲解了单调性、奇偶性、周期性,但在考试测验甚至高考中不乏对函数对称性、连续性、凹凸性的考查。尤其是对称性,因为教材上对它有零散的介绍,例如二次函数的对称轴,反比例函数的对称性,三角函数的对称性,因而考查的频率一直比较高。以笔者的经验看,这方面一直是教学的难点,尤其是抽象函数的对称性判断。所以这里我对高中阶段所涉及的函数对称性知识做一个粗略的总结。 一、对称性的概念及常见函数的对称性 1、对称性的概念 ①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。 ②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。 2、常见函数的对称性(所有函数自变量可取有意义的所有值) ①常数函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ②一次函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ③二次函数:是轴对称,不是中心对称,其对称轴方程为x=-b/(2a)。 ④反比例函数:既是轴对称又是中心对称,其中原点为它的对称中心,y=x与y=-x均为它的对称轴。 ⑤指数函数:既不是轴对称,也不是中心对称。 ⑥对数函数:既不是轴对称,也不是中心对称。 ⑦幂函数:显然幂函数中的奇函数是中心对称,对称中心是原点;幂函数中的偶函数是轴对称,对称轴是y轴;而其他的幂函数不具备对称性。 ⑧正弦函数:既是轴对称又是中心对称,其中(kπ,0)是它的对称中心,x=kπ+π/2是它的对称轴。 ⑨正弦型函数:正弦型函数y=Asin(ωx+φ)既是轴对称又是中心对称,只需从ωx+φ=kπ中解出x,就是它的对称中心的横坐标,纵坐标当然为零;只需从ωx+φ=kπ+π/2中解出x,就是它的对称轴;需要注意的是如果图

连续函数的性质1

§2连续函数的性质 Ⅰ. 教学目的与要求 1.理解连续函数的局部有界性、局部保号性、保不等式性. 2.掌握连续函数的四则运算法则、连续函数的复合函数及反函数的连续性,会利用其讨 论函数的连续性. 3.掌握闭区间上连续函数的性质,会利用其讨论相关命题. 4.理解函数一致连续性的概念. Ⅱ. 教学重点与难点: 重点: 闭区间上连续函数的性质. 难点:. 闭区间上连续函数的性质,函数一致连续性的概念. Ⅲ. 讲授内容 一 连续函数的局部性质 若函数f 在点0x 连续,则f 在点0x 有极限,且极限值等于函数值()0x f .从而,根据 函数极限的性质能推断出函数f 在()0x U 的性态. 定理4.2(局部有界性) 若函数f 在点0x 连续,则f 在某()0x U 内有界. 定理4.3(局部保号性) 若函数f 在点0x 连续,且()0x f 0> (或0<),则对任何正 数()0x f r < (或()0x f r -<),存在某()0x U ,使得对一切∈x ()0x U 有 ()r x f >,()r x f -<或(). 注 在具体应用局部保号性时,常取()021x f r = 则(当()0x f 0>时)存在某()0x U 使在其内有()>x f ()02 1x f . 定理4.4(四则运算) 若函数f 和g 在点0x 连续,则g f g f g f ,,?±(这里 ()00≠x g )也都在点0x 连续. 以上三个定理的证明,都可从函数极限的有关定理直接推得. 对常量函数c y =和函数x y =反复应用定理4.4,能推出多项式函数 ()n n n n a x a x a x a x P +++=--1110 和有理函数()()() x Q x P x R =(Q P ,为多项式)在其定义域的每一点都是连续的. 同样,由x sin 和x cos 在R 上的连续性,可推出x tan 与x cot 在其定义域的每一点 都连续. 关于复合函数的连续性,有如下定理: 定理4.5 若函数f 在点0x 连续,g 在点0u 连续,()00x f u =,则复合函数f g 在点

六大定理互相证明总结

六大定理的相互证明总结 XXX 学号 数学科学学院 数学与应用数学专业 班级 指导老师 XXX 摘要 在《数学分析》中第二部分极限续论中提到的实数的基本定理一共提到六大定理,其中包括确界定理,单调有界原理,区间套定理,致密性定理,柯西收敛定理,有限覆盖定理.该六大定理在闭区间上连续函数性质的证明起着同等重要的作用.本文总结了六大定理的相互证明. 关键词 确界定理、单调有界原理、区间套定理、致密性定理、柯西收敛定理、有限覆盖定理 1 确界定理 1.1 确界定理 有上界的非空数集必有上确界,有下界的非空数集必有下确界. 1.2 确界定理证明区间套定理 证明:设一无穷闭区间列{[,n a ] n b }适合下面两个条件: (1)后一个区间在前一个区间之内,即对任一正整数n ,有1+≤n n a a <n n b b ≤+1,(2)当n ∞→时,区间列的长度{(-n b ) n a }所成的数列收敛于零,即()0lim =-∞ →n n n a b . 显然数列{}n a 中每一个元素均是数列{}n b 的下界,而数列{}n b 中每一个元素均是数列{}n a 的上界.由确界定理,数列{}n a 有上确界,数列{}n b 有下确界. 设{}{}.sup ,inf n n a b ==βα显然n n n n b a b a ≤≤≤≤βα,. 又 ()0lim =-∞ →n n n a b ∴βα= 即{}n a 及{}n b 收敛于同一极限ξ,并且ξ是所有区间的唯一公共点. 1.3 确界定理证明单调有界原理[1] 证明:我们只就单调增加的有界数列予以证明.因{}n y 有界,则必有上确界 {}n y sup =β.现在证明β恰好是{}n y 的极限,即β→n y . 由上确界的定义有:⑴β≤n y (3,2,1=n …),⑵对任意给定的ε>0,在{}n y 中至少有一个数N y ,有N y >εβ-.但由于{}n y 是单调增加数列,因此当n >N 时,

闭区间上连续函数性质证明

§2 闭区间上连续函数性质的证明 教学目的:掌握闭区间上连续函数性质证明思路与方法,加深对实数完备性若干定理的理解。 重点难点:重点与难点为其证明思路与方法。 教学方法:讲练结合。 在本节中,我们利用实数完备性的基本定理,来证明闭区间上连续函数的基本性质. 有界性定理 若函数f 在闭区间[]b a ,上连续,则f 在[]b a ,上有界. 证 [证法一](应用有限覆盖定理) 由连续函数的局部有界性(定理4.2),对每一点[],,b a x ∈'都存在邻域);(x x U ''δ及正数x M ',使得[].,);(,)(b a x U x M x f x x '''∈≤δ 考虑开区间集 []{} b a x x U H x ,);(∈''='δ, 显然H 是[]b a ,的一个无限开覆盖.由有限覆盖定理,存在H 的一个有限子集 ()[]{}k i b a x x U i i i ,,2,1,,;* =∈=H δ 覆盖了[]b a ,,且存在正数k M M M ,,,21 ,使得对一切()[]b a x U x i i ,; δ∈有 ().,,2,1,k i M x f i =≤ 令 ,m a x 1i k i M M ≤≤= 则对任何[]b a x ,∈,x 必属于某()()M M x f x U i i i ≤≤?δ;.即证得f 在[]b a ,上有界. [证法二](应用致密性定理) 倘若f 在[]b a ,上无上界,则对任何正整数n ,存在[]b a x n ,∈,使得()n x f n >.依次取 ,2,1=n ,则得到数列{}[]b a x n ,?.由致密性定理,它含有收敛子列{} k n x ,记ξ=∞ →k n k x lim 。由b x a k n ≤≤及数列极限的保不等式性,[]b a ,∈ξ.利用f 在点ξ连续,推得 () ()+∞<=∞ →ξf x f k n k lim 另一方面,由n x 的选取方法又有()() +∞=?+∞→≥>∞ →k k n k k n x f k n x f lim 与(1)式矛盾.所以f 在[]b a ,有上界.类似可证f 在[]b a ,有下界,从而f 在[]b a ,上有界. 最大、最小值定理 若函数f 在闭区间[]b a ,上连续,则f 在[]b a ,上有最大值与最小值. 证 (应用确界原理) 已证f 在[]b a ,上有界,故由确界原理,f 的值域[]()b a f ,有上确界,记为M .以下我们证明:存在[]b a ,∈ξ,使()M f =ξ.倘若不然,对一切[]b a x ,∈都有()M x f <.令

套定理证明闭区间上连续函数的性质

西安工程学院学报 JOURNAL OF XI’AN ENGINEERING UNIVERSITY 1998年 第20卷 第2期 Vol.20 No.2 用区间套定理证明闭区间上连续函数的性质 周 明 提 要 用数学分析中的区间套定理证明了闭区间上连续函数的四个定理。 关键词 区间序列;连续;一致连续 中图法分类号 O174.1 PROOF TO PROPERTIES OF CONTINUOUS FUNCTION ON A CLOSED INTERVAL WITH AN INTERVAL SEQUENCE THEOREM Zhou Ming (Xi′an Engineering University,Xi′an 710054) Abstract Four theorems about continuous function on an closed interval are proved by a interval sequence theorem in mathematical analysis. Key words interval sequence, continuity, uniform continuity 在高等数学中所遇到的闭区间上连续函数的性质,通常都不加以证明,其实这些性质在数学分析中都给出了证明,可用数学分析中的一些定理来证明。实际上这些性质的证明也可用数学分析中的一个定理即区间套定理证得。下面就用区间套定理来证明这些性质。在证明这些性质之前,先叙述一下区间套定理。 区间套定理:设一无穷闭区间列{〔a n,b n〕}适合下面两个条件: (1)后一区间在前一区间之内,即对任一正整数n,有a n≤a n+1<b n+1≤b n。 (2)当n→∞时,区间列的长度{(b n-a n)}所成的数列收敛于零,即limn→∞(b n-a n) =0。 则区间的端点所成两数列{a n}及{b n}收敛于同一极限ξ,且ξ是所有区间的唯一公共点。 1 有界性定理 若函数f(x)在闭区间〔a,b〕上连续,则它在〔a,b〕上有界。 证明(反证法):设f(x)在〔a,b〕上无界,将〔a,b〕二等分,则f(x)必在其一上无界,记其为〔a1,b1〕,再将〔a1,b1〕二等分,记f(x)在其上无界的区间为〔a2,b2〕,这样继

(整理)闭区间上连续函数的性质

§4.2 闭区间上连续函数的性质 一、 性质的证明 定理1.(有界性)若函数)(x f 在闭区间[a,b]连续,则函数)(x f 在闭区间[a,b]有界,即?M >0,∈?x [a,b],有|)(x f |≤M . 证法:由已知条件得到函数)(x f 在[a,b]的每一点的某个邻域有界.要将函数 )(x f 在每一点的邻域有界扩充到在闭区间[a,b]有界,可应用有限覆盖定理,从 而得到M >0. 证明:已知函数)(x f 在[a,b]连续,根据连续定义, ∈?a [a,b],取0ε=1,0δ?>0,∈?x (00,δδ+-a a )?[a,b],有 |)(x f )(a f -|<1.从而∈?x (00,δδ+-a a )?[a,b]有 |)(x f |≤|)(x f )(a f -|+|)(|a f <|)(|a f +1 即∈?a [a,b],函数)(x f 在开区间(00,δδ+-a a )有界。显然开区间集 { (00,δδ+-a a )|∈a [a,b] }覆盖闭区间[a,b].根据有限覆盖定理(4.1定理3),存在有限个开区间,设有n 个开区间 {(k k a k a k a a δδ+-,)|∈k a [a,b] },k=1,2,3,…,n 也覆盖闭区间[a,b] ,且 ∈?x (k k a k a k a a δδ+-,)|∈k a [a,b],有|)(x f |≤|)(|k a f +1,k=1,2,3,…,n 取M =max{|)(||,......,)(||,)(|21n a f a f a f }+1. 于是∈?x [a,b],∈?i {1,2,…,n},且∈x (i i a i a i a a δδ+-,)?[a,b], 有|)(x f |≤|)(|i a f +1≤M 定理2(最值性):若函数()f x 在闭区间[],a b 连续,则函数()f x 在区间

第三章(2)戴得金定理证明6页word

Ⅰ 戴德金定理; Ⅱ 单调有界数列必收敛定理(一般的,我们取单调递增有上界数列); Ⅲ 确界原理(一般的,我们取非空有上界数集); Ⅳ 闭区间套定理; Ⅴ 致密性定理; Ⅵ 柯西收敛准则; Ⅶ 有限覆盖定理. 在证明它们的等价性时,一般采用循环证法,但在本篇论文中,为了说明这七个命题都可以作为构造实数的公理性命题,我们选择从一个命题出发,来证明其余六个命题.下面给出这42个证明过程. Ⅰ?Ⅱ:(戴德金定理?单调有界数列必收敛定理) 证明:设数列{n x }单调递增且有上界,其上界构成集合B ,令A R B =-,则/A B 构成了实数集R 的一个分划(/A B 满足非空、不漏、有序).由戴德金定理可知,A 中有最大数或B 中有最小数. 若A 中有最大数,不妨设为α,则由/A B 的构造可知α不是{n x }的上界,N N +?∈使N x α>,则 N x B ∈,且为数列{n x }的上界,由数列{n x }单调递增可知,,n N ?>均有n N x x =,从而{n x }极限存在. 若B 中有最小数,不妨设为β,现在证明β即为数列{n x }的极限.事实上,β是数列{n x }的上界, 且对0,εβε?>-不属于B ,从而不是{n x }的上界,即,N N N x βε+ ?∈>-使,又因为{n x }的单调性, 从而: ,.N n n N x x βεβ?>-<≤< 也即,数列{n x }收敛于β. Ⅰ?Ⅲ:(戴德金定理?确界原理) 证明:设数集E 非空且有上界,其上界构成集合B ,令A R B =-,则/A B 构成了实数集R 的一个分划(/A B 满足非空、不漏、有序).由戴德金定理可知,A 中有最大数或B 中有最小数. 若A 中有最大数,不妨设为α,则由/A B 构造可知α不是数集E 的上界,从而存在,E ξ∈ ξα>使.即B ξ∈为E 的上界,因此sup E ξ=,数集E 的上确界存在. 若B 中有最小数,不妨设为β,则对0,A εβε?>-∈不是E 的上界.从而,E ξ?∈ 使: βεξβ-<≤. 也即sup E ξ=,E 的上确界存在.

相关文档
最新文档