最全半导体能带分布图

最全半导体能带分布图
最全半导体能带分布图

Edit by Renhong

导带、价带、禁带、费米能级

(1)导带conduction band: 导带是由自由电子形成的能量空间。即固体结构内自由运动的电子所具有的能量范围。 对于金属,所有价电子所处的能带就是导带。 对于半导体,所有价电子所处的能带是所谓价带,比价带能量更高的能带是导带。在绝对零度温度下,半导体的价带(valence band)是满带(见能带理论),受到光电注入或热激发后,价带中的部分电子会越过禁带(forbidden band/band gap)进入能量较高的空带,空带中存在电子后即成为导电的能带——导带。 势能动能:导带底是导带的最低能级,可看成是电子的势能,通常,电子就处于导带底附近;离开导带底的能量高度,则可看成是电子的动能。当有外场作用到半导体两端时,电子的势能即发生变化,从而在能带图上就表现出导带底发生倾斜;反过来,凡是能带发生倾斜的区域,就必然存在电场(外电场或者内建电场)。 (2)价带与禁带: 价带(valence band)或称价电带,通常是指半导体或绝缘体中,在0K时能被电子占满的最高能带。对半导体而言,此能带中的能级基本上是连续的。全充满的能带中的电子不能在固体中自由运动。但若该电子受到光照,它可吸收足够能量而跳入下一个容许的最高能区,从而使价带变成部分充填,此时价带中留下的电子可在固体中自由运动。 禁带,英文名为:Forbidden Band 常用来表示价带和导带之间的能态密度为零的能量区间。禁带宽度的大小决定了材料是具有半导体性质还是具有绝缘体性质。半导体的禁带宽度较小,当温度升高时,电子可以被激发传到导带,从而使材料具有导电性。绝缘体的禁带宽度很大,即使在较高的温度下,仍是电的不良导体。无机半导体的禁带宽度从~,π-π共轭聚合物的能带隙大致在~,绝缘体的禁带宽度大于。

半导体材料能带测试及计算

半导体材料能带测试及计算 对于半导体,是指常温下导电性能介于导体与绝缘体之间的材料,其具有一定的带隙(E g)。通常对半导体材料而言,采用合适的光激发能够激发价带(VB)的电子激发到导带(CB),产生电子与空穴对。 图1. 半导体的带隙结构示意图。 在研究中,结构决定性能,对半导体的能带结构测试十分关键。通过对半导体的结构进行表征,可以通过其电子能带结构对其光电性能进行解析。对于半导体的能带结构进行测试及分析,通常应用的方法有以下几种(如图2): 1.紫外可见漫反射测试及计算带隙E g; 2.VB XPS测得价带位置(E v); 3.SRPES测得E f、E v以及缺陷态位置; 4.通过测试Mott-Schottky曲线得到平带电势; 5.通过电负性计算得到能带位置. 图2. 半导体的带隙结构常见测试方式。 1.紫外可见漫反射测试及计算带隙 紫外可见漫反射测试 2.制样:

背景测试制样:往图3左图所示的样品槽中加入适量的BaSO4粉末(由于BaSO4粉末几乎对光没有吸收,可做背景测试),然后用盖玻片将BaSO4粉末压实,使得BaSO4粉末填充整个样品槽,并压成一个平面,不能有凸出和凹陷,否者会影响测试结果。 样品测试制样:若样品较多足以填充样品槽,可以直接将样品填充样品槽并用盖玻片压平;若样品测试不够填充样品槽,可与BaSO4粉末混合,制成一系列等质量分数的样品,填充样品槽并用盖玻片压平。 图3. 紫外可见漫反射测试中的制样过程图。 1.测试: 用积分球进行测试紫外可见漫反射(UV-Vis DRS),采用背景测试样(BaSO4粉末)测试背景基线(选择R%模式),以其为background测试基线,然后将样品放入到样品卡槽中进行测试,得到紫外可见漫反射光谱。测试完一个样品后,重新制样,继续进行测试。 ?测试数据处理 数据的处理主要有两种方法:截线法和Tauc plot法。截线法的基本原理是认为半导体的带边波长(λg)决定于禁带宽度E g。两者之间存在E g(eV)=hc/λg=1240/λg(nm)的数量关系,可以通过求取λg来得到E g。由于目前很少用到这种方法,故不做详细介绍,以下主要来介绍Tauc plot法。 具体操作: 1、一般通过UV-Vis DRS测试可以得到样品在不同波长下的吸收,如图4所示; 图4. 紫外可见漫反射图。

半导体能带理论

一. 前言 光子晶体也许现在的你对光子晶体这个名字并不熟悉,然而正如20世纪初人们对硅这种半导体材料的懵懂一样,也许在21世纪末的时候,你将对这个名词耳熟能详。因为,到时从你的书桌上摆着的高速个人电脑(上百甚至上千G Hz 的运算速度),到快速而便捷的网络设施,甚至直至你家中能够根据室内实际温度自动开关调节的空调系统,都可能要得益于这种前途光明的新型材料的伟大功劳。光子晶体是一个很前沿的话题,同时它也是一个很深奥的物理概念。要想把光子晶体解释清楚,并不是一件容易的事。但是要想了解它,可以先从它产生的背景说起。我们现在都知道,半导体在我们的生活中充当了重要的角色。利用它的一些区别于导体和绝缘体的特殊的性质,人们制造出了许多的现代固体电子与光电子器件。收音机、电视、计算机、电话、手机等等无一不再应用着半导体制成的芯片、发光二极管(LED)等等元件。而给我们带来这么多便利的半导体材料大多是一些晶体。 二.晶体知识. 晶体和半导体中所谓的晶体,是指内部原子有序排列,形成一种周期性的重复结构,而往往就是这些重复性的结构存在,才决定了半导体的特殊性质。晶体又分单晶和多晶:单晶——在一块材料中,原子全部作有规则的周期排列,由于内部的有序性和规则性,其外形往往是某种规则的立体结构。多晶——只在很小范围内原子作有规则的排列,形成小晶粒,而晶粒之间有无规则排列的晶粒界[j ,HSOv) 隔开。我们熟悉的硅、锗等晶体就属于单晶。半导体分类:半导体可分为本征半导体、P型半导体、N型半导体。本征半导体:硅和锗都是半导体,而纯硅和锗晶体称本征半导体。硅和锗为4价元素,其晶体结构稳定。 P型半导体:P型半导体是在4价的本征半导体中混入了3价原子,譬如极小量(一千万之一)的铟合成的晶体。由于3价原子进入4价原子中,因此这晶体结构中就产生了少一电子的部分。由于少一电子,所以带正电。P型的“P”正是取“Positve(正)”一词的第一个字母。N型半导体:若把5价的原子,譬如砷混入4价的本征半导体,将产生多余1个电子的状态结晶,显负电性。这N是从“Negative(负)”中取的第一个字母。二极管的原理:如图一是未加电场(电压)的情况P型载流子和N型载流子随机地在晶体中。若在图二中的N端施加正电压,在P端施加负电压,内部的载流子,电子被拉到正电压方,空核被拉到负电压方,从而结合面上的载流子数量大大减少,电阻便增大了。如图三加相反电压,此时内部载流子通过结合面,变得易于流动。换言之电阻变小,电流正向流动。请记住:二极管的正向导通是从P型指向N型,国际的标法是:三角形表示P型,横线是N型。二极管在0.6V以 上的电压下电流可急剧移动,反向则无! 三.能带理论能级(Enegy Level) 在孤立原子中,原子核外的电子按照一定的壳层排列,每一壳层容纳一定数量的电子。每个壳层上的电子具有分立的能量值,也就是电子按能级分布。为简明起见,在表示能量高低的图上,用一条条高低不同的水平线表示电子的能级,此图称为电子能级图。能带(Enegy Band):晶体中大量的原子集合在一起,而且原子之间距离很近,以硅为例,每立方厘米的体积内有5×1022个原子,原子之间的最短距离为0.235nm。致使离原子核较远的壳层发生交叠,壳层交叠使电子不再局限于某个原子上,有可能转移到相邻原子的相似壳层上去,也可能从相邻原子运动到更远的原子壳层上去,这种现象称为电子的共有化。从而使本来处于同一能量状态的电子产生微小的能量差异,与此相对应的能级扩展为能带。禁带(Forbidden Band):允许被电子占据的能带称为允许带,允许带之间的范围是不允许电子占据的,此范围称为禁带。原子壳层中的内层允许带总是被电子先占满,然后再占据能量更高的外面一层的允许带。被电子占满的允许带称为满带,每一个能级上都没有电子的能带称为空带。价带(Valence Band):原子中最外层的电子称为价电子,与价电带。导带(Conduction Band):价带以上能量最低的允许带称为导带。导带的底能级表示为Ec,价带的顶能级表示为Ev,Ec与Ev之间的能量间隔为禁带Eg。导体或半导体的导电作用是通过带电粒子的运动(形成电流)来实现的,这种电流的载体称为载流子。导体中的载流子是自由电子,半导体中的载流子则是带负电的电子和带正电的空穴。对于不同的材料,禁带宽度不同,导带中电子的数目也不同,从而有不同的导电性。例如,绝缘材料SiO2的Eg约为5.2eV,导带中电子极少,所以导电性不好,电阻率大于1012Ω·cm。半导体Si的Eg约为1.1eV,导带中有一定数目的电子,从而有一定的导电性,电阻率为10-3—1012Ω·cm。金属的导带与价带有一定程度的重合,Eg=0,价电子可以在金属中 自由运动,所以导电性好,电阻率为10-6—10-3Ω·cm。 四.其它知识原理.

导带、价带、禁带.费米能级

【半导体】 (1)导带conduction band 导带是由自由电子形成的能量空间。即固体结构内自由运动的电子所具有的能量范围。 对于金属,所有价电子所处的能带就是导带。 对于半导体,所有价电子所处的能带是所谓价带,比价带能量更高的能带是导带。在绝对零度温度下,半导体的价带(valence band)是满带(见能带理论),受到光电注入或热激发后,价带中的部分电子会越过禁带(forbidden band/band gap)进入能量较高的空带,空带中存在电子后即成为导电的能带——导带。 势能动能:导带底是导带的最低能级,可看成是电子的势能,通常,电子就处于导带底附近;离开导带底的能量高度,则可看成是电子的动能。当有外场作用到半导体两端时,电子的势能即发生变化,从而在能带图上就表现出导带底发生倾斜;反过来,凡是能带发生倾斜的区域,就必然存在电场(外电场或者内建电场)。 (2)价带与禁带 价带(valence band)或称价电带,通常是指半导体或绝缘体中,在0K 时能被电子占满的最高能带。对半导体而言,此能带中的能级基本上是连续的。全充满的能带中的电子不能在固体中自由运动。但若该电子受到光照,它可吸收足够能量而跳入下一个容许的最高能区,从而使价带变成部分充填,此时价带中留下的电子可在固体中自由运动。 禁带,英文名为:Forbidden Band 常用来表示价带和导带之间的能态密度为零的能量区间。禁带宽度的大小决定了材料是具有半导体性质还是具有绝缘体性质。半导体的禁带宽度较小,当温度升高时,电子可以被激发传到导带,从而使材料具有导电性。绝缘体的禁带宽度很大,即使在较高的温度下,仍是电的不良导体。无机半导体的禁带宽度从0.1~2.0eV,π-π共轭聚合物的能带隙大致在1.4~4.2eV,绝缘体的禁带宽度大于4.5eV。 (3)导带与价带的关系: “电子浓度=空穴浓度”,这实际上就是本征半导体的特征,因此可以说,凡是两种载流子浓度相等的半导体,就是本征半导体。 注意:不仅未掺杂的半导体是本征半导体,就是掺杂的半导体,在一定条件下(例如高温下)也可以转变为本征半导体。

半导体材料能带测试及计算

半导体材料能带测试及计算对于半导体,是指常温下导电性能介于导体与绝缘体之间的材料,其具有一定的带隙(E g)。通常对半导体材料而言,采用合适的光激发能够激发价带(VB)的电子激发到导带(CB),产生电子与空穴对。 图1. 半导体的带隙结构示意图。 在研究中,结构决定性能,对半导体的能带结构测试十分关键。通过对半导体的结构进行表征,可以通过其电子能带结构对其光电性能进行解析。对于半导体的能带结构进行测试及分析,通常应用的方法有以下几种(如图2): 1.紫外可见漫反射测试及计算带隙E g; 2.VB XPS测得价带位置(E v); 3.SRPES测得E f、E v以及缺陷态位置; 4.通过测试Mott-Schottky曲线得到平带电势; 5.通过电负性计算得到能带位置.

图2. 半导体的带隙结构常见测试方式。 1.紫外可见漫反射测试及计算带隙 紫外可见漫反射测试 2.制样: 背景测试制样:往图3左图所示的样品槽中加入适量的BaSO4粉末(由于BaSO4粉末几乎对光没有吸收,可做背景测试),然后用盖玻片将BaSO4粉末压实,使得BaSO4粉末填充整个样品槽,并压成一个平面,不能有凸出和凹陷,否者会影响测试结果。 样品测试制样:若样品较多足以填充样品槽,可以直接将样品填充样品槽并用盖玻片压平;若样品测试不够填充样品槽,可与BaSO4粉末混合,制成一系列等质量分数的样品,填充样品槽并用盖玻片压平。 图3. 紫外可见漫反射测试中的制样过程图。 1.测试:

用积分球进行测试紫外可见漫反射(UV-Vis DRS),采用背景测试样(BaSO4粉末)测试背景基线(选择R%模式),以其为background测试基线,然后将样品放入到样品卡槽中进行测试,得到紫外可见漫反射光谱。测试完一个样品后,重新制样,继续进行测试。 ?测试数据处理 数据的处理主要有两种方法:截线法和Tauc plot法。截线法的基本原理是认为半导体的带边波长(λg)决定于禁带宽度E g。两者之间存在E g(eV)=hc/λg=1240/λg(nm)的数量关系,可以通过求取λg来得到E g。由于目前很少用到这种方法,故不做详细介绍,以下主要来介绍Tauc plot法。 具体操作: 1、一般通过UV-Vis DRS测试可以得到样品在不同波长下的吸收,如图4所示; 图4. 紫外可见漫反射图。 2. 根据(αhv)1/n = A(hv – Eg),其中α为吸光指数,h为普朗克常数,v为频率,Eg为半导体禁带宽度,A为常数。其中,n与半导体类型相关,直接带隙半导体的n取1/2,间接带隙半导体的n为2。

导带、价带、

导带、价带都属于允带,允带有很多的能级(不过可视为准连续,因为能级间差距实在是太小了!),原子中电子的填充都是从最低能级开始的,假设有这么一个情形:电子填啊填,填到某一允带的所有能级都被填满时,刚好所有电子都用完了,再没有一个电子需要填充了。那么,这个允带就是“满带”,它的最高的那个能级就是“价带(顶)”,这个允带往上隔了一个禁带Eg之后,又有一个允带(在更高能级位置),我们称之为导带,但是这个允带没有任何电子(因为电子在上一个允带时就已经全部填充完了!所以说所谓允带只是说允许有电子存在,但实际上有没有、有多少呢,却不一定;当然禁带是绝对不可能有电子存在。),所以为“空带”。我们再看回满带,在满带中,每个能级都有且仅有一个电子(为什么每个能级只能有一个电子呢?请自己查找泡利不相容原理的相关资料),那么满带是不导电的(电子都不能在满带的能级间跑动,自然就不可能有电流啦!)。但是,对于半导体,禁带Eg不是太大,故而价带电子有机会跃迁到导带中,成为自由电子(导带中的所有能级几乎全空,电子在这里可以跳来跳去,当然很自由啦!),故而导带可以导电,所以才叫导带嘛。 导带是高架桥,价带是地面人行道。 半导体就像是人满为患时的地面交通,电子君们寸步难行挤成狗,但你若是有本事跳上空旷无人的高架桥,那就可以随便跪”。 高架桥到地面之间的空档,就被称为禁带。所谓禁带就是说电子君没地方可站。相应的,允带就是电子君可以站的地方,所以除了导带和价带,地下通道也是允带。 高架桥若是太高,电子君们跳不上去,交通便陷入彻底瘫痪。这是绝缘体。 高架桥若是接上了地面道路,电子君们就能纷纷上桥,交通立刻顺畅起来。这是金属。 现代半导体技术,之所以能够实现器件的开关,就是能够在高架桥和地面之间架起一-座临时的梯子,它将决定地面上有多少幸运的电子君能够登上高架桥,担负起导电的伟大使命。以上。 让我们从最基本的开始……以下如果没有特别说明主角都是电子。 首先从量子力学的基本假设——不连续性可以推出原子外电子的在条件一定的 情况下只能取到某些特定的能量,这就是能级: width="230">(大家好,我是氢原子的电子能级)

1.6 回旋共振及常见半导体的能带结构 -1

1.6 回旋共振及 常见半导体的能带结构

1. k 空间的等能面 22 ()(0)2n k E k E m * =+ 导带底E C 在k=0处,导带底附近 一维情况: 2 222 ()(0)()2x y z n E k E k k k m → * -=++ 三维情况: 当E (k )一定时,对应于多组不同的(k x , k y , k z ),将这些不同的(k x , k y , k z )连接起来构成一个封闭面,其上能值均相等,称为等能面。 等能面为球面 载流子的有效质量是各向同性时,等能面为球面 1) 能带极值在k =0

2222 y x z ()(0)() 2x y z k k k E k E m m m ***=+++ 椭球等能面 设导带极小值Ec 位于k=0处,取椭球主轴为坐标系,则导带底附近能带可表示为: 有效质量是各向异性时,等能面为椭球面。 0 222*11=???? ????=k x x k E m 0 222*11=???? ????=k y y k E m 0 222*11=???? ????=k y y k E m *** ,,z y x m m m 分别代表沿椭球三个主轴的有效质量:

旋转椭球等能面 t y x m m m ==** l m m =*z 坐标原点置于旋转椭球中心,并使k z 轴与旋转椭球长轴重合。横向有效质量;2222()(0)() 2x y z t l k k k E k E m m +=++ 则等能面可表示为: 纵向有效质量; y x k k ,沿 轴的有效质量相等: 沿 轴的有效质量:z k

导带与价带的关系资料

导带与价带的关系

精品资料 定义 导带(conduction band)是由自由电子形成的能量空间。即固体结构内自由运动的电子所具有的能量范围。对于金属,所有价电子所处的能带就是导带。对于半导体,所有价电子所处的能带是所谓价带,比价带能量更高的能带是导带。在绝对零度温度下,半导体的价带(valence band)是满带(见能带理论),受到光电注入或热激发后,价带中的部分电子会越过禁带(forbidden band/band gap)进入能量较高的空带,空带中存在电子后即成为导电的能带——导带。 导带是半导体最外面(能量最高)的一个能带,是由许多准连续的能级组成的;是半导体的一种载流子——自由电子(简称为电子)所处的能量范围。导带中往往只有少量的电子,大多数状态(能级)是空着的,则在外加作用下能够发生状态的改变,故导带中的电子能够导电,即为载流子。 导带底是导带的最低能级,可看成是电子的势能,通常,电子就处于导带底附近;离开导带底的能量高度,则可看成是电子的动能。当有外场作用到半导体两端时,电子的势能即发生变化,从而在能带图上就表现出导带底发生倾斜;反过来,凡是能带发生倾斜的区域,就必然存在电场(外电场或者内建电场)。 导带底到真空中自由电子能级的间距,称为半导体的亲和能,即是把一个电子载流子从半导体内部拿到真空中去所需要的能量。这是半导体的一个特征参量。 导带与价带的关系 对于未掺杂的本征半导体,导带中的电子是由它下面的一个能带(即价带)中的电子(价电子)跃迁上来而形成的,这种产生电子(同时也产生空穴——半导体的另外一种载流子)的过程,称为本征激发。在本征激发过程中,电子和空穴是成对产生的,则总是有“电子浓度=空穴浓度”。这实际上就是本征半导体的特征,因此可以说,凡是两种载流子浓度相等的半导体,就是本征半导体。这就意味着,不仅未掺杂的半导体是本征半导体,就是掺杂的半导体,在一定条件下(例如高温下)也可以转变为本征半导体。 价带的能量低于导带,它也是由许多准连续的能级组成的。但是价带中的许多电子(价电子)并不能导电,而少量的价电子空位——空穴才能导电,故称空穴是载流子。空穴的最低能量——势能,也就是价带顶,通常空穴就处于价带顶附近。 价带顶与导带底之间的能量差,就是所谓半导体的禁带宽度。这就是产生本征激发所需要的最小平均能量。这是半导体最重要的一个特征参量。 仅供学习与交流,如有侵权请联系网站删除谢谢2

金属、半导体和绝缘体能带结构区别

金属、半导体和绝缘体的能带结构区别本论文从能带的形成过程和电流的产生机理两方面来说明金属、半导体和绝缘体的能带结构区别。 1.能带(Energy Band)的形成过程 当孤立的原子结合在一起形成固体时,相邻的原子之间会产生各种交互作用,原子之间的排斥力和吸引力最后在一定的原子间距达到平衡. 由量子力学可知,晶体中相同原子孤立存在时,各自的电子波函数没有相互作用,因而各原子可以有完全相同的电子能级结构。当相同原子相互接近时,其电子波函数便开始重迭.根据量子力学的泡利不相容原理,在一个系统中,不允许有两个电子具有相同的量子状态,因而孤立原子的能级必然产生分裂,这些新产生的分裂能级不再是某个原于所独有,而是属于原子共有。在固体中,大量原子结合在一起,相互极为接近的大量分裂能级最终成为一个连续的能带。 量子力学计算表明,晶体中若有N个原子,由于各原子间的相互作用,对应于原来孤立原子的每一个能级,在晶体中就变成了N条靠得很近的能级,称为能带。如图1所示:

图1 能带的宽度记作?E ,数量级为 ?E ~eV 。若N~1023,则能带中两能级的间距约10-23eV 。 能带的一般规律:越是外层电子,能带越宽,?E 越大; 点阵间距越小,能带越宽,?E 越大; 两个能带有可能重叠。如图2所示: 图 2

2.电流产生机理 电流的产生要求电子能够在电场的作用下加速移动至新的能量状态,即要求在电子现有能量状态附近必须有空能级。举例来说,如果一个能带中只有很少几个电子,而有大半的能态是空的,则电子很容易在能带中由这个能态运动到另一个能态,从而发生电荷的迁移,产生导电行为。 对于金属、绝缘体和半导体来说,因其导电性不同,所以其能带结构也不相同。在绝缘体结构中0K时“价带”已被全部占据,导带是全空的,因而价带中的电子于无法进行电荷运输,因为价带中没有空能级。导带中虽有空能级但无电子,因而也不可能进行电荷运输;半导体的电子能带结构与绝缘体相仿,但其禁带宽比绝缘体小得多.例如Si为1.1eV,而金刚石为5eV。这一较小的禁带宽度使价带中的电子能较容易地在热或光的作用下激发到高能带即导带中而起导电作用;金属的能带结构又不同,能带或是重叠,或是半填满。固而在一个能带内总是既有电子又有空能态,电子在电场作用下便能自曲地运动,从而导致很高的导电性。如图3所示:

113种无机半导体导带和价带数据

113种无机半导体导带和价带数据

无机半导体能带、导带和价带能级数据 The absolute energy positions of conduction and valence bands of selected semiconducting minerals, AmericanMineralogist, 2000,85:543–556. 半导体 E g(eV ) E CB (VS . NH E) E VB (VS . NH E) 半导体 E g(e V) E CB (VS . NH E) E VB (VS . NH E) Ag2O 1.2eV 0.1 9 1.3 9 AlTiO3 3.6e V -0.8 6 2.7 4 BaTiO3 3.3eV 0.0 8 3.3 8 Bi2O3 2.8e V 0.3 3 3.1 3 CdO 2.2eV 0.1 1 2.3 1 CdFe2O4 2.3e V 0.1 8 2.4 8 Ce2O3 2.4eV -0.5 1.9 CoO 2.6e V -0.1 1 2.4 9 CoTiO32.25e V 0.1 4 2.3 9 Cr2O3 3.5e V -0.5 7 2.9 3 CuO 1.7e V 0.4 6 2.1 6 Cu2O 2.2e V -0.2 8 1.9 2 CuTiO3 2.99e-0.1 2.8FeO 2.4e-0.1 2.2

V 8 1 V 7 3 Fe2O3 2.2eV 0.2 8 2.4 8 Fe3O4 0.1e V 1.2 3 1.3 3 FeOOH 2.6eV 0.5 8 3.1 8 FeTiO3 2.8e V -0.2 1 2.5 9 Ga2O3 4.8eV -1.5 5 3.2 5 HgO 1.9e V 0.6 3 2.5 3 Hg2Nb2O7 1.8eV 0.8 1 2.6 1 Hg2Ta2O7 1.8e V 0.8 4 2.6 4 In2O3 2.8eV -0.6 2 2.1 8 KNbO3 3.3e V -0.8 6 2.4 4 KTaO3 3.5eV -0.9 3 2.5 7 La2O3 5.5e V -1.9 7 3.5 3 LaTi2O74eV -0.6 3.4 LiNbO33.5e V -0.7 3 2.7 7 LiTaO34eV -0.9 5 3.0 5 MgTiO3 3.7e V -0.7 5 2.9 5 MnO 3.6eV -1.0 1 2.5 9 MnO2 0.25 eV 1.3 3 1.5 8 MnTiO3 3.1eV -0.4 6 2.6 4 Nb2O5 3.4e V 0.0 9 3.4 9 Nd2O3 4.7eV -1.6 3.0NiO 3.5e-0.5 3

第六章半导体的物质结构和能带结构

第6章 异质结和纳米结构 1、试讨论用窄禁带n 型半导体和宽禁带p 型半导体构成的反型异质结中的能带弯曲情况,画出能带图。 答: 2、仿照第4章对pn 同质结的讨论方法,完成突变pn 异质结接触电势差表达式(6-5)和势垒区宽度表达式(6-7)的推导过程。 解:设p 型和n 型半导体中的杂质都是均匀分布的,其浓度分别为N A1和N D2。势垒区的正负空间电荷去的宽度分别为(x 0-x 1)=d 1,(x 2-x 0)=d 2。取x=x 0为交界面,则两边势垒区中的电荷密度可以写成 ? ?? -=<<-=<<22201101)(,)(,D A qN x x x x qN x x x x ρρ 势垒区总宽度为 211002)()(d d x x x x X D +=-+-= 势垒区的正负电荷总量相等,即 Q x x qN x x qN D A =-=-)()(022101 Q 就是势垒区中单位面积上的空间电荷数值。因此上式可以简化为 1 2 0210)()(A D N N x x x x =-- 设V(x)代表势垒区中x 点得电势,则突变反型异质结交界面两边的泊松方程分别为 )()(0111 212x x x qN dx x V d A <<=ε )()(202 2 2 22x x x qN dx x V d D <<=ε ε1ε2分别为p 型及n 型半导体的介电常数。对以上两式分别积分一次得 )()(011111x x x C x qN dx x dV A <<+=ε )()(2022 22x x x C x qN dx x dV D <<+=ε C 1‘C 2是积分常数,有边界条件决定。因势垒区外是电中性的,电场集中在势垒区内,故边 界条件为 0)(1 111=- ==x x dx dV x E

导带与价带的关系

定义 导带(conduction band)就是由自由电子形成的能量空间。即固体结构内自由运动的电子所具有的能量范围。对于金属,所有价电子所处的能带就就是导带。对于半导体,所有价电子所处的能带就是所谓价带,比价带能量更高的能带就是导带。在绝对零度温度下,半导体的价带(valence band)就是满带(见能带理论),受到光电注入或热激发后,价带中的部分电子会越过禁带(forbidden band/band gap)进入能量较高的空带,空带中存在电子后即成为导电的能带——导带。 导带就是半导体最外面(能量最高)的一个能带,就是由许多准连续的能级组成的;就是半导体的一种载流子——自由电子(简称为电子)所处的能量范围。导带中往往只有少量的电子,大多数状态(能级)就是空着的,则在外加作用下能够发生状态的改变,故导带中的电子能够导电,即为载流子。 导带底就是导带的最低能级,可瞧成就是电子的势能,通常,电子就处于导带底附近;离开导带底的能量高度,则可瞧成就是电子的动能。当有外场作用到半导体两端时,电子的势能即发生变化,从而在能带图上就表现出导带底发生倾斜;反过来,凡就是能带发生倾斜的区域,就必然存在电场(外电场或者内建电场)。 导带底到真空中自由电子能级的间距,称为半导体的亲与能,即就是把一个电子载流子从半导体内部拿到真空中去所需要的能量。这就是半导体的一个特征参量。 导带与价带的关系 对于未掺杂的本征半导体,导带中的电子就是由它下面的一个能带(即价带)中的电子(价电子)跃迁上来而形成的,这种产生电子(同时也产生空穴——半导体的另外一种载流子)的过程,称为本征激发。在本征激发过程中,电子与空穴就是成对产生的,则总就是有“电子浓度=空穴浓度”。这实际上就就是本征半导体的特征,因此可以说,凡就是两种载流子浓度相等的半导体,就就是本征半导体。这就意味着,不仅未掺杂的半导体就是本征半导体,就就是掺杂的半导体,在一定条件下(例如高温下)也可以转变为本征半导体。 价带的能量低于导带,它也就是由许多准连续的能级组成的。但就是价带中的许多电子(价电子)并不能导电,而少量的价电子空位——空穴才能导电,故称空穴就是载流子。空穴的最低能量——势能,也就就是价带顶,通常空穴就处于价带顶附近。 价带顶与导带底之间的能量差,就就是所谓半导体的禁带宽度。这就就是产生本征激发所需要的最小平均能量。这就是半导体最重要的一个特征参量。

半导体的能带图

重要半导体的能带图(参考资料) ——Xie Meng-xian. (电子科大,成都市)—— 能带结构就是晶体电子的能量E与波矢k之间的关系曲线。现在已经发展出了许多能带结构的计算方法和实验方法,并且对于一系列半导体的能带结构进行了理论计算和实验验证。 能带结构的计算一般都是在一定的晶格周期性势场形式下、基于单电子近似来求解Schr?dinger方程;这里重要的是如何选取晶格周期性势场的近似模型。因此,依据势场模型的选取就有多种不同的计算能带结构的方法,例如Hartree-Fock方法、量子缺陷方法、赝勢方法等。 图1 若干半导体的能带结构(计算)

图1是采用赝勢方法计算而得到的若干重要半导体的能带结构图(未考虑电子自旋)。见到,图中所有半导体的价带顶都位于Brillouin区中心(Γ点),然而导带底却不一定;因此就有所谓直接跃迁能带结构的半导体(直接禁带半导体)和间接跃迁能带结构的半导体(间接禁带半导体)之分:Si、Ge、GaP、AlP、AlSb、AlAs等是间接禁带半导体;GaAs、InP、InAs、InSb、GaSb、ZnS、ZnSe、ZnTe、CdTe等是直接禁带半导体。α-Sn(灰锡)具有金刚石型的晶体结构,它是一种半金属(即禁带宽度为0的半导体);其他类似的半金属有HgSe和HgTe。 图2~图5示出的是一些重要的宽禁带半导体的能带结构。这些新型的半导体往往被称为第三代半导体材料(第一代是Si,第二代是GaAs)。GaN、AlN、InN是直接禁带半导体,SiC、BN是间接禁带半导体。它们在高功率、高温、微波、低噪声等应用领域内具有优良的性能;特别,氮化镓基的半导体不仅在微波领域、而且在高效率发光(蓝色光)领域内,都表现出了突出的成效。 图2 三种碳化硅的能带结构

导带价带禁带

导带价带禁带 GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-

【半导体】 (1)导带conduction band A解释 导带是由自由电子形成的能量空间。即固体结构内自由运动的电子所具有的能量范围。 对于金属,所有价电子所处的能带就是导带。 对于半导体,所有价电子所处的能带是所谓价带,比价带能量更高的能带是导带。在绝对零度温度下,半导体的价带(valence band)是满带(见能带理论),受到光电注入或热激发后,价带中的部分电子会越过禁带(forbidden band/band gap)进入能量较高的空带,空带中存在电子后即成为导电的能带——导带。 B导带的涵义: 导带是半导体最外面(能量最高)的一个能带,是由许多准连续的能级组成的;是半导体的一种载流子——自由电子(简称为电子)所处的能量范围。导带中往往只有少量的电子,大多数状态(能级)是空着的,则在外加作用下能够发生状态的改变,故导带中的电子能够导电,即为载流子。 导带底是导带的最低能级,可看成是电子的势能,通常,电子就处于导带底附近;离开导带底的能量高度,则可看成是电子的动能。当有外场作用到半导体两端时,电子的势能即发生变化,从而在能带图上就表现出导带底发生倾斜;反过来,凡是能带发生倾斜的区域,就必然存在电场(外电场或者内建电场)。 导带底到真空中自由电子能级的间距,称为半导体的亲和能,即是把一个电子载流子从半导体内部拿到真空中去所需要的能量。这是半导体的一个特征参量。 (2)价带与禁带 价带(valence band)或称价电带,通常是指半导体或绝缘体中,在0K 时能被电子占满的最高能带。对半导体而言,此能带中的能级基本上是连续的。全充满的能带中的电子不能在固体中自由运动。但若该电子受到光照,它可吸收足够能量而跳入下一个容许的最高能区,从而使价带变成部分充填,此时价带中留下的电子可在固体中自由运动。价带中电子的自由运动对于与晶体管有关的现象是很重要的。被价电子占据的允带(低温下通常被价电子占满)。

重要半导体的能带图(参考资料)

重要半导体的能带图(参考资料) 能带结构就是晶体电子的能量E与波矢k之间的关系曲线。现在已经发展出了许多能带结构的计算方法和实验方法,并且对于一系列半导体的能带结构进行了理论计算和实验验证。 能带结构的计算一般都是在一定的晶格周期性势场形式下、基于单电子近似来求解Schr?dinger方程;这里重要的是如何选取晶格周期性势场的近似模型。因此,依据势场模型的选取就有多种不同的计算能带结构的方法,例如Hartree-Fock方法、量子缺陷方法、赝勢方法等。 图1若干半导体的能带结构(计算)

图1是采用赝勢方法计算而得到的若干重要半导体的能带结构图(未考虑电子自旋)。见到,图中所有半导体的价带顶都位于Brillouin区中心(Γ点),然而导带底却不一定;因此就有所谓直接跃迁能带结构的半导体(直接禁带半导体)和间接跃迁能带结构的半导体(间接禁带半导体)之分:Si、Ge、GaP、AlP、AlSb、AlAs等是间接禁带半导体;GaAs、InP、InAs、InSb、GaSb、ZnS、ZnSe、ZnTe、CdTe等是直接禁带半导体。α-Sn(灰锡)具有金刚石型的晶体结构,它是一种半金属(即禁带宽度为0的半导体);其他类似的半金属有HgSe和HgTe。 图2~图5示出的是一些重要的宽禁带半导体的能带结构。这些新型的半导体往往被称为第三代半导体材料(第一代是Si,第二代是GaAs)。GaN、AlN、InN是直接禁带半导体,SiC、BN是间接禁带半导体。它们在高功率、高温、微波、低噪声等应用领域内具有优良的性能;特别,氮化镓基的半导体不仅在微波领域、而且在高效率发光(蓝色光)领域内,都表现出了突出的成效。 图2三种碳化硅的能带结构

导带与价带的关系

定义 导带(conduction band)是由自由电子形成的能量空间。即固体结构内自由运动的电子所具有的能量范围。对于金属,所有价电子所处的能带就是导带。对于半导体,所有价电子所处的能带是所谓价带,比价带能量更高的能带是导带。在绝对零度温度下,半导体的价带(valence band)是满带(见能带理论),受到光电注入或热激发后,价带中的部分电子会越过禁带(forbidden band/band gap)进入能量较高的空带,空带中存在电子后即成为导电的能带——导带。 导带是半导体最外面(能量最高)的一个能带,是由许多准连续的能级组成的;是半导体的一种载流子——自由电子(简称为电子)所处的能量范围。导带中往往只有少量的电子,大多数状态(能级)是空着的,则在外加作用下能够发生状态的改变,故导带中的电子能够导电,即为载流子。 导带底是导带的最低能级,可看成是电子的势能,通常,电子就处于导带底附近;离开导带底的能量高度,则可看成是电子的动能。当有外场作用到半导体两端时,电子的势能即发生变化,从而在能带图上就表现出导带底发生倾斜;反过来,凡是能带发生倾斜的区域,就必然存在电场(外电场或者内建电场)。 导带底到真空中自由电子能级的间距,称为半导体的亲和能,即是把一个电子载流子从半导体内部拿到真空中去所需要的能量。这是半导体的一个特征参量。 导带与价带的关系 对于未掺杂的本征半导体,导带中的电子是由它下面的一个能带(即价带)中的电子(价电子)跃迁上来而形成的,这种产生电子(同时也产生空穴——半导体的另外一种载流子)的过程,称为本征激发。在本征激发过程中,电子和空穴是成对产生的,则总是有“电子浓度=空穴浓度”。这实际上就是本征半导体的特征,因此可以说,凡是两种载流子浓度相等的半导体,就是本征半导体。这就意味着,不仅未掺杂的半导体是本征半导体,就是掺杂的半导体,在一定条件下(例如高温下)也可以转变为本征半导体。 价带的能量低于导带,它也是由许多准连续的能级组成的。但是价带中的许多电子(价电子)并不能导电,而少量的价电子空位——空穴才能导电,故称空穴是载流子。空穴的最低能量——势能,也就是价带顶,通常空穴就处于价带顶附近。 价带顶与导带底之间的能量差,就是所谓半导体的禁带宽度。这就是产生本征激发所需要的最小平均能量。这是半导体最重要的一个特征参量。

导带价带禁带费米能级

导带价带禁带费米能级 The Standardization Office was revised on the afternoon of December 13, 2020

(1)导带conduction band: 导带是由自由电子形成的能量空间。即固体结构内自由运动的电子所具有的能量范围。 对于金属,所有价电子所处的能带就是导带。 对于半导体,所有价电子所处的能带是所谓价带,比价带能量更高的能带是导带。在绝对零度温度下,半导体的价带(valence band)是满带(见),受到光电注入或热激发后,价带中的部分电子会越过禁带(forbidden band/band gap)进入能量较高的空带,空带中存在电子后即成为导电的能带——导带。 势能动能:导带底是导带的最低能级,可看成是电子的势能,通常,电子就处于导带底附近;离开导带底的能量高度,则可看成是电子的动能。当有外场作用到半导体两端时,电子的势能即发生变化,从而在能带图上就表现出导带底发生倾斜;反过来,凡是能带发生倾斜的区域,就必然存在电场(外电场或者内建电场)。 (2)价带与禁带: 价带(valence band)或称价电带,通常是指半导体或绝缘体中,在0K 时能被电子占满的最高能带。对半导体而言,此能带中的能级基本上是连续的。全充满的能带中的电子不能在固体中自由运动。但若该电子受到光照,它可吸收足够能量而跳入下一个容许的最高能区,从而使价带变成部分充填,此时价带中留下的电子可在固体中自由运动。

禁带,英文名为:Forbidden Band 常用来表示价带和导带之间的能态密度为零的能量区间。禁带宽度的大小决定了材料是具有半导体性质还是具有绝缘体性质。半导体的禁带宽度较小,当温度升高时,电子可以被激发传到导带,从而使材料具有导电性。绝缘体的禁带宽度很大,即使在较高的温度下,仍是电的不良导体。无机半导体的禁带宽度从~,π-π共轭聚合物的能带隙大致在~,绝缘体的禁带宽度大于。 (3)导带与价带的关系: “电子浓度=空穴浓度”,这实际上就是本征半导体的特征,因此可以说,凡是两种载流子浓度相等的半导体,就是本征半导体。 注意:不仅未掺杂的半导体是本征半导体,就是掺杂的半导体,在一定条件下(例如高温下)也可以转变为本征半导体。 空穴,载流子:价带中的许多电子(价电子)并不能导电,而少量的价电子空位——空穴才能导电,故称空穴是载流子。空穴的最低能量——势能,也就是价带顶,通常空穴就处于价带顶附近。 禁带宽度:价带顶与导带底之间的能量差,就是所谓半导体的。这就是产生本征激发所需要的最小平均能量。 施主与受主:对于掺杂半导体,电子和空穴大多数是由杂质来提供的。能够提供电子的杂质称为施主;能够提供空穴的杂质称为受主。施主的能级处在靠近导带底的禁带中;受主的能级处在靠近价带顶的禁带中。实际上未掺杂半导体的费米能级在价带和导带的中央附近。n型半导体的费米能级在导带底附近,而p型在价带顶附近。

导带、价带、禁带

【半导体】 (1)导带 conduction band A解释 导带是由自由电子形成的能量空间。即固体结构内自由运动的电子所具有的能量范围。 对于金属,所有价电子所处的能带就是导带。 对于半导体,所有价电子所处的能带是所谓价带,比价带能量更高的能带是导带。在绝对零度温度下,半导体的价带(valenee band)是满带(见 能带理论),受到光电注入或热激发后,价带中的部分电子会越过禁带 (forbidden ban d/ba nd gap)进入能量较高的空带,空带中存在电子后即成 为导电的能带一一导带。 B导带的涵义: 导带是半导体最外面(能量最高)的一个能带,是由许多准连续的能级组成的;是半导体的一种载流子一一自由电子(简称为电子)所处的能量范围。导带中往往只有少量的电子,大多数状态(能级)是空着的,则在外加作用下能够发生状态的改变,故导带中的电子能够导电,即为载流子。 导带底是导带的最低能级,可看成是电子的势能,通常,电子就处于 导带底附近;离开导带底的能量高度,则可看成是电子的动能。当有外场 作用到半导体两端时,电子的势能即发生变化,从而在能带图上就表现出导带底发生倾斜;反过来,凡是能带发生倾斜的区域,就必然存在电场(外电场或者内建电场)。 导带底到真空中自由电子能级的间距,称为半导体的亲和能,即是把 一个电子载流子从半导体内部拿到真空中去所需要的能量。这是半导体的一个特征参量。 (2)价带与禁带 价带(vale nee band )或称价电带,通常是指半导体或绝缘体中,在0K时能被电子占满的最高能带。对半导体而言,此能带中的能级基本上是连续的。全充满的能带中的电子不能在固体中自由运动。但若该电子受到光照,它可吸收足 够能量而跳入下一个容许的最高能区,从而使价带变成部分充填,此时价带中留下的电子可在固体中自由运动。价带中电子的自由运动对于与晶体管有关的现象是很重要的。被价电子占据的能带(低温下通常被价电子占满)。 禁带,英文名为:Forbidden Band 在能带结构中能态密度[1]为零的能量区间。常用来表示价带和导带之间的能态密度为零的能量区间。禁带宽度的大小

导带 价带 禁带

【半导体】(1)导带conduction band A解释 导带是由自由电子形成的能量空间。即固体结构内自由运动的电子所具有的能量范围。 对于金属,所有价电子所处的能带就是导带。 对于半导体,所有价电子所处的能带是所谓价带,比价带能量更高的能带是导带。在绝对零度温度下,半导体的价带(valence band)是满带(见能带理论),受到光电注入或热激发后,价带中的部分电子会越过禁带(forbidden band/band gap)进入能量较高的空带,空带中存在电子后即成为导电的能带——导带。 B导带的涵义: 导带是半导体最外面(能量最高)的一个能带,是由许多准连续的能级组成的;是半导体的一种载流子——自由电子(简称为电子)所处的能量范围。导带中往往只有少量的电子,大多数状态(能级)是空着的,则在外加作用下能够发生状态的改变,故导带中的电子能够导电,即为载流子。 导带底是导带的最低能级,可看成是电子的势能,通常,电子就处于导带底附近;离开导带底的能量高度,则可看成是电子的动能。当有外场作用到半导体两端时,电子的势能即发生变化,从而在能带图上就表现出导带底发生倾斜;反过来,凡是能带发生倾斜的区域,就必然存在电场(外电场或者内建电场)。 导带底到真空中自由电子能级的间距,称为半导体的亲和能,即是把一个电子载流子从半导体内部拿到真空中去所需要的能量。这是半导体的一个特征参量。 (2)价带与禁带 价带(valence band)或称价电带,通常是指半导体或绝缘体中,在0K时能被电子占满的最高能带。对半导体而言,此能带中的能级基本上是连续的。全充满的能带中的电子不能在固体中自由运动。但若该电子受到光照,它可吸收足够能量而跳入下一个容许的最高能区,从而使价带变成部分充填,此时价带中留下的电子可在固体中自由运动。价带中电子的自由运动对于与晶体管有关的现象是很重要的。被价电子占据的允带(低温下通常被价电子占满)。 禁带,英文名为:Forbidden Band 在能带结构中能态密度[1]为零的能量区间。常用来表示价带和导带之间的能态密度为零的能量区间。禁带宽度的大小决定了材料是具有半导体性质还是具有绝缘体性质。半导体的禁带宽度较小,当温度升高时,电子可以被激发传到导带,从而使材料具有导电性。绝缘体的禁带宽度很大,即使在较高的温度下,仍是电的不良导体。

相关文档
最新文档