Opiate withdrawal induces dynamic expressions of AMPA receptors and its

Opiate withdrawal induces dynamic expressions of AMPA receptors and its
Opiate withdrawal induces dynamic expressions of AMPA receptors and its

Opiate withdrawal induces dynamic expressions of AMPA receptors and its

regulatory molecule CaMKII αin hippocampal synapses

Weixia Zhong a,1,Zhifang Dong b,1,Meng Tian b ,Jun Cao b ,Tianle Xu c ,

Lin Xu b,c,d,?,Jianhong Luo a,?

a

Department of Neurobiology,Zhejiang University School of Medicine,Hangzhou 310006,PR China

b Laboratory of Learning and Memory,Kunming Institute of Zoology,the Chinese Academy of Sciences,Kunming 650223,PR China c

Institute of Neuroscience,Shanghai Institutes for Biological Sciences,the Chinese Academy of Sciences,Shanghai 200031,PR China d

Mental Health Institute,the 2nd Hospital of Xiangya Medical College,Central South University,Changsha 410011,PR China

Received 30December 2005;accepted 28February 2006

Abstract

Adaptive changes in brain areas following drug withdrawal are believed to contribute to drug seeking and relapse.Cocaine withdrawal alters the expression of GluR1and GluR2/3subunits of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)receptors in nucleus accumbens or amygdala,but the influence of drug withdrawal on hippocampus is little known.Here,we have examined the expression of GluR1and GluR2/3in hippocampal membrane and synaptic fractions following repeated morphine exposure and subsequent withdrawal.Repeated morphine exposure for 12d increased GluR1and GluR2/3in synaptosome but not in membrane fraction.Interestingly,CaMKII α,known to be able to regulate the function of AMPA receptors,was decreased in synaptosome but not in membrane fraction;pCaMKII α,the phosphorylated form of CaMKII α,was increased in both fractions.However,during opiate withdrawal,GluR1was generally reduced while GluR2/3was prominently increased in both fractions;pCaMKII αwas strongly decreased immediately after withdrawal,but detectably increased in late phase of morphine withdrawal in both fractions.Importantly,the opiate withdrawal-induced increase in GluR2/3was dependent on the activation of glucocorticoid receptors and NMDA receptors,as it was prevented by the glucocorticoid receptor antagonist RU38486,or intrahippocampal injection of the NMDA receptor antagonist AP-5or the antagonist to NR2B-containing NMDA receptors,Ro25-6981.These findings indicate that opiate withdrawal induces dynamic expression of GluR1and GluR2/3subunits of AMPA receptors in hippocampal synapses,possibly revealing an adaptive process of the hippocampal functions following opiate withdrawal.?2006Elsevier Inc.All rights reserved.

Keywords:AMPA receptor;Phosphorylation;CaMKII α;Opiate withdrawal;Synaptosome

Introduction

Drugs of abuse are known to cause maladaptive synaptic plastic changes in brain areas such as nucleus accumbens

(NAc),the ventral tegmental area (VTA),prefrontal cortex (PFC),and amygdala as well as hippocampus (Hyman and Malenka,2001;Nestler,2001a;Pu et al.,2002;Glass et al.,2005;Lu et al.,2005).Recent evidence suggests that drug withdrawal enhances the incentive value of the drug,leading to compulsive drug seeking behavior (Lu et al.,2003;Bowers et al.,2004;Frenois et al.,2005).The α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPA)type of glutamate receptors are composed of various combinations of four homologous subunits GluR1to GluR4(Nuriya et al.,2005)to form distinct receptor subtypes (Song and Huganir,2002).The majority of AMPA receptors in adult hippocam-pal pyramidal cells are GluR1/GluR2and

GluR2/GluR3

Life Sciences 79(2006)861–

869

https://www.360docs.net/doc/484819660.html,/locate/lifescie

?Corresponding authors.Luo is to be contacted at Department of Neurobiology,Zhejiang University School of Medicine,Hangzhou 310006,PR China.Tel.:+8657187217010;fax:+8657187217044.Xu,Laboratory of Learning and Memory,Kunming Institute of Zoology,the Chinese Academy of Sciences,Kunming 650223,PR China.Tel.:+868715139165;fax:+868715191823.

E-mail addresses:lxu@https://www.360docs.net/doc/484819660.html, (L.Xu),luojianhong@https://www.360docs.net/doc/484819660.html, (J.Luo).1

These authors contributed equally to this work.0024-3205/$-see front matter ?2006Elsevier Inc.All rights reserved.doi:10.1016/j.lfs.2006.02.040

heteromeric complexes(Wenthold et al.,1996;Kakegawa et al., 2004).The function of the AMPA receptor(AMPAR)is regulated in multiple ways,including dynamic changes in the density of receptors(Banke et al.,2000;Nuriya et al.,2005), which is believed to be one of the mechanisms playing key roles in manifesting synaptic plasticity(Carroll et al.,2001;Shi et al., 2001;Nuriya et al.,2005).In addition to receptor trafficking, the function of AMPA receptors is regulated by Ca2+/ calmodulin-dependent protein kinase II(CaMKII),a ubiquitous protein kinase that acts as a key factor in synaptic plasticity (Bayer et al.,2001).Ca2+-calmodulin complex binding to thr286in the regulatory domain ofαisoform of CaMKII triggers autophosphorylation of this kinase,leading to its activation in the phosphorylated form of CaMKII(pCaMKII) (Mahadev et al.,2001).Following cocaine withdrawal,the expression of GluR1and GluR2/3in NAc is strongly increased (Boudreau and Wolf,2005).Moreover,it has been demonstrat-ed that CaMKII plays important roles in the maladaptive processes of drug addiction(Suenaga et al.,2004).Repeated morphine exposure is associated with changes in several signaling pathways,including CaMKII,that affect the function and targeting of GluR1(Sharma et al.,2003).

However,it is little known how opiate withdrawal will influence the synaptic expression of GluR1and GluR2/3 subunits of AMPA receptors and the regulatory molecule CaMKIIαin the hippocampus.Thus,it is possible that the expression or phosphorylation state of CaMKIIαin hippocam-pus synapses will be changed,which may then affect the synaptic expression of GluR1-and GluR2/3-containing AMPA receptors.In the present study,we examined the effects of repeated morphine exposure and subsequent withdrawal on the level of GluR1,GluR2/3,CaMKIIαand pCaMKIIαin hippocampal membrane and synaptosomal fractions.We then examined whether these changes could be affected by behavioral stress or administration of NMDA receptors antagonists.

Materials and methods

Animal treatment

Experiments were carried out on male Sprague–Dawley rats(inbred strain,Animal House Center,Kunming Medical College,Kunming),weighing200–250g.Animals were group-housed with free access to water and food,in a thermo-regulated environment with a12-h light/dark cycle.Animal care and experimental protocols were approved by the Chinese Academy of Sciences and Zhejiang University School of Medicine,PR China.Animals were chronically treated with morphine(Mor,10mg/kg,s.c.)twice per day for 12consecutive days,a procedure known to produce significant tolerance and dependence to the drug(Pu et al., 2002;Yang et al.,2004)and their body weight and food consumption was monitored.Control animals were injected with saline(Sal,0.6ml/kg,s.c.)according to the same procedure.Then,the animals were withdrawn from morphine for2and18h,and4,7and20d,respectively.(1)Behavioral stress was evoked by elevated platform stress as described previously(Xu et al.,1997,1998;Xiong et al.,2003;Rocher et al.,2004;Yang et al.,2004).Animals withdrawn from morphine for15.5h were placed on an elevated platform for 30min,and returned to their home cage for2h,after which the expression levels of GluR1,GluR2/3,CaMKIIαand pCaMKIIαat18h of withdrawal were analyzed.(2) RU38486(20mg/kg,s.c.)was given twice per day for the first three days of morphine withdrawal,and then the protein expression levels on4d of withdrawal were analyzed.(3) The NMDA receptor antagonist AP-5(10mM per cannula, 1μl,6min)or Ro25-6981,an antagonist at NR2B-containing NMDA receptors(1mM per cannula,1μl,6min)was infused to the surface of the dorsal hippocampus through bilateral guide cannulae that had been implanted2weeks (recovery period)before the procedure of repeated morphine treatment,using techniques similar as those described previously(Padovan and Guimaraes,2004).The infusions were given twice per day for the first three days of morphine withdrawal and the protein level on4d of withdrawal was analyzed.The guide cannula placement was histologically verified post hoc in all rats by infusion of methylene blue dye,and only data obtained from rats with correctly inserted cannulae were included in statistical analysis.After treatment described as above,animals were sacrificed immediately and hippocampal tissues were dissected on ice.

Membrane protein extraction

Membrane protein extraction was carried out using techni-ques described previously(Luo et al.,1997;Zhu et al.,2004;Xu et al.,2005).Briefly,the hippocampal tissue was homogenized twice in100vol.(100×wet weight)of ice-cold10mM Tris–HCl(pH7.4)containing0.32M sucrose at speed5for10s with a20s interval between bursts.The tissue homogenate was centrifuged at700×g for10min at4°C.The supernatant was collected and centrifuged at37,000×g for40min at4°C.The pellets were resuspended in10mM Tris–HCl(pH7.4). Synaptosome preparation

Standard homogenization and ultracentrifugation procedures were used to isolate synaptosomes(Hensley et al.,1994; Witzmann et al.,2005),a subcellular fraction enriched in synaptic proteins(Nayak et al.,1996).Homogenization was performed using a glass homogenizer and a teflon pestle in homogenization buffer containing(in mM):10HEPES, 1EGTA,1EDTA,10Na4P2O7,150NaCl,50NaF,with the protease inhibitors,2μg/mL aprotinin,10μg/mL leupeptin, 4μg/ml pepstatin,and10μg/ml trypsin inhibitor.Homogenates were centrifuged at1000×g for10min to obtain the crude nuclear pellets(P1)and the supernatant(S1).The S1fraction was centrifuged at17,000g for15min to obtain the crude plasma membrane fraction(P2),which was used for the preparation of synaptosomal fractions.The P2fraction was resuspended in the homogenizing buffer,and layered on top of a discontinuous sucrose density gradient consisting of1.2M

862W.Zhong et al./Life Sciences79(2006)861–869

sucrose and0.8M sucrose.The gradient was centrifuged at 54,000×g for90min at4°C in an SW28rotor in a Beckman L-XP refrigerated ultracentrifuge,and the synaptosomal fraction was removed from the interface between0.8and1.2M sucrose. This fraction was slowly diluted with10vol.of ice-cold0.32M sucrose,centrifuged at20,000×g for15min,and the resulting pellets were used for synaptosome protein extraction.Synap-tosome pellets were solubilized in the homogenizing buffer.The protein concentration of synaptosome protein extracts and membrane protein extracts was determined using Folin phenol reagent with bovine serum albumin as a standard(Lowry method)and adjusted to10mg/ml.The samples were frozen at ?80°C until used.

Semi-quantitative Western blotting analysis

Samples containing equal protein amounts(typically10μg/ lane)were loaded onto10%sodium dodecyl sulfate(SDS) polyacrylamide gels(4%stacking gel)and resolved by standard electrophoresis(Bio-Rad,Hercules,CA,USA).According to the previous methods(Luo et al.,1997;Zhu et al.,2004;Xu et al.,2005),we transferred proteins to nitrocellulose membranes in transfer buffer.After blocking,the membranes were then incubated with anti-GluR1(1:200),anti-GluR2/3(1:500),anti-CaMKIIα(1:500)and anti-pT286-CaMKII(1:8500)antibodies (all obtained from Chemicon,Temecula,CA,USA).Immuno-reactive membranes were incubated with horseradish peroxi-dase-conjugated secondary antibody(1:5000).The light emission was detected with enhanced chemiluminescence (Amersham Life Science).Autoradiographs were scanned using a Bio-Rad imaging densitometer and quantified using Quantity One-4.4.0Analysis software.

Data analysis and statistics

In order to make different gel samples comparable,every gel was run with three lanes of the same cortex proteins as a standard(Luo et al.,1997;Zhu et al.,2004;Xu et al.,2005).The values from saline control were used as a basal level for normalization of the experimental data.So after standardized with the average cortex on the same gel,the values for the experimental animals are presented as the percentage of the mean values of saline control that were not included in the behavioral experiments and expressed as the mean±S.E.M%. Statistical comparisons in Western blot studies were made by using unpaired t-test or least significant difference test of one-way ANOV A followed by post hoc analysis.Significance level was set at p<0.05.

Results

Dynamic expression of AMP A receptor subunits GluR1 and GluR2/3in hippocampal synapses during morphine withdrawal

We used specific antibodies to GluR1and GluR2/3to study their expression following repeated morphine exposure and subsequent morphine withdrawal by Western blot technique.

The total membrane fraction and the synaptic fractions

(synaptosomes)were extracted from the hippocampal tissues

taken from animals that were repeatedly treated with saline

(Sal)or morphine(Mor),and withdrawn from morphine for

2h,18h,4d,7d or20d.Characterization revealed an

enrichment of postsynaptic density protein95(PSD95)in

synaptosomes;the cytoskeletal protein(tubulin)was also

weakly detected(not shown).Compared with saline control,

repeated morphine exposure significantly increased the

expression of GluR1and GluR2/3subunits of AMPA

receptors in hippocampal synaptic fraction,but did not affect

their expression in membrane fraction(Fig.1,?p<0.05Mor vs.Sal).This implies that repeated morphine exposure may

increase the insertion of GluR1and GluR2/3into synapses,

consistent with a previous report that acute morphine elicited

synaptic potentiation in the CA1area of the hippocampus in

vivo(Yang et al.,2004).Remarkably,following morphine

withdrawal,GluR1level was generally reduced,but GluR2/3

expression was robustly increased in both fractions,compared

with either saline control or chronic morphine treated

group Sal Mor 2 h18 h 4 d7 d20 d

R

e

l

a

t

i

v

e

l

e

v

e

l

(

%

o

f

s

a

l

i

n

e

)

* #

GluR1

GluR2/3

Sal

m s

Mor 2 h18 h 4 d7 d20 d

m s m s m s m s m s m s

Fig.1.Dynamic expression of GluR1and GluR2/3in hippocampal synapses during morphine withdrawal.Repeated morphine exposure and subsequent withdrawal altered expression levels of AMPA receptor subunits GluR1and GluR2/3in hippocampus.Upper panel:representative immunoblots of GluR1 and GluR2/3in membrane(m)and synaptosome(s)fractions from hippocampus of saline control(Sal)and chronic morphine treated rats(Mor)and rats withdrawn from2h to20d(2h,18h,4d,7d,20d).Lower panel:expression status of GluR1and GluR2/3subunits in synaptosome(s)and membrane(m) from hippocampus of saline control(Sal)and chronic morphine treated rats (Mor)and rats withdrawn from2h to20d.(?p<0.05Mor,2h,18h,4d,7d, and20d vs.Sal,n=6;#p<0.052h,18h,4d,7d,and20d vs.Mor,n=6;

a p<0.054d vs.2h,18h,7d,and20d,n=6).One-way ANOV A followed by post hoc analysis;n,number of animals.

863

W.Zhong et al./Life Sciences79(2006)861–869

(Fig.1,?p <0.052h to 20d vs.Sal;#p <0.052h to 20d vs.Mor).Among morphine withdrawal groups (2h to 20d),GluR2/3expression of 4d group was at the highest level in membrane but at the lowest level in synaptosomal fraction (Fig.1,a p <0.054d vs.2h,18h,7d,20d).These findings suggest that GluR2/3might be withdrawn from synapses during the early phase of morphine withdrawal (2h to 4d).Conversely,GluR2/3might be inserted into synapses during the late phase of morphine withdrawal (7to 20d).Dynamic expression of CaMKII αand pCaMKII αin hippo-campal synapses during morphine withdrawal

The findings that repeated morphine exposure and subse-quent morphine withdrawal caused dynamic expression of GluR1and GluR2/3of AMPA receptors in hippocampal synapses led us to examine the levels of the general CaMKII and pCaMKII in hippocampal membrane and synaptosomal fractions by Western blot technique.Immunoblots of pCaM-KII αshow a major band at 50kDa and a nonspecific minor band,which might be produced by cross-reactivity between its polyclonal antibody and other CaMKII https://www.360docs.net/doc/484819660.html,pared to saline control,repeated morphine exposure did not influence CaMKII αexpression in the membrane fraction (p >0.05)but moderately decreased the expression in the synaptic fraction

(Fig.2,?p <0.05Mor vs.Sal).Remarkably,repeated morphine exposure slightly increased the expression of pCaMKII αin the membrane fraction and strongly enhanced the expression in the synaptic fraction (Fig.2,?p <0.05Mor vs.Sal).Following morphine withdrawal,compared with saline control,the level of CaMKII αwas reduced in membrane and synaptosomal fractions at 4d of withdrawal (Fig.2,?p <0.054d vs.Sal),and remained unchanged in both fractions at other time points of withdrawal (Fig.2,p >0.052h,18h,7d and 20d vs.Sal).However,the expression of pCaMKII αin the membrane fraction was strongly decreased on the first day after withdrawal (2and 18h)and then gradually recovered to a level similar to that in saline control (Fig.2,?p <0.052and 18h vs.Sal;p >0.054to 20d vs.Sal).Moreover,if compared with repeated morphine group,CaMKII αwas decreased only on 4d after withdrawal (Fig.2,#p <0.054d vs.Mor;p >0.052h,18h,7d,20d vs.Mor).The level of pCaMKII αin the synaptosomal fraction was strongly decreased during the early phase of withdrawal (2h to 4d)but did not show significant difference through the late phase of withdrawal (7to 20d)(Fig.2,#

p <0.052h,18h,4d vs.Mor;p >0.057d,20d vs.Mor).These results suggest that repeated morphine exposure or prolonged morphine withdrawal might induce the transforma-tion of CaMKII αinto pCaMKII αin hippocampal synapses,converting transient signals into long-term changes in the hippocampal

function.

CamKII α-m R e l a t i v e l e v e l (% o f s a l i n e )

CaMKII α pCaMKII α

Sal m s

Mor 2 h 18 h m s

4 d 7 d 20 d m s

m s

m s

m s

m s

Fig.2.Dynamic expression of CaMKII αand pCaMKII αin hippocampal synapses during morphine withdrawal.Repeated morphine exposure and subsequent withdrawal altered expression levels of the general CaMKII αand pCaMKII αin hippocampus.Upper panel:representative immunoblots of the general CaMKII αand pCaMKII αin membrane (m)and synaptosome (s)fractions from hippocampus of saline control (Sal)and chronic morphine treated rats (Mor)and rats withdrawn from 2h to 20d (2h,18h,4d,7d,20d).Lower panel:summary of the general CaMKII αand pCaMKII αexpression in synaptosome (s)and membrane (m)from hippocampus of experimental animals.(?p <0.05Mor,2h,18h,4d,7d,and 20d vs.Sal,n =6;#p <0.052h,18h,4d,7d,and 20d vs.Mor,n =6;a p

<0.054d vs.2h,18h,7d,and 20d,n =6).One-way ANOV A followed by post hoc analysis;n ,number of animals.

R e l a t i v e l e v e l (% o f s a l i n e )

GluR1GluR2/3

18 h m s

Stress 4 d RU38486m s

m

s m s

Fig. 3.GluR1and GluR2/3expression in hippocampal synapses during withdrawal affected by behavioral stress.Behavioral stress and glucocorticoid receptors antagonist changed the dynamic expression levels of AMPA receptor subunits GluR1and GluR2/3in hippocampus.Upper panel:representative immunoblots of membrane fraction (m)and synaptosome (s)prepared from hippocampus of the withdrawal for 18h group (18h),the stressed group (Stress)and the withdrawal for 4days group (4d),the RU38486administration group (RU38486)characterized with specific antibodies to GluR1and GluR2/3respectively.Lower panel:summary graph showing data expressed as average percent of Sal (mean±S.E.M.)in GluR1and GluR2/3.(#p <0.05stress vs.18h,n =6;?p <0.05RU38486vs.4d,n =6).Unpaired t -test;n ,number of animals.

864

W.Zhong et al./Life Sciences 79(2006)861–869

Behavioral stress affected the synaptic expressions of GluR1and GluR2/3and the regulatory molecule CaMKII αin hippocampus during withdrawal

Then we examined whether additional behavioral stress during withdrawal could influence the synaptic expression of GluR1,GluR2/3,CaMKII αand pCaMKII αin hippocampus.The animals undergoing behavioral stress are denoted as Stress.We found that GluR1in the membrane but not the synaptosomal fraction from these animals was moderately reduced and GluR2/3in both membrane and synaptosomal fractions was markedly decreased,compared with those obtained 18h after withdrawal in animals not exposed to elevated platform stress (Fig.3,#p <0.05Stress vs.18h;unpaired t -test).Conversely,CaMKII αwas slightly increased but pCaMKII αwas strongly increased in both fractions (Fig.4,#p <0.05Stress vs.18h;unpaired t -test).These findings suggested that the synaptic expression of GluR2/3and pCaMKII α,but not GluR1and CaMKII αin hippocampus,was regulated by additional behavioral stress during withdrawal.The hippocampus is enriched with glucocorticoid receptors,which are crucially involved in regulating stress effects (McEwen and Sapolsky,1995;Kim et al.,2001).Therefore,we further examined the effect of the glucocorticoid receptor antagonist RU38486on the expression of GluR1,GluR2/3,CaMKII αand pCaMKII αin both fractions.Remarkably,GluR1at membrane and synaptic fractions did not change,but GluR2/3at membrane and

synaptosomal fractions was strongly decreased,compared to levels on 4d after withdrawal without the administration of RU38486(Fig.3,?p <0.05RU38486vs.4d;unpaired t -test).On the other hand,CaMKII αin the synaptosomal fraction was slightly decreased and pCaMKII αin the membrane fraction was mildly increased (Fig.4,?p <0.05RU38486vs.4d;unpaired t -test).These findings implied that the expression of GluR2/3in hippocampal synapses following morphine withdrawal,but not that of GluR1,CaMKII αand pCaMKII α,was strongly regulated by the activation of glucocorticoid receptors.Taken together,these findings suggest that stress during morphine withdrawal might contribute,at least partially,to the long-term withdrawal-related changes of hippocampal synaptic plasticity.Blockade of NR2B-containing NMDA receptors regulated the synaptic expression of GluR1and GluR2/3and the regulatory molecule CaMKII αin hippocampus during withdrawal We further examined whether the blockade of NMDA receptors (with AP-5)or NR2B-containing NMDA receptors (with Ro25-6981)affected the dynamic expression of GluR1,GluR2/3,CaMKII αand pCaMKII αduring withdrawal.We found that the expression of GluR1in both membrane and synaptosomal fractions remained unchanged (p >0.05),com-pared with the expression seen on 4d of withdrawal without

any

100

200

300

400

500

R e l a t i v e l e v e l (% o f s a l i n e )

CamKII αpCamKII α

18 h m s

Stress 4 d Ru38486m s

m s

m s

Fig.4.The general CaMKII α,and pCaMKII αexpression in hippocampal

synapses during withdrawal affected by behavioral stress.Behavioral stress and glucocorticoid receptors antagonist changed the expression levels of the general CaMKII α,and pCaMKII αin hippocampus during withdrawal.Upper panel:representative immunoblots of membrane fraction (m)and synaptosome (s)prepared from hippocampal of the withdrawal for 18h group (18h),the stressed group (Stress)and the withdrawal for 4days group (4d),the RU38486administration group (RU38486)characterized with specific antibodies to CaMKII

α,and pCaMKII αrespectively.Lower panel:summary graph showing data expressed as average percent of Sal (mean±S.E.M.)in general CaMKII α,and pCaMKII α.(#p <0.05stress vs.18h,n =6;?p <0.05RU38486vs.4d,n =6).Unpaired t -test;n ,number of

animals.

4 d Ap-5Ro25-6981

50

100

150

200

250

R e l a t i v e l e v e l (% o f s a l i n e )

GluR2/3

GluR1

4 d m s

AP-5m s

Ro25-6981m s

Fig. 5.Blockade of NR2B-containing NMDA receptors regulates the hippocampal synaptic expression of GluR1and GluR2/3during withdrawal.Administration of the NMDA receptor antagonist AP-5,and NR2B-specific antagonist Ro25-6981partially altered amounts of AMPA receptor subunits GluR1and GluR2/3in hippocampus.Upper panel:representative immunoblots of hippocampal membrane fraction (m)and synaptosome (s)from the withdrawal for 4days group (4d),the AP-5infusion group (AP-5),the Ro25-6981infusion group (Ro25-6981)characterized with specific antibodies to GluR1and GluR2/3respectively.Lower panel:summary graph showing amount of GluR1and GluR2/3.(#p <0.05AP-5and Ro25-6981vs.4d,n =6).Unpaired t -test;n ,number of animals.

865

W.Zhong et al./Life Sciences 79(2006)861–869

treatment.Similar to the effects of RU38486,the expression of GluR2/3in membrane and synaptosomal fractions was strongly decreased by both AP-5and Ro25-6981(Fig.5,#p <0.05AP-5or Ro25-6981vs.4d;unpaired t -test).Unlike the effects of RU38486,the expression of CaMKII αwas moderately enhanced and pCaMKII αwas strongly increased in membrane and synaptosomal fraction by both AP-5and Ro25-6981(Fig.6,#p <0.05AP-5or Ro25-6981vs.4d;unpaired t -test).Thus,these findings suggest that the blockade of hippocampal NMDA receptors or hippocampal NR2B-containing NMDA receptors also influenced the dynamic expression of GluR2/3,CaMKII αand pCaMKII αin hippocampal synapses during morphine withdrawal.Discussion

Adaptive process of the hippocampal functions following opiate withdrawal

Hippocampal synaptic plasticity plays important roles in learning and memory (Malenka and Nicoll,1999;Martin et al.,2000;Yang et al.,2004).However,recent evidence from behavioral (Fan et al.,1999;Lu et al.,2000;Mitchell et al.,2000)and electrophysiological studies (Mansouri et al.,1999;

Pu et al.,2002)has suggested that the hippocampus is also involved in drug addiction (Berke and Hyman,2000;Hyman and Malenka,2001;Nestler,2001b ).In the present study,by comparing the protein level between the membrane and synaptosomal fractions prepared from the hippocampus,we demonstrated protein insertion into synapses or withdrawal from synapses,and we have found that there also may be a substantial pool of proteins located at extrasynaptic sites.Here,we found that repeated morphine exposure increased prominently the hippocampal synaptic expression of GluR1,GluR2/3and pCaMKII α,consistent with a previous report that AMPAR subunit levels were increased after cocaine self-administration (Boudreau and Wolf,2005;Lu et al.,2003;Tang et al.,2004).Here,our evidence suggested that opiate withdrawal could produce long-term changes in GluR1and GluR2/3of AMPARs and CaMKII αas well as pCaMKII αat hippocampal synapses,i.e.changes in signaling molecules known to play crucial roles in synaptic plasticity and learning and memory (Bevilaqua et al.,2005),indicating alteration of the hippocampal function after chronic morphine treatment and subsequent withdrawal.However,different subtypes of AMPARs play distinct roles in regulating AMPAR trafficking and synaptic plasticity (Meng et al.,2003).In this study,following opiate withdrawal,GluR1was generally reduced but GluR2/3was further increased in hippocampus (Fig.1),suggesting that some sorts of synaptic plasticity were induced by opiate withdrawal.CaMKII αwas slightly decreased throughout the withdrawal period,but pCaMKII αat hippo-campal synapses,after an initial immediate reduction,gradually recovered to a level similar to that seen in after repeated morphine treatment,a level which was distinctly higher than that seen in the saline group (Fig.2).Since CaMKII may drive extrasynaptic AMPARs into synapses (Oh et al.,2006),and this activity-dependent GluR1-containing AMPARs trafficking is crucial for long-lasting changes in synaptic strength (Kakegawa and Yuzaki,2005),the changed level of the general CaMKII αand pCaMKII αat hippocampal synapses during withdrawal may regulate the synaptic targeting of AMPA receptors.As has previously been shown,increased abundance of the phosphokinase suggests that increased activity is likely as well (Liang et al.,2004).Our results indicate that the upregulated synaptic expression of GluR1and GluR2/3in hippocampus induced by repeated morphine exposure was correlated to the enhanced expression of pCaMKII α,the active form of CaMKII,in hippocampal synapses.The finding of altered total protein levels of glutamate-receptor subunits has not been replicated by all groups to date and might be highly dependent on the treatment regimen (Fitzgerald et al.,1996;Jang et al.,2002;Glass et al.,2005).It is likely that the total protein expression will be changed under our experimental conditions;therefore protein expression change in membrane and synaptosome at least partly owe to the alteration of transcription and expression.Although the underlying mechanisms for the dynamic expression of AMPA receptors and the regulatory molecule CaMKII αat hippocampal synapses are unclear here,our study provides evidence that morphine withdrawal has

a

4 d AP-5Ro25-6981

R e l a t i v e l e v e l (% o f s a l i n e )

CamKII αpCamKII α

4 d m

s

AP-5m s

Ro25-6981

m s

Fig. 6.Blockade of NR2B-containing NMDA receptors regulates the hippocampal synaptic expression of the general CaMKII αand pCaMKII αduring withdrawal.AP-5and Ro25-6981partially altered amounts of the general CaMKII αand pCaMKII αin hippocampus.Upper panel:representative immunoblots of hippocampal membrane fraction (m)and synaptosome (s)prepared from the withdrawal for 4days group (4d),the AP-5infusion group (AP-5),the Ro25-6981infusion group (Ro25-6981)characterized with specific antibodies to the general CaMKII α,and pCaMKII αrespectively.Lower panel:summary graph showing data expressed as average percent of na?ve (mean±S.E.M.)in the general CaMKII α,and pCaMKII α.(#p <0.05AP-5and Ro25-6981vs.4d,n =6).Unpaired t -test;n ,number of animals.

866

W.Zhong et al./Life Sciences 79(2006)861–869

profound impact on the molecular aspects of AMPARs and their regulatory molecule CaMKIIαin the hippocampus, which may influence opiate withdrawal-induced adaptation of hippocampal functions.

Withdrawal-regulated protein expression in hippocampal synapses regulated by other factors

The hippocampus may be a target of behavioral stress (McEwen and Sapolsky,1995;Kim and Diamond,2002),the consequences of which may contribute to triggering or increasing drug seeking and relapse following drug withdrawal. Glucocorticoid receptors are the major target of glucocorticoids released under stressful conditions(Deroche-Gamonet et al., 2003;Yang et al.,2004).Conflicting results have suggested either an increased or decreased AMPA expression after single stressful experiences.Furthermore,glucocorticoid treatment has been shown to induce changes in glutamate receptor expression in hippocampus(Rosa et al.,2002).In the present study, behavioral stress strongly decreased GluR2/3but slightly downregulated GluR1expression in the hippocampal synapses and the withdrawal-induced increase in GluR2/3was also prevented by the glucocorticoid receptor antagonist RU38486 (Fig.3).It has been reported that different stress paradigms produce different changes in phosphorylation of CaMKII,but no significant effects on CaMKII levels in the hippocampus of normal rats(Suenaga et al.,2004).Here we found that acute behavioral stress promoted conversion of CaMKIIαinto pCaMKIIαin hippocampal synapses and that the low level of pCaMKIIαin both fractions was not significantly affected by RU38486(Fig.4).Thus,both behavioral stress and the glucocorticoid receptor antagonist partially changed the hippo-campal synaptic expression of AMPARs and CaMKIIαfollowing morphine withdrawal.The effects of RU38486on GluR2/3were similar but not in contrast to behavioral stress, indicating that more complicated mechanisms might regulate the involvement of glucocorticoid receptors in withdrawal. Although it remains unclear how behavioral stress following drug withdrawal could trigger drug seeking and relapse,these findings suggest that behavioral stress may have an impact on the adaptive process of the hippocampal functions following drug withdrawal,possibly to trigger or increase drug seeking and relapse.

It should also be noted that N-methyl-D-aspartate(NMDA) receptor activation played an important role in opiate tolerance and dependence;Dizocilpine,a non-competitive NMDA receptor antagonist,had been shown to prevent the morphine dependence in rodents(Hamdy et al.,2004).Thus,we used antagonists to examine whether the changes of GluR1and GluR2/3or CaMKIIαand pCaMKIIαin hippocampal mem-brane and synaptic fractions could be prevented.We found that the NMDAR antagonist AP-5had an effect similar to that of the NR2B-containing NMDAR antagonist Ro25-6981,both leading to a significant downregulation of GluR2/3(Fig.5)and a prominent upregulation of pCaMKIIα(Fig.6)in both fractions. This result suggested that the activation of NR2B-containing NMDARs might be one of the reasons the GluR2/3expression increases following morphine withdrawal.It is possible that both alteration in protein expression of NMDA receptors and decrease in the regulation of NMDA produced by AP-5or Ro25-6981occur during withdrawal,and could contribute to the regulation of the expression of AMPA receptor subunits during withdrawal.The speculation is reasonable since it has been reported that NMDAR activation can have differential effects on AMPAR trafficking depending on the subunit composition of NMDARs,and that NR2B-NMDARs have a subtype-specific function in removal of synaptic AMPARs and weakening of synaptic transmission(Kim et al.,2005).AP-5or Ro25-6981 induced a great increase of pCaMKIIαbut a subtle increase of total CaMKIIαin both fractions(Fig.6),demonstrating that an alteration in protein phosphatase and/or CaMKII kinase activity might be induced by blockade of NR2B-containing NMDA receptors and be responsible for the phosphorylation level of thr286.

In summary,our major finding was that,following opiate withdrawal,GluR1was generally decreased but GluR2/3was strongly increased in hippocampal membrane and synapto-somal fractions.The increased expression of GluR2/3could be prevented by the glucocorticoid receptor antagonist RU38486,the NMDA receptor antagonist AP-5or the antagonist to NR2B-containing NMDA receptors,Ro25-6981.However,although AP-5or Ro25-6981increased the expression of CaMKIIαand pCaMKIIα,RU38486had little influence.Thus,blockade of the activation of glucocorticoid and NMDA receptors might regulate the synaptic expression of GluR1,GluR2/3,CaMKIIαand pCaMKIIαin hippocam-pus.These findings suggest that the adaptive changes in the synaptic expression of calcium sensitive AMPA receptors and their regulatory molecule CaMKII within hippocampus, produced by opiate withdrawal,may be an important neural substrate for alterations that occur in opiate addiction, indicating a maladaptive process of the hippocampal func-tions.However further studies are required to clarify the underlying mechanisms.

Acknowledgements

This work was supported by grants from the National Science Foundation of China(30530250)and the National Basic Research Program(2006CB500800)to L.X.and J.H.L. References

Banke,T.G.,Bowie,D.,Lee,H.,Huganir,R.L.,Schousboe,A.,Traynelis,S.F., 2000.Control of GluR1AMPA receptor function by cAMP-dependent protein kinase.The Journal of Neuroscience20,89–102.

Bayer,K.U.,De Koninck,P.,Leonard,A.S.,Hell,J.W.,Schulman,H.,2001.

Interaction with the NMDA receptor locks CaMKII in an active conformation.Nature411,801–805.

Berke,J.D.,Hyman,S.E.,2000.Addiction,dopamine,and the molecular mechanisms of memory.Neuron25,515–532.

Bevilaqua,L.R.,Medina,J.H.,Izquierdo,I.,Cammarota,M.,2005.Memory consolidation induces N-methyl-D-aspartic acid-receptor-and Ca(2+)/ calmodulin-dependent protein kinase II-dependent modifications in alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor properties.

Neuroscience136,397–403.

867

W.Zhong et al./Life Sciences79(2006)861–869

Boudreau,A.C.,Wolf,M.E.,2005.Behavioral sensitization to cocaine is associated with increased AMPA receptor surface expression in the nucleus accumbens.The Journal of Neuroscience25,9144–9151.

Bowers,M.S.,McFarland,K.,Lake,R.W.,Peterson,Y.K.,Lapish, C.C., Gregory,M.L.,Lanier,S.M.,Kalivas,P.W.,2004.Activator of G protein signaling3:a gatekeeper of cocaine sensitization and drug seeking.Neuron 42,269–281.

Carroll,R.C.,Beattie,E.C.,von Zastrow,M.,Malenka,R.C.,2001.Role of AMPA receptor endocytosis in synaptic plasticity.Nature Reviews Neuroscience2,315–324.

Deroche-Gamonet,V.,Sillaber,I.,Aouizerate, B.,Izawa,R.,Jaber,M., Ghozland,S.,Kellendonk,C.,Le Moal,M.,Spanagel,R.,Schutz,G., Tronche,F.,Piazza,P.V.,2003.The glucocorticoid receptor as a potential target to reduce cocaine abuse.The Journal of Neuroscience23,4785–4790. Fan,G.H.,Wang,L.Z.,Qiu,H.C.,Ma,L.,Pei,G.,1999.Inhibition of calcium/ calmodulin-dependent protein kinase II in rat hippocampus attenuates morphine tolerance and dependence.Molecular Pharmacology56,39–45. Fitzgerald,L.W.,Ortiz,J.,Hamedani,A.G.,Nestler,E.J.,1996.Drugs of abuse and stress increase the expression of GluR1and NMDAR1glutamate receptor subunits in the rat ventral tegmental area:common adaptations among cross-sensitizing agents.The Journal of Neuroscience16,274–282. Frenois,F.,Stinus,L.,Di Blasi,F.,Cador,M.,Le Moine,C.,2005.A specific limbic circuit underlies opiate withdrawal memories.The Journal of Neuroscience25,1366–1374.

Glass,M.J.,Kruzich,P.J.,Colago,E.E.,Kreek,M.J.,Pickel,V.M.,2005.

Increased AMPA GluR1receptor subunit labeling on the plasma membrane of dendrites in the basolateral amygdala of rats self-administering morphine.

Synapse58,1–12.

Hamdy,M.M.,Noda,Y.,Miyazaki,M.,Mamiya,T.,Nozaki,A.,Nitta,A., Sayed,M.,Assi, A.A.,Gomaa, A.,Nabeshima,T.,2004.Molecular mechanisms in dizocilpine-induced attenuation of development of morphine dependence:an association with cortical Ca2+/calmodulin-dependent signal cascade.Behavioural Brain Research152,263–270.

Hensley,K.,Carney,J.,Hall,N.,Shaw,W.,Butterfield,D.A.,1994.Electron paramagnetic resonance investigations of free radical-induced alterations in neocortical synaptosomal membrane protein infrastructure.Free Radical Biology and Medicine17,321–331.

Hyman,S.E.,Malenka,R.C.,2001.Addiction and the brain:the neurobiology of compulsion and its persistence.Nature Reviews Neuroscience2, 695–703.

Jang,Y.P.,Kim,S.R.,Choi,Y.H.,Kim,J.,Kim,S.G.,Markelonis,G.J.,Oh, T.H.,Kim,Y.C.,2002.Arctigenin protects cultured cortical neurons from glutamate-induced neurodegeneration by binding to kainate receptor.

Journal of Neuroscience Research68,233–240.

Kakegawa,W.,Tsuzuki,K.,Yoshida,Y.,Kameyama,K.,Ozawa,S.,2004.

Input-and subunit-specific AMPA receptor trafficking underlying long-term potentiation at hippocampal CA3synapses.The European Journal of Neuroscience20,101–110.

Kakegawa,W.,Yuzaki,M.,2005.A mechanism underlying AMPA receptor trafficking during cerebellar long-term potentiation.Proceedings of the National Academy of Sciences of the United States of America102, 17846–17851.

Kim,J.J.,Diamond,D.M.,2002.The stressed hippocampus,synaptic plasticity and lost memories.Nature Reviews Neuroscience3,453–462.

Kim,M.J.,Dunah,A.W.,Wang,Y.T.,Sheng,M.D.,2005.Differential roles of NR2A-and NR2B-containing NMDA receptors in Ras-ERK signaling and AMPA receptor trafficking.Neuron46,745–760.

Liang,D.,Li,X.,Clark,J.D.,2004.Increased expression of Ca2+/calmodulin-dependent protein kinase II alpha during chronic morphine exposure.

Neuroscience123,769–775.

Luo,J.,Wang,Y.,Yasuda,R.P.,Dunah,A.W.,Wolfe,B.B.,1997.The majority of N-methyl-D-aspartate receptor complexes in adult rat cerebral cortex contain at least three different subunits(NR1/NR2A/NR2B).Molecular Pharmacology51,79–86.

Lu,L.,Zeng,S.,Liu,D.,Ceng,X.,2000.Inhibition of the amygdala and hippocampal calcium/calmodulin-dependent protein kinase II attenuates the dependence and relapse to morphine differently in rats.Neuroscience Letters 291,191–195.Lu,L.,Grimm,J.W.,Shaham,Y.,Hope,B.T.,2003.Molecular neuroadaptations in the accumbens and ventral tegmental area during the first90days of forced abstinence from cocaine self administration in rats.Journal of Neurochemistry85,1604–1613.

Lu,L.,Dempsey,J.,Shaham,Y.,Hope,B.T.,2005.Differential long-term neuroadaptations of glutamate receptors in the basolateral and central amygdala after withdrawal from cocaine self-administration in rats.Journal of Neurochemistry94,161–168.

Mahadev,K.,Chetty,C.S.,Vemuri,M.C.,2001.Effect of prenatal and postnatal ethanol exposure on Ca2+/calmodulin-dependent protein kinase II in rat cerebral cortex.Alcohol23,183–188.

Malenka,R.C.,Nicoll,R.A.,1999.Long-term potentiation:a decade of progress?Science285,1870–1874.

Mansouri,F.A.,Motamedi,F.,Fathollahi,Y.,1999.Chronic in vivo morphine administration facilitates primed-bursts-induced long-term potentiation of Schaffer collateral-CA1synapses in hippocampal slices in vitro.Brain Research815,419–423.

Martin,S.J.,Grimwood,P.D.,Morris,R.G.,2000.Synaptic plasticity and memory:an evaluation of the hypothesis.Annual Review of Neuroscience 23,649–711.

McEwen,B.S.,Sapolsky,R.M.,1995.Stress and cognitive function.Current Opinion in Neurobiology5,205–216.

Meng,Y.,Zhang,Y.,Jia,Z.,2003.Synaptic transmission and plasticity in the absence of AMPA glutamate receptor GluR2and GluR3.Neuron39, 163–176.

Mitchell,J.M.,Basbaum,A.I.,Fields,H.L.,2000.A locus and mechanism of action for associative morphine tolerance.Nature Neuroscience3, 47–53.

Nayak,A.S.,Moore,C.I.,Browning,M.D.,1996.Ca2+/calmodulin-dependent protein kinase II phosphorylation of the presynaptic protein synapsin I is persistently increased during long-term potentiation.Proceedings of the National Academy of Sciences of the United States of America93, 15451–15456.

Nestler, E.J.,2001a.Molecular basis of long-term plasticity underlying addiction.Nature Reviews Neuroscience2,119–128.

Nestler, E.J.,2001b.Molecular neurobiology of addiction.The American Journal on Addictions10,201–217.

Nuriya,M.,Oh,S.,Huganir,R.L.,2005.Phosphorylation-dependent interac-tions of alpha-actinin-1/IQGAP1with the AMPA receptor subunit GluR4.

Journal of Neurochemistry95,544–552.

Oh,M.C.,Derkach,V.A.,Guire,E.S.,Soderling,T.R.,2006.Extrasynaptic membrane trafficking regulated by GluR1serine845phosphorylation primes AMPA receptors for LTP.The Jounal of Biological Chemistry281, 752–758.

Padovan,C.M.,Guimaraes,F.S.,2004.Antidepressant-like effects of NMDA-receptor antagonist injected into the dorsal hippocampus of rats.

Pharmacology,Biochemistry and Behavior77,15–19.

Pu,L.,Bao,G.B.,Xu,N.J.,Ma,L.,Pei,G.,2002.Hippocampal long-term potentiation is reduced by chronic opiate treatment and can be restored by re-exposure to opiates.The Journal of Neuroscience22,1914–1921. Rocher,C.,Spedding,M.,Munoz,C.,Jay,T.M.,2004.Acute stress-induced changes in hippocampal/prefrontal circuits in rats:effects of antidepressants.

Cerebral Cortex14,224–229.

Rosa,M.L.,Guimaraes,F.S.,Pearson,R.C.,Del Bel,E.A.,2002.Effects of single or repeated restraint stress on GluR1and GluR2flip and flop mRNA expression in the hippocampal formation.Brain Research Bulletin59, 117–124.

Sharma,S.K.,Yashpal,K.,Fundytus,M.E.,Sauriol,F.,Henry,J.L.,Coderre, T.J.,2003.Alterations in brain metabolism induced by chronic morphine treatment:NMR studies in rat CNS.Neurochemical Research28, 1369–1373.

Shi,S.,Hayashi,Y.,Esteban,J.A.,Malinow,R.,2001.Subunit specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons.Cell105,331–343.

Song,I.,Huganir,R.L.,2002.Regulation of AMPA receptors during synaptic plasticity.Trends in Neurosciences25,578–588.

Suenaga,T.,Morinobu,S.,Kawano,K.,Sawada,T.,Yamawaki,S.,2004.

Influence of immobilization stress on the levels of CaMKII and phospho-

868W.Zhong et al./Life Sciences79(2006)861–869

CaMKII in the rat hippocampus.The International Journal of Neuropsy-chopharmacology7,299–309.

Tang,W.,Wesley,M.,Freeman,W.M.,Liang, B.,Hemby,S.E.,2004.

Alterations in ionotropic glutamate receptor subunits during binge cocaine self-administration and withdrawal in rats.Journal of Neurochemistry89, 1021–1033.

Wenthold,R.J.,Petralia,R.S.,Blahos II,J.,Niedzielski,A.S.,1996.Evidence for multiple AMPA receptor complexes in hippocampal CA1/CA2neurons.

The Journal of Neuroscience16,1982–1989.

Witzmann,F.A.,Arnold,R.J.,Bai,F.,Hrncirova,P.,Kimpel,M.W.,Mechref, Y.S.,McBride,W.J.,Novotny,M.V.,Pedrick,N.M.,Ringham,H.N., Simon,J.R.,2005.A proteomic survey of rat cerebral cortical synaptosomes.Proteomics5,2177–2201.

Xiong,W.,Yang,Y.,Cao,J.,Wei,H.,Liang,C.,Yang,S.,Xu,L.,2003.The stress experience dependent long-term depression disassociated with stress effect on spatial memory task.Neuroscience Research46,415–421. Xu,L.,Anwyl,R.,Rowan,M.J.,1997.Behavioural stress facilitates the induction of long-term depression in the hippocampus.Nature387, 497–500.Xu,L.,Holscher,C.,Anwyl,R.,Rowan,M.J.,1998.Glucocorticoid receptor and protein/RNA synthesis-dependent mechanisms underlie the control of synaptic plasticity by stress.Proceedings of the National Academy of Sciences of the United States of America95,3204–3208.

Xu,S.J.,Chen,Z.,Zhu,L.J.,Shen,H.Q.,Luo,J.H.,2005.Visual recognition memory is related to basic expression level of NMDA receptor NR1/NR2B subtype in hippocampus and striatum of rats.Acta Pharmacologica Sinica 262,177–180.

Yang,Y.,Zheng,X.,Wang,Y.,Cao,J.,Dong,Z.,Cai,J.,Sui,N.,Xu,L.,2004.

Stress enables synaptic depression in CA1synapses by acute and chronic morphine:possible mechanisms for corticosterone on opiate addiction.The Journal of Neuroscience24,2412–2420.

Zhu,L.J.,Chen,Z.,Zhang,L.S.,Xu,S.J.,Xu, A.J.,Luo,J.H.,2004.

Spatiotemporal changes of the N-methyl-D-aspartate receptor subunit levels in rats with pentylenetetrazole-induced seizures.Neuroscience Letters356, 53–56.

869

W.Zhong et al./Life Sciences79(2006)861–869

前台新进员工带教手册(V11)

前台新进员工带教手册 目录 一、海友酒店介绍 1.1品牌故事 1.2产品特征 1.3目标客户群 二、海友酒店前台交接班制度 2.1 交接班准备 2.2 交接事项 2.3 填写交接班本 2.4 接班事项 2.5 交接班签名 三、海友酒店前台员工带教计划 3.1 带教目的 3.2 带教内容 一、海友酒店介绍: 1.1品牌故事 海友酒店是华住酒店集团(原汉庭酒店集团)旗下的风格经济型酒店连锁品牌,致力于为有预算要求 的客人提供“欢乐、超值”的住宿产品。 我们全情投入,与顾客真诚沟通,分享快乐,为客人提供愉快、舒适的住宿体验。一切从我们的“HI”开始。。。。。。 2005年初,华住在中国正式创立,同年8月,第1家门店开业,2006年底,旗下的汉庭酒店第34 家开业。2007年7月,华住以股权融资8500万美元创下中国服务行业首轮融资的新纪录,2007年底,汉庭酒店第74家开业。2008年初,汉庭在全国签约门店数达到180家,完成了全国主要城市的布局,并重 点在长三角、环渤海湾、珠三角和中西部发达城市形成了密布的酒店网络,成为国内成长最快的连锁酒店品牌之一。2008年4月,汉庭已开业酒店超过100家,出租率、经营业绩各项指标均在业内处于领先地位。 2008年2月,华住酒店集团正式成立,是国内第一家多品牌的酒店集团。华住致力于实现“中国服务”的理想,即打造世界级的中国服务品牌。华住的愿景是“成为世界住宿业领先品牌集团”,为此,我们将不断追求精细化的管理,实施标准化的体系和流程,更全面、更迅速地推进集团化发展。华住酒店集团旗下目前拥有禧玥酒店、星程酒店、汉庭酒店、全季酒店、海友酒店五个系列品牌,我们将坚持时尚现代、便捷舒适、高性价比的优势特点,塑造中国酒店的典范。

新员工带教流程

新员工带教流程 第一天: 熟悉公司的作息时间,了解公司基本状况,基本服务礼仪与动作规范,学习做迎宾。 1、上班时间:10:00---19:30 12:00----21:00 (转正前) 10:00--16:00 14:30---21:00(转正后) 备注:时间根据季节调整。 2、管理手册:P1、江明商贸简介(了解即可,店长须以解说的方式进行); 3、服务礼仪:1)仪容仪表标准; 2)服务动作规范(站姿、蹲姿、距离、手势、角度); 3)学习做迎宾(声音、表情、语调、迎宾位置); 4)电话礼仪; 第二天: 了解公司的考勤制度,产品的风格分类及陈列 1、相关制度的了解:《考勤制度及请假报批程序》《离职程序》; 2、产品风格分类(①以鞋来区分:男鞋、女鞋、童鞋②以季节来区分:春秋单鞋、夏季凉鞋、冬靴③以鞋头区分:尖头、圆头、方头④以鞋跟来区分:平跟3CM以下、中跟3.1CM--5CM、高跟5.1CM---8CM、特高跟8.1CM 以上⑤以鞋帮来区分:凉(拖)鞋、中空鞋、浅口鞋、满帮(低腰)鞋、短靴(筒高14CM以下)、中靴(筒高15--22CM)、长靴(筒高23--36CM);(以店铺现有货品实物讲解方式进行带教) 3、了解什么是陈列,为什么做陈列、陈列标准及陈列原则。 第三天: 掌握《会员卡》的办理及使用规范,相关票据的填写及操作流程,鞋类产品从哪六个方面进行描述。 1、“会员卡”的申办标准及使用细则; 2、相关票据:《销售单、销售退货单》《调拨单》《会员单》正确填写; 3、鞋类产品从:楦型、皮料、底材、高度、风格、线条六方面描述(以实物操作讲解带教为标准); 4、服务1--2步:细节重点的掌握及实操应用。 第四天: 了解鞋类基本皮料、材质的特性及打理保养方法,所属品牌货号含义,FABE\法则应用,服务三、 四步,轮流做迎宾。 1、皮料特征及打理方法、皮料的分类(牛、羊、猪、打蜡、漆皮、磨砂皮);(以店铺现有货品实物讲解方式进行带教) 2、了解所属品牌货号的含义; 3、服务技巧之FABE、含义理解及应用; 4、服务三、四步的细节重点的掌握及实操应用。 第五天: 学习掌握公司销售技巧及服务规范流程和语言表达标准、掌握做报表及相关单据技能,初步了解库存及货品摆放位置,服务五、六步、协助做销售。 1、销售技巧:USP/AIDA的含义及实操应用(以场景模拟带教实操为主) AIDA A:注意(Attention) 1)商品陈列 2)导购员的仪容、仪表 3)精神奕奕热忱的招呼(三声) 4)卖场气氛 I:兴趣(Interest) 1)接近顾客了解顾客购物动机 2)让顾客触摸商品 3)有效介绍货品的特性及卖点 4)为顾客做参谋 5)邀请试穿 D:欲望(Desire) 1)介绍FAB及USB 2)强调物超所值不可代替 3)化解顾客疑虑及异议 A:行动(Action) 1)把握时机完成交易 2)介绍打理知识 3)介绍其他配成产品 4)付款过程快速 USP(Unique selling piont)独特销售点: 质料、设计款式、手工、处理方法、色彩、价钱 2、开放式与封闭式的语言技巧:产品推荐:O O C 促成销售: C O C 3、初步了解库存及货品的摆放位置、辅助老员工做销售 4、掌握报表的正确填写、各项单据的电脑操作

前台新进员工带教手册

一、海友酒店介绍 1.1 品牌故事 1.2 产品特征 1.3目标客户群 二、海友酒店前台交接班制度 交接班准备 交接事项 填写交接班本 接班事项 交接班签名 海友酒店前台员工带教计划带教目的 带教内容 海友酒店介绍:前台新进员工带教手册 目录

1.1 品牌故事 海友酒店是华住酒店集团(原汉庭酒店集团)旗下的风格经济型酒店连锁品牌,致力于为有预算要求的客人提供“欢乐、超值”的住宿产品。 我们全情投入,与顾客真诚沟通,分享快乐,为客人提供愉快、舒适的住宿体验。一切从我们的“HI”开始。。。。。。 2005 年初,华住在中国正式创立,同年8 月,第1 家门店开业,2006 年底,旗下的汉庭酒店第34 家开业。2007 年7 月,华住以股权融资8500 万美元创下中国服务行业首轮融资的新纪录,2007 年底,汉庭酒店第74 家开业。2008 年初,汉庭在全国签约门店数达到180 家,完成了全国主要城市的布局,并重点在长三角、环渤海湾、珠三角和中西部发达城市形成了密布的酒店网络,成为国内成长最快的连锁酒店品牌之一。2008 年4 月,汉庭已 开业酒店超过100 家,出租率、经营业绩各项指标均在业内处于领先地位。 2008 年2 月,华住酒店集团正式成立,是国内第一家多品牌的酒店集团。华住致力于实现“中国服务”的理想,即打造世界级的中国服务品牌。华住的愿景是“成为世界住宿业领先品牌集团”,为此,我们将不断追求精细化的管理,实施标准化的体系和流程,更全面、更迅速地推进集团化发展。华住酒店集团旗下目前拥有禧玥酒店、 星程酒店、汉庭酒店、全季酒店、海友酒店五个系列品牌,我们将坚持时尚现代、便捷舒适、高性价比的优势特点,塑造中国酒店的典范。 1.2 产品特征 装饰风格简约时尚 公共区域提供免费网吧 全酒店无线覆盖 独立淋浴、写字桌、电视机 提供大毛巾 自助理念 1.3 目标客户群 有预算要求的商务客人、家庭型散客、青年群体、长住客、背包客二、海友酒店前台交接班制度:交班前准备整理前台物品; 检查必备品和表格;

新员工带教方案V1.0

新员工带教方案 1、目的 (1)使新入职的员工尽快熟悉办公环境和公司员工,提高新员工对公司的满意度和认同度。(2)使新入职的员工初步了解工作内容和工作方式,尽快熟悉工作流程,更好的适应工作要求。 (3)评估新员工工作能力和工作态度,及时发现并解决工作中出现的问题。 2、方案周期 新员工带教方案分为两个阶段,总共六个月。第一个阶段:新入职到试用期结束的3个月;第二个阶段:新员工转正之后的三个月。 2.1第一阶段 第一个阶段主要是新员工的入职培训,使员工尽快适应工作环境和工作内容。具体实施如下: 2.1.1企业文化培训 新员工入职一周内,对新员工进行企业文化的带教,这个阶段主要由人力部门进行负责。主要涉及企业发展历史、企业文化、企业规章制度以及礼仪规范等,这个时期主要是提高新员工对公司的认知,增强员工对企业文化的认同度。在培训过程中,应与新员工建立一个友好的关系,让新员工以一种轻松的状态进入到公司环境中。 2.1.2岗位职责培训 在企业文化培训结束之后,新员工被安排到工作岗位上。从企业文化培训结束到实习期结束的这个时期,由部门主管,依据新员工的能力以及性格特点选择带教的人员,这个时期带教主要分为两个部分。 一是,对部门发展历史,工作内容,工作规范化以及工作流程的带教。帮助新员工更好了解工作流,尽快的适应新的工作内容,投入到工作中。具体流程如下: (1)制定带教计划 1)明确带教对象,针对带教对象的能力、性格等特点制定详细的带教工作计划 2)明确带教工作的内容,将工作内容分解到具体每日、每周以及每月,同时建立明确目标,考核标准以及激励奖惩办法。 (2)合理安排时间。避免出现见面就教的现状,合理利用不同时段进行教授与分享。(3)注重新员工的实践。俗话说:“授人以鱼不如授人以渔”。知识知道不等于能灵活运用,

新员工带教流程

新员工带教流程 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

新员工带教流程 第一天: 熟悉公司的作息时间,了解公司基本状况,基本服务礼仪与动作规范,学习做迎宾。 1、上班时间:10:00---19:30 12:00----21:00 (转正前) 10:00--16:00 14:30---21:00(转正后) 备注:时间根据季节调整。 2、管理手册:P1、江明商贸简介(了解即可,店长须以解说的方式进行); 3、服务礼仪:1)仪容仪表标准; 2)服务动作规范(站姿、蹲姿、距离、手势、角度); 3)学习做迎宾(声音、表情、语调、迎宾位置); 4)电话礼仪; 第二天: 了解公司的考勤制度,产品的风格分类及陈列 1、相关制度的了解:《考勤制度及请假报批程序》《离职程序》; 2、产品风格分类(①以鞋来区分:男鞋、女鞋、童鞋②以季节来区分:春秋单鞋、夏季凉鞋、冬靴③以鞋头区分:尖头、圆头、方头④以鞋跟来区分:平跟3CM以下、中跟3.1CM--5CM、高跟5.1CM---8CM、特高跟8.1CM 以上⑤以鞋帮来区分:凉(拖)鞋、中空鞋、浅口鞋、满帮(低腰)鞋、短靴(筒高14CM以下)、中靴(筒高15--22CM)、长靴(筒高23--36CM);(以店铺现有货品实物讲解方式进行带教) 3、了解什么是陈列,为什么做陈列、陈列标准及陈列原则。 第三天: 掌握《会员卡》的办理及使用规范,相关票据的填写及操作流程,鞋类产品从哪六个方面进行描述。 1、“会员卡”的申办标准及使用细则; 2、相关票据:《销售单、销售退货单》《调拨单》《会员单》正确填写; 3、鞋类产品从:楦型、皮料、底材、高度、风格、线条六方面描述(以实物操作讲解带教为标准); 4、服务1--2步:细节重点的掌握及实操应用。 第四天: 了解鞋类基本皮料、材质的特性及打理保养方法,所属品牌货号含义,FABE\法则应用,服务三、 四步,轮流做迎宾。 1、皮料特征及打理方法、皮料的分类(牛、羊、猪、打蜡、漆皮、磨砂皮);(以店铺现有货品实物讲解方式进行带教) 2、了解所属品牌货号的含义; 3、服务技巧之FABE、含义理解及应用; 4、服务三、四步的细节重点的掌握及实操应用。 第五天: 学习掌握公司销售技巧及服务规范流程和语言表达标准、掌握做报表及相关单据技能,初步了解库存及货品摆放位置,服务五、六步、协助做销售。 1、销售技巧:USP/AIDA的含义及实操应用(以场景模拟带教实操为主) AIDA A:注意(Attention) 1)商品陈列 2)导购员的仪容、仪表 3)精神奕奕热忱的招呼(三声) 4)卖场气氛 I:兴趣(Interest) 1)接近顾客了解顾客购物动机 2)让顾客触摸商品 3)有效介绍货品的特性及卖点 4)为顾客做参谋 5)邀请试穿 D:欲望(Desire) 1)介绍FAB及USB 2)强调物超所值不可代替 3)化解顾客疑虑及异议 A:行动(Action) 1)把握时机完成交易 2)介绍打理知识 3)介绍其他配成产品 4)付款过程快速 USP(Unique selling piont)独特销售点: 质料、设计款式、手工、处理方法、色彩、价钱 2、开放式与封闭式的语言技巧:产品推荐:O O C 促成销售: C O C 3、初步了解库存及货品的摆放位置、辅助老员工做销售 4、掌握报表的正确填写、各项单据的电脑操作

新员工带教手册

新员工带教教程

第一天 一、团队融入(熟悉店铺、成员) 1、认识店铺成员、姓名、店铺各职能岗位成员介绍及主要负责工作阐述,如同事、店 长、大店长、主管等 2、店铺环境及商场环境简单介绍:高价值陈列区、闲杂物品摆放区、卫生间等。 3、靓妆上岗,妆容必须按公司规定执行,包括:粉底、眉毛、眼影、眼线、唇彩、指 甲、头发。 4、新员工的服装到店穿着规定服装,衣着干净整齐,无异味。 5、始终保持积极、热情的店铺氛围,主动和进入店的顾客及身边路过的人微笑招呼 二、品牌介绍(企业文化简介、品牌成长历程、品牌风格) 企业文化简介 企业愿景—— 成为书写文化的领导者。 企业使命—— 追求全体员工物质与精神两方面幸福的同时,传承书写文化。 企业价值观—— 第一:恪守正确的做人准则。 第二:付出不亚于任何人的努力。 品牌成长历程 三、店鋪运营店规店纪、仪容仪表、导购职责) 3-1店规店纪店(日常事务) 1. 工作纪律 1)员工自觉遵守公司及商场的规章制度 2)自觉遵守规定的上下班时间,不得迟到早退或擅自离岗,离岗时需填写《离岗登记表》 3)请假必须办理请假手续 4)店铺员工用餐时间为30分钟 5)工作时间不能闲坐聊天,要定位定岗 6)上班时应精神饱满不能打瞌睡、发呆 7)服从工作安排和调动,以及上级主管的合理工作指示,按时完成任务

8)公司的文件、资料要妥善保管,严守秘密 9)工作时间不得接访亲友、朋友,可在休息时间接待 10)店内工作中不得使用手机闲聊或阅览网页及游戏 11)未经主管同意不得私自调班,未经批准不得不参加公司会议 12)必须按规定将货款交至收银台,自行收银店铺必须在规定时间内将货款存入公司规定银行账号,不得用职务之便私扣营业款 13)不得私自占有顾客遗失物品或损坏顾客财务 14)不得在公司或店铺内吵闹、粗言秽语和打架 15)不得将公司设备、财务、货品挪为私用,更不得偷盗或占为己有 16)货物盘点时如发现货品不正常流失,应第一时间向上级汇报; 17)不得私自为顾客打折 18)未经主管同意不得擅自为顾客换货、挑货、退货 19)员工之间互相帮助,团结友爱,有团队合作精神 2.服务行为规定 1)店内接待客人时应充分展示自身形象,严格按照公司《服务标准》执行,向客人树立良好的公司形象 2)柜台迎宾站姿端正,销售人员面带微笑 3)客人到柜及喊宾时,身体微鞠躬示意,声音适中,用好礼貌用语,为顾客提供超一流的服务 4)销售人员应积极主动给予顾客提供帮助,用语言引导顾客。 5)接待顾客过程中,注意语言行为应用,不要给客人留下不好印象 6)充分展示个人魅力,推广宣传自身品牌 7)销售人员应严格约束、自律、礼貌的为客人提供最优质的售后服务 3.柜台形象及卫生清洁责任制 1)按公司要求标准化陈列 2)内务货品摆放整洁,归纳清晰 3)私人物品摆放整洁 4)柜台所需设备及物品(税控机、POS机、扫码枪、生财物品及柜台陈列设施等)不得丢失及损坏 5)销售柜台坚决执行公司规定的清洁标准(1、柜台清洁无死角,灯箱明亮无损坏,光影投射位置准确,玻璃及陈列物品清洁无指纹及灰尘)(详见品牌形象篇) 6)柜台卫生监管制度为-当班值日员工做好柜台清洁后,填写店铺每日形象自查表,由店长或对班在检查人一栏签字确认 备注:具体员工准则参照《员工管理制度及行为规范》 3-2仪容仪表

前台新进员工带教手册V

前台新进员工带教手册 V 集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

前台新进员工带教手册 目录 一、海友酒店介绍 1.1品牌故事 1.2产品特征 1.3目标客户群 二、海友酒店前台交接班制度 交接班准备 交接事项 填写交接班本 接班事项 交接班签名 三、海友酒店前台员工带教计划 带教目的 带教内容 一、海友酒店介绍: 1.1品牌故事 海友酒店是华住酒店集团(原汉庭酒店集团)旗下的风格经济型酒店连锁品牌,致力于为有预算要求的客人提供“欢乐、超值”的住宿产品。 我们全情投入,与顾客真诚沟通,分享快乐,为客人提供愉快、舒适的住宿体验。一切从我们的“HI”开始。。。。。。 2005年初,华住在中国正式创立,同年8月,第1家门店开业,2006年底,旗下的汉庭酒店第34家开业。2007年7月,华住以股权融资8500万美元创下中国服务行业首轮融资的新纪录,2007年底,汉庭酒店第74家开业。2008年初,汉庭在全国签约门店数达到180家,完成了全国主

要城市的布局,并重点在长三角、环渤海湾、珠三角和中西部发达城市形成了密布的酒店网络,成为国内成长最快的连锁酒店品牌之一。2008年4月,汉庭已开业酒店超过100家,出租率、经营业绩各项指标均在业内处于领先地位。 2008年2月,华住酒店集团正式成立,是国内第一家多品牌的酒店集团。华住致力于实现“中国服务”的理想,即打造世界级的中国服务品牌。华住的愿景是“成为世界住宿业领先品牌集团”,为此,我们将不断追求精细化的管理,实施标准化的体系和流程,更全面、更迅速地推进集团化发展。华住酒店集团旗下目前拥有禧玥酒店、星程酒店、汉庭酒店、全季酒店、海友酒店五个系列品牌,我们将坚持时尚现代、便捷舒适、高性价比的优势特点,塑造中国酒店的典范。1.2产品特征 装饰风格简约时尚 公共区域提供免费网吧 全酒店无线覆盖 独立淋浴、写字桌、电视机 提供大毛巾 自助理念 1.3目标客户群 有预算要求的商务客人、家庭型散客、青年群体、长住客、背包客 二、海友酒店前台交接班制度: 交班前准备 整理前台物品; 检查必备品和表格; 清点备用金; 核审本班次账目,账目无误后,才能下班; 完成本班的预订输入、入账等事项,并将相关表格归档; 完成本班公安系统登记录入; 完成前台卫生清洁工作。 2.2交接事项 以下事项如有特殊情况必须记录:预订情况、催账情况、叫醒、遗留物品、借物、留言、行李寄存、各类钥匙、房卡钥匙、有价证券、贵重物品寄存等; 当日重要事项; 上一班次交接尚未完成的事件必须写并与下一班交接; 需下班次跟进事宜; 本班未完成事宜。 2.3填写交接班本 记录宾客的问题、要求和投诉; 交接人填写交接事项栏相关内容; 交接重要工作任务; 接班人填写交接班时相关情况:备用金、发票、行李件数、会员卡、房卡等记录,并确认。 2.4接班事项 阅读《交接班本》及时询问相关事宜; 根据《物品借用记录本》交接借物,确保借物没有遗失; 查看贵重物品寄存记录与实际是否一致,钥匙是否齐全; 查看《遗留物品记录》询问前一班有无特殊情况; 查看《前台钥匙领用记录》是否正常; 小商品数量盘点交接情况(另附报表交接); 清点备用金,查看发票、行李并记录;

新员工师徒带教协议

上海隧道工程有限公司 人力资源管理中心 师徒带教协议书 为了尽快拓展人力资源管理中心的服务功能,培养一批确有业务专长、有管理能力的骨干力量,本着平等自愿、协商一致的原则,订立师徒带教协议如下:师傅(以下简称甲方): 徒弟(以下简称乙方): 项目经理及人力中心(以下简称见证方): 第一条轮岗期限、轮岗岗位和培养目标 (一)、轮岗期限:2014年12月 1 日~2015年7月31日 (二)、轮岗岗位:1、 2、 3、 (三)、培养目标:1、 2、 3、 4、 5、 第二条责任与权力 (一)、甲方: 1、在做好本职工作的同时,应尽责地向乙方传授技能,提供学习资料; 2、应按带教目标制定系统的带教计划及阶段性目标,并结合日常业务工作,尽可能为乙方创造锻炼机会; 3、应督促乙方严格执行各项规章制度; 4、应在带教期内,使乙方达到带教目标,取得带教成果; 5、对因违反操作规程,造成不良后果的行为,将以事实为依据,由项目经理及中心行政恰当地予以处理;甲方帮助乙方分析原因,确定改进措施。 (二)、乙方: 1、应尊重甲方,虚心向甲方请教工作、学习方法; 2、应在做好本职工作的同时,锲而不舍地钻研专业技能,按时完成各项学习、

工作任务; 3、应在带教期内,通过努力,达到带教目标; 4、对因违反操作规程,造成不良后果的行为,将以事实为依据,由项目经理及中心行政恰当地予以处理,乙方在甲方的帮助下分析原因,改进不足。 第三条考核与奖励 (一)、组织方应会同所在部门,定期对甲乙双方进行阶段性目标的中途考核和指导(考核表另定); (二)、培养期满后,组织方将对乙方进行敬业精神、专业知识、组织能力、工作实绩等方面内容的考核(考核要求另定); (三)、根据考核结果,甲方可获得人民币贰佰元至壹仟元的奖励; (四)、乙方经综合考核后,如达到优秀的,组织方将对其进行适当奖励;(五)、组织方将根据考核情况,制定进一步培养措施; (六)、甲、乙双方所在的项目经理部项目经理负有督导责任。 第四条其他 (一)、本协议书自签字之日起生效; (二)、甲、乙双方因故需解除协议的,可提前向见证方提出,经见证方核实确认无法继续履行本协议,同意终止协议,协议方可解除; (三)、本协议书一式四份。甲方一份,乙方一份,见证方各一份。 甲方(签字):乙方(签字): 年月日年月日 见证方签章: 项目经理部(盖章):人力资源管理中心(盖章): 项目经理(签字):人力资源管理中心代表(签字): 年月日年月日

相关文档
最新文档