2013年中考数学复习专题讲座四:探究型问题(含详细参考答案)

2013年中考数学复习专题讲座四:探究型问题(含详细参考答案)
2013年中考数学复习专题讲座四:探究型问题(含详细参考答案)

2013年中考数学复习专题讲座四:探究型问题

一、中考专题诠释

探究型问题是指命题中缺少一定的条件或无明确的结论,需要经过推断,补充并加以证明的一类问题.根据其特征大致可分为:条件探究型、结论探究型、规律探究型和存在性探究型等四类.

二、解题策略与解法精讲

由于探究型试题的知识覆盖面较大,综合性较强,灵活选择方法的要求较高,再加上题意新颖,构思精巧,具有相当的深度和难度,所以要求同学们在复习时,首先对于基础知识一定要复习全面,并力求扎实牢靠;其次是要加强对解答这类试题的练习,注意各知识点之间的因果联系,选择合适的解题途径完成最后的解答.由于题型新颖、综合性强、结构独特等,此类问题的一般解题思路并无固定模式或套路,但是可以从以下几个角度考虑:

1.利用特殊值(特殊点、特殊数量、特殊线段、特殊位置等)进行归纳、概括,从特殊到一般,从而得出规律.

2.反演推理法(反证法),即假设结论成立,根据假设进行推理,看是推导出矛盾还是能与已知条件一致.

3.分类讨论法.当命题的题设和结论不惟一确定,难以统一解答时,则需要按可能出现的情况做到既不重复也不遗漏,分门别类加以讨论求解,将不同结论综合归纳得出正确结果.

4.类比猜想法.即由一个问题的结论或解决方法类比猜想出另一个类似问题的结论或解决方法,并加以严密的论证.

以上所述并不能全面概括此类命题的解题策略,因而具体操作时,应更注重数学思想方法的综合运用.三、中考考点精讲

考点一:动态探索型:此类问题结论明确,而需探究发现使结论成立的条件.

例1 (2012?自贡)如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.

(1)证明不论E、F在BC、CD上如何滑动,总有BE=CF;

(2)当点E、F在BC、CD上滑动时,分别探讨四边形AECF和△CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.

解答:(1)证明:连接AC,如下图所示,∵四边形ABCD为菱形,∠BAD=120°,

∠1+∠EAC=60°,∠3+∠EAC=60°,∴∠1=∠3,∵∠BAD=120°,∴∠ABC=60°,∴△ABC和△ACD为等边三角形,∴∠4=60°,AC=AB,∴在△ABE和△ACF中,

,∴△ABE≌△ACF(ASA).∴BE=CF;

(2)解:四边形AECF的面积不变,△CEF的面积发生变化.理由:由(1)得△ABE≌△ACF,则S△ABE=S△ACF,故S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值,作AH⊥BC于H点,则BH=2,

S四边形AECF=S△ABC=BC?AH=BC?=4,由“垂线段最短”可知:当正三角形AEF的边AE与

BC垂直时,边AE最短.故△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又S△CEF=S四边形AECF﹣S△AEF,则此时△CEF的面积就会最大.

∴S△CEF=S四边形AECF﹣S△AEF=4﹣×2×=.

考点二:结论探究型:此类问题给定条件但无明确结论或结论不惟一,需探索发现与之相应的结论的题目.例2(2012?盐城)如图①所示,已知A、B为直线l上两点,点C为直线l上方一动点,连接AC、BC,分别以AC、BC为边向△ABC外作正方形CADF和正方形CBEG,过点D作DD1⊥l于点D1,过点E作EE1⊥l于点E1.

(1)如图②,当点E恰好在直线l上时(此时E1与E重合),试说明DD1=AB;

(2)在图①中,当D、E两点都在直线l的上方时,试探求三条线段DD1、EE1、AB之间的数量关系,并说明理由;

(3)如图③,当点E在直线l的下方时,请直接写出三条线段DD1、EE1、AB之间的数量关系.(不证明)解答:(1)证明:∵四边形CADF、CBEG是正方形,∴AD=CA,∠DAC=∠ABC=90°,

∴∠DAD1+∠CAB=90°,∵DD1⊥AB,∴∠DD1A=∠ABC=90°,∴∠DAD1+∠ADD1=90°,

∴∠ADD1=∠CAB,在△ADD1和△CAB中,

,∴△ADD1≌△CAB(AAS),∴DD1=AB;

(2)解:AB=DD1+EE1.

证明:过点C作CH⊥AB于H,∵DD1⊥AB,∴∠DD1A=∠CHA=90°,∴∠DAD1+∠ADD1=90°,

∵四边形CADF是正方形,∴AD=CA,∠DAC=90°,∴∠DAD1+∠CAH=90°,∴∠ADD1=∠CAH,

在△ADD1和△CAH中,,∴△ADD1≌△CAH(AAS),∴DD1=AH;

同理:EE1=BH,∴AB=AH+BH=DD1+EE1;

(3)解:AB=DD1﹣EE1.

证明:过点C作CH⊥AB于H,∵DD1⊥AB,∴∠DD1A=∠CHA=90°,∴∠DAD1+∠ADD1=90°,

∵四边形CADF是正方形,∴AD=CA,∠DAC=90°,∴∠DAD1+∠CAH=90°,∴∠ADD1=∠CAH,

在△ADD1和△CAH中,

,∴△ADD1≌△CAH(AAS)∴DD1=AH;同理:EE1=BH,∴AB=AH﹣BH=DD1﹣EE1.

例3(2012?丽水)在直角坐标系中,点A是抛物线y=x2在第二象限上的点,连接OA,过点O作OB⊥OA,交抛物线于点B,以OA、OB为边构造矩形AOBC.

(1)如图1,当点A的横坐标为时,矩形AOBC是正方形;

(2)如图2,当点A的横坐标为时,

①求点B的坐标;

②将抛物线y=x2作关于x轴的轴对称变换得到抛物线y=﹣x2,试判断抛物线y=﹣x2经过平移交换后,能否经过A,B,C三点?如果可以,说出变换的过程;如果不可以,请说明理由.

解答:解:(1)如图,过点A作AD⊥x轴于点D,∵矩形AOBC是正方形,∴∠AOC=45°,

∴∠AOD=90°﹣45°=45°,∴△AOD是等腰直角三角形,设点A的坐标为(﹣a,a)(a≠0),

则(﹣a)2=a,解得a1=﹣1,a2=0(舍去),∴点A的坐标﹣a=﹣1,故答案为:﹣1;

(2)①过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F,当x=﹣时,y=(﹣)2=,

即OE=,AE=,∵∠AOE+∠BOF=180°﹣90°=90°,∠AOE+∠EAO=90°,∴∠EAO=∠BOF,

又∵∠AEO=∠BFO=90°,∴△AEO∽△OFB,∴===,

设OF=t,则BF=2t,∴t2=2t,解得:t1=0(舍去),t2=2,∴点B(2,4);

②过点C作CG⊥BF于点G,∵∠AOE+∠EAO=90°,∠FBO+∠CBG=90°,∠AOE=∠FBO,

∴∠EAO=∠CBG,

在△AEO和△BGC中,,∴△AEO≌△BGC(AAS),∴CG=OE=,BG=AE=.

∴x c=2﹣=,y c=4+=,∴点C(,),

设过A(﹣,)、B(2,4)两点的抛物线解析式为y=﹣x2+bx+c,由题意得,,

解得,∴经过A、B两点的抛物线解析式为y=﹣x2+3x+2,

当x=时,y=﹣()2+3×+2=,所以点C也在此抛物线上,

故经过A、B、C三点的抛物线解析式为y=﹣x2+3x+2=﹣(x﹣)2+.

平移方案:先将抛物线y=﹣x2向右平移个单位,再向上平移个单位得到抛物线y=﹣(x﹣)2+.

考点三:规律探究型:

规律探索问题是指由几个具体结论通过类比、猜想、推理等一系列的数学思维过程,来探求一般性结论的问题,解决这类问题的一般思路是通过对所给的具体的结论进行全面、细致的观察、分析、比较,从中发现其变化的规律,并猜想出一般性的结论,然后再给出合理的证明或加以运用.

例4 (2012?青海)如图(*),四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF

交正方形外角平分线CF于点F.请你认真阅读下面关于这个图的探究片段,完成所提出的问题.

(1)探究1:小强看到图(*)后,很快发现AE=EF,这需要证明AE和EF所在的两个三角形全等,但△ABE和△ECF显然不全等(一个是直角三角形,一个是钝角三角形),考虑到点E是边BC的中点,因此可以选取AB的中点M,连接EM后尝试着去证△AEM≌EFC就行了,随即小强写出了如下的证明过程:证明:如图1,取AB的中点M,连接EM.

∵∠AEF=90°∴∠FEC+∠AEB=90°又∵∠EAM+∠AEB=90°∴∠EAM=∠FEC

∵点E,M分别为正方形的边BC和AB的中点∴AM=EC又可知△BME是等腰直角三角形∴∠AME=135°又∵CF是正方形外角的平分线∴∠ECF=135°∴△AEM≌△EFC(ASA)∴AE=EF

(2)探究2:小强继续探索,如图2,若把条件“点E是边BC的中点”改为“点E是边BC上的任意一点”,其余条件不变,发现AE=EF仍然成立,请你证明这一结论.

(3)探究3:小强进一步还想试试,如图3,若把条件“点E是边BC的中点”改为“点E是边BC延长线上的一点”,其余条件仍不变,那么结论AE=EF是否成立呢?若成立请你完成证明过程给小强看,若不成立请你说明理由.

解答:(2)探究2,证明:在AB上截取AM=EC,连接ME,

由(1)知∠EAM=∠FEC,∵AM=EC,AB=BC,∴BM=BE,∴∠BME=45°,∴∠AME=∠ECF=135°,∵∠AEF=90°,∴∠FEC+∠AEB=90°,又∵∠EAM+∠AEB=90°,∴∠EAM=∠FEC,

在△AEM和△EFC中,,∴△AEM≌△EFC(ASA),∴AE=EF;

(3)探究3:成立,

又∵AD∥BE,∴∠DAE=∠BEA,又∵∠MAD=∠AEF=90°,∴∠DAE+∠MAD=∠BEA+∠AEF,

即∠MAE=∠CEF,

在△MAE和△CEF中,,∴△MAE≌△CEF(ASA),∴AE=EF.

例5(2012?永州)如图所示,已知二次函数y=ax2+bx﹣1(a≠0)的图象过点A(2,0)和B(4,3),l 为过点(0,﹣2)且与x轴平行的直线,P(m,n)是该二次函数图象上的任意一点,过P作PH⊥l,H 为垂足.

(1)求二次函数y=ax2+bx﹣1(a≠0)的解析式;

(2)请直接写出使y<0的对应的x的取值范围;

(3)对应当m=0,m=2和m=4时,分别计算|PO|2和|PH|2的值.由此观察其规律,并猜想一个结论,证明对于任意实数m,此结论成立;

(4)试问是否存在实数m可使△POH为正三角形?若存在,求出m的值;若不存在,请说明理由.

解答:解:(1)∵二次函数y=ax2+bx﹣1(a≠0)的图象过点A(2,0)和B(4,3),

∴,解得a=,b=0,∴二次函数的解析式为y=x2﹣1,

(2)令y=x2﹣1=0,解得x=﹣2或x=2,由图象可知当﹣2<x<2时y<0,

(3)当m=0时,|PO|2=1,|PH|2=1;

当m=2时,P点的坐标为(2,0),|PO|2=4,|PH|2=4,

当m=4时,P点的坐标为(4,3),|PO|2=25,|PH|2=25,

由此发现|PO|2=|PH|2,设P点坐标为(m,n),即n=m2﹣1,|OP|=,

|PH|2=n2+4n+4=n2+m2,故对于任意实数m,|PO|2=|PH|2;

(4)由(3)知OP=PH,只要OH=OP成立,△POH为正三角形,

设P点坐标为(m,n),|OP|=,|OH|=,|OP|=|OH|,即n2=4,解得n=±2,

当n=﹣2时,n=m2﹣1不符合条件,故n=2,m=±2时可使△POH为正三角形.

考点四:存在探索型:此类问题在一定的条件下,需探究发现某种数学关系是否存在的题目.例6(2012?黑龙江)如图,在平面直角坐标系中,直角梯形OABC的边OC、OA分别与x轴、y轴重合,AB∥OC,∠AOC=90°,∠BCO=45°,BC=6,点C的坐标为(﹣9,0).

(1)求点B的坐标;

(2)若直线DE交梯形对角线BO于点D,交y轴于点E,且OE=2,OD=2BD,求直线DE的解析式;(3)若点P是(2)中直线DE上的一个动点,是否存在点P,使以O、E、P为顶点的三角形是等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.

解答:解:(1)过点B作BF⊥x轴于F,…(1分)

在Rt△BCF中,∵∠BCO=45°,BC=6,∴CF=BF=6,…(1分)∵C 的坐标为(﹣9,0),

∴AB=OF=3,∴点B的坐标为(﹣3,6);…(1分)

(2)过点D作DG⊥y轴于点G,…(1分)∵AB∥DG,∴△ODG∽△OBA,∵===,AB=3,

OA=6,∴DG=2,OG=4,…(1分)∴D(﹣2,4),E(0,2),

设直线DE解析式为y=kx+b(k≠0)

∴,∴,…(1分)∴直线DE解析式为y=﹣x+2;…(1分)

(3)存在P1(2,0)、P2(1,1)、P3(,2﹣)、P4(﹣,2+)…(3分)

(写对一个点得1分,写对两个点或三个点得2分)

例7 (2012?北海)如图,在平面直角坐标系中有Rt△ABC,∠A=90°,AB=AC,A(﹣2,0)、B(0,1)、C(d,2).

(1)求d的值;

(2)将△ABC沿x轴的正方向平移,在第一象限内B、C两点的对应点B′、C′正好落在某反比例函数图象上.请求出这个反比例函数和此时的直线B′C′的解析式;

(3)在(2)的条件下,直线BC交y轴于点G.问是否存在x轴上的点M和反比例函数图象上的点P,使得四边形PGMC′是平行四边形?如果存在,请求出点M和点P的坐标;如果不存在,请说明理由.

解答:解:(1)作CN⊥x轴于点N,∵A(﹣2,0)、B(0,1)、C(d,2),∴OA=2,OB=1,CN=2,∵∠CAB=90°,即∠CAN+∠BAO=90°,又∵∠CAN+∠ACN=90°,∴∠BAO=∠ACN,

∵,∴Rt△CNA≌Rt△AOB(AAS),∴NC=OA=2,AN=BO=1,

∴NO=NA+AO=3,又点C在第二象限,∴d=﹣3;

(2)设反比例函数为y=(k≠0),点C′和B′在该比例函数图象上,

设C′(m,2),则B′(m+3,1),把点C′和B′的坐标分别代入y=,得k=2m;k=m+3,

∴2m=m+3,解得:m=3,则k=6,反比例函数解析式为y=,点C′(3,2),B′(6,1),

设直线C′B′的解析式为y=ax+b(a≠0),把C′、B′两点坐标代入得:

,∴解得:;∴直线C′B′的解析式为y=﹣x+3;

(3)存在x轴上的点M和反比例函数图象上的点P,使得四边形PGMC′是平行四边形,理由为:

设Q是G C′的中点,令y=﹣x+3中x=0,得到y=3,∴G(0,3),又C′(3,2),∴Q(,),

过点Q作直线l与x轴交于M′点,与y=的图象交于P′点,

若四边形P′G M′C′是平行四边形,则有P′Q=Q M′,

易知点M′的横坐标大于,点P′的横坐标小于,

作P′H⊥x轴于点H,QK⊥y轴于点K,P′H与QK交于点E,作QF⊥x轴于点F,

∵QF∥P′E,∴∠M′QF=∠QP′E,

在△P′EQ和△QFM′中,

∵,∴△P′EQ≌△QFM′(AAS),∴EQ=FM′,P′Q=QM′,设EQ=FM′=t,

∴点P′的横坐标x=﹣t,点P′的纵坐标y===,点M′的坐标是(+t,0),

∴P′E=P′H﹣EH=P′H﹣QF=﹣,又∵P′Q=QM′,

根据勾股定理得:P′E2+EQ2=QF2+FM′2,∴(﹣)2+t2=()2+t2,整理得:=5,

解得:t=(经检验,它是分式方程的解),∴﹣t=﹣=;==5;+t=+=,∴P′(,5),M′(,0),则点P′为所求的点P,点M′为所求的点M.

四、中考真题演练

1.(2012?广东)如图,直线y=2x﹣6与反比例函数y=的图象交于点A(4,2),与x轴交于点B.(1)求k的值及点B的坐标;

(2)在x轴上是否存在点C,使得AC=AB?若存在,求出点C的坐标;若不存在,请说明理由.

解答:解:(1)把(4,2)代入反比例函数y=,得k=8,

把y=0代入y=2x﹣6中,可得x=3,故k=8;B点坐标是(3,0);

(2)假设存在,设C点坐标是(a,0),则∵AB=AC,

∴=,

即(4﹣a)2+4=5,解得a=5或a=3(此点与B重合,舍去)故点C的坐标是(5,0).

2.(2012?乐山)如图,直线y=2x+2与y轴交于A点,与反比例函数(x>0)的图象交于点M,过M

作MH⊥x轴于点H,且tan∠AHO=2.

(1)求k的值;

(2)点N(a,1)是反比例函数(x>0)图象上的点,在x轴上是否存在点P,使得PM+PN最小?若存在,求出点P的坐标;若不存在,请说明理由.

解答:解:

(1)由y=2x+2可知A(0,2),即OA=2.…(1分)∵tan∠AHO=2,∴OH=1.…(2分)

∵MH⊥x轴,∴点M的横坐标为1.∵点M在直线y=2x+2上,

∴点M的纵坐标为4.即M(1,4).…(3分)∵点M在y=上,∴k=1×4=4.…(4分)

(2)存在.

∵点N(a,1)在反比例函数(x>0)上,∴a=4.即点N的坐标为(4,1).…(5分)

过点N作N关于x轴的对称点N1,连接MN1,交x轴于P(如图所示).此时PM+PN最小.…(6分)∵N与N1关于x轴的对称,N点坐标为(4,1),∴N1的坐标为(4,﹣1).…(7分)

设直线MN1的解析式为y=kx+b.

由解得k=﹣,b=.…(9分)∴直线MN1的解析式为.

令y=0,得x=.∴P点坐标为(,0).…(10分)

3.(2012?莆田)如图,一次函数y=k1x+b的图象过点A(0,3),且与反比例函数(x>O)的图象

相交于B、C两点.

(1)若B(1,2),求k1?k2的值;

(2)若AB=BC,则k1?k2的值是否为定值?若是,请求出该定值;若不是,请说明理由.

解答:解:(1)∵A(0,3),B(1,2)在一次函数y=k1x+b的图象图象上,

∴,解得;∵B(1,2)在反比例函数图象上,∴=2,

解得k2=2,所以,k1?k2=(﹣1)×2=﹣2;

(2)k1?k2=﹣2,是定值.

理由如下:

∵一次函数的图象过点A(0,3),∴设一次函数解析式为y=k1x+3,反比例函数解析式为y=,

∴k1x+3=,整理得k1x2+3x﹣k2=0,∴x1+x2=﹣,x1?x2=﹣

∵AB=BC,∴点C的横坐标是点B的横坐标的2倍,不防设x2=2x1,

∴x1+x2=3x1=﹣,x1?x2=2x12=﹣,∴﹣=(﹣)2,整理得,k1?k2=﹣2,是定值.4.(2012?长春)如图,在平面直角坐标系中,平行四边形OABC的顶点A、C的坐标分别为A(2,0)、

C(﹣1,2),反比例函数y=(k≠0)的图象经过点B.

(1)求k的值.

(2)将平行四边形OABC沿x轴翻折,点C落在点C′处,判断点C′是否在反比例函数y=(k≠0)的图象上,请通过计算说明理由.

解答:解:(1)∵四边形OABC是平行四边形,∴BC=AO,∵A(2,0),∴OA=2,∴BC=2,

∵C(﹣1,2),∴CD=1,∴BD=BC﹣CD=2﹣1=1,∴B(1,2),∵反比例函数y=(k≠0)的图象经过点B,∴k=1×2=2;

(2)∵?OABC沿x轴翻折,点C落在点C′处,∴C′点坐标是(﹣1,﹣2),∵k=2,∴反比例函数解析式

为y=,把C′点坐标(﹣1,﹣2)代入函数解析式能使解析式左右相等,故点C′在反比例函数y=的图象

上.

5(2012?宜宾)如图,抛物线y=x2﹣2x+c的顶点A在直线l:y=x﹣5上.

(1)求抛物线顶点A的坐标;

(2)设抛物线与y轴交于点B,与x轴交于点C、D(C点在D点的左侧),试判断△ABD的形状;(3)在直线l上是否存在一点P,使以点P、A、B、D为顶点的四边形是平行四边形?若存在,求点P

的坐标;若不存在,请说明理由.

解答:解:(1)∵顶点A的横坐标为x==1,且顶点A在y=x﹣5上,∴当x=1时,y=1﹣5=﹣4,

∴A(1,﹣4).

(2)△ABD是直角三角形.

将A(1,﹣4)代入y=x2﹣2x+c,可得,1﹣2+c=﹣4,∴c=﹣3,∴y=x2﹣2x﹣3,∴B(0,﹣3)

当y=0时,x2﹣2x﹣3=0,x1=﹣1,x2=3∴C(﹣1,0),D(3,0),

BD2=OB2+OD2=18,AB2=(4﹣3)2+12=2,AD2=(3﹣1)2+42=20,BD2+AB2=AD2,

∴∠ABD=90°,即△ABD是直角三角形.

(3)存在.

由题意知:直线y=x﹣5交y轴于点A(0,﹣5),交x轴于点F(5,0)∴OE=OF=5,又∵OB=OD=3

∴△OEF与△OBD都是等腰直角三角形∴BD∥l,即PA∥BD

则构成平行四边形只能是PADB或PABD,如图,过点P作y轴的垂线,过点A作x轴的垂线并交于点C 设P(x1,x1﹣5),则G(1,x1﹣5)则PC=|1﹣x1|,AG=|5﹣x1﹣4|=|1﹣x1|,PA=BD=3

由勾股定理得:(1﹣x1)2+(1﹣x1)2=18,x12﹣2x1﹣8=0,x1=﹣2或4

∴P(﹣2,﹣7),P(4,﹣1)

存在点P(﹣2,﹣7)或P(4,﹣1)使以点A、B、D、P为顶点的四边形是平行四边形.

6.(2012?温州)如图,经过原点的抛物线y=﹣x2+2mx(m>0)与x轴的另一个交点为A.过点P(1,m)作直线PM⊥x轴于点M,交抛物线于点B.记点B关于抛物线对称轴的对称点为C(B、C不重合).连接CB,CP.

(1)当m=3时,求点A的坐标及BC的长;

(2)当m>1时,连接CA,问m为何值时CA⊥CP?

(3)过点P作PE⊥PC且PE=PC,问是否存在m,使得点E落在坐标轴上?若存在,求出所有满足要求的m的值,并定出相对应的点E坐标;若不存在,请说明理由.

解答:解:(1)当m=3时,y=﹣x2+6x,令y=0得﹣x2+6x=0,∴x1=0,x2=6,∴A(6,0)

当x=1时,y=5 ∴B(1,5)∵抛物线y=﹣x2+6x的对称轴为直线x=3又∵B,C关于对称轴对称

∴BC=4.

(2)过点C作CH⊥x轴于点H(如图1)由已知得∠ACP=∠BCH=90°∴∠ACH=∠PCB

又∵∠AHC=∠PBC=90°∴△ACH∽△PCB,∴,

∵抛物线y=﹣x2+2mx的对称轴为直线x=m,其中m>1,又∵B,C关于对称轴对称,

∴BC=2(m﹣1),∵B(1,2m﹣1),P(1,m),∴BP=m﹣1,又∵A(2m,0),C(2m﹣1,2m﹣1),∴H(2m﹣1,0),∴AH=1,CH=2m﹣1,

∴,∴m=.

(3)∵B,C不重合,∴m≠1,

(I)当m>1时,BC=2(m﹣1),PM=m,BP=m﹣1,

(i)若点E在x轴上(如图1),

∵∠CPE=90°,∴∠MPE+∠BPC=∠MPE+∠MEP=90°,PC=EP,∴△BPC≌△MEP,

∴BC=PM,∴2(m﹣1)=m,∴m=2,此时点E的坐标是(2,0);

(ii)若点E在y轴上(如图2),过点P作PN⊥y轴于点N,易证△BPC≌△NPE,

∴BP=NP=OM=1,∴m﹣1=1,∴m=2,此时点E的坐标是(0,4);

(II)当0<m<1时,BC=2(1﹣m),PM=m,BP=1﹣m,

(i)若点E在x轴上(如图3),易证△BPC≌△MEP,∴BC=PM,∴2(1﹣m)=m,

∴m=,此时点E的坐标是(,0);

(ii)若点E在y轴上(如图4),过点P作PN⊥y轴于点N,易证△BPC≌△NPE,

∴BP=NP=OM=1,∴1﹣m=1,∴m=0(舍去),

综上所述,当m=2时,点E的坐标是(0,2)或(0,4),当m=时,点E的坐标是(,0).

点评:此题主要考查了二次函数解析式的确定、轴对称的性质、相似三角形的判定和相似三角形的性质以及全等三角形的性质和全等三角形的判定、需注意的是(3)题在不确E点的情况下需要分类讨论,以免漏解.题目的综合性强,难度也很大,有利于提高学生的综合解题能力,是一道不错的题目.

7.(2012?威海)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点为B(2,1),且过点A

交x轴于点G,EF⊥x轴,垂足为点F,点P在抛物线上,且位于对称轴的右侧,PM⊥x轴,垂足为点M,△PCM为等边三角形.

(1)求该抛物线的表达式;

(2)求点P的坐标;

(3)试判断CE与EF是否相等,并说明理由;

(4)连接PE,在x轴上点M的右侧是否存在一点N,使△CMN与△CPE全等?若存在,试求出点N的坐标;若不存在,请说明理由.

解答:解:(1)设抛物线的表达式为y=a(x﹣2)2+1,将点A(0,2)代入,得

a(0﹣2)2+1=2…1分解这个方程,得a=∴抛物线的表达式为y=(x﹣2)2+1。

(2)将x=2代入y=x,得y=2∴点C的坐标为(2,2)即CG=2,

∵△PCM为等边三角形∴∠CMP=60°,CM=PM∵PM⊥x轴,∴∠CMG=30°∴CM=4,GM=2.

∴OM=2+2,PM=4,将y=4代入y=(x﹣2)2+1,得4=(x﹣2)2+1

解这个方程,得x1=2=OM,x2=2﹣2<0(不合题意,舍去).∴点P的坐标为(2+2,4)。(3)相等。把y=x代入y=x2﹣x=2,得x=x2﹣x+2

解这个方程,得x1=4+2,x2=4﹣2<2(不合题意,舍去)∴y=4+2=EF

∴点E的坐标为(4+2,4+2)∴OE==4+4又∵OC=,

∴CE=OE﹣OC=4∴CE=EF。

(4)不存在

假设x轴上存在一点,使△CMN≌△CPE,则CN=CE,∠MNC=∠PCE∵∠MCP=60°,∴∠NCE=60°

又∵CE=EF,∴EN=EF。又∵点E为直线y=x上的点,∴∠CEF=45°,

∴点N与点F不重合.∵EF⊥x轴,这与“垂线段最短”矛盾,∴原假设错误,满足条件的点N不存在。

点评:本题考查了待定系数法求二次函数的解析式,以及等边三角形的性质,解直角三角形,反证法,正确求得E的坐标是关键.

8.(2012?泰安)如图,半径为2的⊙C与x轴的正半轴交于点A,与y轴的正半轴交于点B,点C的坐标为(1,0).若抛物线y=﹣x2+bx+c过A、B两点.

(1)求抛物线的解析式;

(3)若点M是抛物线(在第一象限内的部分)上一点,△MAB的面积为S,求S的最大(小)值.

解答:解:(1)如答图1,连接OB.∵BC=2,OC=1∴OB==

∴B(0,)将A(3,0),B(0,)代入二次函数的表达式

得,解得,∴y=﹣x2+x+.

(2)存在.

如答图2,作线段OB的垂直平分线l,与抛物线的交点即为点P.∵B(0,),O(0,0),

∴直线l的表达式为y=.代入抛物线的表达式,得﹣x2+x+=;

解得x=1±,∴P(1±,).

(3)如答图3,作MH⊥x轴于点H.设M(x m,y m),

则S△MAB=S梯形MBOH+S△MHA﹣S△OAB=(MH+OB)?OH+HA?MH﹣OA?OB

=(y m+)x m+(3﹣x m)y m﹣×3×=x m+y m﹣

∵y m=﹣x m2+x m+,

∴S△MAB=x m+(﹣x m2+x m+)﹣=x m2+x m=(x m﹣)2+

∴当x m=时,S△MAB取得最大值,最大值为.

9(2012?岳阳)(1)操作发现:如图①,D是等边△ABC边BA上一动点(点D与点B不重合),连接DC,以DC为边在BC上方作等边△DCF,连接AF.你能发现线段AF与BD之间的数量关系吗?并证明你发现的结论.

(2)类比猜想:如图②,当动点D运动至等边△ABC边BA的延长线上时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立?

(3)深入探究:

Ⅰ.如图③,当动点D在等边△ABC边BA上运动时(点D与点B不重合)连接DC,以DC为边在BC 上方、下方分别作等边△DCF和等边△DCF′,连接AF、BF′,探究AF、BF′与AB有何数量关系?并证明你探究的结论.

Ⅱ.如图④,当动点D在等边△边BA的延长线上运动时,其他作法与图③相同,Ⅰ中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论.

解答:解:(1)AF=BD;

证明如下:∵△ABC是等边三角形(已知),∴BC=AC,∠BCA=60°(等边三角形的性质);

同理知,DC=CF,∠DCF=60°;∴∠BCA﹣∠DCA=∠DCF﹣DCA,即∠BCD=∠ACF;

在△BCD和△ACF中,

,∴△BCD≌△ACF(SAS),∴BD=AF(全等三角形的对应边相等);

(2)证明过程同(1),证得△BCD≌△ACF(SAS),则AF=BD(全等三角形的对应边相等),所以,当动点D运动至等边△ABC边BA的延长线上时,其他作法与(1)相同,AF=BD仍然成立;

(3)Ⅰ.AF+BF′=A B;

证明如下:由(1)知,△BCD≌△ACF(SAS),则BD=AF;同理△BCF′≌△ACD(SAS),则BF′=AD,∴AF+BF′=BD+AD=AB;

Ⅱ.Ⅰ中的结论不成立.新的结论是AF=AB+BF′;

证明如下:在△BCF′和△ACD中,

,∴△BCF′≌△ACD(SAS),∴BF′=AD(全等三角形的对应边相等);

又由(2)知,AF=BD;∴AF=BD=AB+AD=AB+BF′,即AF=AB+BF′.

10.(2012?烟台)(1)问题探究

如图1,分别以△ABC的边AC与边BC为边,向△ABC外作正方形ACD1E1和正方形BCD2E2,过点C 作直线KH交直线AB于点H,使∠AHK=∠ACD1作D1M⊥KH,D2N⊥KH,垂足分别为点M,N.试探究线段D1M与线段D2N的数量关系,并加以证明.

(2)拓展延伸

①如图2,若将“问题探究”中的正方形改为正三角形,过点C作直线K1H1,K2H2,分别交直线AB于点

H1,H2,使∠AH1K1=∠BH2K2=∠ACD1.作D1M⊥K1H1,D2N⊥K2H2,垂足分别为点M,N.D1M=D2N 是否仍成立?若成立,给出证明;若不成立,说明理由.

②如图3,若将①中的“正三角形”改为“正五边形”,其他条件不变.D1M=D2N是否仍成立?(要求:在图3中补全图形,注明字母,直接写出结论,不需证明)

解答:(1)D1M=D2N.

证明:∵∠ACD1=90°,∴∠ACH+∠D1CK=180°﹣90°=90°,∵∠AHK=∠ACD1=90°,∴∠ACH+∠HAC=90°,∴∠D1CK=∠HAC,

在△ACH和△CD1M中,,∴△ACH≌△CD1M(AAS),

∴D1M=CH,…(3分)同理可证D2N=CH,∴D1M=D2N;

(2)①证明:D1M=D2N成立.

过点C作CG⊥AB,垂足为点G,∵∠H1AC+∠ACH1+∠AH1C=180°,∠D1CM+∠ACH1+∠ACD1=180°,∠AH1C=∠ACD1,∴∠H1AC=∠D1CM,

在△ACG和△CD1M中,,∴△ACG≌△CD1M(AAS),∴CG=D1M,

同理可证CG=D2N,∴D1M=D2N;

②作图正确.D1M=D2N还成立.

11.(2012?湘潭)如图,△ABC是边长为3的等边三角形,将△ABC沿直线BC向右平移,使B点与C 点重合,得到△DCE,连接BD,交AC于F.

(1)猜想AC与BD的位置关系,并证明你的结论;

(2)求线段BD的长.

解答:解:(1)AC⊥BD∵△DCE由△ABC平移而成,∴BE=2BC=6,DE=AC=3,∠E=∠ACB=60°,∴DE=BE,∵BD⊥DE,∵∠E=∠ACB=60°,∴AC∥DE,∴BD⊥AC;

(2)在Rt△BED中,∵BE=6,DE=3,∴BD===3.

12.(2012?苏州)如图,已知抛物线

y=x2﹣(b+1)x+(b是实数且b>2)与x轴的正半轴分别交于

点A、B(点A位于点B的左侧),与y轴的正半轴交于点C.

(1)点B的坐标为,点C的坐标为(用含b的代数式表示);

(2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;

(3)请你进一步探索在第一象限内是否存在点Q,使得△QCO,△QOA和△QAB中的任意两个三角形均相似(全等可作相似的特殊情况)?如果存在,求出点Q的坐标;如果不存在,请说明理由.

解答:解:(1)令y=0,即y=x2﹣(b+1)x+=0,解得:x=1或b,

∵b是实数且b>2,点A位于点B的左侧,∴点B的坐标为(b,0),令x=0,

解得:

y=,∴点C的坐标为(0,),故答案为:(b,0),(0,);

(2)存在,假设存在这样的点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形.设点P的坐标为(x,y),连接OP.则S四边形POCB=S△PCO+S△POB =??x+?b?y=2b,

∴x+4y=16.过P作PD⊥x轴,PE⊥y轴,垂足分别为D、E,∴∠PEO=∠EOD=∠ODP=90°.

∴四边形PEOD是矩形.∴∠EPO=90°.∴∠EPC=∠DPB.∴△PEC≌△PDB,∴PE=PD,即x=y.

由解得由△PEC≌△PDB得EC=DB ,即﹣=b ﹣,解得b=>2符合题意.∴P 的坐标为(,);

(3)假设存在这样的点Q,使得△QCO,△QOA和△QAB中的任意两个三角形均相似.

∵∠QAB=∠AOQ+∠AQO,∴∠QAB>∠AOQ,∠QAB>∠AQO.

∴要使△QOA与△QAB相似,只能∠QAO=∠BAQ=90°,即QA⊥x轴.∵b>2,∴AB>OA,∴∠Q0A >∠ABQ.∴只能∠AOQ=∠AQB.此时∠OQB=90°,

由QA⊥x轴知QA∥y轴.∴∠COQ=∠OQA.∴要使△QOA与△OQC相似,只能∠QCO=90°或

∠OQC=90°.

(I)当∠OCQ=90°时,△CQO≌△QOA.∴AQ=CO=.由AQ2=OA?AB得:()2=b﹣1.

解得:b=8±4.∵b>2,∴b=8+4.∴点Q的坐标是(1,2+).

(II)当∠OQC=90°时,△QCO∽△QOA,∴=,即OQ2=OC?AQ.又OQ2=OA?OB,

∴OC?AQ=OA?OB.即?AQ=1×b.解得:AQ=4,此时b=17>2符合题意,∴点Q的坐标是(1,4).

∴综上可知,存在点Q(1,2+)或Q(1,4),使得△QCO,△QOA和△QAB中的任意两个三角形均相似.

13.(2012?泉州)如图,O为坐标原点,直线l绕着点A(0,2)旋转,与经过点C(0,1)的二次函数

y=x2+h的图象交于不同的两点P、Q.

(1)求h的值;

(2)通过操作、观察,算出△POQ的面积的最小值(不必说理);

(3)过点P、C作直线,与x轴交于点B,试问:在直线l的旋转过程中,四边形AOBQ是否为梯形?若是,请说明理由;若不是,请指出四边形的形状.

解答:解:(1)∵抛物线y=x2+h经过点C(0,1),∴+h=1,解得h=1.

(2)依题意,设抛物线y=x2+1上的点,P(a,a2+1)、Q(b,b2+1)(a<0<b)

过点A的直线l:y=kx+2经过点P、Q,∴a2+1=ak+2…①b2+1=bk+2…②

①×b﹣②×a得:(a2b﹣b2a)+b﹣a=2(b﹣a),化简得:b=﹣;

∴S△POQ=OA?|x Q﹣x P|=?OA?|﹣﹣a|=(﹣)+(﹣a)≥2?=4

由上式知:当﹣=﹣a,即|a|=|b|(P、Q关于y轴对称)时,△POQ的面积最小;

即PQ∥x轴时,△POQ的面积最小,且POQ的面积最小为4.

(3)连接BQ,若l与x轴不平行(如图),即PQ与x轴不平行,

依题意,设抛物线y=x2+1上的点,P(a,a2+1)、Q(b,b2+1)(a<0<b)直线BC:y=k1x+1过点P,∴a2+1=ak1+1,得k1=a,即y=ax+1.令y=0得:x B=﹣,同理,由(2)得:b=﹣

∴点B与Q的横坐标相同,∴BQ∥y轴,即BQ∥OA,又∵AQ与OB不平行,∴四边形AOBQ是梯形,据抛物线的对称性可得(a>0>b)结论相同.

故在直线l旋转的过程中:当l与x轴不平行时,四边形AOBQ是梯形;当l与x轴平行时,四边形AOBQ 是正方形.

14(2012?绍兴)小明和同桌小聪在课后复习时,对课本“目标与评定”中的一道思考题,进行了认真的探索.【思考题】如图,一架2.5米长的梯子AB斜靠在竖直的墙AC上,这时B到墙C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么点B将向外移动多少米?

(1)请你将小明对“思考题”的解答补充完整:

解:设点B将向外移动x米,即BB1=x,

则B1C=x+0.7,A1C=AC﹣AA1=﹣0.4=2

而A1B1=2.5,在Rt△A1B1C中,由+=得方程,

解方程得x1=,x2=,

∴点B将向外移动米.

(2)解完“思考题”后,小聪提出了如下两个问题:

【问题一】在“思考题”中,将“下滑0.4米”改为“下滑0.9米”,那么该题的答案会是0.9米吗?为什么?【问题二】在“思考题”中,梯子的顶端从A处沿墙AC下滑的距离与点B向外移动的距离,有可能相等吗?为什么?

请你解答小聪提出的这两个问题.

解答:解:(1)(x+0.7)2+22=2.52,故答案为;0.8,﹣2.2(舍去),0.8.

(2)①不会是0.9米,若AA1=BB1=0.9,则A1C=2.4﹣0.9=1.5,B1C=0.7+0.9=1.6,

1.52+1.62=4.81,

2.52=6.25∵+≠,∴该题的答案不会是0.9米.

设梯子顶端从A处下滑x米,点B向外也移动x米,

则有(x+0.7)2+(2.4﹣x)2=2.52,

解得:x=1.7或x=0(舍)

∴当梯子顶端从A处下滑1.7米时,点B向外也移动1.7米,即梯子顶端从A处沿墙AC下滑的距离与点B向外移动的距离有可能相等.

15.(2012?广州)如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CE⊥AB于E,设∠ABC=α(60°≤α<90°).

(1)当α=60°时,求CE的长;

(2)当60°<α<90°时,

①是否存在正整数k,使得∠EFD=k∠AEF?若存在,求出k的值;若不存在,请说明理由.

②连接CF,当CE2﹣CF2取最大值时,求tan∠DCF的值.

解答:解:(1)∵α=60°,BC=10,∴sinα=,即sin60°==,解得CE=5;

(2)①存在k=3,使得∠EFD=k∠AEF.

理由如下:连接CF并延长交BA的延长线于点G,

∵F为AD的中点,∴AF=FD,在平行四边形ABCD中,AB∥CD,∴∠G=∠DCF,

在△AFG和△CFD中,,∴△AFG≌△CFD(AAS),

∴CF=GF,AG=CD,∵CE⊥AB,∴EF=GF(直角三角形斜边上的中线等于斜边的一半),

∴∠AEF=∠G,∵AB=5,BC=10,点F是AD的中点,∴AG=5,AF=AD=BC=5,

∴AG=AF,∴∠AFG=∠G,在△AFG中,∠EFC=∠AEF+∠G=2∠AEF,又∵∠CFD=∠AFG(对顶角相等),∴∠CFD=∠AEF,∴∠EFD=∠EFC+∠CFD=2∠AEF+∠AEF=3∠AEF,

因此,存在正整数k=3,使得∠EFD=3∠AEF;

②设BE=x,∵AG=CD=AB=5,∴EG=AE+AG=5﹣x+5=10﹣x,在Rt△BCE中,CE2=BC2﹣BE2=100﹣x2,在Rt△CEG中,CG2=EG2+CE2=(10﹣x)2+100﹣x2=200﹣20x,∵CF=GF(①中已证),

∴CF2=(CG)2=CF2=(200﹣20x)=50﹣5x,

∴CE2﹣CF2=100﹣x2﹣50+5x=﹣x2+5x+50=﹣(x﹣)2+50+,

∴当x=,即点E是AB的中点时,CE2﹣CF2取最大值,此时,EG=10﹣x=10﹣=,

CE===,所以,tan∠DCF=tan∠G===.

16.(2012?厦门)已知:⊙O是△ABC的外接圆,AB为⊙O的直径,弦CD交AB于E,∠BCD=∠BAC.(1)求证:AC=AD;

(2)过点C作直线CF,交AB的延长线于点F,若∠BCF=30°,则结论“CF一定是⊙O的切线”是否正确?若正确,请证明;若不正确,请举反例.

(1)连接AD,∵∠BCD=∠BAC,∠CBE=∠ABC,∴△CBE∽△ABC,∴∠BEC=∠BCA=90°,解答:证明:

∴∠CBA=∠ECA,又∵∠D=∠ABC,∴∠D=∠ACD,∴AC=AD.

(2)连接OC,令∠CAB=20°,则∠ACO=∠CAB=20°,于是∠COB=20°+20°=40°,

则∠OCB=(180°﹣40°)=70°,于是∠FCO=∠FCB+∠OCB=70°+30°=100°,

故此时FC不是⊙O的切线.同理,当∠CAB=30°时,FC不一定是⊙O的切线.

17.(2012?德州)如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.

(1)求证:∠APB=∠BPH;

(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;

(3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.

解答:(1)解:如图1,∵PE=BE,∴∠EBP=∠EPB.又∵∠EPH=∠EBC=90°,∴∠EPH﹣∠EPB=∠EBC ﹣∠EBP.即∠PBC=∠BPH.又∵AD∥BC,∴∠APB=∠PBC.∴∠APB=∠BPH.

(2)△PHD的周长不变为定值8.

证明:如图2,过B作BQ⊥PH,垂足为Q.由(1)知∠APB=∠BPH,又∵∠A=∠BQP=90°,BP=BP,∴△ABP≌△QBP.∴AP=QP,AB=BQ.又∵AB=BC,∴BC=BQ.又∵∠C=∠BQH=90°,BH=BH,

∴△BCH≌△BQH.∴CH=QH.∴△PHD的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.

(3)如图3,过F作FM⊥AB,垂足为M,则FM=BC=AB.又∵EF为折痕,∴EF⊥BP.

∴∠EFM+∠MEF=∠ABP+∠BEF=90°,∴∠EFM=∠ABP.又∵∠A=∠EMF=90°,

∴△EFM≌△BPA.∴EM=AP=x.∴在Rt△APE中,(4﹣BE)2+x2=BE2.解得,.

∴.又四边形PEFG与四边形BEFC全等,

2014年中考数学复习专题讲座(WORD)6:数学思想方法(二)

课件园https://www.360docs.net/doc/491749817.html, 2014年中考数学复习专题讲座六:数学思想方法(二) 一、中考专题诠释 数学思想方法是指对数学知识和方法形成的规律性的理性认识,是解决数学问题的根本策略。数学思想方法揭示概念、原理、规律的本质,是沟通基础知识与能力的桥梁,是数学知识的重要组成部分。数学思想方法是数学知识在更高层次上的抽象和概括,它蕴含于数学知识的发生、发展和应用的过程中。 抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识. 二、解题策略和解法精讲 数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中一定要注重培养在解题中提炼数学思想的习惯,中考常用到的数学思想方法有:整体思想、转化思想、函数与方程思想、数形结合思想、分类讨论思想等.在中考复习备考阶段,教师应指导学生系统总结这些数学思想与方法,掌握了它的实质,就可以把所学的知识融会贯通,解题时可以举一反三。 三、中考考点精讲 考点四:方程思想 从分析问题的数量关系入手,适当设定未知数,把所研究的数学问题中已知量和未知量之间的数量关系,转化为方程或方程组的数学模型,从而使问题得到解决的思维方法,这就是方程思想。 用方程思想解题的关键是利用已知条件或公式、定理中的已知结论构造方程(组)。这种思想在代数、几何及生活实际中有着广泛的应用。 例1 (2012?广东)据媒体报道,我国2009年公民出境旅游总人数约5000万人次,2011年公民出境旅游总人数约7200万人次,若2010年、2011年公民出境旅游总人数逐年递增,请解答下列问题: (1)求这两年我国公民出境旅游总人数的年平均增长率; (2)如果2012年仍保持相同的年平均增长率,请你预测2012年我国公民出境旅游总人数约多少万人次? 考点:一元二次方程的应用。810360 专题:增长率问题。 分析:(1)设年平均增长率为x.根据题意2010年公民出境旅游总人数为5000(1+x)万人次,2011年公民出境旅游总人数5000(1+x)2 万人次.根据题意得方程求解; (2)2012年我国公民出境旅游总人数约7200(1+x)万人次. 解答:解:(1)设这两年我国公民出境旅游总人数的年平均增长率为x.根据题意得5000(1+x)2 =7200. 解得x1 =0.2=20%,x2 =﹣2.2 (不合题意,舍去). 答:这两年我国公民出境旅游总人数的年平均增长率为20%. (2)如果2012年仍保持相同的年平均增长率, 则2012年我国公民出境旅游总人数为7200(1+x)=7200×120%=8640万人次. 答:预测2012年我国公民出境旅游总人数约8640万人次. 点评:方程是解决应用题、实际问题和许多方面的数学问题的重要基础知识,应用范围非常广泛。很多数学问题,特别是有未知数的几何问题,就需要用方程或方程组的知识来解决。具有方程思想就能够很好地求得问题中的未知元素或未知量,这对解决和计算有关的数学问题,特别是综合题,是非常需要的。 - 1 -

中考数学复习专题讲座

中考数学专题讲座一:选择题解题方法 一、中考专题诠释 选择题是各地中考必考题型之一,这说明选择题有它不可替代的重要性. 选择题具有题目小巧,答案简明;适应性强,解法灵活;概念性强、知识覆盖面宽等特征,它有利于考核学生的基础知识,有利于强化分析判断能力和解决实际问题的能力的培养. 二、解题策略与解法精讲 选择题解题的基本原则是:充分利用选择题的特点,小题小做,小题巧做,切忌小题大做. 解选择题的基本思想是既要看到各类常规题的解题思想,但更应看到选择题的特殊性,数学选择题的四个选择支中有且仅有一个是正确的,又不要求写出解题过程. 因而,在解答时应该突出一个“选”字,尽量减少书写解题过程,要充分利用题干和选择支两方面提供的信息,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是解选择题的基本策略. 具体求解时,一是从题干出发考虑,探求结果;二是题干和选择支联合考虑或从选择支出发探求是否满足题干条件. 事实上,后者在解答选择题时更常用、更有效. 三、中考典例剖析 考点一:直接法 从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法。运用此种方法解题需要扎实的数学基础. 例1 方程的解是() A.x=±1 B.x=1 C.x=﹣1 D.x=0 思路分析:观察可得最简公分母是(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 解:方程的两边同乘(x+1),得 x2﹣1=0, 即(x+1)(x﹣1)=0, 解得:x1=﹣1,x2=1. 检验:把x=﹣1代入(x+1)=0,即x=﹣1不是原分式方程的解; 把x=1代入(x+1)=2≠0,即x=1是原分式方程的解. 则原方程的解为:x=1. 故选B. 点评:此题考查了分式方程的求解方法.此题难度不大,注意掌握转化思想的应用,注意解分式方程一定要验根. 对应训练 1.某单位要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排10场比赛,则参加比赛的球队应有() A.7队B.6队C.5队D.4队 考点二:特例法 运用满足题设条件的某些特殊数值、特殊位置、特殊关系、特殊图形、特殊数列、特殊函数等对各选择支进行检验或推理,利用问题在某一特殊情况下不真,则它在一般情况下也不真的原理,由此判明选项真伪的方法。用特例法解选择题时,特例取得愈简单、愈特殊愈好.

2013中考数学总复习资料《湘教版》

2013数学复习 实数部分 一、实数与数轴 1、数轴:规定了原点、正方向、单位长度的直线称为数轴。原点、正方向、单位长度是数轴的三要素。 2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。实数和数轴上的点是一一对应的关系。 二、实数大小的比较 1、在数轴上表示两个数,右边的数总比左边的数大。 2、正数大于0;负数小于0;正数大于一切负数;两个负数绝对值大的反而小。 三、实数的运算 1、加法: (1)同号两数相加,取原来的符号,并把它们的绝对值相加; (2)异号两数相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。可使用加法交换律、结合律。 2、减法:减去一个数等于加上这个数的相反数。 3、乘法: (1)两数相乘,同号取正,异号取负,并把绝对值相乘。 (2)n 个实数相乘,有一个因数为0,积就为0;若n 个非0的实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数为奇数个时,积为负。 (3)乘法可使用乘法交换律、乘法结合律、乘法分配律。 4、除法: (1)两数相除,同号得正,异号得负,并把绝对值相除。 (2)除以一个数等于乘以这个数的倒数。 (3)0除以任何数都等于0,0不能做被除数。 5、乘方与开方:乘方与开方互为逆运算。 6、实数的运算顺序:乘方、开方为三级运算,乘、除为二级运算,加、减是一级运算,如果没有括号,在同一级运算中要从左到右依次运算,不同级的运算,先算高级的运算再算低级的运算,有括号的先算括号里的运算。无论何种运算,都要注意先定符号后运算。 四、有效数字和科学记数法 1、科学记数法:设N >0,则N= a ×n 10(其中1≤a <10,n 为整数)。 2、有效数字:一个近似数,从左边第一个不是0的数,到精确到的数位为止,所有的数字,叫做这个数的有效数字。精确度的形式有两种:(1)精确到那一位;(2)保留几个有效数字。 代数部分 第二章:代数式 基础知识点: 一、代数式 1、代数式:用运算符号把数或表示数的字母连结而成的式子,叫代数式。单独一个数或者一个字母也是代数式。 2、代数式的值:用数值代替代数里的字母,计算后得到的结果叫做代数式的值。 3、代数式的分类: ??? ????? ?????? ?无理式分式多项式单项式 整式有理式代数式 二、整式的有关概念及运算 1、概念 (1)单项式:像x 、7、y x 2 2,这种数与字母的积叫做单项式。单独一个数或字母也是单项式。 单项式的次数:一个单项式中,所有字母的指数叫做这个单项式的次数。 单项式的系数:单项式中的数字因数叫单项式的系数。 (2)多项式:几个单项式的和叫做多项式。 多项式的项:多项式中每一个单项式都叫多项式的项。一个多项式含有几项,就叫几项式。 多项式的次数:多项式里,次数最高的项的次数,就是这个多项式的次数。不含字母的项叫常数项。

专题讲座(数学思想方法与初中数学教学)

专题讲座(数学思想方法与初中数学教学)

数学活动的机会,帮助学生在自主探索和合作交流的过程中,真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。学生只有领会了数学思想方法,才能有效地应用知识,形成能力,从而为解决数学问题、进行数学思维起到很好的促进作用。因此,在初中数学教学中,教师必须重视对学生进行数学思想方法的渗透与培养。 二、几种常见的数学思想方法在初中数学教学中的应用 (一)渗透转化思想,提高学生分析解决问题的能力 所谓“转化思想”是指把待解决或未解决的问题,通过转化,归结到已经解决或比较容易解决的问题中去,最终使问题得到解决的一种思想方法。转化思想是初中数学中常见的一种数学思想,它的应用十分广泛,我们在数学学习过程中,常常把复杂的问题转化为简单的问题,把生疏的问题转化为熟悉的问题。数学问题的解决过程就是一系列转化的过程,转化是化繁为简,化难为

易,化未知为已知的有力手段,是解决问题的一种最基本的思想,对提高学生分析解决问题的能力有积极的促进作用。 我们对转化思想并不陌生,中学数学中常用的化高次为低次、化多元为一元,都是转化思想的体现。在具体内容上,有加减法的转化、乘除法的转化、乘方与开方的转化、数形转化等等。例如:初中数学“有理数的减法”和“有理数的除法”这两节教学内容中,教材是通过“议一议”的形式,使学生在自主探究和合作交流的过程中,经历把有理数的减法转化为加法、把有理数的除法转化为乘法的过程,“减去一个数等于加上这个数的相反数”,“除以一个数等于乘以这个数的倒数”,这个地方虽然很简单,但却充分体现了把“没有学过的知识”转化为“已经学过的知识”来加以解决,学生一旦掌握了这种解决问题的策略,今后无论遇到多么难、多么复杂的问题,都会自然而然地想到把“不会的”转化为“会的”、“已经掌握的”知识来加以解决,这符合学生原有认知规律,作为教师,我们不能因为简单而忽视它的教学,实践告诉我们,往往是越简单、越浅显的例子,越能引起学生的认同,

中考数学总复习中档题集锦

2013年中考数学总复习中档题集锦 1.如图,△ABC中,AB=AC,∠BAC=90°,D、E是BC上的两点,且∠DAE=45°.将△AEC 绕着点A顺时针旋转90°后,得到△AFB,连接DF. (1)请猜想DF与DE之间有何数量关系? (2)证明你猜想的结论. 2.如图,已知抛物线y=x2+bx+c经过A(1,0),B(0,2)两点,顶点为D.将△OAB绕点A 顺时针旋转90°后,点B落到点C的位置,将抛物线沿y轴平移后经过点C,求平移后所得图象的函数关系式. 3.已知:如图,△ABC内接于⊙O,AB为直径,弦CF⊥AB于E,C是的中点,连接BD, 连接AD,分别交CE、BC于点P、Q. (1)求证:P是AQ的中点; (2)若tan∠ABC=,CF=8,求CQ的长. 4.已知:如图,△ABC中,AB=AC,以AB为直径的⊙O交BC 于点D,过点D作DF⊥AC于点F,交BA的延长线于点E. 求证:(1)BD=CD; (2)DE是⊙O的切线.

5.如图,在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,CE∥BF,连接BE、CF. (1)求证:△BDF≌△CDE; (2)若AB=AC,求证:四边形BFCE是菱形. 6.如图,不透明圆锥体DEC放在水平面上,在A处灯光照射下形成影子.设BP过底面圆的圆心,已知圆锥体的高为m,底面半径为2m,BE=4m. (1)求∠B的度数; (2)若∠ACP=2∠B,求光源A距水平面的高度.(答案用含根号的式子表示) 7.已知AB是⊙O的直径,C是⊙O上一点(不与A、B重合),过点C作⊙O的切线CD,过A作CD的垂线,垂足是M点. (1)如图1,若CD∥AB,求证:AM是⊙O的切线. (2)如图2,若AB=6,AM=4,求AC的长. 8.如图,抛物线经过A(4,0),B(1,0),C(0,﹣2)三点. (1)求出抛物线的解读式; (2)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M 为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由; (3)在直线AC上方的抛物线上有一点D,使得△DCA的面积最大,求出点D的坐标.

【备考大全】2011年中考数学总复习资料

中考数学总复习资料 代数部分 第一章:实数 基础知识点: 一、实数的分类: ??? ??? ??? ??? ?? ?????? ?? ?? ??????? ? ??? ?? ?? ??? ???无限不循环小数负无理数正无理数无理数数 有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成q p 的形式,其中p 、q 是互质的整数,这是有理数的重要 特征。 2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如1.101001000100001……;特定意义的数,如π、45sin °等。 3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。 二、实数中的几个概念 1、相反数:只有符号不同的两个数叫做互为相反数。 (1)实数a 的相反数是 -a ; (2)a 和b 互为相反数?a+b=0 2、倒数: (1)实数a (a ≠0)的倒数是a 1;(2)a 和b 互为倒数?1=ab ;(3)注意0没有倒数 3、绝对值: (1)一个数a 的绝对值有以下三种情况: ?? ???-==0 ,0, 00, a a a a a a (2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。 (3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。 4、n 次方根

(1)平方根,算术平方根:设a≥0,称a 叫a的平方根,a叫a的算术平方根。 (2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。 (3)立方根:3a叫实数a的立方根。 (4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。 三、实数与数轴 1、数轴:规定了原点、正方向、单位长度的直线称为数轴。原点、正方向、单位长度是数轴的三要素。 2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。实数和数轴上的点是一一对应的关系。 四、实数大小的比较 1、在数轴上表示两个数,右边的数总比左边的数大。 2、正数大于0;负数小于0;正数大于一切负数;两个负数绝对值大的反而小。 五、实数的运算 1、加法: (1)同号两数相加,取原来的符号,并把它们的绝对值相加; (2)异号两数相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。可使用加法交换律、结合律。 2、减法: 减去一个数等于加上这个数的相反数。 3、乘法: (1)两数相乘,同号取正,异号取负,并把绝对值相乘。 (2)n个实数相乘,有一个因数为0,积就为0;若n个非0的实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数为奇数个时,积为负。 (3)乘法可使用乘法交换律、乘法结合律、乘法分配律。 4、除法: (1)两数相除,同号得正,异号得负,并把绝对值相除。 (2)除以一个数等于乘以这个数的倒数。 (3)0除以任何数都等于0,0不能做被除数。 5、乘方与开方:乘方与开方互为逆运算。 6、实数的运算顺序:乘方、开方为三级运算,乘、除为二级运算,加、减是一级运算,如果没有括号,在同一级运算中要从左到右依次运算,不同级的运算,先算高级的运算再算低级的运算,有括号的先算括号里的运算。无论何种运算,都要注意先定符号后运算。 六、有效数字和科学记数法 1、科学记数法:设N>0,则N= a×n 10(其中1≤a<10,n为整数)。 2、有效数字:一个近似数,从左边第一个不是0的数,到精确到的数位为止,所有的数字,叫做这个数的有效数字。精确度的形式有两种:(1)精确到那一位;(2)保留几个有效数字。 例题: a 。 例1、已知实数a、b在数轴上的对应点的位置如图所示,且b

中考数学复习专题讲座10:方案设计型问题 (1)

精品“正版”资料系列,由本公司独创。旨在将“人教版”、”苏教版“、”北师 大版“、”华师大版“等涵盖几乎所有版本的教材教案、课件、导学案及同步练习和 检测题分享给需要的朋友。 本资源创作于2020年8月,是当前最新版本的教材资源。包含本课对应 内容,是您备课、上课、课后练习以及寒暑假预习的最佳选择。 2013年中考数学专题讲座一:选择题解题方法 一、中考专题诠释 选择题是各地中考必考题型之一,2012年各地命题设置上,选择题的数目稳定在8~14题,这说明选择题有它不可替代的重要性. 选择题具有题目小巧,答案简明;适应性强,解法灵活;概念性强、知识覆盖面宽等特征,它有利于考核学生的基础知识,有利于强化分析判断能力和解决实际问题的能力的培养. 二、解题策略与解法精讲 选择题解题的基本原则是:充分利用选择题的特点,小题小做,小题巧做,切忌小题大做. 解选择题的基本思想是既要看到各类常规题的解题思想,但更应看到选择题的特殊性,数学选择题的四个选择支中有且仅有一个是正确的,又不要求写出解题过程. 因而,在解答时应该突出一个“选”字,尽量减少书写解题过程,要充分利用题干和选择支两方面提供的信息,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是解选择题的基本策略. 具体求解时,一是从题干出发考虑,探求结果;二是题干和选择支联合考虑或从选择支出发探求是否满足题干条件. 事实上,后者在解答选择题时更常用、更有效. 三、中考典例剖析 考点一:直接法 从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法。运用此种方法解题需要扎实的数学基础. 例1 (2012?白银)方程的解是() A.x=±1 B.x=1 C.x=﹣1 D.x=0 思路分析:观察可得最简公分母是(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 解:方程的两边同乘(x+1),得 x2﹣1=0, 即(x+1)(x﹣1)=0, 解得:x1=﹣1,x2=1. 检验:把x=﹣1代入(x+1)=0,即x=﹣1不是原分式方程的解; 把x=1代入(x+1)=2≠0,即x=1是原分式方程的解. 则原方程的解为:x=1. 故选B. 点评:此题考查了分式方程的求解方法.此题难度不大,注意掌握转化思想的应用,注意解分式方程一定要验根. 对应训练

中考数学复习专题讲座:选择题的解题技巧

2015年中考数学复习专题讲座:选择题的解题技巧 一、中考专题诠释 选择题是河北省中考必考题型之一,这几年选择题的数目稳定在16个,分值42分。 选择题具有题目小巧,答案简明;适应性强,解法灵活;概念性强、知识覆盖面宽等特征,它有利于考核学生的基础知识,有利于强化分析判断能力和解决实际问题的能力的培养. 二、解题策略与解法精讲 选择题解题的基本原则是:充分利用选择题的特点,小题小做,小题巧做,切忌小题大做. 解选择题的基本思想是既要看到各类常规题的解题思想,但更应看到选择题的特殊性,数学选择题的四个选择支中有且仅有一个是正确的,又不要求写出解题过程. 因而,在解答时应该突出一个“选”字,尽量减少书写解题过程,要充分利用题干和选择支两方面提供的信息,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是解选择题的基本策略. 具体求解时,一是从题干出发考虑,探求结果;二是题干和选择支联合考虑或从选择支出发探求是否满足题干条件. 事实上,后者在解答选择题时更常用、更有效. 三、2014年河北省中考数学试卷 卷I (选择题,共42分) 一、选择题(本大题共16个小题,1-6小题,每小题2分;7-16小题,每小题3分,共42分,在每小题给出的四个选项中,只有一项符合题目要求的) 1、-2是2的( ) A 、倒数 B 、相反数 C 、绝对值 D 、平方根 2、如图,△ABC 中,D,E 分别上边AB ,AC 的中点,若DE=2,则 BC= ( ) A 、2 B 、3 C 、4 D 、5 3、计算:852-152= ( ) A 、70 B 、700 C 、4900 D 、7000 4、如图,平面上直线a ,b 分别过线段OK 两端点(数据如图),则a ,b 相交 所成的锐角为( ) A 、20° B 、30 ° C 、70° D 、80° 5、a ,b 是两个连续整数,若a <7<b ,则a ,b 分别是( ) A 、2,3 B 、3,2 C 、3,4 D 、6,8 6、如图,直线l 经过第二,三,四象限,l 的解析式是y=(m-2)x+n ,则 m 的取值范围则数轴上表示为( ) 7、化简: 1x 2-x -1 x x -( ) A 、0 B 、1 C 、x D 、1x x - A B C D

2015年中考中考数学总复习资料(备考大全)

2013年中考数学总复习资料 代数部分 第一章:实数 基础知识点: 一、实数的分类: ?????? ???????????????????????????????????????无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成q p 的形式,其中p 、q 是互质的整数,这是有理数的重要特征。 2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如1.101001000100001……;特定意义的数,如π、45sin °等。 3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。 二、实数中的几个概念 1、相反数:只有符号不同的两个数叫做互为相反数。 (1)实数a 的相反数是 -a ; (2)a 和b 互为相反数?a+b=0 2、倒数: (1)实数a (a ≠0)的倒数是a 1;(2)a 和b 互为倒数?1=ab ;(3)注意0没有倒数 3、绝对值: (1)一个数a 的绝对值有以下三种情况: ?????-==0 ,0, 00, a a a a a a (2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。 (3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。 4、n 次方根 (1)平方根,算术平方根:设a ≥0,称a ±叫a 的平方根,a 叫a 的算术平方根。 (2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。 (3)立方根:3a 叫实数a 的立方根。

如何进行中考数学复习

如何进行初中数学中考复习 辽中县肖寨门九年一贯制学校董春艳 初三数学复习的内容面广量大,知识点多,要想在短暂的时间内全面复习初中三年所学的数学知识,形成基本技能,提高解题技巧、解题能力,并非易事。如何提高复习的效率和质量,是每位初三的教师和学生所关心的。为此,我谈一些自己的想法,供大家参考。 一、注重考法研究,把握中考动向 中考复习前,初三数学组要进行考法研究,研究近几年中考数学命题的走向,研究考纲,研究中考复习策略。每位数学老师都进行专题发言。中考考法研究的专题研讨会,将对初三老师的复习起到指导作用,对初三老师把握中考动向,纠正复习偏差,产生积极而深刻的影响。 平时考试中,教师可以模拟中考命题,试题来源于课本改编及自编,注重信息的收集和新题型的探索,着重考查学生基本的数学思想和方法。每次考完后教师与学生都要及时做总结,这样既让教师对中考复习的把握更深,又有利于学生寻找差距,奋力拼争。 二、制定合理的复习计划 切实可行的复习计划能让复习有条不紊地进行下去,起到事半功倍的效果。我们认为,中考的数学复习最好是分四轮进行。 第一轮,摸清初中数学内容的脉络,开展基础知识系统复习。近几年的中考题安排了较大比例(70%以上)的试题来考查“双基”。全卷的基础知识的覆盖面较广,起点低,许多试题源于课本,在课本中能找到原型,有的是对课本原型进行加工、组合、延伸和拓展。复习中要紧扣教材,夯实基础,同时关注新教材中的新知识,对课本知识进行系统梳理,形成知识网络,同时对典型问题进行变式训练,达到举一反三、触类旁通的目的,做到以不变应万变,提高应能力。 近几年的中考题告诉我们学好课本的重要性。在复习时必须深钻教材,在做题中应注意解题方法的归纳和整理,做到举一反三,有些中考题就在书上的例题和习题的基础上延伸、拓展,因此,教师要引导学生重视基础知识的理解和方法的学习。基础知识就是初中所涉及的概念、公式、公理、定理等,掌握基础知识之间的联系,要做到理清知识结构,形成整体知识,并能综合运用。例如:中考涉及的动点问题,既是方程、不等式与函数问题的结合,同时也常涉及到几何中的相似三角形、比例推导等等。 第二轮,针对热点,抓住弱点,开展难点知识专题复习。根据历年中考试卷命题的特点,精心选择一些新颖的、有代表性的题型进行专题训练,就中考的特点可以从以下几个方面收集一些资料,进行专项训练:①实际应用型问题;②突出科技发展、信息资源的转化的图表信息题;③体现自学能力考查的阅读理解题;④考查学生应变能力的图形变化题、开放性试题;⑤考查学生思维能力、创新意识的归纳猜想、操作探究性试题;⑥几何代数综合型试题等。 第三轮,综合训练(模拟练习)。这一阶段,重点是提高学生的综合解题能力,训练学生的解题策略,加强解题指导,提高应试能力。具体做法是:从往年中考卷、自编模拟试卷中精选十份进行训练,每份的练习要求学生独立完成,老师及时批改,重点讲评。

新课标2014年中考数学总复习资料

新课标2014年中考数学总复习资料 代数部分 第一章:实数 基础知识点: 一、实数的分类: ?????? ???????????????????????????????????????无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成q p 的形式,其中p 、q 是互质的整数,这是有理数的重要特征。 2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如1.101001000100001……;特定意义的数,如π、45sin °等。 3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。 二、实数中的几个概念 1、相反数:只有符号不同的两个数叫做互为相反数。 (1)实数a 的相反数是 -a ; (2)a 和b 互为相反数?a+b=0 2、倒数: (1)实数a (a ≠0)的倒数是a 1;(2)a 和b 互为倒数?1=ab ;(3)注意0没有倒数 3、绝对值: (1)一个数a 的绝对值有以下三种情况: ?????-==0 ,0, 00, a a a a a a (2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。 (3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。 4、n 次方根 (1)平方根,算术平方根:设a ≥0,称a ±叫a 的平方根,a 叫a 的算术平方根。 (2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。 (3)立方根:3a 叫实数a 的立方根。 (4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。

专题讲座 ——初中数学复习策略

专题讲座——初中数学复习策略 近几中考试题都体现了“立足基础、考查能力、加强应用”的中考指导思想,大致有以下特点:一是知识考查基础化;二是题材选择生活化;三是能力要求层次化;四是思维模式开放化;五是试卷结构格式化。这就要求我们必须扎实有序的开展复习工作,提高数学总复习的质量和效益。下面就初三数学总复习的有关问题谈一点个人的看法和体会: 第一轮复习全面复习基础知识,加强基本技能训练。 这个阶段的复习目的是让学生全面掌握初中数学基础知识,提高基本技能,掌握基本方法,做到全面、扎实、系统,形成知识网络,是总复习的重点。 在这一阶段复习中要充分体现“习、练、透”。 1.习,即温习。在每单元的复习之前,让学生事先依据要求进行温习,例如:要求他们根据考试大纲,温习所学过的知识,整理复习提纲,编写复习资料,各自编写单元或综合试题,互相考查,互相研究解题答卷的技巧,互评试卷的优劣性等等。同时,运用“讲演法”,让学生对现阶段复习进行回顾、思考及提高,以便指导下阶段的复习。所谓的“讲演法”不只是用语言表述,更主要是对复习的总结。 2.练,就是在复习的基础上,通过教师的归纳总结、讲解,在每一个单元设计一些针对性强,有典型性和代表性的练习,进行数学思维的训练,形成严格又精确的思维习惯。运用数字化的处理方

式,进行建模训练,学会用数学知识方法解决实际问题;培养学生学会抓住事物表象之下的数量关系,提出带普遍意义的数学问题,达到强化、巩固复习效果。 3.透,就是注重知识的内在联系,培养思维的深刻性,并贯穿复习的始终。在全面复习的基础上对各知识点之间的联系区别进行归纳总结。引导学生将繁杂的知识简约化,零散的知识系统化,交叉的知识立体化,横纵的知识网络化。这样才能循序渐进,逐步提高。学生按这个层次结构,挖掘知识的内涵和外延,能有效地提高学生复习质量和效 第二轮复习:综合运用知识,加强能力培养。 这个阶段的复习目的是构建初中数学知识结构,从整体上把握数学内容,侧重提高学生分析能力、解决问题的能力,是第一轮复习的延伸和提高。这一轮采取专题讲座、综合训练等形式。 分类复习,一一击破 分类复习的依据为内容分类和题型分类两种形式。根据不同要求,对相关内容分门别类的进行综合比较讲解等。下面谈谈题型分类复习中应注意的几点问题。 1.注重数学思想方法的概括,提高思维的灵活性。在复习课中,特别是在解题教学中,很多内容含有丰富的数学思想和方法,教师有意识地加以概括,对培养学生的思维能力会起到重要的作用。例如在分析一道综合题推理运算论证时,有意识展示数学思想方法的优越性,在哪里体现了数形结合,使问题得到转化,哪里体现方

2013年中考数学总复习安排表(创新学校)

2013年中考数学总复习安排表 调整心情,抓好课本,熟练方法,迎接中考。 第一轮系统查缺复习安排 月份 周课时 内容 二 月 第1周(数.式) 实数(有理数,无理数) 整式 分式和分式方程 三 月 第2周 (方程) 测试1 数与式 一元一次方程和二元 一次方程组 一元二次方程 第3周 (不等式) 不等式 不等式组 测试2 方程和不等式 第4周 (函数) 函数 一次函数 反比例函数 二次函数.函数综合 第5周 (图形) 测试3 函数 基本图形 三角形 四边形 四月 第6周 (相似) 四边形和三角形综合 相似形 相似性的应用 锐角三角函数 第7周 (圆) 三角函数应用和相似形 的综合应用 圆的基本性质和切线 弧长扇形面积和圆锥 测试4 图形的证明和计算 第8周 (作图) 尺规作图 视图和投影 图形变换 图形与坐标 第9周 (统计) 测试5 基本作图 平均数众数中位数方差 统计图 概率 测试6 统计 一轮复习是总复习的重中之重,要求过“三关”:第一关“记忆关”,夯实基本公式、定理。第二关过基本方法关,熟练基本方法;第三关过基本技能关,掌握解题技能。讲,练,记相结合,实现提分目标30分。 第二轮专题及题型复习安排 月份 周课时 内容 五 月 第10周 常见题型方法(单选.填空.证明. 解答.应用.创新) 探索性习题 操作性习题 阅读理解性习题 5年省市中考试卷解读 第11周 开放性习题 实际应用性习题 分类讨论性习题 第12周 数形结合题 找规律题 方案设计题 第二轮专题复习的主要目的是为了将第一轮复习知识点、线 结合,交织成知识网,注重与现实的联系,以达到能力的培 养和提高,并针对各种题型进行有效小练习。 第三轮综合调整复习安排 月份 周课时 内容 五月 第13周 中考真题训练 外市中考模拟卷训练(审查遗漏知识点,温习课本) 第14周 中考真题训练 外市中考模拟卷训练(审查遗漏知识点,温习课本) 第15周 中考真题训练 外市中考模拟卷训练(审查遗漏知识点,温习课本) 六月 第16周 中考真题训练 外市中考模拟卷训练(审查遗漏知识点,温习课本) 第17周 中考模拟试卷 中考真题试卷 1.之前试卷错误点分析,对照书本。 2.考前心理准备 3.饮食调整 第18周 2012年中考 三轮复习,重点是查漏补缺,提高学生的综合解题能力, 同时调整自己的作息饮食习惯,营造良好心理环境,直面 中考。

中考数学复习专题讲座精编含详细参考答案数学思想方法

2018年中考数学复习专题讲座:数学思想方法<2) 一、中考专题诠释 数学思想方法是指对数学知识和方法形成的规律性的理性认识,是解决数学问题的根本策略。数学思想方法揭示概念、原理、规律的本质,是沟通基础知识与能力的桥梁,是数学知识的重要组成部分。数学思想方法是数学知识在更高层次上的抽象和概括,它蕴含于数学知识的发生、发展和应用的过程中。 抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试卷中所体现的数学思想和方法,培养用数学思想方法解决问题的意识. 二、解题策略和解法精讲 数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中一定要注重培养在解题中提炼数学思想的习惯,中考常用到的数学思想方法有:整体思想、转化思想、函数与方程思想、数形结合思想、分类讨论思想等.在中考复习备考阶段,教师应指导学生系统总结这些数学思想与方法,掌握了它的实质,就可以把所学的知识融会贯通,解题时可以举一反三。 三、中考考点精讲 考点四:方程思想 从分析问题的数量关系入手,适当设定未知数,把所研究的数学问题中已知量和未知量之间的数量关系,转化为方程或方程组的数学模型,从而使问题得到解决的思维方法,这就是方程思想。用方程思想解题的关键是利用已知条件或公式、定理中的已知结论构造方程(组>。这种思想在代数、几何及生活实际中有着广泛的应用。 例1 <2018?广东)据媒体报道,我国2009年公民出境旅游总人数约5000万人次,2018年公民出境旅游总人数约7200万人次,若2018年、2018年公民出境旅游总人数逐年递增,请解答下列问题: <1)求这两年我国公民出境旅游总人数的年平均增长率; <2)如果2018年仍保持相同的年平均增长率,请你预测2018年我国公民出境旅游总人数约多少万人次? 考点:一元二次方程的应用。专题:增长率问题。 分析:<1)设年平均增长率为x.根据题意2018年公民出境旅游总人数为 5000<1+x)万人次, 2018年公民出 2 境旅游总人数 5000<1+x)万人次.根据题意得方程求解; <2)2018年我国公民出境旅游总人数约7200<1+x)万人次. 2 解答:解:<1)设这两年我国公民出境旅游总人数的年平均增长率为x.根据题意得5000<1+x)=7200. 解得 x=0.2=20%,x=﹣2.2 <不合题意,舍去).答:这两年我国公民出境旅游总人数的年平均增长率为 2 1 20%. <2)如果2018年仍保持相同的年平均增长率,则2018年我国公民出境旅游总人数为 7200<1+x)=7200×120%=8640万人次.答:预测2018年我国公民出境旅游总人数约8640万人次. 点评:方程是解决应用题、实际问题和许多方面的数学问题的重要基础知识,应用范围非常广泛。很多数学问题,特别是有未知数的几何问题,就需要用方程或方程组的知识来解决。具有方程思想就能够很好地求得问题中的未知元素或未知量,这对解决和计算有关的数学问题,特别是综合题,是非常需要的。

中考数学专题讲座 解选择题的策略

2009中考数学专题讲座解选择题的策略 概述: 1.选择题在中考中占的比例较大,题比较基础,做题时要细心认真,?失分很不合算,因为它只要一个答案,并不看你的解答过程,若在某个细节上出问题,全题就一分不得. 2.解选择题的方法大致有以下几种:综合法、分析法、验算法、?排除法(筛选法)等.典型例题精析 例1.在下列计算中,正确的是() (A)(ab2)3=ab6(B)(3xy)3=9x3y3 (C)(-2a2)2=-4a4(D)(-2)-2=1 4 解:宜用排除法.(A)中,没有3次方,(B)中32≠9,(C)中(-2)2≠4. ∴应选D. 例2.二次函数y=x2-4x+3的图象交x轴于A、B两点,交y轴于点C,则△ABC的面积为() (A)6 (B)4 (C)3 (D)1 解:宜用综合法,令x2-4x+3=0,得x1=1,x2=3, ∴│AB│=│3-1│=2,令x=0得y=3.? ∴C(0,3),即△CAB中,AB边上的高为3, ∴S△ABC=1 2 ×2×3=3 故选(C). 例3.若m0 (B)m n >1 (C)m-5>n-5 (D)-3m>-3n 解:可用验值法,取m=-10,n=-2进行验算.(A)n-m=-2-(-10)=-2+8>0正确. (B)m n = 10 2 - - =5>1正确. (C)-10-5=-15,n-5=-2-5=-7 m-5>n-5错误.(D)-3m=-3·(-10)=30,-3n=-3×(-2)=5 ∴-3m>-3n正确.∴选(C) 例4.有如下四个结论: ①有两边及一角对应相等的两个三角形全等. ②菱形既是轴对称图形,又是中心对称图形.

2013年中考数学总复习专题测试卷(一)实数(有答案)

2013年中考数学总复习专题测试卷(一) (实数) (试卷满分 150 分,考试时间 120 分钟) 一、选择题(本题共10 小题,每小题4 分,满分40分) 每一个小题都给出代号为A,B,C,D的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的括号内.每一小题:选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分。 1.下列命题中,假命题是( )。 A.9的算术平方根是3 B.16的平方根是±2 C.27的立方根是±3 D.立方根等于-1的实数是-1 2.近似数1.30所表示的准确数A 的范围是( )。 A.1.25≤A <1.35 B.1.20<A <1.30 C.1.295≤A <1.305 D.1.300≤A <1.305 3.已知|a|=8,|b|=2,|a -b|=b -a,则a+b 的值是( )。 A.10 B.-6 C.-6或-10 D.-10 4.绝对值小于8的所有整数的和是( )。 A.0 B.28 C.-28 D.以上都不是 5.由四舍五入法得到的近似数4.9万精确到( )。 A.万位 B.千位 C.十分位 D.千分位 6.一个数的绝对值等于这个数的相反数,这样的数是( )。 A.非负数 B.非正数 C.负数 D.正数 7.若2a 与1-a 互为相反数,则a 等于( )。 A.1 B.-1 C.12 D.13 8.在实数中π,-25 ,0, 3 ,-3.14, 4 无理数有( )。 A.1 个 B.2个 C.3个 D.4个 9 )。 A.7~8之间 B.8.0~8.5之间 C.8.5~9.0之间 D.9~10之间 10.若4a =3=,且0a b +<,则a b -的值是( )。 A.1,7 B.1-,7 C.1,7- D.1-,7- 二、填空题(本题共 4 小题,每小题 5 分,满分 20 分) 11.数轴上与表示数2的点距离为6个单位长的数_________。 12.我们的数学课本的字数大约是21万字,这个数精确到_________位,请用科学记数法表 示课本的字数大约是_________。 13.已知一个矩形的长为 3cm ,宽为 2cm ,试估算它的对角线长为_________(结果保留两 个有效数字)。 14.已知a、b 互为相反数,c 、d 互为倒数,m 的绝对值是2,那么代数式 |a+b|2m 2+1 +4m-3cd=_________。 三、(本题共2小题,每小题8分,满分 16 分)

2013年中考数学专题复习教案27-30

2013年中考数学复习第二十七讲相似图形 【基础知识回顾】 一、成比例线段: 1、线段的比:如果选用同一长度的两条线段AB,CD的长度分别为m、n则这两条线 段的比就是它们的比,即:AB CD= 2、比例线段:四条线段a、b、c、d如果a b=那么四条线段叫做同比例线段,简称 3、比例的基本性质:a b= c d<=> 4、平行线分线段成比例定理:将平行线截两条直线 二、相似三角形: 1、定义:如果两个三角形的各角对应各边对应那么这两个三角形相似 2、性质:⑴相似三角形的对应角对应边 ⑵相似三角形对应点的比、对应角平分线的比、对应的比都等于 ⑶相似三角形周长的比等于面积的比等于 1、判定:⑴基本定理:平行于三角形一边的直线和其它两边或两线相交,三角形与原三 角形相似⑵两边对应且夹角的两三角形相似⑶两角的两三角形相似⑷三组对应边的比的两三角形相似 【名师提醒:1、全等是相似比为的特殊相似2、根据相似三角形的性质的特质和判定,要证四条线段的比相等相等一般要先证判定方法中最常用的是三组对应边成比例的两三角形相似多用在点三角形中】 三、相似多边形: 1、定义:各角对应各边对应的两个多边形叫做相似多边形 2、性质:⑴相似多边形对应角对应边 ⑵相似多边形周长的比等于面积的比等于 一、位似: 1、定义:如果两个图形不仅是而且每组对应点所在直线都经过那么这样的两个图形叫做位似图形,这个点叫做这时相似比又称为 2、性质:位似图形上任意一点到位似中心的距离之比都等于 【名师提醒:1、位似图形一定是图形,但反之不成立,利用位似变换可以将一个图形放大或2、在平面直角坐标系中,如果位似是以原点为位似中心,相似比位r,那么位似图形对应点的坐标的比等于或】 【典型例题解析】 考点一:比例线段

2013中考数学总复习经典(几何)试题

2013中考数学总复习经典(几何)题 (二)几何试题 1、 如图,正方形ABCD 的边长为2,点E 在AB 边上.四边形EFGB 也为正方形,设△AFC 的面积为S ,则 ( ) A .S=2 B .S=2.4 C .S=4 D .S 与B E 长度有关 2、正方形A B C D 、正方形B E F G 和正方形RK PF 的位置如图4所示,点G 在线段D K 上,正方形B E F G 的 边长为4,则D E K △的面积为: (A)10 (B)12 (C)14 (D)16 3、如图,矩形ABCD 中,3AB =cm ,6A D =cm ,点E 为A B 边上的任意一点,四边形EFGB 也是矩形, 2EF BE =,则AFC S =△ 2 cm . 4、 如图,在△ABC 中, 70=∠CAB . 在同一平面内, 将△ABC 绕点A 旋 转到△/ / C AB 的位置, 使得AB CC /// , 则=∠/ BAB ( ) A. 30 B. 35 C. 40 D. 50 5、如图,1P 是一块半径为1的半圆形纸板,在1P 的左下端剪去一个半径为 12 的半圆后得到图形2P ,然后依次剪 去一个更小的半圆(其直径为前一个被剪掉半圆1的半径)得图形34,,,,n P P P ,记纸板n P 的面积为n S , 试计算求出2S = ;3S = ;并猜想得到1n n S S --= ()2n ≥ 。 6、如图,在四边形A B C D 中,P 是对角线B D 的中点,E F ,分别是A B C D ,的中点,18AD BC PEF =∠= ,,则PFE ∠的度数是 . (第16题) C F D B E A P (第6题) A D C E F G B 3题图 D A B R P F C G K 图4 E

相关文档
最新文档