利用对角线法则计算下列三阶行列式

利用对角线法则计算下列三阶行列式
利用对角线法则计算下列三阶行列式

第一章 行列式

1. 利用对角线法则计算下列三阶行列式:

(1)3

81141102---;

3

81141102--- =2?(-4)?3+0?(-1)?(-1)+1?1?8 -0?1?3-2?(-1)?8-1?(-4)?(-1) =-24+8+16-4=-4.

(2)b

a c a

c b c b a ; 解

b

a c a c

b

c b a

=acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3.

(3)2

22111c b a c

b a ; 解

2

22111c b a c b a

=bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ).

(4)

y

x y x x y x y y x y x +++.

y

x y x x y x y y

x y x +++

=x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2 y -x 3-y 3-x 3 =-2(x 3+y 3).

2. 按自然数从小到大为标准次序, 求下列各排列的逆序数:

(1)1 2 3 4; 解 逆序数为0 (2)4 1 3 2;

解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1;

解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3;

解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ? ? ? (2n -1) 2 4 ? ? ? (2n ); 解 逆序数为2

)

1(-n n :

3 2 (1个) 5 2, 5 4(2个) 7 2, 7 4, 7 6(3个) ? ? ? ? ? ?

(2n -1)2, (2n -1)4, (2n -1)6, ? ? ?, (2n -1)(2n -2) (n -1个)

(6)1 3 ? ? ? (2n -1) (2n ) (2n -2) ? ? ? 2. 解 逆序数为n (n -1) : 3 2(1个) 5 2, 5 4 (2个) ? ? ? ? ? ?

(2n -1)2, (2n -1)4, (2n -1)6, ? ? ?, (2n -1)(2n -2) (n -1个) 4 2(1个) 6 2, 6 4(2个) ? ? ? ? ? ?

(2n )2, (2n )4, (2n )6, ? ? ?, (2n )(2n -2) (n -1个) 3. 写出四阶行列式中含有因子a 11a 23的项. 解 含因子a 11a 23的项的一般形式为

(-1)t a 11a 23a 3r a 4s ,

其中rs 是2和4构成的排列, 这种排列共有两个, 即24和42. 所以含因子a 11a 23的项分别是

(-1)t a 11a 23a 32a 44=(-1)1a 11a 23a 32a 44=-a 11a 23a 32a 44, (-1)t a 11a 23a 34a 42=(-1)2a 11a 23a 34a 42=a 11a 23a 34a 42. 4. 计算下列各行列式:

(1)7

110

0251020214214;

711002510202142140

1001423

102

02110

21

473

234-----======

c c c c 34)1(14

31022110

14+-?---=

143102211014--=014171720010

99323

211=-++======c c c c .

(2)2605

232112131412-;

2

6

05

232112131412-26050321221304122

4--=====c

c 0

4120321221304122

4--=====r

r

00

0003212

21

3041

214=--=

====r r .

(3)ef

cf bf de

cd bd ae ac ab ---;

解 ef cf bf de cd bd ae

ac ab ---e c b e

c b e c b a

d f ---=

abcdef

adfbce 41111111

11=---=.

(4)d

c b a 1

110011001---.

d c b a 100110011001---d

c b a ab ar

r 1001100110

102

1

---++=====

d c a ab 101101)1)(1(1

2--+--=+01011123-+-++=====cd c ad a ab dc c

cd

ad

ab +-+--=+111)1)(1(23=abcd +ab +cd +ad +1.

5. 证明:

(1)1

11222

2b

b a a b ab a +=(a -b )3;

证明

11

1

2222b b a a b ab a +001

22222221213a

b a b a a b a ab a

c c c c ------=====

a

b a b a b a ab 22)1(2

22

1

3-----=+21))((a

b a a b a b +--==(a -b )3 .

(2)y

x z x

z y z

y x b a bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax )(33+=+++++++++;

证明

bz

ay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++

bz

ay by ax x by

ax bx az z bx az bz ay y b bz ay by ax z by ax bx az y bx az bz ay x a +++++++++++++=

bz ay y x by

ax x z bx az z y b y by ax z x bx az y z bz ay x a +++++++=22

z y x y

x z x z y b y x z x z y z y x a 33+=

y x z x

z y z y x b y x z x z y z y x a 33+=

y

x z x

z y z y x b a )(33+=.

(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2

2222222

2

2222222=++++++++++++d d d d c c c c b b b b a a a a ; 证明

2222

222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a (c 4-c 3, c 3-c 2, c 2-c 1得)

5

232125232125232125232122222++++++++++++=d d d d c c c c b b b b a a a a (c 4-c 3, c 3-c 2得)

2

2

1

22212221222122

222=++++=d d c c b b a a .

(4)4

4442222

1111d c b a d c b a d c b a

=(a -b )(a -c )(a -d )(b -c )(b -d )(c -d )(a +b +c +d ); 证明

4

4

4

4

22221111d c b a d c b a d c b a

)

()()(0)()()(001111222222222a d d a c c a b b a d d a c c a b b a d a c a b ---------=

)

()()(1

11))()((2

22a d d a c c a b b d

c b a

d a c a b +++---=

)

)(())((001

11))()((a b d b d d a b c b c c b

d b c a d a c a b ++-++------=

)

()(1

1))()()()((a b d d a b c c b d b c a d a c a b ++++-----= =(a -b )(a -c )(a -d )(b -c )(b -d )(c -d )(a +b +c +d ). (5)1

22

1 1 000 00 1000 01a x a a a a x x x n n n +?

??-??????????

???????????-???--- =x n +a 1x n -1

+ ? ? ? +a n -1x +a n .

证明 用数学归纳法证明.

当n =2时, 21212

21

a x a x a x a

x D ++=+-=, 命题成立.

假设对于(n -1)阶行列式命题成立, 即 D n -1=x n -1+a 1 x n -2+ ? ? ? +a n -2x +a n -1, 则D n 按第一列展开, 有

1

1

1 00 1

0 0

1)1(11-?????????????????????-???--+=+-x x a xD D n n n n

=xD n -1+a n =x n +a 1x n -1+ ? ? ? +a n -1x +a n . 因此, 对于n 阶行列式命题成立.

6. 设n 阶行列式D =det(a ij ), 把D 上下翻转、或逆时针旋转90?、或依副对角线翻转, 依次得

n

nn

n a a a a D 11111 ????

???????????=, 1

1112 n nn

n a a a a D ????

???????????= , 11

113 a a a a D n n

nn ????

???????????=,

证明D

D D n n 2

)

1(21)

1(--==, D 3=D .

证明 因为D =det(a ij ), 所以

n

nn n n n n

nn

n a a a a

a a a a a a D 221

1

111

111111 )1( ?

?????????????????-=???????????????=-

???=?

????????????????????--=-- )1()1(331

1

221

11121n

nn n n

n n n a a a a a a a a D

D n n n n 2

)1()

1()2( 21)1()1(--+-+???++-=-=.

同理可证

nn

n n n n a a a a D ???????????????-=- )1(11112

)1(2D D n n T

n n 2)

1(2)1()1()1(---=-=.

D D D D D n n n n n n n n =-=--=-=----)1(2

)

1(2

)

1(22

)1(3)1()

1()

1()1(.

7. 计算下列各行列式(D k 为k 阶行列式):

(1)a

a

D n 1

1

?

??=

, 其中对角线上元素都是a , 未写出的元素

都是0; 解

a

a a a a D n 0 0

010 000 0

0 0000 0010 00?????????????????????????????????=

(按第

n 行展开)

)

1()1(1

0 000 0

0 00

0 001

0 000)1(-?-+??????????????????????????????-=n n n a

a a )1()1(2 )1(-?-????-+n n n a a a n n n n

n a a a

+?

??-?-=--+)

2)(2(1 )1()1(=a

n

-a n -2=a n -2(a 2-1).

(2)x

a a a x a

a a x

D n ?????????????????????= ;

解 将第一行乘(-1)分别加到其余各行, 得

a

x x a a

x x a a x x a a

a a x D n --??????????????????--???--???=00

0 0 00 0 ,

再将各列都加到第一列上, 得

a

x a

x a x a

a

a a n x D n -??????????????????-???-???-+=00

00 0 000 0

0 )1(=[x +(n -1)a ](x -a )n -1.

(3)1

11 1 )( )1()( )1(11

11???-?????????-?

?????-???--???-=---+n a a a n a a a n a a a D n n n n

n n n ;

解 根据第6题结果, 有

n

n

n n n n n n n n a a a n a a a n a a a

D )( )1()( )1( 11

1

1)1(1112)1(1-???--?

????????-????

??-???-???-=---++

此行列式为范德蒙德行列式.

∏≥>≥++++--+--=1

12

)

1(1)]1()1[()1(j i n n n n j a i a D

∏≥>≥++-

--=1

12

)1()]([)1(j i n n n j i

∏≥>≥++???+-++-?

-?-=1

12

1

)1(2

)1()()1()

1(j i n n n n n j i

∏≥>≥+-=1

1)(j i n j i .

(4)n

n

n

n

n d c d c b a b a D ?

???????????=

1

1112;

n n

n

n

n d c d c b a b a D ?

???????????=

1

1112(按第1行展开)

n

n n n n n

d d c d c b a b a a 000

11

1

11111

----?

?????

??????=

0)

1(111

1111

1

1

2c d c d c b a b a b n

n n n n n

n ----+?

???????????-+.

再按最后一行展开得递推公式

D 2n =a n d n D 2n -2-b n c n D 2n -2, 即D 2n =(a n d n -b n c n )D 2n -2.

于是 ∏=-=n

i i i i i n D c b d a D 2

22)(.

而 11111

11

12c b d a d c b a D -==

, 所以 ∏=-=n

i i i i i n c b d a D 1

2)(.

(5) D =det(a ij ), 其中a ij =|i -j |; 解 a ij =|i -j |,

4

321 4 01233 10122 2

1011 3210)det(?

??----??????????????????-???-???-???-???==n n n n n n n n a D ij n

0 4321 1 1

1111 11

111 111

11 1

111 2132???----???????

??????????????----???---???--???--???-=====n n n n r r r r

1

5

242321 0 22210 0221

0 0021

0 0

001 1213-???----???????

??????????????----???---???--???-+???+=====n n n n n c c c c =(-1)n -1(n -1)2n -2. (6)n

n a a a D +??????????????????+???+=1 1

1 1 111

1

12

1, 其中a 1a 2 ? ? ? a n ≠0.

n

n a a a D +??????????????????+???+=

1 1

1 1 111

112

1

n

n n n a a a a a a a a a c c c c +-???-???????????????????

????????-???-???-???-=

====--10 0

001 000 100 0100 0100 0

1133

2

212

132

1

1

11

31

2

1

121110 00011 000 00 110

00 011

00 001

------+-???-????

???????????????????????-???-??????=n n

n a a a a a a a a

∑=------+????

?????????????????????

??????????????=n i i n

n a a a a a a a a 1

1

11

131********

00

1

00

00 100

00 01000 001

)11)((1

21∑=+=n

i i

n a a a a .

8. 用克莱姆法则解下列方程组:

(1)?????=+++-=----=+-+=+++01123253224254

321432143214321x x x x x x x x x x x x x x x x ;

解 因为

14211

21351324

1211111-=----=

D ,

14211

21051324122

1

1151-=------=D , 28411

2

03512241

211

1512-=-----=D ,

42611013

52324221

1

5113-=----=D ,

14202

1

321322121

5

1114=-----=D ,

所以 111==D

D x , 222==D

D x , 3

33==D D x , 144-==

D D x .

(2)??

?

???

?=+=++=++=++=+1506506506516554543432321

2

1x x x x x x x x x x x x x .

解 因为

6655

1000

6510006510

065100065

==D ,

15075

10016510006510

0650000611==D ,

11455

10106510006500

0601000152-==D ,

703511006500006010

0051001653==D ,

3955

10006010000510

0651010654-==D ,

2121

1

0510006510

0651100655==D ,

所以

665

15071=

x , 665

11452-=x , 665

7033=x , 665

3954-=x , 665

2124=x .

9. 问λ, μ取何值时, 齐次线性方程组?????=++=++=++0

200321321321

x x x x x x x x x μμλ有非

零解?

解 系数行列式为

μλ

μμμλ

-==1

21111

1D .

令D =0, 得 μ=0或λ=1.

于是, 当μ=0或λ=1时该齐次线性方程组有非零解.

10. 问λ取何值时, 齐次线性方程组???

??=-++=+-+=+--0

)1(0

)3(2042)1(321321321x x x x x x x x x λλλ有非零解?

解 系数行列式为

λ

λλλλλλ--+--=----=1011

12431111132421D

=(1-λ)3+(λ-3)-4(1-λ)-2(1-λ)(-3-λ) =(1-λ)3+2(1-λ)2+λ-3. 令D =0, 得

λ=0, λ=2或λ=3.

于是, 当λ=0, λ=2或λ=3时, 该齐次线性方程组有非零解.

几种特殊行列式的巧算

几种特殊行列式的巧算 摘要:在高等代数课程中,n阶行列式的计算问题非常重要,它是行列式理论 的重要组成部分。计算n阶行列式的一般方法有:按行(列)展开,化三角行列式法,降阶法等。对于这些解法,高等代数课本已做了详细介绍,本文重点探索关于三对角,爪型等具有一定特征的行列式的计算,跟几种具有特殊解法的行列式(如范德蒙行列式)计算,突出一个“巧”字,从而提高解题速度。 关键词:“三对角”行列式分离线性因子法“爪型”行列式范德蒙行列式等. 引言: n阶行列式

11121212221 2 n n n n nn a a a a a a a a a 是所有取自不同行、不同列的n 个元素的乘积1212n j j nj a a a 的代数和,其中12 n j j j 是一 个n 阶排列,每个项1212n j j nj a a a 前面带有正负号.当12n j j j 是偶排列时, 项1212n j j nj a a a 前面带有正号,当12 n j j j 是奇排列时,项12 12n j j nj a a a 前面带有负号.即 11 121212221 2 n n n n nn a a a a a a a a a = 121212 () 12() (1) .n n n j j j j j nj j j j a a a τ-∑ 这里 12 () n j j j ∑ 表示对所有的n 阶排行求和. 行列式的计算是高等代数的一个重要内容,同时也是在工程应用中具有很高价值的数学工具,本文针对行列式的几种特殊类型,给出了每一种类型特殊的计算方法,具体如下: 一 三对角行列式的计算 形如 b a b a b a b a b a b a b a b a D n +++++= 0000000000000的行列式称为“三对角”行列式.该 类行列式的计算方法有:猜想法, 递推法, 差分法.下面我们首先用猜想法来解一下这个行 列式. 当b a ≠时 b a b a b a b a b a b a b a b D b a D n n ++++-+=- 000000000000)(1 =21 )(---+n n abD D b a . 即有递推关系式21)(---+=n n n abD D b a D ,为了得到n D 的表达式,可先设b a ≠,采用

关于行列式的计算方法8页word文档

行列式的计算方法综述 目录 1.定义法(线性代数释疑解难参考) 2.化三角形法(线性代数释疑解难参考) 3.逐行(列)相减法(线性代数释疑解难参考) 4.升降法(加边法)(线性代数释疑解难参考) 5.利用范德蒙德行列式(线性代数释疑解难参考) 6.递推法(线性代数释疑解难参考) 7.数学归纳法(线性代数释疑解难参考) 8.拆项法(课外辅导书上参考) 9.换元方法(课外辅导书上参考) 10.拆因法(课外辅导书上参考) 线性代数主要内容就是求解多元线性方程组,行列式的计算其中起重要作用。下面由我介绍几种常见的计算行列式的方法: 1.定义法 由定义看出,n级行列式有!n个项。n较大时,!n是一个很大的数字。直接用定义来计算行列式是几乎不可能的事。但在n级行列式中的等于零的项的个数较多时,它展开式中的不等于零的项就会少一些,这时利用行列式的定义来计算行列式较方便。 例1.算上三角行列式 解:展开式的一般项为 同样,可以计算下三角行列式的值。 2.化三角形法 画三角形法是先利用行列式的性质将原行列式作某种保值变形,化为上

第 1 页 (下)三角形行列式,再利用上(下)三角形行列式的特点(主对角线上元素的乘积)求出值。 例2.计算 解:各行加到第一行中 把第二列到第n 列都分别加上第一列的()1-倍,有 3.逐行(列)相减法 有这样一类行列式,每相邻两行(列)之间有许多元素相同,且这些相同元素都集中在某个角上。因此可以逐行(列)相减的方法化出许多零元素来。 例3.计算n 级行列式 解:从第二行起,每一行的()1-倍都加上上一行,有 上式还不是特殊三角形,但每相邻两行之间有许多相同元素()10或,且最后一行有()1n -元素都是x 。因此可再用两列逐列相减的方法:第()1n -列起,每一列的()1-倍加到后一列上 4.升降法(加边法) 升降法是在原行列式中再添加一列一行,是原来的n 阶成为()1n +阶,且往往让()1n +阶行列式的值与原n 阶行列式的值相等。一般说,阶数高的比阶数低的计算更复杂些。但是如果合理的选择所添加的行,列元素,是新的行列式更便于“消零”的话,则升降后有利于计算行列式的值。 例4.计算n 级行列式

线性代数课后习题答案

线性代数课后题详解 第一章 行列式 1.利用对角线法则计算下列三阶行列式: 相信自己加油 (1)3 81141 1 02---; (2)b a c a c b c b a (3)222111c b a c b a ; (4)y x y x x y x y y x y x + ++. 解 注意看过程解答(1) =---3 811411 2 811)1()1(03)4(2??+-?-?+?-? )1()4(18)1(2310-?-?-?-?-??- =416824-++- =4- (2)=b a c a c b c b a ccc aaa bbb cba bac acb ---++ 3333c b a abc ---= (3) =2 2 2 1 11c b a c b a 222222cb ba ac ab ca bc ---++ ))()((a c c b b a ---= (4) y x y x x y x y y x y x +++ yx y x y x yx y y x x )()()(+++++=333)(x y x y -+-- 33322333)(3x y x x y y x y y x xy ------+= )(233y x +-= 2.按自然数从小到大为标准次序,求下列各排列的逆序数:耐心成就大业 (1)1 2 3 4; (2)4 1 3 2; (3)3 4 2 1; (4)2 4 1 3; (5)1 3 …)12(-n 2 4 …)2(n ; (6)1 3 …)12(-n )2(n )22(-n … 2. 解(1)逆序数为0 (2)逆序数为4:4 1,4 3,4 2,3 2 (3)逆序数为5:3 2,3 1,4 2,4 1,2 1 (4)逆序数为3:2 1,4 1,4 3

n阶行列式的计算方法

n 阶行列式的计算方法 徐亮 (西北师大学数信学院数学系 , 730070 ) 摘 要:本文归纳总结了n 阶行列式的几种常用的行之有效的计算方法,并举列说明了它们的应运. 关键词:行列式,三角行列式,递推法,升降阶法,得蒙行列式 The Calculating Method of the N-order Determinant Xu Liang (College o f M athematics and Information Scien ce ,North west Normal Uni versit y , Lanzhou 730070,Gansu ,Chin a ) Abstract:This paper introduces some common and effective calculating methods of the n-order determinant by means of examples. Key words: determinant; triangulaire determinant; up and down order; vandermonde determinant 行列式是讨论线形方程组理论的一个有力工具,在数学的许多分支中都有这极为广泛的应用,是一种不可缺少的运算工具,它是研究线性方程组,矩阵,特征多项式等问题的基础,熟练掌握行列式的计算是非常必要的.行列式的计算问题多种多样,灵活多变,需要有较强的技巧.现介绍总结的计算n 阶行列式的几种常用方法. 1. 定义法 应用n 阶行列式的定义计算其值的方法,称为定义法. 根据定义,我们知道n 阶行列式 12121211 12121222() 1212(1)n n n n n j j j j j nj j j j n n nn a a a a a a a a a a a a π= -∑ L L L L L M M L M L .

数学_简单三对角矩阵矩阵行列式的基本探究

简单三对角矩阵矩阵行列式的基本探究 张云鹏 (2014070904021) 指导教师:李厚彪 【摘要】三对角矩阵的行列式的计算在行列式的计算中占据特殊地位,由于三对角矩阵具有明显的规律性但其行列式运算又有一定的难度经常成为出题的热点,本篇小论文给简单三角矩阵行列式运算做出基本解法,并通过三对角矩阵得到一组Cos (nx )与Sin(nx)的简明展开公式。 【关键词】三对角矩阵; 矩阵; 数列递推; 三角函数; 斐波那契数列 1. 引言 在进行行列式计算之前我们先探究一下斐波那契数列通项公式的计算方法。 例1、现已知斐波那契数列满足如下关系:()01111,1,,1n n n F F F F F n +-===+≥,试求其通项公式。 解: 易知对于1、2项为任意值但满足() 11,1n n n F F F n +-=+≥的数列的加法与数乘满足线性 空间八条条件。 则存在满足() 11,1n n n F F F n +-=+≥的两个数列 {}n a 、{}n b 。 他们的任意;(k 0)n n a kb =≠不恒成立。 则任意{}n c 中的任意一项12n n n c k a k b =+使恒成立。 鉴于 () 11,1n n n F F F n +-=+≥的递推形式,我们不妨设数列 {}n a 、{}n b 为两组几何级数,其 公比分别为1q 、2q ;且()1n n a q =、()2n n b q = 根据 () 11,1n n n F F F n +-=+≥可列方程n n-1n-2q =q +q ,化简可知2 q -q-1=0。 又因为011,1F F ==,可求得1255k ,k 55 = =-。 经计算可知15 q=2±,则n n n n 1+51-5a =b =22???? ? ? ? ?????,。 又因为011,1F F ==,可求得1255k ,k 55 = =-。 则斐波那契数列的表示为11515225n n n F ??????+-??=- ? ? ? ????????? 我们简化上述求法为特征方程法。并可以广泛运用在三对角矩阵矩阵行列式的计算中。 2. 简单三对角矩阵行列式的特征方程

#行列式的计算方法 (1)

计算n 阶行列式的若干方法举例 1.利用行列式的性质计算 例: 一个n 阶行列式n ij D a =的元素满足,,1,2,,,ij ji a a i j n =-= 则称D n 为反对称 行列式, 证明:奇数阶反对称行列式为零. 证明:由ij ji a a =-知ii ii a a =-,即0,1,2, ,ii a i n == 故行列式D n 可表示为1213112 23213 233123000 n n n n n n n a a a a a a D a a a a a a -=-----,由行列式的性质A A '=,1213112 23213 23312300 00 n n n n n n n a a a a a a D a a a a a a -----=-12131122321323312300( 1)0 n n n n n n n a a a a a a a a a a a a -=------(1)n n D =- 当n 为奇数时,得D n =-D n ,因而得D n = 0. 2.化为三角形行列式 例2 计算n 阶行列式123123 1 23 1 2 3 1111n n n n a a a a a a a a D a a a a a a a a ++=++. 解 这个行列式每一列的元素,除了主对角线上的外,都是相同的,且各列的结构相似,因此n 列之和全同.将第2,3,…,n 列都加到第一列上,就可以提出公因子且使第一列的元素全是1. [][]()()()()()()122323122 3231223231122 3 2 3 211 12, ,2,,11 111 1 1111 1111 11 1n n n n n n n n n i n i n n n n i i i i i n i n a a a a a a a a a a a a a a a a a a D a a a a a a a a a a a a a a a a a a a a a a ==+-==+++ +++++++??+++++=++ ??? +++ +++?? + ??? ∑∑3110100 111 . 00100 1 n n n i i i i a a a ==?? =+=+ ??? ∑∑

线性代数习题参考答案

第一章 行列式 §1 行列式的概念 1. 填空 (1) 排列6427531的逆序数为 ,该排列为 排列。 (2) i = ,j = 时, 排列1274i 56j 9为偶排列。 (3) n 阶行列式由 项的代数和组成,其中每一项为行列式中位于不同行不同列的 n 个元素的乘积,若将每一项的各元素所在行标按自然顺序排列,那么列标构 成一个n 元排列。若该排列为奇排列,则该项的符号为 号;若为偶排列,该项的符号为 号。 (4) 在6阶行列式中, 含152332445166a a a a a a 的项的符号为 ,含 324314516625a a a a a a 的项的符号为 。 2. 用行列式的定义计算下列行列式的值 (1) 11 222332 33 000 a a a a a 解: 该行列式的3!项展开式中,有 项不为零,它们分别为 ,所以行列式的值为 。 (2) 12,121,21,11,12 ,100000 0n n n n n n n n n n n n nn a a a a a a a a a a ------L L M M M M L L 解:该行列式展开式中唯一不可能为0的项是 ,而它的逆序数是 ,故行列式值为 。 3. 证明:在全部n 元排列中,奇排列数与偶排列数相等。 证明:n 元排列共有!n 个,设其中奇排列数有1n 个,偶排列数为2n 个。对于任意奇排 列,交换其任意两个元的位置,就变成偶排列,故一个奇排列与许多偶排列对应,所以有1n 2n ,同理得2n 1n ,所以1n 2n 。

4. 若一个n 阶行列式中等于0的元素个数比n n -2 多,则此行列式为0,为什么? 5. n 阶行列式中,若负项的个数为偶数,则n 至少为多少? (提示:利用3题的结果) 6. 利用对角线法则计算下列三阶行列式 (1)2 011 411 8 3 --- (2)2 2 2 1 11a b c a b c

(完整版)行列式的计算方法(课堂讲解版)

计算n 阶行列式的若干方法举例 n 阶行列式的计算方法很多,除非零元素较少时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。下面介绍几种常用的方法,并举例说明。 1.利用行列式定义直接计算 例 计算行列式 0 0100200 1000000n D n n =-L L M M M M L L 解 D n 中不为零的项用一般形式表示为 112211!n n n nn a a a a n ---=L . 该项列标排列的逆序数t (n -1 n -2…1n )等于(1)(2) 2 n n --, 故(1)(2) 2 (1) !.n n n D n --=- 2.利用行列式的性质计算 例: 一个n 阶行列式n ij D a =的元素满足,,1,2,,,ij ji a a i j n =-=L 则称D n 为反对称 行列式, 证明:奇数阶反对称行列式为零. 证明:由ij ji a a =-知ii ii a a =-,即0,1,2,,ii a i n ==L 故行列式D n 可表示为1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -=-----L L L L L L L L L ,由行列式的性质A A '=,1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -----=-L L L L L L L L L 12131122321323312300(1)00 n n n n n n n a a a a a a a a a a a a -=------L L L L L L L L L (1)n n D =- 当n 为奇数时,得D n =-D n ,因而得D n = 0.

行列式的计算技巧与方法总结

行列式的几种常见计算技巧和方法 2.1 定义法 适用于任何类型行列式的计算,但当阶数较多、数字较大时,计算量大,有一定的局限性. 例1 计算行列式 00400300200 1000. 解析:这是一个四级行列式,在展开式中应该有244=! 项,但由于出现很多的零,所以不等于零的项数就大大减少.具体的说,展开式中的项的一般形式是43214321j j j j a a a a .显然,如果41≠j ,那么011=j a ,从而这个项就等于零.因此只须考虑41=j 的项,同理只须考虑 1,2,3432===j j j 的这些项,这就是说,行列式中不为零的项只有 41322314a a a a ,而()64321 =τ,所以此项取正号.故 0 04003002001000 =()()241413223144321=-a a a a τ. 2.2 利用行列式的性质 即把已知行列式通过行列式的性质化为上三角形或下三角形.该方法适用于低阶行列式. 2.2.1 化三角形法 上、下三角形行列式的形式及其值分别如下:

nn n n n a a a a a a a a a a a a a 2211nn 333223221131211000000=,nn nn n n n a a a a a a a a a a a a a 221132 1 33323122211100 00 00=. 例2 计算行列式n n n n b a a a a a b a a a a ++= + 21 211211n 1 11 D . 解析:观察行列式的特点,主对角线下方的元素与第一行元素对应相同,故用第一行的()1-倍加到下面各行便可使主对角线下方的元素全部变为零.即:化为上三角形. 解:将该行列式第一行的()1-倍分别加到第2,3…(1n +)行上去,可得 1 21n 11210000D 0 n n n a a a b b b b b += = . 2.2.2 连加法 这类行列式的特征是行列式某行(或列)加上其余各行(或列)后,使该行(或列)元素均相等或出现较多零,从而简化行列式的计算.这类计算行列式的方法称为连加法.

利用对角线法则计算下列三阶行列式

第一章 行列式 1. 利用对角线法则计算下列三阶行列式: (1)3 81141102---; 解 3 81141102--- =2?(-4)?3+0?(-1)?(-1)+1?1?8 -0?1?3-2?(-1)?8-1?(-4)?(-1) =-24+8+16-4=-4. (2)b a c a c b c b a ; 解 b a c a c b c b a =acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3. (3)2 22111c b a c b a ; 解 2 22111c b a c b a =bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ).

(4) y x y x x y x y y x y x +++. 解 y x y x x y x y y x y x +++ =x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2 y -x 3-y 3-x 3 =-2(x 3+y 3). 2. 按自然数从小到大为标准次序, 求下列各排列的逆序数: (1)1 2 3 4; 解 逆序数为0 (2)4 1 3 2; 解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1; 解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3; 解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ? ? ? (2n -1) 2 4 ? ? ? (2n ); 解 逆序数为2 ) 1(-n n : 3 2 (1个) 5 2, 5 4(2个) 7 2, 7 4, 7 6(3个) ? ? ? ? ? ?

【对应线代】行列式计算7种技巧7种手段

行列式计算7种技巧7种手段 【说明】行列式是线性代数的一个重要研究对象,是线性代数中的一个最基本,最常用的工具,记为det(A).本质上,行列式描述的是在n 维空间中,一个线性变换所形成的平行多面体的体积,它被广泛应用于解线性方程组,矩阵运算,计算微积分等.鉴于行列式在数学各领域的重要性,其计算的重要性也不言而喻,因此,本人结合自己的学习心得,将几种常见的行列式计算技巧和手段归纳于此,供已具有行列式学习基础的读者阅读 一7种技巧: 【技巧】所谓行列式计算的技巧,即在计算行列式时,对已给出的原始行列式进行化简,使之转化成能够直接计算的行列式,由此可知,运用技巧只能化简行列式,而不能直接计算出行列式 技巧1:行列式与它的转置行列式的值相等,即D=D T 111211121121222122221 2 12n n n n n n nn n n nn a a a a a a a a a a a a a a a a a a = 技巧2:互换行列式的任意两行(列),行列式的值将改变正负号 111212122221222111211 2 1 2 n n n n n n nn n n nn a a a a a a a a a a a a a a a a a a =- 技巧3:行列式中某一行(列)的所有元素的公因子可以提到行列式记号的外面 1111121111121221 222 22212221 1 2 1 2 n n n n n n i n n n n n nn n n nn b a b a b a a a a b a b a b a a a a b b a b a b a a a a ==∏ 技巧4:行列式具有分行(列)相加性 11121111211112111 22 1 2121 2 1 2 1 2 n n n t t t t tn tn t t tn t t tn n n nn n n nn n n nn a a a a a a a a a b c b c b c b b b c c c a a a a a a a a a +++=+ 技巧5:将行列式的某一行(列)的各元素乘以同一数k 后加到另一行(列)对应的元素上,行列式的值不变

行列式的计算方法课堂讲解版

计算n 阶行列式的若干方法举例 n 阶行列式的计算方法很多,除非零元素较少时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。下面介绍几种常用的方法,并举例说明。 1.利用行列式定义直接计算 例 计算行列式 00100 200 1 0000 00n D n n = - 解 D n 中不为零的项用一般形式表示为 112211!n n n nn a a a a n ---=. 该项列标排列的逆序数t (n -1 n -2…1n )等于(1)(2) 2 n n --, 故(1)(2) 2 (1) !.n n n D n --=- 2.利用行列式的性质计算 例: 一个n 阶行列式n ij D a =的元素满足,,1,2, ,,ij ji a a i j n =-= 则称D n 为反对称 行列式, 证明:奇数阶反对称行列式为零. 证明:由ij ji a a =-知ii ii a a =-,即0,1,2, ,ii a i n == 故行列式D n 可表示为1213112 23213 233123000 n n n n n n n a a a a a a D a a a a a a -=-----,由行列式的性质A A '=,1213112 23213 233123000 n n n n n n n a a a a a a D a a a a a a -----=-12131122321323312300(1)0 n n n n n n n a a a a a a a a a a a a -=------(1)n n D =- 当n 为奇数时,得D n =-D n ,因而得D n = 0. 3.化为三角形行列式

工程数学线性代数(同济大学第六版)课后习题答案(全)

第一章 行列式 1 利用对角线法则计算下列三阶行列式 (1)3811411 02--- 解 3 811411 02--- 2(4)30(1)(1)118 0132(1)81(4)(1) 2481644

(2)b a c a c b c b a 解 b a c a c b c b a acbbaccbabbbaaaccc 3abca 3b 3?c 3 (3)2221 11c b a c b a 解 2 221 11c b a c b a bc 2ca 2ab 2?ac 2ba 2cb 2 (ab )(bc )(ca ) (4)y x y x x y x y y x y x +++ 解 y x y x x y x y y x y x +++ x (xy )yyx (xy )(xy )yxy 3(xy )3x 3 3xy (xy )y 33x 2 yx 3y 3x 3 2(x 3y 3) 2 按自然数从小到大为标准次序 求下列各排列的逆序数 (1)1 2 3 4

解逆序数为0 (2)4 1 3 2 解逆序数为4 41 43 42 32 (3)3 4 2 1 解逆序数为5 3 2 3 1 4 2 4 1, 2 1 (4)2 4 1 3 解逆序数为3 2 1 4 1 4 3 (5)1 3 (2n1) 2 4 (2n) 解逆序数为 2)1 ( n n 3 2 (1个) 5 2 5 4(2个) 7 2 7 4 7 6(3个) (2n1)2 (2n1)4 (2n1)6 (2n1)(2n2) (n1个) (6)1 3 (2n1) (2n) (2n2) 2 解逆序数为n(n1) 3 2(1个) 5 2 5 4 (2个) (2n1)2 (2n1)4 (2n1)6 (2n1)(2n2) (n1个) 4 2(1个) 6 2 6 4(2个)

追赶法解三对角矩阵

实验追赶法解三对角方程组 一、实验目的 学会用追赶法解三对角方程组,并应用该算法于实际问题. 二、实验要求 给定三对角方程组,应用追赶法解得方程组的解。 三、实验内容 1、追赶法 2、以课本数值试验2为实例 3、如果有错,修改直至运行成功,查看运行结果; 四、实验环境 matlab 五、实验步骤和方法 1、程序设计 2、带入实例 3、撰写实验报告。 六、实验预习要求 得到实例的解 一、[源程序] function x = my_zgf2(A,d,flag) %MY_ZGF2 Summary of this function goes here [m,n]=size(A); %计算矩阵的大小 if nargin==2; %输入变量等于2的时候,A中储存所有元素的值for i=1:n a(i)=A(i+1,i); b(i)=A(i,i); c(i)=A(i,i+1); end a(1)=0; %补充不足的值 b(n)=A(n,n); c(n)=0; else c=[A(1,:) 0]; %flag==1时 b=A(2,:); a=[0 A(3,:)]; end

u(1)=b(1); for i=2:n %第一次追赶,得到上、下三角矩阵 l(i)=a(i)/u(i-1); u(i)=b(i)-c(i-1)*l(i); end y(1)=d(1); %解Ly=d for i=2:n y(i)=d(i)-l(i)*y(i-1); end x(n)=y(n)/u(n); %解Ux=y for i=n-1:-1:1 x(i)=(y(i)-c(i)*x(i+1))/u(i); end 二、带入实例 A = -2.0000 -2.0000 -2.0000 -2.0000 -2.0000 -2.0000 -2.0000 0 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 -2.0000 -2.0000 -2.0000 -2.0000 -2.0000 -2.0000 -2.0000 0 d= 8.1400 0 0 0 0 0 0 0 >> d=A(4,:); my_zgf2(A,d,1) ans = 2.0350 1.0174 0.5086 0.2541 0.1267 0.0626 0.0298 0.0119 >>

【原创】行列式计算7种技巧7种手段

行列式计算7种技巧7种手段 编者:Castelu 【编写说明】行列式是线性代数的一个重要研究对象,是线性代数中的一个最基本,最常用的工具,记为det(A).本质上,行列式描述的是在n 维空间中,一个线性变换所形成的平行多面体的体积,它被广泛应用于解线性方程组,矩阵运算,计算微积分等.鉴于行列式在数学各领域的重要性,其计算的重要性也不言而喻,因此,本人结合自己的学习心得,将几种常见的行列式计算技巧和手段归纳于此,供已具有行列式学习基础的读者阅读 一.7种技巧: 【技巧】所谓行列式计算的技巧,即在计算行列式时,对已给出的原始行列式进行化简,使之转化成能够直接计算的行列式,由此可知,运用技巧只能化简行列式,而不能直接计算出行列式 技巧1:行列式与它的转置行列式的值相等,即D=D T 111211121121222122221 212n n n n n n nn n n nn a a a a a a a a a a a a a a a a a a = 技巧2:互换行列式的任意两行(列),行列式的值将改变正负号 111212122221222111211 21 2n n n n n n nn n n nn a a a a a a a a a a a a a a a a a a =- 技巧3:行列式中某一行(列)的所有元素的公因子可以提到行列式记号的外面 111112111112122122222212221 121 2n n n n n n i n n n n n nn n n nn b a b a b a a a a b a b a b a a a a b b a b a b a a a a == ∏ 技巧4:行列式具有分行(列)相加性 11121111211112111221 21 21 2 1 21 2n n n t t t t tn tn t t tn t t tn n n nn n n nn n n nn a a a a a a a a a b c b c b c b b b c c c a a a a a a a a a +++=+ 技巧5:将行列式的某一行(列)的各元素乘以同一数k 后加到另一行(列)对应的元素上,行列式的值不变

(完整版)行列式的计算方法总结

行列式的计算方法总结: 1. 利用行列式性质把行列式化为上、下三角形行列式. 2. 行列式按一行(一列)展开,或按多行(多列)展开(Laplace 定理). 几个特别的行列式: B A B C A B C A == 0021 , B A B A D D B A mn )1(0 021 -== ,其中B A ,分别是n m ,阶的方阵. 例子: n n a b a b a b b a b a b a D 22O N N O = , 利用Laplace 定理,按第1,+n n 行展开,除2级子式 a b b a 外其余由第1,+n n 行所得的2级子式均为零. 故222222112)()1(--+++++-=-= n n n n n n n D b a D a b b a D ,此为递推公式,应用可得 n n n n b a D b a D b a D )()()(224222222222-==-=-=--Λ. 3. 箭头形行列式或者可以化为箭头形的行列式. 例:n n n n n n n a x x a a x x a a x x a a a a x x a a a a x a a a a x a a a a x ------=Λ ΛΛΛΛΛΛΛΛΛ ΛΛΛΛΛΛΛΛ00 000 01 133112 2113213 21321 321321 -----(倍加到其余各行第一行的1-) 100 101010 011)(3 332 221 111 Λ ΛΛΛΛΛΛΛΛ-------? -=∏=n n n n i i i a x a a x a a x a a x x a x --------(每一列提出相应的公因子i i a x -) 1 001000 010)(3 332 222111 1 Λ ΛΛΛΛΛΛΛΛn n n n i i i i n i i i a x a a x a a x a a x a a x x a x ----+-? -=∑∏== --------(将第n ,,3,2Λ列加到第一列)

最新几种特殊类型行列式及其计算

1 行列式的定义及性质 1.1 定义[3] n 级行列式 1112121 22 212 n n n n nn a a a a a a a a a 等于所有取自不同行不同列的个n 元素的乘积12 12n j j nj a a a (1)的代数和,这里12 n j j j 是 1,2, ,n 的一个排列,每一项(1)都按下列规则带有符号:当12n j j j 是偶排列时,(1)带正号,当 12n j j j 是奇排列时,(1)带有负号.这一定义可写成 () () 121212 1112121 22 21212 1n n n n j j j n j j nj j j j n n nn a a a a a a a a a a a a τ= -∑ 这里 12 n j j j ∑ 表示对所有n 级排列求和. 1.2 性质[4] 性质1.2.1 行列互换,行列式的值不变. 性质1.2.2 某行(列)的公因子可以提到行列式的符号外. 性质1.2.3 如果某行(列)的所有元素都可以写成两项的和,则该行列式可以写成两行列式的和;这两个行列式的这一行(列)的元素分别为对应的两个加数之一,其余各行(列)与原行列式相同. 性质1.2.4 两行(列)对应元素相同,行列式的值为零. 性质1.2.5 两行(列)对应元素成比例,行列式的值为零. 性质1.2.6 某行(列)的倍数加到另一行(列)对应的元素上,行列式的值不变. 性质1.2.7 交换两行(列)的位置,行列式的值变号.

2 行列式的分类及其计算方法 2.1 箭形(爪形)行列式 这类行列式的特征是除了第1行(列)或第n 行(列)及主(次)对角线上元素外的其他元素均为零,对这类行列式可以直接利用行列式性质将其化为上(下)三角形行列式来计算.即利用对角元素或次对角元素将一条边消为零. 例1 计算n 阶行列式 ()1 2323111100 1 0001 n n n a a D a a a a a =≠. 解 将第一列减去第二列的 21a 倍,第三列的3 1a 倍第n 列的 1 n a 倍,得 1 223 111110 000 000 n n n a a a a D a a ?? -- - ?? ? = 1221n n i i i i a a a ==?? =- ?? ? ∑ ∏. 2.2 两三角型行列式 这类行列式的特征是对角线上方的元素都是c ,对角线下方的元素都是b 的行列式,初看,这一类型似乎并不具普遍性,但很多行列式均是由这类行列式变换而来,对这类行列式,当 b c =时可以化为上面列举的爪形来计算,当b c ≠时则用拆行(列)法[9]来计算. 例2 计算行列式

线性代数课后习题答案分析

线性代数课后题详解 第一章 行列式 1.利用对角线法则计算下列三阶行列式: 相信自己加油 (1) 3811411 02 ---; (2)b a c a c b c b a (3) 2 2 2 111 c b a c b a ; (4) y x y x x y x y y x y x +++. 解 注意看过程解答(1)=---3 81141 1 2811)1()1(03)4(2??+-?-?+?-? )1()4(18)1(2310-?-?-?-?-??- =416824-++- =4- (2) =b a c a c b c b a cc c aaa bbb cba bac acb ---++ 3333c b a abc ---= (3) =2 2 2 1 11c b a c b a 222222cb ba ac ab ca bc ---++ ))()((a c c b b a ---= (4) y x y x x y x y y x y x +++ yx y x y x yx y y x x )()()(+++++=333)(x y x y -+-- 33322333)(3x y x x y y x y y x xy ------+= )(233y x +-= 2.按自然数从小到大为标准次序,求下列各排列的逆序数:耐心成就大业 (1)1 2 3 4; (2)4 1 3 2; (3)3 4 2 1; (4)2 4 1 3; (5)1 3 … )12(-n 2 4 … )2(n ; (6)1 3 … )12(-n )2(n )22(-n … 2. 解(1)逆序数为0

三阶行列式

教学内容 【知识结构】 1、三阶行列式 ①对角线方式展开 ②按某一行(或列)展开法 33 32 31 23222113 1211a a a a a a a a a =112233122331132132112332122133132231a a a a a a a a a a a a a a a a a a ++--- =11 a 33322322a a a a -12a 33312321a a a a +13a 32 3122 21a a a a 记 32 2211a a M = 33 23a a ,111111)1(M A +-=;31 2112a a M = 33 23a a , =12A 1221)1(M +-;31 2113a a M = 32 22a a , 133113)1(M A +-= 。 称j M 1为元素j a 1的余子式,即将元素j a 1所在的第一行、第j 列划去后剩下的元素按原来顺序组成的二阶行列式(类似可以定义其它元素的余子式);称j A 1为元素j a 1的代数余子式, j j j M A 111)1(+-=()3,2,1=j 。 则三阶行列式就可以写成D =33 32 31 232221 13 1211a a a a a a a a a =131312121111A a A a A a ++, 2、用三阶行列式求三角形的面积:若ABC ?三个顶点坐标分别为),(11y x 、),(22y x 、),(33y x ,则1 1223 3 11121ABC x y S x y x y ?= A 、 B 、 C 三点共线的充分必要条件为1 12 2331 101 x y x y x y = 【例题精讲】

特殊行列式与行列式计算方法总结

特殊行列式及行列式计算方法总结 一、 几类特殊行列式 1. 上(下)三角行列式、对角行列式(教材P7例5、例6) 2. 以副对角线为标准的行列式 11112112,1 221222,11,21,1 1,11 2 ,1 (1)2 12,11 000000 0000 0000 (1) n n n n n n n n n n n nn n n n n n nn n n n n n a a a a a a a a a a a a a a a a a a a a a a ---------===-L L L L L L M M M M M M M M M N L L L L 3. 分块行列式(教材P14例10) 一般化结果: 00n n m n n m n m m n m m n m A C A A B B C B ????= =? 0(1)0n m n n m n mn n m m m n m m n A C A A B B C B ????= =-? 4. 范德蒙行列式(教材P18例12) 注:4种特殊行列式的结果需牢记! 以下几种行列式的特殊解法必须熟练掌握!!! 二、 低阶行列式计算 二阶、三阶行列式——对角线法则 (教材P2、P3) 三、 高阶行列式的计算 【五种解题方法】 1) 利用行列式定义直接计算特殊行列式; 2) 利用行列式的性质将高阶行列式化成已知结果的特殊行列式; 3) 利用行列式的行(列)扩展定理以及行列式的性质,将行列式降阶进行计算 ——适用于行列式的某一行或某一列中有很多零元素,并且非零元素的代数余子式很容易计算; 4) 递推法或数学归纳法; 5) 升阶法(又称加边法)

行列式计算的若干种方法讲解

中南民族大学 毕业论文(设计) 学院: 数学与统计学学院 专业: 统计学年级:2008 题目: 行列式计算的若干方法 学生姓名: 曹金金学号:08067005

指导教师姓名: 汪宝彬职称:讲师 2012年4月30日

中南民族大学本科毕业论文(设计)原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果.除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品.本人完全意识到本声明的法律后果由本人承担. 作者签名: 年月日

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 1 引言 (2) 2.1排列 (2) 2.2行列式的定义 (2) 2.2.1 二阶、三阶行列式 (2) 2.2.2 n阶行列式的定义 (3) 2.2.3 几种特殊的行列式的定义 (3) 2.3 行列式的基本性质 (5) 3几种常见的行列式的计算方法 (6) 3.1利用行列式定义直接计算 (6) 3.2 利用行列式的性质计算 (6) 3.3 三角化法 (7) 3.4 降阶法 (8) 3.5利用范德蒙德行列式求解 (10) 3.6 数学归纳法 (11) 3.7 拆项法 (12) 3.8析因子法 (13) 3.9 加边法(升阶法) (13) 3.10递推公式法 (14) 3.11超范德蒙行列式法 (15) 3.12利用分块计算行列式 (16) 4 结论 (16) 致谢 (17) 参考文献 (17)

行列式计算的若干方法 摘要:在线性代数中,行列式的求解是非常重要的. 本文首先介绍行列式的定义与性质;然后通 过实例给出了计算行列式的几种方法.从文中可以看出,选择合适的计算方法可有效的计算行列式. 关键词:行列式;性质;计算方法 Some Methods of Determinant Calculation Abstract: Determinant plays an important role in the linear algebra. In this paper we first introduce the definition and properties of determinant. Then several methods of the calculation are given by some examples. It can be seen from the paper that choose the appropriate calculation method can efficiently compute the determinant. Key words: determinant; property; the calculation methods

相关文档
最新文档