高中数学:抛物线及其标准方程习题精选(新人教A版选修1-1)

高中数学:抛物线及其标准方程习题精选(新人教A版选修1-1)
高中数学:抛物线及其标准方程习题精选(新人教A版选修1-1)

习题精选

一、选择题

1.过抛物线焦点的直线与抛物线相交于,两点,若,在抛物线准线上的射影分别是,,则为().

A.45°B.60°C.90°D.120°

2.过已知点且与抛物线只有一个公共点的直线有().

A.1条B.2条C.3条D.4条

3.已知,是抛物线上两点,为坐标原点,若

,且的垂心恰好是此抛物线的焦点,则直线的方程是().

A.B.C.D.

4.若抛物线()的弦PQ中点为(),则弦的斜率为()

A.B.C.D.

5.已知是抛物线的焦点弦,其坐标,满足,则直线的斜率是()

A.B.C.D.

6.已知抛物线()的焦点弦的两端点坐标分别为

,,则的值一定等于()

A.4 B.-4 C.D.

7.已知⊙的圆心在抛物线上,且⊙与轴及的准线相切,则⊙的方程是()

A.B.

C.D.

8.当时,关于的方程的实根的个数是()

A.0个B.1个C.2个D.3个

9.将直线左移1个单位,再下移2个单位后,它与抛物线

仅有一个公共点,则实数的值等于()

A.-1 B.1 C.7 D.9

10.以抛物线()的焦半径为直径的圆与轴位置关系为()

A.相交 B.相离 C.相切 D.不确定

11.过抛物线的焦点作直线交抛物线于,两点,如果,那么长是()

A.10 B.8 C.6 D.4

12.过抛物线()的焦点且垂直于轴的弦为,为抛物线顶点,则大小()

A.小于B.等于C.大于D.不能确定

13.抛物线关于直线对称的曲线的顶点坐标是()A.(0,0)B.(-2,-2)C.(2,2)D.(2,0)

14.已知抛物线()上有一点,它到焦点的距离为5,则的面积(为原点)为()

A.1 B.C.2 D.

15.记定点与抛物线上的点之间的距离为,到此抛物线准线的距离为,则当取最小值时点的坐标为()

A.(0,0)B.C.(2,2)D.

16.方程表示()

A.椭圆 B.双曲线 C.抛物线 D.圆

17.在上有一点,它到的距离与它到焦点的距离之和最小,则的坐标为()

A.(-2,8)B.(2,8)C.(-2,-8)D.(-2,8)

18.设为过焦点的弦,则以为直径的圆与准线交点的个数为()

A.0 B.1 C.2 D.0或1或2

19.设,为抛物线上两点,则是

过焦点的()

A.充分不必要B.必要不充分C.充要D.不充分不必要

20.抛物线垂点为(1,1),准线为,则顶点为()

A.B.C.D.

21.与关于对称的抛物线是()

A.B.C.D.

二、填空题

1.顶点在原点,焦点在轴上且通径(过焦点和对称轴垂直的弦)长为6的抛物线方程是_________.

2.抛物线顶点在原点,焦点在轴上,其通径的两端点与顶点连成的三角形面积为4,则此抛物线方程为_________.

3.过点(0,-4)且与直线相切的圆的圆心的轨迹方程是_________.4.抛物线被点所平分的弦的直线方程为_________.

5.已知抛物线的弦过定点(-2,0),则弦中点的轨迹方程是________.

6.顶点在原点、焦点在轴上、截直线所得弦长为的抛物线方程为____________.

7.已知直线与抛物线交于、两点,那么线段的中点坐标是__ _.

8.一条直线经过抛物线()的焦点与抛物线交于、

两点,过、点分别向准线引垂线、,垂足为、,如果

,,为的中点,则 =__________.

9.是抛物线的一条焦点弦,若抛物线,,则的

中点到直线的距离为_________.

10.抛物线上到直线的距离最近的点的坐标是

____________.

11.抛物线上到直线距离最短的点的坐标为

__________.

12.已知圆与抛物线()的准线相切,则 =________.

13.过()的焦点的弦为,为坐标原点,则

=________.

14.抛物线上一点到焦点的距离为3,则点的纵坐标为

__________.

15.已知抛物线(),它的顶点在直线

上,则的值为__________.

16.过抛物线的焦点作一条倾斜角为的弦,若弦长不超过8,则的范围是________.

17.已知抛物线与椭圆有四个交点,这四个交点共圆,则该圆的方程为__________.

18.抛物线的焦点为,准线交轴于,过抛物线上一点

作于,则梯形的面积为_______________.

19.探照灯的反射镜的纵断面是抛物线的一部分,安装灯源的位置在抛物线的焦点处,如果到灯口平面的距离恰好等于灯口的半径,已知灯口的半径为30cm,那么灯深为_________.

三、解答题

1.知抛物线截直线所得的弦长,试在轴上求一点,使的面积为39

2.若的焦点弦长为5,求焦点弦所在直线方程

3.已知是以原点为直角顶点的抛物线()的内接直角三角形,求面积的最小值.

4.若,为抛物线的焦点,为抛物线上任意一点,求

的最小值及取得最小值时的的坐标.

5.一抛物线拱桥跨度为52米,拱顶离水面6.5米,一竹排上一宽4米,高6米的大木箱,问能否安全通过.

6.抛物线以轴为准线,且过点,()求证不论点的位置如何变化,抛物线顶点的轨迹是椭圆,且离心率为定值.

7.已知抛物线()的焦点为,以为圆心,

为半径,在轴上方画半圆,设抛物线与半圆交于不同的两点、,为

线段的中点.①求的值;②是否存在这样的,使、

、成等差数列,若存在,求出的值;若不存在,说明理由.

8.求抛物线和圆上最近两点之间的距离.

9.正方形中,一条边在直线上,另外两顶点、

在抛物线上,求正方形的面积.

10.已知抛物线的一条过焦点的弦被焦点分为,两个部分,求证.

11.一抛物线型拱桥的跨度为,顶点距水面.江中一竹排装有宽、高的货箱,问能否安全通过.

12.已知抛物线上两点,(在第二象限),为原点,且,求当点距轴最近时,的面积.

13.是抛物线上的动点,连接原点与,以为边作正方形,求动点的轨迹方程.

参考答案:

一、1.C;2.C;3.D;4.B;5.C;6.B;7.B;8.D;9.C

10.C;11.B;12.C;13.C;14.C;15.C;16.C;17.B;18.B;19.C;20.A;21.D

二、1.;2.;3.;4.

5.;6.(在已知抛物线内的部分)

7.或;8.(4,2);9.

10.;11.;12.2;13.-4

14.2;15.0,,,;16.

17.;18.3.14;19.36.2cm

三、1.先求得,再求得或

2.

3.设,,则由得,

,,于是

当,即,时,

4.抛物线的准线方程为,过作垂直准线于点,由抛物线定义得,,要使最小,

、、三点必共线,即垂直于准线,与抛物线交点为点,从而的最小值为,此时点坐标为(2,2).5.建立坐标系,设抛物线方程为,则点(26,-6.5)在抛物线

上,抛物线方程为,当

时,,则有,所以木箱能安全通过.

6.设抛物线的焦点为,由抛物线定义得,设顶点为,则,所以,即

为椭圆,离心率为定值.

7.①设、、在抛物线的准线上射影分别为、、,则由抛物线定义得,

又圆的方程为,将代入得

②假设存在这样的,使得

,由定义知点必在抛物线上,这与点是弦的中点矛盾,所以这样的不存在

8.设、分别是抛物线和圆上的点,圆心,半径为1,若

最小,则

也最小,因此、、共线,问题转化为在抛物线上求一点,使它到点的距离最小.为此设,则

,的最小值是

9.设所在直线方程为,消去

又直线与间距离为

从而边长为或,面积,

10.焦点为,设焦点弦端点,,当垂直于轴,则,结论显然成立;当与轴不垂直时,设所在直线方程为,代入抛物线方程整理得,

这时,于是,命题也成立.

11.取抛物线型拱桥的顶点为原点、对称轴为轴建立直角坐标系,则桥墩的两端坐标分别为(-26,-6.5),(26,-6.5),设抛物线型拱桥的方程

为,则,所以,抛物线方程为

.当时,,而,故可安全通过.

12.设,则,因为,所以,直线的方程为,将代入,得点的横坐标为

(当且仅当时取等号),此时,,,

,所以.

13.设,,过,分别作为轴的垂线,垂足分别为,

,而证得≌,则有,,即、,而,因此,即为所求轨迹方程.

数学必修2 直线与方程典型 例题

第三章直线与方程 3.1 直线的倾斜角与斜率 3.1.1 倾斜角与斜率 【知识点归纳】 1.直线的倾斜角: 2.直线的斜率: 3.直线的斜率公式: 【典型例题】 题型一求直线的倾斜角 例 1 已知直线的斜率的绝对值等于,则直线的倾斜角为(). A. 60° B. 30° C. 60°或120° D. 30°或150° 变式训练: 设直线过原点,其倾斜角为,将直线绕原点沿逆时针方向旋转45°, 得到直线,则的倾斜角为()。 A. B. C. D. 当0°≤α<135°时为,当135°≤α<180°时,为 题型二求直线的斜率 例2如图所示菱形ABCD中∠BAD=60°,求菱形ABCD各边和两条对角线所在直线的倾斜角和斜率. 变式训练:已知过两点, 的直线l的倾斜角为45°,求实数的值. 题型三直线的倾斜角与斜率的关系 例3右图中的直线l1、l2、l3的斜率分别为k1、k2、k3,则(). A .k1<k2<k3 B. k3<k1<k2 C. k3<k2<k1 D. k1<k3<k2

拓展一三点共线问题 例4 已知三点A(a,2)、B(3,7)、C(-2,-9a)在一条直线上,求实数a的值. 变式训练: 若三点P(2,3),Q(3,),R(4,)共线,那么下列成立的是(). A. B. C. D. 拓展二与参数有关问题 例 5 已知两点A (-2,- 3) , B (3, 0) ,过点P (-1, 2)的直线与线段AB始终有公共点,求直线的斜率的取值范围. 变式训练: 已知两点,直线过定点且与线段AB相交,求直线的斜率的取值范围.

拓展三利用斜率求最值 例 6 已知实数、满足当2≤≤3时,求的最大值与最小值。 变式训练:利用斜率公式证明不等式:且 3.1.2 两条直线平行与垂直的判定 【知识点归纳】 1.直线平行的判定 2.两条直线垂直的判定(注意垂直与x轴和y轴的两直线): 【典型例题】 题型一两条直线平行关系 例 1 已知直线经过点M(-3,0)、N(-15,-6),经过点R(-2,)、S(0,),试判断与是否平行? 变式训练:经过点和的直线平行于斜率等于1的直线,则的值是(). A.4 B.1 C.1或3 D.1或4

高三数学-抛物线专题复习

抛物线 平面内与一个定点F 和一条定直线l(F ?l)的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线. 2.抛物线的标准方程与几何性质 标准方程 y 2=2px (p>0) y 2=-2px(p>0) x 2=2py(p>0) x 2=-2py(p>0) p 的几何意义:焦点F 到准线l 的距离 & 图形 顶点 O(0,0) 对称轴 y =0 x =0 $ 焦点 F ????p 2,0 F ??? ?-p 2,0 F ? ???0,p 2 F ??? ?0,-p 2 离心率 e =1 准线方程 x =-p 2 x =p 2 。 y =-p 2 y =p 2 范围 x ≥0,y ∈R x ≤0,y ∈R y ≥0,x ∈R y ≤0,x ∈R 开口方向 向右 向左 - 向上 向下 题型一 抛物线的定义及应用 例1 已知抛物线y 2=2x 的焦点是F ,点P 是抛物线上的动点,又有点A(3,2),求|PA|+|PF|的最小值,并求出取最小值时点P 的坐标. 》

变式练习 1.已知点P是抛物线y2=2x上的一个动点,则点P到点(0,2)的距离与点P到该抛物线准线的距离之和的最小值为() 题型二抛物线的标准方程和几何性质 例2抛物线的顶点在原点,对称轴为y轴,它与圆x2+y2=9相交,公共弦MN的长为25,求该抛物线的方程,并写出它的焦点坐标与准线方程. * 变式练习 2.设斜率为2的直线l过抛物线y2=ax(a≠0)的焦点F,且和y轴交于点A.若△OAF(O为坐标原点)的面积为4,则抛物线方程为() =±4x =±8x =4x =8x 变式练习 3.已知点A(2,0),抛物线C:x2=4y的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,则|FM|∶|MN|等于() ∶ 5 ∶2 ∶ 5 ∶3 题型三抛物线焦点弦的性质 … 例3设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线于A、B两点,点C在抛物线的准线上,且BC∥x轴.证明:直线AC经过原点O. :

直线与方程(经典例题)

直线与方程 知识点复习: 一、直线与方程 (1)直线的倾斜角 定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值围是0°≤α<180° (2)直线的斜率 ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k 表示。即tan k α=。斜率反映直线与轴的倾斜程度。 当[ ) 90,0∈α时,0≥k ; 当( ) 180,90∈α时,0

高中数学专题:抛物线

抛物线专题复习 通径:过焦点且垂直于对称轴的相交弦 通径:d 2= AB 为抛物线px y 22 =的焦点弦,则=B A x x 4 2p ,=B A y y 2 p -,||AB =p x x B A ++ 考点1 抛物线的定义 [例1 ]已知点P 在抛物线x y 42 =上,则点P 到点)1,2(-Q 的距离与点P 到抛物线焦点距离之和的最小值为 考点2 抛物线的标准方程 [例2 ] 求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程: (1)过点)2,3(-; (2)焦点在直线240x y --=上 考点3 抛物线的几何性质 [例3 ]设B A ,为抛物线px y 22 =上的点,且O AOB (2 π = ∠为原点),则直线AB 必过的定点坐标为_______ [例4 ]设F 是抛物线2 :4G x y =的焦点.(I )过点(04)P -, 作抛物线G 的切线,求切线方程; (II )设A B ,为抛物线G 上异于原点的两点,且满足,0=?→ → FB FA 延长AF ,BF 分别交抛物线G 于点C D ,,求四边形ABCD 面积的最小值. 二.基本题型 1.过抛物线x y 42 =的焦点作直线交抛物线于1122(,),(,)A x y B x y 两点,如果621=+x x ,那么||AB =( )

(A )10 (B )8 (C )6 (D )4 2.已知抛物线22(0)y px p =>的焦点为F ,点111222()() P x y P x y ,,,,33 3()P x y ,在抛物线上,且||1F P 、||2F P 、||3F P 成等差数列, 则有 ( ) A .321x x x =+ B . 3 21y y y =+ C .2312x x x =+ D. 2312y y y =+ 3.已知M 为抛物线x y 42=上一动点,F 为抛物线的焦点,定点()1,3P ,则||||MF MP +的最小值为( ) (A )3 (B )4 (C )5 (D )6 4.过抛物线()02>=a ax y 的焦点F 作直线交抛物线于P 、Q 两点,则=+| |1 ||1QF PF ( ) (A )a 2 (B ) a 21 (C )a 4 (D )a 4 5.已知抛物线C :24y x =的焦点为,F 准线为,l 过抛物线C 上的点A 作准线l 的垂线,垂足为M ,若△AMF 与△ AOF (其中O 为坐标原点)的面积之比为3:1,则点A 的坐标为( ) A .(2,22) B .(2,-22) C .(2,±2) D .(2,±22) 6.过抛物线焦点F 的直线与抛物线交于两点A 、B,若A 、B 在抛物线准线上的射影为11,B A ,则=∠11FB A ( ) A. 45 B. 60 C. 90 D. 120 7.两个正数a 、b 的等差中项是 9 2 ,一个等比中项是,b a >则抛物线2()y b a x =-的焦点坐标为( ) A .1 (0,)4- B .1(0,)4 C .1(,0)2- D .1(,0)4 - 8.抛物线,42 F x y 的焦点为=准线为l l ,与x 轴相交于点,E 过F 且倾斜角等于3 π 的直线与抛物线在x 轴上方的部分相交于点,,l AB A ⊥垂足为,B 则四边形ABEF 的面积等于( ) A .33 B .34 C .36 D .38 9.已知抛物线C :2 1 2 x y = ,过点(0,4)A -和点(,0)B t 的直线与抛物线C 没有公共点,则实数t 的取值范围是( ) A .(,1)(1,)-∞-+∞ B. (,()22 -∞+∞ C .(,)-∞-+∞ D .(,)-∞-+∞ 10.如果1P ,2P ,…,8P 是抛物线2 4y x =上的点,它们的横坐标依次为1x ,2x ,…,8x ,F 是抛物线的焦点,若)(,,,21* ∈N n x x x n 成等差数列且45921=+++x x x ,则||5F P =( ). A .5 B .6 C . 7 D .9 11.设O 是坐标原点,F 是抛物线2 4y x =的焦点,A 是抛物线上的一点,FA 与x 轴正向的夹角为60 ,则OA 为 . 12.若直线10ax y -+=经过抛物线2 4y x =的焦点,则实数a =

(完整版)《抛物线定义及其标准方程》

抛物线及其标准方程 一、教学目标 1.知识目标:①掌握抛物线的定义、方程及标准方程的推导;②掌握焦点、焦点位置与方程关系;③进一步了解建立坐标系的选择原则. 2. 能力目标:使学生充分认识到“数与形”的联系,体会“数形结合”的思想。 二、教学过程 (一)、复习引入 问题1、 椭圆、双曲线的第二定义如何叙述?其离心率e 的取值范围各是什么? 平面内,到一个定点F 的距离和一条定直线l 的距离的比是常数e 的轨迹,当0<e <1时是椭圆,当e >1时是双曲线。自然引出问题:那么,当1 e 时,轨迹是什么形状的曲线呢? (二).创设情境 问题2、用制作好的教具实验:三角板ABC 的直角边BC 边上固定一个钉子,一根绳子连接钉子和平面上一个固定点F ,并且使绳子的长度等于钉子到直角顶点C 的距离。用笔尖绷紧绳子,并且使三角板AC 在定直线l 上滑动,问笔尖随之滑动时,在平面上留下什么图形?如何用方程表示该图形? 设计意图:从实际问题出发,激发学生的求知欲,将问题交给学生,充分发挥学生的聪明才智,体现学生的主体地位,同时引入本节课的内容. 师生活动: (1) 你们如何把这个实际问题抽象成数学问题吗? (2) 学生不一定能正确抽象出来,教师可适当引导:当笔 尖滑动时,笔尖到定点F 的距离等于到定直线l 的距离,在满足这样条件下,笔尖画出的图形。并抽象数学问题: (三)、新课讲授: (1)抛物线定义:平面内,到一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线 定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线,F 到直线l 的距离简 称焦准距。 特别提醒:定点F 在定直线l 外。(并假设F 在直线l 上)

《直线与方程》教案+例题精析

考点1:倾斜角与斜率 (一)直线的倾斜角 例1例1. 若θ为三角形中最大内角,则直线0tan :=++m y x l θ的倾斜角的范围是( ) A.??? ?????? ??32,22,0πππ B.??? ?????? ??32223ππππ,, C.??? ?????? ??πππ,,330 D.?? ? ?????? ??πππ,,3220 2 若直线:l y kx =2360x y +-=的交点位于第一象限,则直线l 的倾斜角的取值范围是( ) A .,63ππ?????? B .,62ππ?? ??? C .,32ππ?? ??? D .,62ππ?????? (二)直线的斜率及应用 3、利用斜率证明三点共线的方法:已知112233(,),(,),(,),A x y B x y C x y 若123AB AC x x x k k ===或,则有A 、B 、C 三点共线。 例2、设,,a b c 是互不相等的三个实数,如果333(,)(,)(,)A a a B b b C c c 、、在同一直线上,求证:0a b c ++= 1.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则,a b 满足( ) A .1=+b a B .1=-b a C .0=+b a D .0=-b a 2.过点P (-2,m )和Q (m ,4)的直线的斜率等于1,则m 的值为() A.1 B.4 C.1或3 D.1或4 3.已知直线l 则直线的倾斜角为( ) A. 60° B. 30° C. 60°或120° D. 30°或150° 4.若三点P (2,3),Q (3,a ),R (4,b )共线,那么下列成立的是( ). A .4,5a b == B .1b a -= C .23a b -= D .23a b -= 5.右图中的直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则( ). A .k 1<k 2<k 3 B. k 3<k 1<k 2 C. k 3<k 2<k 1 D. k 1<k 3<k 2 6.已知两点A (x ,-2),B (3,0),并且直线AB 的斜率为2,则x = . 7.若A (1,2),B (-2,3),C (4,y )在同一条直线上,则y 的值是 . 8.已知(2,3),(3,2)A B ---两点,直线l 过定点(1,1)P 且与线段AB 相交,求直线l 的斜率k 的取值范围. 9、直线l :ax +(a +1)y +2=0的倾斜角大于45°,则a 的取值范围是________. 考点2:求直线的方程 例3. 已知点P (2,-1).(1)求过P 点且与原点距离为2的直线l 的方程; (2)求过P 点且与原点距离最大的直线l 的方程,最大距离是多少? (3)是否存在过P 点且与原点距离为6的直线?若存在,求出方程;若不存在,请说明理由. 1、求过点P (2,-1),在x 轴和y 轴上的截距分别为a 、b,且满足a=3b 的直线方程。 2、设A 、B 是x 轴上的两点,点P 的横坐标为2,且|P A |=|PB |,若直线P A 的方程为x -y +1=0,则直线PB 的方程是( )A. x +y -5=0 B. 2x -y -1=0 C. 2y -x -4=0 D. 2x +y -7=0 3、直线过点(-3,4),且在两坐标轴上的截距之和为12,则该直线方程为________. 4、过点P (-2,3)且在两坐标轴上的截距相等的直线l 的方程为_____________. 5、已知点A (2,-3)是直线a 1x +b 1y +1=0与直线a 2x +b 2y +1=0的交点,则经过两个不同点P 1(a 1,b 1)和P 2(a 2,b 2)的直线方程是( )A .2x -3y +1=0 B .3x -2y +1=0 C .2x -3y -1=0 D .3x -2y -1=0 6、.过点P (0,1)且和A (3,3),B (5,-1)的距离相等的直线方程是( ) A .y =1 B .2x +y -1=0 C .y =1或2x +y -1=0 D .2x +y -1=0或2x +y +1=0 7.如图,过点P (2,1)作直线l ,分别为交x 、y 轴正半轴于A 、B 两点。(1)当⊿AOB

高中数学抛物线知识点归纳总结与经典习题

抛物线经典结论和例题

焦 点弦 长 AB 12()x x p ++ 12()x x p -++ 12()y y p ++ 12()y y p -++ 焦点弦 AB 的几条性质 11(,) A x y 22(,) B x y 以AB 为直径的圆必与准线l 相切 若AB 的倾斜角为α,则22sin p AB α= 若AB 的倾斜角为α ,则22cos p AB α = 2 124 p x x = 212y y p =- 112AF BF AB AF BF AF BF AF BF p ++===?? 切线 方程 00()y y p x x =+ 00()y y p x x =-+ 00()x x p y y =+ 00()x x p y y =-+ 1. 直线与抛物线的位置关系 直线 ,抛物线 , ,消y 得: (1)当k=0时,直线l 与抛物线的对称轴平行,有一个交点; (2)当k ≠0时, Δ>0,直线l 与抛物线相交,两个不同交点; Δ=0, 直线l 与抛物线相切,一个切点; Δ<0,直线l 与抛物线相离,无公共点。 (3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定) o x ()22,B x y F y ()11,A x y

2. 关于直线与抛物线的位置关系问题常用处理方法 直线l :b kx y += 抛物线 ,)0(φp ① 联立方程法: ???=+=px y b kx y 22 ?0)(2222=+-+b x p kb x k 设交点坐标为),(11y x A ,),(22y x B ,则有0φ?,以及2121,x x x x +,还可进一步求出 b x x k b kx b kx y y 2)(212121++=+++=+, 2212122121)())((b x x kb x x k b kx b kx y y +++=++= 在涉及弦长,中点,对称,面积等问题时,常用此法,比如 a. 相交弦AB 的弦长 2122122124)(11x x x x k x x k AB -++=-+=a k ?+=2 1 或 2122122124)(1111y y y y k y y k AB -++=-+ =a k ?+=2 1 b. 中点),(00y x M , 2210x x x += , 2 2 10y y y += ② 点差法: 设交点坐标为),(11y x A ,),(22y x B ,代入抛物线方程,得 1212px y = 22 22px y = 将两式相减,可得 )(2))((212121x x p y y y y -=+-所以 2 121212y y p x x y y += -- a. 在涉及斜率问题时,2 12y y p k AB += b. 在涉及中点轨迹问题时,设线段AB 的中点为),(00y x M , 021*******y p y p y y p x x y y ==+=--,即0y p k AB =, 同理,对于抛物线)0(22≠=p py x ,若直线l 与抛物线相交于B A 、两点,点 ),(00y x M 是弦AB 的中点,则有p x p x p x x k AB 0 021222==+=

数学必修2---直线与方程典型例题

第三章直线与方程 【典型例题】 题型一求直线的倾斜角与斜率 设直线I斜率为k且1

3.1.2两条直线平行与垂直的判定 【 【典型例题】 题型一两条直线平行关系 例1 已知直线l i 经过点M (-3, 0)、N (-15,-6), 12 经过点R (-2, - )、S (0, 2 5),试判断^与12是否平行? 2 变式训练:经过点P( 2,m)和Q(m,4)的直线平行于斜率等于1的直线,贝U m的值是(). A . 4 B. 1 C. 1 或3 D. 1 或4 题型二两条直线垂直关系 例2已知ABC的顶点B(2,1), C( 6,3),其垂心为H( 3,2),求顶点A的坐标. 变式训练:(1) h的倾斜角为45 ° 12经过点P (-2,-1 )、Q (3,-6),问h与12是否垂直? (2)直线11,12的斜率是方程x2 3x 1 0的两根,则h与12的位置关系是—. 题型三根据直线的位置关系求参数 例3已知直线h经过点A(3,a)、B (a-2,-3),直线S经过点C (2,3)、D (-1,a-2) (1)如果I1//I2,则求a的值;(2)如果11丄12,则求a的值 题型四直线平行和垂直的判定综合运用 例4四边形ABCD的顶点为A(2,2 2 2)、B( 2,2)、C(0,2 2.. 2)、D(4,2),试判断四边形ABCD的形状.

《抛物线及其标准方程》教学设计

《抛物线及其标准方程》教学设计 教材:普通高中数学课程标准实验教科书(人教A版) 选修2-1 一第二章第四节 课题:抛物线及其标准方程 课时:第一课时 一、背景分析 1 课标的要求 (1)了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。 (2)经历从具体情境中抽象出椭圆,抛物线模型的过程,掌握椭 圆,抛物线的定义、标准方程及简单性质。 (3)了解双曲线的定义、几何图形和标准方程,知道它们的有关性质,体会数形结 合的思想。 (4)了解圆锥曲线的简单应用。 2本节课在圆锥曲线中的地位: 圆锥曲线是解析几何中的一个重要内容。而抛物线在圆锥曲线中地位仅次于椭圆而高于双曲 线,抛物线在初中以二次函数的形式初步探讨过,本节内容安排篇幅不多,并非不重要,主 要是因为学生对于椭圆、双曲线的基本知识和研究方法已经熟悉了,这里精简介绍,学生是可以接受的,它是高考的重要考察内容,要引起师生足够的重视。 3、学习任务分析 (1)、通过实验,结合几何画板课件,观察、发现和认识抛物线。 (2)、坐标法求抛物线的标准方程是本节课的重点和难点。 通过几何画板动态演示建立不同的坐标系,对比所得方程的异同,使学生认识到恰当建立坐 标系的重要性。 (3)、由抛物线的标准方程,熟练写出焦点坐标、准线方程;反之也会。 (4)、放手让学生类似地推导开口向左、向上、向下的情况下的标准方程。让学生根据课件展示的图形填充表格、对比异同。

(5)、p的几何意义:它指抛物线焦点到准线的距离,因此p>0。在抛物线宀, *=一2即中,负号只管抛物线的开口方向,与p无关。 (6)、由于学生对数学图形、符号、文字三种语言的相互转化有一定困难,教学中应根据 图形培养学生运用三种语言的能力。借助图形使原本较为陌生的定义变得容易理解和便于记忆。 4、学生情况分析 在经过高一的学习和训练后,大多同学有较扎实的数学基本功和较好的理解力,有一定的自主学习能力,但在数学思想方法的形成上尚有不足,针对我所带班级学生的学习情况和数学 素养,我把本节内容借助powerpoint、几何画板课件,从形象、动态的演示入手,使学生 对抛物线有一个较为深刻的认识。 二、教学目标设计 根据课程标准和考试大纲的要求、教材的具体内容和学生认知心理,我确定本堂课的教学目 标如下: 1知识与能力 ①让学生理解抛物线的概念及与椭圆、双曲线第二定义的联系。 ②让学生掌握抛物线的四种标准方程及其对应的图形。 2、技能与方法 ①培养建立适当坐标系的能力。 ②培养学生的观察、比较、分析、概括的能力。 3、情感态度与价值观 ①培养学生的探索精神。 ②渗透辩证唯物主义的方法论和认识论教育。 4教学重点和难点 根据以上所说的教材的地位、作用、内容与学生情况,我确定教材重点、难点如下: (1)、教学重点: ①选择适当坐标系探求抛物线的标准方程。 ②标准方程的形式与图形、焦点坐标、准线方程的对应关系。 (2)、教学难点:

高中数学抛物线解题方法总结归纳

圆锥曲线抛物线 知识点归纳 1抛物线的定义:平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线 的准线. 2抛物线的图形和性质: ①顶点是焦点向准线所作垂线段中点。 ②焦准距:FK p = ③通径:过焦点垂直于轴的弦长为2p 。 ④顶点平分焦点到准线的垂线段:2 p OF OK ==。 3抛物线标准方程的四种形式: ,,px y px y 2222-==。,py x py x 2222-== 特点:焦点在一次项的轴上,开口与“±2p ”方向同向 4抛物线px y 22=的图像和性质: ①焦点坐标是:?? ? ??02, p ,②准线方程是:2p x -=。 ③焦半径公式: (称为焦半径)是:02 p PF x =+, ④焦点弦长公式:过焦点弦长121222 p p PQ x x x x p =+ ++=++ ⑤抛物线px y 22 =上的动点可设为P ),2(2 y p y 或2(2,2)P pt pt 5一般情况归纳:题型讲解 (1)过点(-3,2)的抛物线方程为 ;y 2=-3 4x 或x 2=2 9y , (2)焦点在直线x -2y -4=0 y 2=16x 或x 2=-8y ,

(3)抛物线 的焦点坐标为 ; (4)已知抛物线顶点在原点,焦点在坐标轴上,抛物线上的点 到焦点F 的距离为5,则抛物线方程为 ; 或 或 . (5)已知点),4,3(A F 是抛物线x y 82=的焦点,M 是抛物线上的动点,当 MF MA +最小时,M 点坐标是 )4,2( 例2.斜率为1的直线l 经过抛物线24y x =的焦点F ,且与抛物线相交于A B 、两点,求线段AB 的长. 解:法一 通法 法二 设直线方程为1y x =-, 1122(,)(,)A x y B x y 、, 则由抛物线定义得1212||||||||||22p p AB AF FB AC BD x x x x p =+=+=+++=++, 又1122(,)(,)A x y B x y 、是抛物线与直线的交点,由24, 1, y x y x ?=?=-?得2610x x -+=, 则126x x +=,所以||8AB =. 例3.求证:以通过抛物线焦点的弦为直径的圆必与抛物线的准线相切. 证明:(法一)设抛物线方程为22y px =,则焦点(,0)2p F ,准线2 p x =-.设以过焦点F 的弦AB 为直径的圆的圆心M ,A 、B 、M 在准线l 上的射影分别是1A 、1B 、1M , 则11||||||||||AA BB AF BF AB +=+=, 又111||||2||AA BB MM +=, ∴11 ||||2 MM AB =,即1||MM 为以AB 为直径的圆 的半径,且准线1l MM ⊥, ∴命题成立. (法二)设抛物线方程为22y px =,则焦点(,0)2 p F , 准线2 p x =-.过点F 的抛物线的弦的两个端点11(,)A x y ,22(,)B x y ,线段AB 的 中点00(,)M x y ,则1212||22 p p AB x x x x p =+++=++, ∴以通过抛物线焦点的弦为直径的圆的半径1211 ||()22 r AB x x p ==++. M 1M

抛物线的标准方程及性质

抛物线的标准方程及性质2018/11/25 题型一、抛物线的标准方程: 例题: 1、 顶点在原点,坐标轴为对称轴的抛物线过点(-2,3),则它的方程是 _______ 2、 已知抛物线的顶点在原点,焦点在y 轴上,其上的点)3,(-m P 到焦点的距离为5,则抛物线方程为 3、 以抛物线y 2=2px (p >0)的焦半径|PF |为直径的圆与y 轴的位置关系为 4、 点M 与点F (4,0)的距离比它到直线:50x +=的距离小1,则点M 的轨迹方程是 _______ 5、 抛物线x y =2上到其准线和顶点距离相等的点的坐标为 _______ 练习: 1、 抛物线的顶点在原点,对称轴是x 轴,点(-到焦点距离是6,则抛物线的方程为 _______ 2、 顶点在原点,以坐标轴为对称轴,且焦点在直线3x-4y =12上的抛物线方程是 _______ 3、 已知圆07622=--+x y x ,与抛物线)0(22>=p px y 的准线相切,则=p ________ 4、 若点A 的坐标是(3,2),F 为抛物线y 2=2x 的焦点,点M 在抛物线上移动时,使|MA |+|MF |取最小值的M 的坐标为 _______ 题型二、抛物线性质: 例题: 1、 抛物线x y 122=截直线12+=x y 所得弦长等于 2、 抛物线y 2=4x 与直线2x +y -4=0交于两点A 与B ,F 是抛物线的焦点,则|FA |+|FB |=________ 3、 如果过两点)0,(a A 和),0(a B 的直线与抛物线322 --=x x y 没有交点,那么实数a 的取值范围是 4、 已知抛物线的顶点在坐标原点,对称轴为x 轴,且与圆x 2+y 2=4相交的公共弦长等于23,则这抛物线的方程是 练习: 1、 过A (-1,1),且与抛物线22y x =+有一个公共点的直线方程为 2、 边长为1的等边三角形AOB ,O 为原点,AB ⊥x 轴,则以O 为顶点,且过A 、B 的抛物线方程是________ 3、 若直线l 过抛物线y 2=4x 的焦点,与抛物线交于A ,B 两点,且线段AB 中点的横坐标为2,则线段AB 的长 4、 过点Q (4,1)的抛物线y 2=8x 的弦AB 恰被点Q 平分,则AB 所在直线方程是 题型三、抛物线的应用 例题: 1、 已知圆2290x y x +-=与顶点原点O ,焦点在x 轴上的抛物线交于A 、B 两点,△AOB 的垂心恰为抛物线的焦点,求抛物线C 的方程。

抛物线及其标准方程

拋物线及其标准方程 设计思想 为了培养不仅能“学会”知识,而且能“会学”知识的人才以及根据我校提出的“创设情景、激发情感、主动发现、主动发展”的教学模式,在课堂设计上,教师应学会如何创设情景,激发学生学习的兴趣;围绕教材的重难点,比如本节的“拋物线的标准方程及其推导”和“拋物线概念的形成”,教师应学会如何设计不同的活动环节,设置由浅入深、环环相扣的问题,通过教师适时的引导,通过生生间、师生间的交流互动,通过学生自己的发现、分析、探究、反思,使学生真正成为学习的主人,不断完善自己的知识体系,提高获取知识的能力,尝试合作学习的快乐,体验成功的喜悦。 教学过程设计 一.设置情景,导入新课 (借助多媒体)先给出一张姚明的图片。(此时学生的兴 趣来啦!) 师:姚明是我们中国人的骄傲,我们要向他学习!大家 都知道姚明的投篮非常精准!为什么呢? 生:天赋、身高! 生:勤奋练习!(再给出两张姚明的图片) 生:与投篮时的弧线有关! 生:这弧线是抛物线! 师:对!姚明有许多优越的先天条件,同时好的技术也是一个关键的因素,今天我们就着手研究这个内容。 (进而引出本节研究的课题:抛物线及其标准方程) 【学情预设】学生被教师设置的情景所吸引,学习的热情高涨。 【设计意图】一个引人入胜的开头会拓宽学生思路,尊重学生的生命活动,激发兴趣,陶冶情操,大大提高教学效率。 二.引导探究,获得新知 师:在初中我们已经从函数角度学过抛物线,那么,这一节课我们将冲破初中的界限从曲线和方程的角度来学习抛物线。

师:前面,我们学习了椭圆和双曲线的相关知识,那么它们的联系和差异是什么? 生:定义不一样! 生:方程!椭圆是22 2 21x y a b +=,双曲线是22 221x y a b -=。 师:还有吗? 生:椭圆是封闭的,双曲线是开放的。 师:这只是图象不同,为什么会这样呢? 生:就是它们到定点的距离与到定直线的距离的比等于一个常数! 生:这个常数是离心率e ! 师:对啊!这是定性上的,定量上有不同吗? 生:离心率e 不同,椭圆离心率e 的范围是01e <<,双曲线离心率e 的范围是1e >。 师:对了,e 可看成是它们的相同点,又是不同点! (打开几何画板) 师:现在我慢慢拖动,大家认真观察图象。 生:01e <<是椭圆,1e >是双曲线。 师:但你们有没观察到1e =时的图象? 生:抛物线! 【学情预设】学生认真观察图象的变化,认知1e =的图象就是抛物线。 【设计意图】不仅回顾了椭圆与双曲线的相关内容,而且为如何画抛物线奠定坚实基础。

高中数学抛物线经典性质的总结

抛物线

焦点弦长 AB 12()x x p ++ 12()x x p -++ 12()y y p ++ 12()y y p -++ 焦点弦 AB 的几条性质 11(,) A x y 22(,) B x y 以AB 为直径的圆必与准线l 相切 若AB 的倾斜角为α,则22sin p AB α= 若AB 的倾斜角为α ,则22cos p AB α = 2 124 p x x = 212y y p =- 112AF BF AB AF BF AF BF AF BF p ++===?? 切线 方程 00()y y p x x =+ 00()y y p x x =-+ 00()x x p y y =+ 00()x x p y y =-+ 直线 ,抛物线 , ,消y 得: (1)当k=0时,直线l 与抛物线的对称轴平行,有一个交点; (2)当k ≠0时, Δ>0,直线l 与抛物线相交,两个不同交点; Δ=0, 直线l 与抛物线相切,一个切点; Δ<0,直线l 与抛物线相离,无公共点。 (3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定) (4) 2. 关于直线与抛物线的位置关系问题常用处理方法 直线l :b kx y += 抛物线 ,)0(φp ① 联立方程法: o x ()22,B x y F y ()11,A x y

???=+=px y b kx y 22 ?0)(2222=+-+b x p kb x k 设交点坐标为),(11y x A ,),(22y x B ,则有0φ?,以及2121,x x x x +,还可进一步求出 b x x k b kx b kx y y 2)(212121++=+++=+, 2212122121)())((b x x kb x x k b kx b kx y y +++=++= 在涉及弦长,中点,对称,面积等问题时,常用此法,比如 a. 相交弦AB 的弦长 2122122124)(11x x x x k x x k AB -++=-+=a k ?+=2 1 或 2122122124)(1111y y y y k y y k AB -++=-+ =a k ?+=2 1 b. 中点),(00y x M , 2210x x x += , 2 2 10y y y += ② 点差法: 设交点坐标为),(11y x A ,),(22y x B ,代入抛物线方程,得 12 12px y = 22 22px y = 将两式相减,可得 )(2))((212121x x p y y y y -=+- 2 121212y y p x x y y += -- a. 在涉及斜率问题时,2 12y y p k AB += b. 在涉及中点轨迹问题时,设线段AB 的中点为),(00y x M , 021*******y p y p y y p x x y y ==+=--, 即0 y p k AB = , 同理,对于抛物线)0(22≠=p py x ,若直线l 与抛物线相交于B A 、两点,点

人教A版高中数学必修2第三章 直线与方程3.1 直线的倾斜角与斜率习题(3)

直线的倾斜角和斜率 3.1倾斜角和斜率 1、直线的倾斜角的概念:当直线l 与x 轴相交时, 取x 轴作为基准, x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.特别地,当直线l 与x 轴平行或重合时, 规定α= 0°. 2、 倾斜角α的取值范围: 0°≤α<180°. 当直线l 与x 轴垂直时, α= 90°. 3、直线的斜率: 一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k 表示,也就是 k = tan α ⑴当直线l 与x 轴平行或重合时, α=0°, k = tan0°=0; ⑵当直线l 与x 轴垂直时, α= 90°, k 不存在. 由此可知, 一条直线l 的倾斜角α一定存在,但是斜率k 不一定存在. 4、 直线的斜率公式: 给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率: 斜率公式: k=y2-y1/x2-x1 3.1.2两条直线的平行与垂直 1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即 注意: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k 1=k 2, 那么一定有L 1∥L 2 2、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即 基础卷 一.选择题: 1.下列命题中,正确的命题是 (A )直线的倾斜角为α,则此直线的斜率为tan α (B )直线的斜率为tan α,则此直线的倾斜角为α (C )任何一条直线都有倾斜角,但不是每一条直线都存在斜率 (D )直线的斜率为0,则此直线的倾斜角为0或π 2.直线l 1的倾斜角为30°,直线l 2⊥l 1,则直线l 2的斜率为 (A )3 (B )-3 (C )33 (D )-3 3 3.直线y =x cos α+1 (α∈R )的倾斜角的取值范围是 (A )[0, 2π] (B )[0, π) (C )[-4π, 6π] (D )[0, 4π]∪[4 3π,π) 4.若直线l 经过原点和点(-3, -3),则直线l 的倾斜角为 (A )4π (B )54π (C )4π或54 π (D )-4π 5.已知直线l 的倾斜角为α,若cos α=-5 4,则直线l 的斜率为

抛物线及其标准方程-课时作业

学习资料[文档副标题] [日期] 世纪金榜 [公司地址]

抛物线及其标准方程 (45分钟 100分) 一、选择题(每小题6分,共30分) 1.(2013·大理高二检测)已知抛物线的焦点坐标是F(0,-2),则它的标准方程为 ( ) A.y2=8x B.y2=-8x C.x2=8y D.x2=-8y 2.如果抛物线y2=ax的准线是直线x=1,那么它的焦点坐标为( ) A.(1,0) B.(2,0) C.(3,0) D.(-1,0) 3.(2013·遵义高二检测)以坐标轴为对称轴,以原点为顶点且过圆x2+y2-2x+ 6y+9=0的圆心的抛物线的方程是( ) A.y=3x2或y=-3x2 B.y=3x2 C.y2=-9x或y=3x2 D.y=-3x2或y2=9x 4.抛物线y2=12x上与焦点的距离等于8的点的横坐标是( ) A.5 B.4 C.3 D.2 5.(2013·汝阳高二检测)一个动圆的圆心在抛物线y2=8x上,且动圆恒与直线x+2=0相切,则动圆必过定点( ) A.(0,2) B.(0,-2) C.(2,0) D.(4,0) 二、填空题(每小题8分,共24分) 6.(2013·安阳高二检测)抛物线y=4x2上的一点M到焦点的距离为1,则点M的纵坐标是.

7.已知抛物线y2=2px的准线与圆(x-3)2+y2=16相切,则p的值为. 8.(2012·陕西高考)如图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽米. 三、解答题(9题,10题14分,11题18分) 9.(2013·宜春高二检测)已知抛物线的顶点在原点,它的准线过-=1的左焦点,而且与x轴垂直,又抛物线与此双曲线交于点(,),求抛物线和双曲线的方程. 10.平面上动点P到定点F(1,0)的距离比到y轴的距离大1,求动点P的轨迹方程. 11.(能力挑战题)已知抛物线的方程为x2=8y,F是焦点,点A(-2,4),在此抛物线上求一点P,使|PF|+|PA|的值最小. 答案解析 1.【解析】选D.由条件可知,抛物线的焦点在y轴负半轴上,且=2,∴p=4,所以它的标准方程为x2=-8y. 【举一反三】把题中条件改为“准线方程为x=-7”,它的标准方程如何?

高中数学抛物线的常见结论

抛物线的常见结论 一、知识点总结 1. 抛物线的弦长公式 2122122124)(11x x x x k x x k l -+?+=-+=, 其中k 是弦所在直线的斜率,21,x x 是交点的横坐标,本表达式不包含斜率不存在的情况。 2122122124)(11y y y y m y y m l -+?+=-+=,其中弦长所在直线 方程为b my x +=,21,y y 是交点的纵坐标,本表达式包含斜率不存在的情况。 2. 抛物线的焦点弦 对于抛物线,022 >=p px y ,,倾斜角为α的直线过抛物线的焦点,与抛物线交于A ,B 两点,过A,B 做抛物线准线的垂线,垂足分别为C,D ,那么有: ①2212 21,4 p y y p x x -== A B F C D O α

由?????+==222p my x px y 得0222=--p pmy y (*) ,因此?? ???==-=44)(2222121221p p y y x x p y y ②焦点弦长 p x x AB ++=21,焦点弦长α 2 sin 2P AB = α αsin 4)(sin 212212 1y y y y y y AB -+= -=,结合(*)式与αtan 1 =m 得: α ααααααααα sin sin sin sin cos 2sin 1tan 12sin 4tan 4sin 442 22222 222 22+= +=+= += p p p p p m p AB α αα22sin 2sin sin 1 2p p == ③ P BF AF 211=+ 简单证明如下:p p p y y p y y P BF AF BF AF BF AF 222sin sin sin 211221212====+=+ααα ④焦点三角形面积α sin 22 P S = 简单证明如下:以 AB 为底,以O 到AB 的距离为高,该三角形面积课表示为: α αααsin 2sin 2sin 221sin 2122p p p OF AB S AOB =??== ⑤焦点弦相关的几何关系: a. 以AF/BF 为直径的圆与y 轴相切 b. 以AB 为直径的圆与准线相切,切点与焦点连线垂直于AB. c. 以CD 为直径的圆与AB 相切 d. A,B 在准线上的投影对F 的张角为90°,?=∠90CFD

相关文档
最新文档