fe-safe悬臂梁疲劳寿命分析

悬臂梁一阶固有频率及阻尼系数测试

说明:在下面的数据处理中,如1 A,11d T,1δ,1ξ,1n T,1nω:表示第一次实 1 验中第一、幅值、对应幅值时间、变化率、阻尼比、无阻尼固有频率。第二 次和和三次就是把对应的1改成2或3.由于在编缉公式时不注意2,3与平 方,三次方会引起误会,请老师见谅!! Ap0308104 陈2006-7-1 实验题目:悬臂梁一阶固有频率及阻尼系数测试 一、实验要求以下: 1. 用振动测试的方法,识别一阻尼结构的(悬臂梁)一阶固有频率和阻尼系数; 2. 了解小阻尼结构的衰减自由振动形态; 3. 选择传感器,设计测试方案和数据处理方案,测出悬臂梁的一阶固有频率和阻尼 根据测试曲线,读取数据,识别悬臂梁的一阶固有频率和阻尼系数。 二、实验内容 识别悬臂梁的二阶固有频率和阻尼系数。 三、测试原理概述: 1,瞬态信号可以用三种方式产生,有脉冲激振,阶跃激振,快速正弦扫描激振。 2,脉冲激励用脉冲锤敲击试件,产生近似于半正弦的脉冲信号。信号的有效频率取决于脉冲持续时间τ,τ越小则频率范围越大。 3.幅值:幅值是振动强度的标志,它可以用峰值、有效值、平均值等方法来表示。 频率:不同的频率成分反映系统内不同的振源。通过频谱分析可以确定主要频率成分及其幅值大小,可以看到共振时的频率,也就可以得到悬臂梁的固有频率 4、阻尼比的测定 自由衰减法: 在结构被激起自由振动时,由于存在阻尼,其振幅呈指数衰减波形,可算出阻尼比。一阶固有频率和阻尼比的理论计算如下:

11 3 3 44 4 2 3.515(1) 2=210 ;70;4;285;7800 ; ,12 12 ,, Ix = 11.43 c m Iy= 0.04 c m 0.004 2.810,,1x y y f k g E p a b m m h m m L m m m a b a b I I I m m E L π ρρ-----------?===== = ?=?固x y = 式惯性矩:把数据代入I 后求得 载面积:S =b h =0.07m 把S 和I 及等数据代入()式, 求得本41.65() H Z 固理悬臂梁理论固有频率f = 阻尼比计算如下: 2 2 2 1 111 220, 2,........ln , ,22;n d n n n d n d n T i i i j j i i i i j i i i j i n d i j n d n d d d d x d x c k x d t d t c e A A A A A T A T T ξωξωωξωωωξωωηη δξωωωωωπδπξ++ -++ +++ + ++=++===≈== ? ?? ==≈2 二阶系统的特征方程为S 微分方程:m 当很少时,可以把。A 减幅系数=而A A A A A 1则:= j 又因为所以==,所以=即可知δξπ = 2 在这个实验中,我们使用的是自由衰减法,以下是实验应该得到的曲线样本及物理模型。

疲劳分析方法

疲劳寿命分析方法 摘要:本文简单介绍了在结构件疲劳寿命分析方法方面国内外的发展状况,重点讲解了结构件寿命疲劳分析方法中的名义应力法、局部应力应变法、应力应变场强度法四大方法的估算原理。 疲劳是一个既古老又年轻的研究分支,自Wohler将疲劳纳入科学研究的范畴至今,疲劳研究仍有方兴未艾之势,材料疲劳的真正机理与对其的科学描述尚未得到很好的解决。疲劳寿命分析方法是疲分研究的主要内容之一,从疲劳研究史可以看到疲劳寿命分析方法的研究伴随着整个历史。 金属疲劳的最初研究是一位德国矿业工程帅风W.A.J.A1bert在1829年前后完成的。他对用铁制作的矿山升降机链条进行了反复加载试验,以校验其可靠性。1843年,英国铁路工程师W.J.M.Rankine对疲劳断裂的不同特征有了认识,并注意到机器部件存在应力集中的危险性。1852年-1869年期间,Wohler对疲劳破坏进行了系统的研究。他发现由钢制作的车轴在循环载荷作用下,其强度人大低于它们的静载强度,提出利用S-N 曲线来描述疲劳行为的方法,并是提出了疲劳“耐久极限”这个概念。1874年,德国工程师H.Gerber开始研究疲劳设计方法,提出了考虑平均应力影响的疲劳寿命计算方法。Goodman讨论了类似的问题。1910年,O.H.Basquin提出了描述金属S-N曲线的经验规律,指出:应力对疲劳循环数的双对数图在很大的应力范围内表现为线性关系。Bairstow通过多级循环试验和测量滞后回线,给出了有关形变滞后的研究结果,并指出形变滞后与疲劳破坏的关系。1929年B.P.Haigh研究缺口敏感性。1937年H.Neuber指出缺口根部区域内的平均应力比峰值应力更能代表受载的严重程度。1945年M.A.Miner 在J.V.Palmgren工作的基础上提出疲劳线性累积损伤理论。L.F.Coffin和S.S.Manson各自独立提出了塑性应变幅和疲劳寿命之间的经验关系,即Coffin—Manson公式,随后形成了局部应力应变法。 中国在疲劳寿命的分析方面起步比较晚,但也取得了一些成果。浙江大学的彭禹,郝志勇针对运动机构部件多轴疲劳载荷历程提取以及在真实工作环境下的疲劳寿命等问题,以发动机曲轴部件为例,提出了一种以有限元方法,动力学仿真分析以及疲劳分

悬臂梁固有频率测试实验数据处理

实验题目:悬臂梁固有频率测试实验数据处理 一、实验要求以下: 1. 用振动测试的方法,识别一阻尼结构的(悬臂梁)一阶固有频率和阻尼系数; 2. 了解小阻尼结构的衰减自由振动形态; 3. 选择传感器,设计测试方案和数据处理方案,测出悬臂梁的一阶固有频率和阻尼 根据测试曲线,读取数据,识别悬臂梁的一阶固有频率和阻尼系数。 二、实验内容 识别悬臂梁的二阶固有频率和阻尼系数。 三、测试原理概述: 1,瞬态信号可以用三种方式产生,有脉冲激振,阶跃激振,快速正弦扫描激振。 2,脉冲激励用脉冲锤敲击试件,产生近似于半正弦的脉冲信号。信号的有效频率取决于脉冲持续时间τ,τ越小则频率范围越大。 3.幅值:幅值是振动强度的标志,它可以用峰值、有效值、平均值等方法来表示。 频率:不同的频率成分反映系统内不同的振源。通过频谱分析可以确定主要频率成分及其幅值大小,可以看到共振时的频率,也就可以得到悬臂梁的固有频率 实验步骤及内容 1,按要求,把各实验仪器连接好接入电脑中,然后在悬臂梁上粘紧压电式加速度传感器打开计算机,。。 2,打开计算机,启动计算机上的“振动测试及谱分析.vi ”。 3,选择适当的采样频率和采样点数以及硬件增益。点击LabVIEW 上的运行按钮(Run )观察由脉冲信号引起梁自由衰减的曲线的波形和频谱。 4,尝试输入不同的滤波截止频率,观察振动信号的波形和频谱的变化。 5,尝试输入不同的采样频率和采样点数以及硬件增益,观察振动信号的波形变化。 6,根椐最合适的参数选择,显示最佳的结果。然后按下“结束按钮,完成信号采集。最后我选择的参数是:采样频率 f为512HZ,采样点数N为512点。 s 7,记录数据,copy读到数据的程序,关闭计算机。

喷丸处理40Cr钢缺口构件的疲劳断裂机制及寿命预测

喷丸处理40Cr钢缺口构件的疲劳断裂机制及寿命预测 绝大多数工程构件不可避免的存在缺口、裂缝等横截面突变的情况,这种情况在实际应用中会在局部造成严重的应力集中,从而在交变载荷作用下容易断裂失效。为了研究这类工程上遇到的实际问题,往往采用带缺口小试样来探究循环载荷对构件安全性能的影响。 本文以齿轮常用的材料中碳合金调质40Cr钢为研究对象,利用喷丸强化处理技术改善缺口部位的表面完整性,通过综合对比分析了不同喷丸强度及覆盖率 参数下材料的显微硬度、微观组织、表面形貌、残余应力、疲劳极限以及疲劳断 口形貌变化情况,系统研究了喷丸处理对40Cr钢表面完整性和疲劳性能的影响。同时在已有的带缺口构件局部疲劳强度预测方法的基础上,对喷丸强化处理后缺口构件的局部疲劳强度预测做了深入探究。 以试验、理论和模拟相结合的方法,通过综合考虑应力梯度、残余应力、加工硬化和表面粗糙度的影响,对喷丸处理过的40Cr钢缺口试样进行了局部疲劳 强度的预测评估。试验研究表明,调质40Cr钢经过喷丸处理后在试样表面形成了一定深度的塑性变形层和较高数值的残余压缩应力。 随着喷丸强度的增大,材料表面显微硬度明显增加。通过观察表面三维形貌 发现,随喷丸强度的增大表面粗糙度逐渐增大;提高喷丸覆盖率参数可以明显降 低表面粗糙度从而提高了材料表面完整性。 疲劳试验结果表明,喷丸强化处理能够提高40Cr钢缺口构件的疲劳性能,当试样循环寿命在2×10~6次时,不同喷丸参数下的疲劳极限相对于未喷丸试样提 升了14.3%~29%,当喷丸强度为0.2 mmA覆盖率为400%时疲劳极限提高幅度最大。本文在“线弹性有限元法—应力梯度法”进行缺口构件疲劳寿命评估的基础上,

悬臂梁自振频率分析

悬臂梁自振频率分析 专业:防灾减灾及防护工程 学号:S201003087 姓名:岳松林 1 b 图中:cm l 8.401=,cm l 9.152=,cm l 61.13=,cm l 74.74=,cm l 56.65=, cm b 00.61=,cm b 752.12=, cm b 628.23= 整个悬臂梁的厚度均为cm h 616.0=。 图1 一、解析解 第一步,梁的基本情况 梁的运动偏微分方程 ()()()() ()2222 22 ,,,v x t v x t EI x m x p x t x x t ?????+=??????? (1) 这里不考虑梁的轴向剪力和粘滞阻尼力,求它的自由振动频率,因而其运动偏微分方程为: ()()()() 222 2 22 ,,0v x t v x t EI x m x x x t ?????+=??????? (2) 由梁的几何物理参数参数(梁高h ,材料密度已知)我们可以得到: ()()()312212a a Eh EI x L x a L -??=-+? ??? (3) () ()122()a a a x L x a L -= -+ (4) 梁的边界条件: 固定端:()()0000 φφ'=???=?? (5) 自由端有刚性质量:

()()()(3)2 1 (2)2(1) 1 ()EI L L m EI L L j φωφφωφ?=-??=-?? (6) 其中12 3111133m abh j m b ab h ρ ρ=???==?? (7) 第二步,梁的求解 问题转化为偏微分方程的求解 ()()()()()()22231212222 22 ,,012a a v x t a a v x t Eh L x a L x a h x L x L t ρ??-?-????? ?-++-+?=?????????????? ???(8) 令() ()122()a a a x L x a L -=-+(9) 3 12a const Eh ρ = = (10) 将公式(9)(10)代入(8) ()()()()()()()4322'"4322 ,,,,()20v x t v x t v x t v x t a x a x a x aa x x x x t ????+++=???? (11) 该方程目前不能解。应采用能量法,即Rayleigh 法 一、理论准备 基本概念是最大动能等于最大势能。求解多自由度体系比较方便。 ()()0,sin v x t x Z t ?ω= 2201()2L v V EI x dx x ?=?? 22 201()()2L v T m x dx t ?=?? 222max 020222max 001()()21 ()()2 L L V Z EI x dx x T Z m x dx ?ω??=?=?? max max V T =

悬臂梁固有频率的计算

悬臂梁固有频率的计算 试求在0x =处固定、x l =处自由的等截面悬臂梁振动的固有频率(求解前五阶)。 解:法一:欧拉-伯努利梁理论 悬臂梁的运动微分方程为:4242(,)(,)+0w x t w x t EI A x t ρ??=??; 悬臂梁的边界条件为:2222(0)0(1),(0)0(2)0(3),(EI )0(4)x l x l dw w w w x x dx x x x ==???======???,; 该偏微分方程的自由振动解为(x,t)W(x)T(t)w =,将此解带入悬臂梁的运动微分方程可得到 1234(x)C cos sin cosh sinh W x C x C x C x ββββ=+++,(t)Acos t Bsin t T w w =+;其中2 4 A EI ρωβ= 将边界条件(1)、(2)带入上式可得13C 0C +=,24C 0C +=;进一步整理可得 12(x)C (cos cosh )(sin sinh )W x x C x x ββββ=-+-;再将边界条件(3)、(4)带入可得 12(cos cosh )C (sin sinh )0C l l l l ββββ-+-+=;12(sin sinh )C (cos cosh )0C l l l l ββββ--+-+=要 求12C C 和有非零解,则它们的系数行列式必为零,即 (cos cosh ) (sin sinh ) =0(sin sinh )(cos cosh ) l l l l l l l l ββββββββ-+-+--+-+ 所以得到频率方程为:cos()cosh()1n n l l ββ=-; 该方程的根n l β表示振动系统的固有频率:12 2 4 ()(),1,2,...n n EI w l n Al βρ==满足上式中的各 n l β(1,2,...n =)的值在书P443表8.4中给出,现罗列如下:123451.875104 4.6940917.85475710.99554114.1372l l l l l βββββ=====,,,,; 若相对于n β的2C 值表示为2n C ,根据式中的1n C ,2n C 可以表示为21cos cosh ()sin sinh n n n n n n l l C C l l ββββ+=-+;

不同应力比下沉淀硬化不锈钢的超高周疲劳断裂机制

2017年3月第41卷第3期一V o l .41N o .3M a r .2017 D O I :10.11973/j x g c c l 201703006收稿日期:2015G10G13;修订日期:2016G11G11基金项目:国家自然科学基金资助项目(51325504)作者简介:冯博(1990-),男,山东济南人,硕士研究生.导师:轩福贞教授 通讯作者:李煜佳讲师 不同应力比下沉淀硬化不锈钢的超高周疲劳断裂机制 冯博1,李煜佳1,梅林波2,轩福贞1 (1.华东理工大学,承压系统与安全教育部重点实验室,上海200237; 2.上海电气电站设备有限公司上海汽轮机厂,上海200240 )摘一要:在100?含氧量小于1m g L -1的饱和蒸汽环境中,对C u s t o m450沉淀硬化型不锈钢在三种应力比(-1,-0.6,0.1)下进行了轴向等幅力控制的超高周疲劳试验,观察了疲劳断口形貌并研究了其疲劳断裂机制.结果表明:试验钢的S GN 曲线没有水平段,始终保持下降趋势,其疲劳极限消失;疲劳断口呈现从表面缺陷二内部夹杂物和内部结构不连续三个位置处形成裂纹源的起裂模式;随着应力比的提高,表面形成裂纹源的概率增大,内部形成裂纹源的概率降低. 关键词:沉淀硬化不锈钢;超高周疲劳;S GN 曲线; 疲劳断裂机制中图分类号:T B 301一一一文献标志码:A一一一文章编号:1000G3738(2017)03G0029G04 U l t r a Gh i g hC y c l eF a t i g u eF r a c t u r eM e c h a n i s mo f aP r e c i p i t a t i o nH a r d e n i n g S t a i n l e s s S t e e l a tD i f f e r e n t S t r e s sR a t i o s F E N GB o 1,L IY u Gj i a 1,M E IL i n Gb o 2,X U A NF u Gz h e n 1 (1.K e y L a b o r a t o r y o f P r e s s u r e S y s t e m s a n dS a f e t y ,M i n i s t r y o fE d u c a t i o n ,E a s t C h i n aU n i v e r s i t y o f S c i e n c e a n dT e c h n o l o g y , S h a n g h a i 200237,C h i n a ;2.T u r b i n eP l a n t ,S h a n g h a i E l e c t r i cP o w e rG e n e r a t i o nE q u i p m e n t C o .,L t d .,S h a n g h a i 200240,C h i n a )A b s t r a c t :I n t h e s a t u r a t e d s t e a m w i t h o x y g e n c o n t e n t l e s s t h a n 1m g L -1a t 100?,a x i a l c o n s t a n t Ga m p l i t u d e f o r c e c o n t r o l l e d f a t i g u e t e s t sw e r ec o n d u c t e do nt h e p r e c i p i t a t i o nh a r d e n i n g s t a i n l e s ss t e e lC u s t o m 450w i t ht h r e e s t r e s s r a t i o s (-1,-0.6,0.1).T h e f a t i g u e f r a c t u r e m o r p h o l o g y w a so b s e r v e d ,a n dt h eu l t r a Gh i g hc y c l e f a t i g u e f r a c t u r em e c h a n i s m w a si n v e s t i g a t e d .T h er e s u l t ss h o w t h a tt h e S GN c u r v e s o ft h et e s t e d s t e e l p r e s e n t e d a c o n t i n u o u s d e c l i n e s h a p ew i t h o u t ah o r i z o n t a l a s y m p t o t e ,i n d i c a t i n g t h a t t h e t e s t e d s t e e l h a dn o f a t i g u e l i m i t .T h r e e c r a c k i n i t i a t i o n p a t t e r n s ,n a m e l y f o r m i n g c r a c ks o u r c e sa t s u r f a c ed e f e c t s ,i n t e r n a l i n c l u s i o n sa n d i n t e r n a l d e f e c t s ,w e r e o b s e r v e do nt h ef r a c t u r es u r f a c e s .W i t ht h ei n c r e a s eo fs t r e s sr a t i o ,t h e p r o b a b i l i t y o ft h es u r f a c ec r a c k i n i t i a t i o n i n c r e a s e dw h i l e t h a t o f t h e i n t e r n a l c r a c k i n i t i a t i o nd e c r e a s e d .K e y w o r d s :p r e c i p i t a t i o nh a r d e n i n g s t a i n l e s ss t e e l ;u l t r a Gh i g hc y c l ef a t i g u e ;S GN c u r v e ;f a t i g u ef r a c t u r e m e c h a n i s m 0一引一言 C u s t o m450沉淀硬化型不锈钢是新近开发的 一种叶片钢,具有高强度二高韧性,以及优良的耐腐 蚀性能[1] ;其强化机制主要为富铜相的时效强化和钼二铌元素的沉淀强化[2] .L i n 等[3]研究了C u s t o m 450不锈钢在不同p H 二 温度和不同浓度氯化钠溶液中的高周疲劳性能及疲劳裂纹扩展速率,发现氯化钠溶液p H 对其疲劳寿命的影响最大,而温度对裂纹扩展速率的影响最大;p H 对裂纹扩展速率的影响比对疲劳强度的影响小,由此可见疲劳裂纹的萌生相较于扩展更容易受到腐蚀环境的影响.目前对于C u s t o m450不锈钢的超高周疲劳性能尤其是在模拟工况环境下的超高周疲劳性能及疲劳断裂机制 研究还未见报道. 为此,作者根据汽轮机低压叶片的实际工作环境,在100?含氧量小于1m g L -1的饱和蒸汽环境下对C u s t o m450不锈钢进行了不同应力比的超高 周疲劳试验,得到了相应的超高周疲劳S GN 曲线, 9 2万方数据

疲劳和断裂读书报告

材料的疲劳和断裂读书报告 在这个报告里,首先阐述材料的疲劳和断裂机理、规律,其次阐述钛合金的疲劳和断裂,以及解决方法。在之前的本科课程里《工程材料力学性能》、《》、《失效分析》,对金属的疲劳、断裂、蠕变都进行了较为详细的阐述。同时,也进行了TC4合金的疲劳性能实验,因此对疲劳相关的知识有了一定的了解。 在大多数情况下,零件承受的并不是静载荷,而是交变载荷。在交变载荷作用下,材料往往在低于屈服强度的载荷下,发生疲劳断裂。例如,汽车的车轴断裂,桥梁,飞机等。因此对于疲劳断裂的研究是很有意义的。 一般来说,疲劳的定义是:金属材料或构件在变动应力和应变长期作用下,由于累积损伤而引起的断裂现象称为疲劳。断裂的定义是:由弥散分布的微裂纹串接为宏观裂纹,再由宏观裂纹扩展为失稳裂纹,最终材料发生断裂。在此,需要明确疲劳和断裂的关系。疲劳和断裂在机理研究和工程分析时是紧密相连的,只是疲劳更侧重于研究裂纹的萌生,断裂力学则侧重于裂纹的扩展,即带裂纹体的强度问题。 对于疲劳,阐述的思路是疲劳分类及特点,疲劳机理与断口,疲劳性能表征,影响疲劳的因素。对于断裂,从宏观和微观的角度分别阐述。 疲劳 疲劳分类及特点 疲劳分类方法如下: 按应力状态不同,可以分为弯曲疲劳、扭转疲劳、拉压疲劳及复合疲劳; 按环境和接触情况不同,分为大气疲劳、腐蚀疲劳、高温疲劳、热疲劳、接触疲劳; 按照断裂寿命和应力高低不同,分为高周疲劳和低周疲劳,其中高周疲劳也是低应力疲劳,低周疲劳即高应力疲劳。 疲劳特点如下: 材料在交变载荷峰值远低于材料强度极限时,就可能发生破坏,表现为低应力脆性断裂特征。这是因为,疲劳时应力较低(低于屈服强度),因此在宏观上看,材料没有塑性变形。在裂纹扩展到临界尺寸时,发生突然断裂。 材料疲劳是一个累积过程,尽管疲劳断裂表现为突然断裂,但是在断裂前经历了裂纹萌生,微裂纹连接长大,裂纹失稳扩展的过程。而形成裂纹后,可以通过无损检测的方法来判断裂纹是否达到临界尺寸,从而来判断零件的寿命。 疲劳寿命具有分散性。对于同一类材料来说,每次疲劳测试的结果都不会相同,有的时候相差很大。因此在测量疲劳寿命时,需要采用升降法和分组法来测得存活率为50%的疲劳强度。疲劳对于缺陷很敏感。这些缺陷包括材料表面微裂纹,材料应力集中部分,组织缺陷等。这些缺陷加速材料的疲劳破坏。 疲劳断口记录了疲劳断裂的重要信息,通过断口分析能了解到疲劳过程的机理。 疲劳裂纹形成和扩展机理及断口 一般把疲劳分成裂纹形成和裂纹扩展过程。而研究疲劳机理,都是借助于某一种模型来研究,这在断裂力学,蠕变过程的研究中经常看到。 裂纹形成: 资料表明,疲劳微观裂纹都是由不均匀的局部滑移和显微开裂引起的。主要包括表面滑移带开裂;第二相、夹杂物或其界面开裂;晶界或亚晶界开裂等。 裂纹形成的延性材料滑移开裂模型。 在静拉伸过程中,可以在光滑试样表面看到滑移带,这是由于位错的滑移形成的。在交变载

基于实测载荷谱的白车身疲劳寿命计算

基于实测载荷谱的白车身疲劳寿命计算 朱涛1 林晓斌2 1上海山外山机电工程科技有限公司 2英国恩科(nCode)国际有限公司上海代表处

基于实测载荷谱的白车身疲劳寿命计算 朱涛1 林晓斌2 1上海山外山机电工程科技有限公司 2英国恩科(nCode)国际有限公司上海代表处 摘要:汽车白车身疲劳分析由于缺乏真实载荷谱的输入而显得没有说服力,计算分析的结果往往与试车场或用户使用时发生的失效没有关联,这样导致了虚拟疲劳分析的强大作用无法发挥。本文通过六分力轮测试系统实测了某型乘用车在试车场的载荷谱数据,以此作为输入,并综合了多种CAE手段,包括有限元网格划分、有限元分析、多体动力学分析和疲劳分析,对该乘用车的白车身在实测载荷谱作用下的疲劳寿命分布进行了计算分析,获得了有价值的结果。同时给出了更符合真实工况的试验与虚拟相结合的白车身一体化疲劳分析流程。 关键词:白车身,虚拟疲劳分析,道路载荷谱,有限元网格划分,有限元分析,多 体动力学分析 1 前言 汽车结构疲劳的话题在当前各大整车制造企业越来越受到重视,几乎每种新开发的车型都需要考察其疲劳耐久性能。以前传统的方法,汽车企业对于新车型疲劳寿命的评估都是利用实车在各道路试车场进行路试[1],该方式虽然是最直接且最准确的,但测试时间却十分冗长且耗费人力与经费甚巨,即使发现了问题往往也很难去修改。近年来计算机软硬件的迅速发展,计算机辅助工程(CAE)分析技术在静态、碰撞、振动噪音等领域均有了相当不错的应用成果,但疲劳耐久性分析需要综合有限元应力分析和动力学载荷分析等专业技术,仍需花费非常大的计算量,且计算的准确性由于没有真实的道路载荷谱(RLD)作为计算输入而缺乏说服力。 本文针对上述问题,基于在国内汽车企业已经开始成熟运用的六分力轮测试技术实测获得的某乘用车在试车场的道路载荷谱数据[2],以此作为输入,驱动建立好的整车多刚体动力学仿真模型,获取作用在白车身各连接点上的载荷谱,同时对白车身进行有限元应力场分析。综合上述结果,调用相应的疲劳损伤模型对白车身的疲劳寿命进行了计算,从而建立起一套较为可行的更符合真实工况的车辆疲劳寿命分析技术流程。

疲劳断裂失效分析与表面强化预防

栏目主持李牟翔疲劳断裂失效分析与表面强化预防 北京航空材料研究院(100095)高玉魁 对于航空航天零部件而言,随着结构设计不断使用高强度结构材料来制造承力构件,越来越多的零件以疲劳断裂的方式发生失效事故。因此,总结疲劳断裂的失效特征,分析其影响凶素,探讨疲劳失效的预防措施一直是材料和力学等学科的研究工作者和工程师们所关心的课题。 对疲劳断裂失效而言,应该将疲劳裂纹的萌生与疲劳裂纹的扩展(包括疲劳小裂纹和长裂纹的扩展)结合起来,综合考虑疲劳裂纹的“裂”与“断”的过程,定量计算疲劳寿命,以便为设计提供数据支持和依据。目前的研究,材料工作者多从材料的组织结构特征方面来分析组织结构对疲劳寿命的影响,而断裂力学研究者则多从疲劳裂纹扩展寿命来计算安全的使用寿命。这两种方法都有一定的道理,并分别侧重于裂纹的萌生与扩展阶段的研究。对于疲劳断裂失效而言,疲劳断裂的过程都是先“裂”后“断”的。“疲劳断裂”不如“疲劳裂断”科学,这不仅是因为“疲劳裂断”可反映疲劳裂纹的萌生、扩展与断开的先后次序,而且“裂”还同时强调了裂纹的萌生和扩展两个阶段。一个零件要“裂”必须有裂纹的产生并使裂纹长大,要想“断”必须是零件上一定尺寸的裂纹在一定外力或环境的单独或共同作用下才能发生。因此,从“疲劳裂断”的进程来看,如何“防裂”、“止裂”、“防断”和“止断”不仅在科学理论上,而且在工程应用中都具有十分重要意义的研究课题。的强度潜力和使用性能;另一方面可提前预防失效事故并避免灾难的发生。为便于理解和使用,除了在此强凋“裂”外,下文仍采用“疲劳断裂”来描述疲劳失效。 1.结构材料的疲劳失效特征 疲劳失效是材料在循环载荷作用下发生的损伤和破坏过程。一般而言疲劳断裂包括裂纹的萌生、裂纹的扩展和最终的断裂三个过程,因此疲劳断口上有三个相对应的区域,即裂纹源区、裂纹扩展区和瞬断区。根据所受载荷的水平、材料的力学特性、试样的形状尺寸与约束条件的不同,这三个区域的大小、形状和分布特征也不尽相同,但总体而言可归纳为下列的4个宏观规律特征: (1)疲劳失效为低应力长时间无明显塑性变形的宏观脆性断裂。 (2)疲劳失效是由材料局部的组织不断发生损伤变化并且逐渐累积而成,疲劳总是从最薄弱的区域开始(见图1)。 图l疲劳裂纹萌生于内部的夹杂物缺陷 (3)疲劳断裂必须在循环应力和微观局部发生塑性 “防裂”和“止裂”是在“裂”上下功夫,通过分变形,以及拉伸应力作用下发生。前者是裂纹形成的条析裂的规律,找出裂的原因,提出防裂的措施,采用合 理的结构设计、合适的材料、适宜的热处理制度及可靠 的零件加工与适当的表面强化来改进开裂的方式,提高 开裂的抗力。“防断”和“止断”是在“断”字上做文 章,对存在一定尺寸的裂纹或缺陷,通过分析剩余寿命 /剩余强度来计算构件的安全,一方面可充分发挥材料 囵踅Q里堡箜!!塑整丝型堡旦箜蕉www.machinist.com.cn参磊卢工热lm-r 件,后者是裂纹扩展的需要。 (4)疲劳失效具有随机性,裂纹的形成与扩展都需 要一定的晶体学条件、力学条件和变形的协调条件,而 且材料本身的组织结构、成分偏析与夹杂缺陷等的不均 匀性,决定了疲劳失效具有随机性。 从疲劳失效的断口分析而言,微观上讲具有以下 万方数据

28.悬臂梁固有频率测量实验

实验二十八悬臂梁固有频率测量实验 1. 简介 悬臂梁实验台主要是针对高校工程测试课程实验教学需要而设计的,结合drvi快速可重组虚拟仪器开发平台、振动测量传感器和数据采集仪,可以开设悬臂梁固有频率测量实验。 2. 结构组成 悬臂梁实验台的结构示意如图1所示,结构总体尺寸为120×110×150mm(长×宽×高),主要包括的零件有: 图1 悬臂梁实验台结构示意图 1. 悬臂 2. 底座 3. 操作说明 3.1 实验准备 运用悬臂梁实验台进行实验教学所需准备的实验设备为: 1. 悬臂梁实验台(lxbl-a)1套 2. 加速度传感器(yd-37)1套 3. 加速度传感器变送器(lbs-12-a)1台 4. 蓝津数据采集仪(ldaq-epp2)1台 5. 开关电源(ldy-a)1套 6. 脉冲锤1只 7. 5芯对等线1条 备齐所需的设备后,将加速度传感器安装在悬臂梁前端的安装孔上,然后将加速度传感器与变送器相连,变送器通过5芯对等线与数据采集仪1通道连接,数据采集仪通过并口电缆与pc机并口连接,加速度传感器调理电路模块接线如图2所示。在保证接线无误的情况下,可以开始进行实验。

图2 加速度传感器调理电路接线示意图 3.2 实验操作 悬臂梁固有频率测量实验利用加速度传感器来测量悬臂振动的信号,经过频谱变换(fft)处理后得到悬臂梁的一阶固有频率,需要注意的是该实验数据采集采用预触发方式,数据采集仪的触发电平要根据现场情况进行设置,实验过程如下: 1. 启动服务器,运行drvi主程序,开启drvi数据采集仪电源,然后点击drvi快捷工具条上的“联机注册”图标,进行服务器和数据采集仪之间的注册。联机注册成功后,启动drvi内置的“web服务器功能”,开始监听8500端口。 图3 悬臂梁固有频率测量实验样本图 2. 启动drvi中的“悬臂梁固有频率测量”实验脚本,然后设定数据采集仪的工作模式为外触发采样,同时设置触发电平(如800)和预触发点数(如20),然后点击“运行”按钮启动采样过程(由于采用外触发采样方式,此时处于等待状态)。 3. 用脉冲锤敲击悬臂梁,产生脉冲激振。敲击的力幅要适当,着力点要准确,迅速脱开。如检测不到冲击振动信号,则适当修改采集仪中的预触发电平,然后点击面板中的“开始”按钮再次进行测量,此时,信号分析窗口中应显示出悬臂梁受瞬态激励后输出的信

整车-20_车身疲劳分析规范V1.0版

车身疲劳分析规范编号:LP-RD-RF-0020 文件密级:机密 车身疲劳分析规范 V1.0 编制: 日期: 编制日期审核/会签日期批准日期

车身疲劳分析规范 修订页 编制/修订原因说明:首次编制 原章节号现章节号修订内容说明备注 编制/修订部门/人 参加评审部门/人 修订记录: 版本号提出部门/人修订人审核人批准人实施日期备注

目录 1 简介 (2) 1.1 分析背景和目的 (2) 1.2 软硬件需求 (2) 1.3 分析数据参数需求 (2) 2 模型前处理 (2) 2.1 模型处理 (2) 2.2 约束及加载方式 (3) 3 有限元分析步骤 (3) 3.1 Nastran 静力分析模块 (3) 3.2 NCODE DesignLife 疲劳分析模块 (4) 4 分析结果后处理 (10) 5 结果评价 (11)

车身疲劳分析规范 1 简介 1.1 分析背景和目的 车身在路试过程中及售后反馈中80%以上的开裂问题为疲劳破坏,车身的疲劳性能是车身质量的重要体现,有必要对车身进行疲劳分析。目前比较通用的疲劳分析方法是准静态法。 1.2 软硬件需求 软件 前处理HyperMesh – Nastran模块 求解器Nastran Solution 101,nCode DesignLife 后处理HyperView 硬件 前、后处理:HP或DELL工作站; 求解:HP服务器、HP或DELL工作站。 1.3 分析数据参数需求 所需模型为简化的TB模型,(白车身及各质量点配重) 2 模型前处理 2.1 模型处理 1)导入简化的TB模型,详细建模细则参考《CAE分析共用模型建模指南》,所有搭载在白车身上的零件均需配重; 2)将各接附点重新编号,编号细则参考《整车疲劳分析连接点编号规范》; 图2.1 简化的TB模型

疲劳断裂行为High

超高频强度钢的疲劳断裂行为 J. Mater. Sci. Technol., Vol.24 No.5, 2008 1) 国家重点实验室的先进加工钢材和产品,北京100081,中国 2) 国家工程研究中心,北京100081钢铁技术先进,中国 3) ,燕山大学,秦皇岛,中国 ⑷对金属的中国社会,北京100711,中国 疲劳断裂行为的超高强度钢与不同熔化过程,研究了夹杂物尺寸不同通过用在旋转弯曲疲劳机上多达107循环加载。观察骨折面发射扫描电子显微镜(FESEM。当它被发现时已经尺寸的夹杂物对疲劳行为未清除。对钢在AISI 4340夹杂物尺寸小于5.5微米,所有的疲劳裂纹除的确做到了包含但不引发的地表和传统从标本的s - n曲线的存在。对65Si2MnW在100和Aermet钢平均12.2和14.9米,疲劳裂纹在较低的夹杂物引发的s - n曲线应力幅值和逐步进行观测。弯曲疲劳 强度的s - n曲线显示一个不断下降和疲劳失效的大型氧化物夹杂源于对60Si2CrVA 钢平均夹杂物的尺寸44.4米。在案件的内部骨折在周期超越约1X 106 65Si2MnWI?60Si2CrVA钢、夹杂物sh-eye经常发现里面和颗粒状明亮的方面(GBF)进行了观察附近约夹杂。GB尺寸的增加这个循环数的增加对失败的长寿命的政权。结构应力强度因子的价值范围内裂纹萌生施工现场对GBI与Nf几乎不变, 几乎是相等的表面夹杂物和内部包含在周期低于约1X 106。既不sh-eye GBF也 没有观察到100 Aermet钢在目前的研究中。 关键词:High-cycle超高强度钢疲劳,夹杂物s - n曲线,鱼眼骨折 1、介绍 High-cycle疲劳(HCF)失败是普通的实用的建筑工程项目的土石方作业。因此,广泛的研究已进行多年了令人满意的理解和解决方案尚未达成。众所周知,有一个很好的旋转弯曲疲劳强度之间的关系,如光滑的标本和抗拉强度、维氏 硬度、高压、或低或中等强度。对于低或中等强度钢如下 (T w 心 0.5Rm (T w 心 1.6HV (1) 在这种情况下,从疲劳裂纹倾向于表面,因此被称为表面的结构。然而,在较高 的拉伸强度范围或维氏硬度、线性相关性没发生,有了更多的散射或甚至星体疲劳强度值。疲劳断裂的起源的高强度钢的表面并不总是,但经常还有一定距离尤其是forhigh-cycle 疲劳,因此被称为内部断裂。断裂表面经常展现一个小光滑斑裂纹起

车辆疲劳耐久性分析及其优化技术研究_赵成刚

Science and Technology & Innovation ┃科技与创新 ?17? 文章编号:2095-6835(2015)06-0017-02 车辆疲劳耐久性分析及其优化技术研究 赵成刚1,屈 凡2 (1.中国汽车技术研究中心汽车工程研究院,天津 300300; 2.天津一汽夏利汽车股份有限公司产品开发中心,天津 300300) 摘 要:车辆在人们的生活、生产中占据的地位日益重要,其在运行过程中会受到各种因素的影响,进而降低了其使用效率和服务年限,因此,必须做好车辆零部件的维护管理工作。就车辆运行的实际情况看,大部分关键零部件的失效都是因疲劳使用而导致的,疲劳耐久性是衡量车辆产品性能的主要指标之一,在很大程度上代表了车辆的安全性、经济性和可靠性现状。对车辆的耐久性进行了分析,并提出了相应的优化措施。 关键词:疲劳耐久性;优化措施;循环荷载;EIFS 分布 中图分类号:U467 文献标识码:A DOI :10.15913/https://www.360docs.net/doc/0411477769.html,ki.kjycx.2015.06.017 现代车辆的结构逐渐向高速化和载重化的方向发展,为了保证车辆运行的安全性和稳定性,就要对车辆结构和各零部件有更为严格的要求。疲劳耐久性是衡量车辆零部件和结构性能的主要指标之一,可直接反映车辆的运行状态。但就车辆疲劳耐久性研究的现状来看,还存在一定的不足。因此,为了提高对车辆疲劳耐久性研究的效果,需要对现存的不足进行分析,并选择有效的优化措施,争取不断提高车辆的运行效率。 1 车辆耐久性疲劳分析 耐久性即产品在规定使用和维修的条件下,达到极限状态前完成规定功能的能力,从本质上看,即产品在达到服务年限前,可维持正常状态的时间。对于车辆而言,经常会将汽车或零部件可以行驶一定里程而不发生故障作为衡量车辆耐久性的重要指标。但在车辆长时间运行的过程中,各零部件和构件会受到循环荷载的影响,造成结构部分发生永久性结构变化,并在多次循环后形成裂纹或断裂,这种情况称为耐久性疲劳。一旦车辆结构或零部件出现耐久性疲劳,则直接影响车辆运行的稳定性和安全性。对于车辆的耐久性疲劳而言,其产生的主要原因是循环荷载作用,与疲劳损坏还有一定的距离,且一旦发生疲劳断裂,则会导致车辆结构产生宏观塑性变形。 2 车辆耐久性分析方法 2.1 分析对象 车辆耐久性分析的对象为疲劳寿命与强度有重要联系的重要零部件,并基于结构损伤度和可靠度进行详细分析,最终判断其使用寿命。在对车辆进行耐久性分析时,可将整个车辆机械结构或一部分作为研究对象,比如圆角、紧固孔和焊接件等,尤其是应力水平高且应力水平集中的部位。 2.2 材料参数 材料参数的分析对象包括断裂韧性、EIFS 分布和表面粗糙系数等。在研究时,基本上以概率断裂力学为基础,并通过试验的手段得到相应数据。其中,对于普通材料而言,可直接在相应的数据库中搜寻相应的参数信息,比如尺寸系数、断裂韧性和表面粗糙度系数等。 2.3 使用期断裂纹扩展控制曲线 对于给定应力区,随着时间t 的变化,对细节描述的当量缺陷尺寸也会发生变化,且车辆的应力区不同,裂纹的扩展率也不同。在对车辆耐久性进行分析时,为了提高预测裂纹超越数概率的可靠性,可以结合使用期裂纹扩展控制曲线与EIFS 分布,导出EIFS 控制曲线所用的裂纹扩展方式形式一致,则使用期裂纹扩展率为: d a /dN =Q i a . (1) 式(1)中:a 为裂纹长度;N 为应力循环次数;Q i a 为使用期裂纹扩展率。 控制曲线为: y Ti (t )=a r exp (-Q i t ). (2) 式(2)中:y Ti 为当量初始缺陷尺寸;a r 为试验常数;Q i 为裂纹扩展参数。 2.4 裂纹超越数 给定应力区i 裂纹超越数即在指定时间t 内该应力区i 结构细节群中裂纹尺寸超过a r 的细节数量,用N (i ,t )表示,并作为一个离散型随机变量,且会随着时间t 的变化而变化。假设应力区每个细节相对小裂纹尺寸扩展相互独立,则每个细节在 时间t 时,裂纹尺寸可达到a r 的概率为p (i ,t ) 。如果确定应力区i 中所含细节数为N i ,则在时间t 时的裂纹尺寸超过a r 的细节数为N ’(i ,t ),服从参数为N i 与p (i ,t )二项式分布,则平均裂纹超越数为: N ’(i ,t )=N i p (i ,t ). (3) 式(3)中:N ’(i ,t )为时间t 内裂纹尺寸超过a r 的细节数;N i p (i ,t )为平均裂纹超越数。 标准差为: σN (i ,t )={N i p (i ,t ) [1-p (i ,t )]}1/2. (4) 在对车辆耐久性进行分析时,则其结构指定细节群会包含多个应力区,可用L (t )表示结构细节群中裂纹尺寸超过a r 的细节数量,且会随着时间t 的变化而变化。如果每个应力区的细节数N 都比较大时,N (i ,t )所对应的二项式分布依据中心极限定理趋近于数学期望N ’(i ,t )和方差σN 2(i ,t )正态分布,则近似有N (i ,t )~N [N ’(i ,t ),σN 2(i ,t )],则细节群裂纹超越数为: ∑==m i t i N t L 1) ,()(. (5) 式(5)中:L (t )为正态变量。 则细节群平均裂纹超越L t ()和标准差σL (i )表示为: 1m i t N t ==∑,). (6) 12 2 1 []m i i i t σσ==∑L N ()(,). (7) 3 基于CAE 技术的车辆疲劳耐久性分析 3.1 建立多体动力学模型 建立多体动力学模型时,应利用整车和零部件参数建立总成系统,以完成运动学个动力学虚拟实验,主要包括汽车操纵的稳定性、安全性和平顺性等性能的精确模拟和计算。整个ADAMS/CAR 建模过程为自下而上,逐次完成各个模板的建立,再由相应的模板生成子系统,最终由每个子系统组装成整个车的模型。其中,子系统是以模板为基础建立的,由多个零件组合而成,主要包括设计参数、模板文件和引用属性文件等多方面的说明。整车建模需要对部分零部件进行简化处理,比如将车身看作为刚体,利用车身质心位置处的质量点建模。 (下转第20页)

相关文档
最新文档