分形的基本原理

分形的基本原理
分形的基本原理

混沌理论之分形交易系统的基本原理

分形也叫碎形,英文叫Fractal---交易的起始!

一、分形原理

分形是利用简单的多空原理而形成。当市场上涨的时候,买方追高价的意愿很高,形成价格不断上升,随着价格不断上升买方意愿也将逐渐减少,最后价格终于回跌。然后市场进入一些新的资讯(混沌)影响了交易者的意愿,此时市场处于低价值区,买卖双方都同意目前的价格区,但对于价格却有不同的看法,当买方意愿再度大于卖方意愿时价格就会上涨,如果这个买方的动能足以超越向上分形时,我们将在向上分形上一档积极进场。下跌时原理亦同。

二、分形结构

分形是由至少五根连续的K线所组成。向上的分形中间的K线一定有最高价,左右两边的K 线分别低于中间K线的高点;向下的分形中间的K线一定有最低价,左右两边的K线分别高于中间K线的低点;你可以现在举起手,观察自己五根手指的结构,就是典型的向上分形。这是最典型的也是最基本的分形结构;若中间的K线同时高于和低于左右两边的K线,那么它即是一个向上的分形又是一个向下的分形。需要注意的是如果当天的K线最高点或最低点与前面一根K线的高点或低点相同时,需要等待后一根K线进行确认。

分形是证券混沌操作法的入场系统,也是鳄鱼苏醒时的第一个入场信号。一个分形产生后,随后的价格如果有能力突破分形的高点或低点,我们便开始进场。在证券混沌操作法中,一个有效的分形信号,必须高于或低于颚鱼线的牙齿。当有效的分形被突破后,只要价格仍然在鳄鱼线唇吻的上方或下方,我们便只在下一个分形被突破时进行顺势交易。

分辨向上分形时我们只在乎高点的位置,观察向下分形时则只在乎低点的位置。

在找寻分形时必须注意几点:

1.如果某一天的K线最高价与前一天K线的最高价相同,那么该天的K线将不列入五根手指

头之内,此时就需等待第六根K线的确认。

2.向上与向下分形可由一根K线来完成,因为它都符合上下分形的结构原理。

3.向上与向下分形可共享周边的K线。

三、分形的用法

分形可以透露许多市场行为结构的演变讯息,当市场在高高低低之间波动时,我们可以藉由了解分形的行为而改善我们的交易绩效。

使用原则:

当分形形成时分形结构不会任意变动的,但不是每一个分形都会变成交易中的主角,分形是交易进场的起始信号,分形要成为起始信号主角,必须具备下列要件:

1.有效的向上分形信号必须高于鳄鱼的牙齿(高于红线)。

2.当有效的向上分形被突破后,只要价格仍然在鳄鱼嘴巴上方,我们都只做买的策略,除了停

损我们不做卖单进场的交易。

3.有效的向下分形信号必须低于鳄鱼的牙齿(低于红线)。

4.当有效的向下分形被跌破后,只要价格仍然在鳄鱼嘴巴下方,我们都只做卖的策略,除了停

损我们不做买单进场的交易。

5.有时分形形成时为无效分形,但随着时间右移而鳄鱼牙齿逐步走低(走高)时,无效分形会

变成有效分形的信号。

分形用于波浪计数:向上与向下分形之间就是一个波。市场走势常隐藏着艾略特波浪的结构,而波浪理论的内在结构就是分形,能够分辨分形结构,对于波浪交易使用者有很大的帮助。

fractal(分形)突破的用法

fractal分为两种,向上分形和向下分形。一般的用法是见到向上分形则看跌,见到向下分形看涨。如图所示。

但是由于分形的定义是取五根k线的最高或者最低一根,所以就势必在图上有很多个分形。如果只是简单的按照上分形看跌,下分形看涨来做单的话,那么成功率是很低的。所以,分行的这种功能的实际用途是比较差的。

在混沌交易法里面,作者曾经介绍过利用分行的突破来进场交易。当k线突破上分形的时候做多,反之则空。这种方法给交易者提供了明确的进场信号和明确的进场位置。而且,它是将分形视为阻力来看待的。所以,突破了前一个阻力,则趋势继续下去的概率会大些。虽然假突破也是存在的,但是成功的概率还是高些。

根据个人的经验,分行的突破必须是k线触及分形的三角形的顶端为有效,只是碰到但是没有碰到顶端视为无效。根据这个定义,可以在一定程度上过滤一些假突破的行情。而且,一旦同一类型的分形出现后,则前一个分形的功能则在新分形被突破之前忽略。也就是说,以最近的一个分形为准。

上图中共有四处潜在的突破(圆圈处),其中B和D处是有效的突破。如图中所示,行情在突破后顺着突破的方向继续发展了一段。A处是突破后的回抽,虽然该分形是被有效突破了,但是可能上方不远处即存在阻力(有可能为前期高点)。查看阻力支撑位后发现,上方存在日内的阻力。如下图。C点是一个假突破,根据个人对突破的定义,该点不能看成是突破了下分形。k线没有触及倒三角的顶点,差了一个点。

在突破分形进场的时候,可以将止损放在最近的一个分行的下方。如突破上分形,止损就放在最近的下分形的下方。当止损被打到的时候,则突破分形的力量彻底消失,可考虑反向做多。

分形突破在实际操作中可以作为进场点的出发点,如在大行情看多的情况下,可以在上分形被突破的时候进场,这样就可以很大程度上保证顺大势且进场后行情不会马上翻转。当然,最好避免在重要支撑和阻力未突破的时候用分形突破进场,如点A处所示。毕竟和重要的支撑和阻力位比分行的突破影响是大得多的。当分形突破和其他识别趋势的指标相结合的时候,它就可以充分发挥自己的作用了。

分形维数算法

分形维数算法. 分形维数算法 分形包括规则分形和无规则分形两种。规则分形是指可以由简单的迭代或者是按一定规律所生成的分形,如Cantor集,Koch曲线,Sierpinski海绵等。这些分形图形具有严格的自相似性。无规则分形是指不光滑的,随机生成的分形,

如蜿蜒曲折的海岸线,变换无穷的布朗运动轨迹等。这类曲线的自相似性是近 似的或统计意义上的,这种自相似性只存于标度不变区域。 对于规则分形,其自相似性、标度不变性理论上是无限的(观测尺度可以趋于无限小)。不管我们怎样缩小(或放大)尺度(标度)去观察图形,其组成部分和原来的图形没有区别,也就是说它具有无限的膨胀和收缩对称性。因些对于这类分形,其计算方法比较简单,可以用缩小测量尺度的或者不断放大图形而得到。分形维数 D=lnN(λ)/ln(1/λ) (2-20) 如Cantor集,分数维D=ln2/ln3=0.631;Koch曲线分数维 D=ln4/ln3=1.262; Sierpinski海绵分数维D=ln20/ln3=2.777。 对于不规则分形,它只具有统计意义下的自相似性。不规则分形种类繁多,它可以是离散的点集、粗糙曲线、多枝权的二维图形、粗糙曲面、以至三维的[26]。点 集和多枝权的三维图形,下面介绍一些常用的测定方法(1)尺码法 用某个选定尺码沿曲线以分规方式测量,保持尺码分规两端的落点始终在曲线上。不断改变尺码λ,得到一系列长度N(λ),λ越小、N越大。如果作lnN~lnλ图后得到斜率为负的直线,这表明存在如下的幂函数关系

-D(2-21) N~λ上式也就是Mandelbrot在《分形:形状、机遇与维数》专著中引用的Richardson公式。Richardson是根据挪威、澳大利亚、南非、德国、不列颠西部、葡萄牙的海岸线丈量结果得出此公式的,使用的测量长度单位一般在1公里到4公里之间。海岸线绝对长度L被表示为: 1-D(2-22)L=Nλ~λ 他得到挪威东南部海岸线的分维D≈1.52,而不列颠西部海岸线的分维D≈[27]。。这说明挪威的海岸线更曲折一些1.3. )小岛法(2面积如果粗糙曲线都是封闭的,例如海洋中的许多小岛,就可以利用周长-关系求分维,因此这个方法又被称为小岛法。则与λ的而面积A对于规则图形的周长与测量单位尺寸λ的一次方成正比, 二次方成正比。通常我们可以把它们写成一个简单的比例关系:1/2 (2-23) AP∝对于二维空间内的不规则分形的周长和面积的关系显然更复杂一些,提出,应该用分形周长曲线来代替原来的光滑周长,从而给出了下Mandelbrot 述关系式:21/??D??1/1/D2)(2-24)]?(?)]?[a?AP[(?)][??a(1?D)/DA(?00的P)式),使1(周长光滑时D=1,上式转化成为(2.23这里的分维D大于??的数1变化减缓,a是和岛的形状有关的常数,为小于是测量尺寸,一般取0/D)(1-D??减小而增大。作随测

几个分形的matlab实现

几个分形得matlab实现 摘要:给出几个分形得实例,并用matlab编程实现方便更好得理解分形,欣赏其带来得数学美感 关键字:Koch曲线实验图像 一、问题描述: 从一条直线段开始,将线段中间得三分之一部分用一个等边三角形得两边代替,形成山丘形图形如下 ?图1 在新得图形中,又将图中每一直线段中间得三分之一部分都用一个等边三角形得两条边代替,再次形成新得图形如此迭代,形成Koch分形曲线。 二、算法分析: 考虑由直线段(2个点)产生第一个图形(5个点)得过程。图1中,设与分别为原始直线段得两个端点,现需要在直线段得中间依次插入三个点,,。显然位于线段三分之一处,位于线段三分 之二处,点得位置可瞧成就是由点以点为轴心,逆时针旋转600而得。旋转由正交矩阵 实现。 算法根据初始数据(与点得坐标),产生图1中5个结点得坐标、结点得坐标数组形成一个矩阵,矩阵得第一行为得坐标,第二行为得坐标……,第五行为得坐标。矩阵得第一列元素分别为5个结点得坐标,第二列元素分别为5个结点得坐标。 进一步考虑Koch曲线形成过程中结点数目得变化规律。设第次迭代产生得结点数为,第次迭代产生得结点数为,则与中间得递推关系为。 三、实验程序及注释: p=[0 0;10 0]; %P为初始两个点得坐标,第一列为x坐标,第二列为y坐标 n=2; %n为结点数 A=[cos(pi/3) —sin(pi/3);sin(pi/3) cos(pi/3)]; %旋转矩阵 for k=1:4 d=diff(p)/3; %diff计算相邻两个点得坐标之差,得到相邻两点确定得向量 %则d就计算出每个向量长度得三分之一,与题中将线段三等分对应 m=4*n-3; %迭代公式 q=p(1:n—1,:); %以原点为起点,前n—1个点得坐标为终点形成向量 p(5:4:m,:)=p(2:n,:); %迭代后处于4k+1位置上得点得坐标为迭代前得相应坐标 p(2:4:m,:)=q+d; %用向量方法计算迭代后处于4k+2位置上得点得坐标 p(3:4:m,:)=q+d+d*A'; %用向量方法计算迭代后处于4k+3位置上得点得坐标 p(4:4:m,:)=q+2*d; %用向量方法计算迭代后处于4k位置上得点得坐标 n=m; %迭代后新得结点数目 end plot(p(:,1),p(:,2)) %绘出每相邻两个点得连线 axis([0 10 0 10]) 四、实验数据记录: 由第三部分得程序,可得到如下得Koch分形曲线:

分形维数算法

分形维数算法

分形维数算法 分形包括规则分形和无规则分形两种。规则分形是指可以由简单的迭代或者是按一定规律所生成的分形,如Cantor集,Koch曲线,Sierpinski海绵等。这些分形图形具有严格的自相似性。无规则分形是指不光滑的,随机生成的分形,如蜿蜒曲折的海岸线,变换无穷的布朗运动轨迹等。这类曲线的自相似性是近似的或统计意义上的,这种自相似性只存于标度不变区域。 对于规则分形,其自相似性、标度不变性理论上是无限的(观测尺度可以趋于无限小)。不管我们怎样缩小(或放大)尺度(标度)去观察图形,其组成部分和原来的图形没有区别,也就是说它具有无限的膨胀和收缩对称性。因些对于这类分形,其计算方法比较简单,可以用缩小测量尺度的或者不断放大图形而得到。分形维数 D=lnN(λ)/ln(1/λ) (2-20) 如Cantor集,分数维D=ln2/ln3=0.631;Koch曲线分数维D=ln4/ln3=1.262; Sierpinski海绵分数维D=ln20/ln3=2.777。 对于不规则分形,它只具有统计意义下的自相似性。不规则分形种类繁多,它可以是离散的点集、粗糙曲线、多枝权的二维图形、粗糙曲面、以至三维的点集和多枝权的三维图形,下面介绍一些常用的测定方法[26]。 (1)尺码法 用某个选定尺码沿曲线以分规方式测量,保持尺码分规两端的落点始终在曲线上。不断改变尺码λ,得到一系列长度N(λ),λ越小、N越大。如果作lnN~lnλ图后得到斜率为负的直线,这表明存在如下的幂函数关系 N~λ-D(2-21) 上式也就是Mandelbrot在《分形:形状、机遇与维数》专著中引用的Richardson公式。Richardson是根据挪威、澳大利亚、南非、德国、不列颠西部、葡萄牙的海岸线丈量结果得出此公式的,使用的测量长度单位一般在1公里到4公里之间。海岸线绝对长度L被表示为: L=Nλ~λ1-D(2-22) 他得到挪威东南部海岸线的分维D≈1.52,而不列颠西部海岸线的分维D≈1.3。这说明挪威的海岸线更曲折一些[27]。

股票市场的分形特征和股票价格的FIGARCH模型研究

股票市场的分形特征和股票价格的FIGARCH模型研究 股票市场投资的目的是获取最大投资收益,然而收益与风险相伴,在收益与风险之间决策常常是不容易的。传统的股票投资理论认为股票市场是有效的,均衡的,收益是风险的线性函数,收益的波动符合布朗运动,收益的分布是独立同分布的,方差和均值是稳定的。实际情况却是股票市场影响因素以及各因素之间相互作用关系复杂,受投资者个人及群体心理因素影响明显,股票的波动以及收益与风险的关系常常是非线性的,非均衡的,收益的方差和均值是自相关的、不稳定的,收益的波动符合分形布朗运动,表现出分形和混沌的特征。本文分析了股票市场的波动的非线性、非均衡、分形和混沌特征,建立并检验了几种股票的分形差分异方差时间序列模型。 第一章回顾了股票定价理论的发展过程,介绍了九种在不同阶段具有代表性的股票定价理论,为把握股票定价理论的发展趋势,为以后各章的研究奠定基础。第二章分析了股票市场波动的一般特征和非线性非均衡特征,分析了股票投资收益和风险的影响因素,提出“虚拟性”、“风险性”、“流动性”和“投机性”是股票市场的核心特征。提出股票市场是远离平衡的、具有分形特征的非线性系统。投机是股票市场存在的前提和股票市场的天性。 第二章分析了有效市场理论产生的背景,就有效市场理论成立的基本假设进行了检验,提出股票价格收益是不稳定的随机序列,收益分布不是正态分布,股票价格收益表现出非性,序列自相关性,异方差性。提出有效市场理论失灵的主要原因是投资者的非理性行为,信息反映的羊群效应,投资者存在反应过度和反应不足现象,股票市场的非均衡特征和股票市场的非线性特征。第四章分析并检验了股票市场的分形混沌特征,推导了投资函数,计算了表征股票市场分形特征的Hurst指数,关联维和最大Lyapunov指数,分析了股票价格的自相似性、长期记忆和循环周期,分析了股票价格的波动对初始条件的敏感性,提出中国股票市场具有混沌分形的特性,用传统的方差法度量股票风险是无效的,必须使用混沌分析能够理论来刻画股票收益的风险,建立收益模型。第五章介绍了股票价格的分形时间序列模型,介绍了检验时间序列平稳性的方差分析和单位根检验方法以及非平稳的处理方法,ARFIMA,GARCH和FIGARCH模型的建模方法和股票市场的分形特征和股票价格的FIGARCll模型叭

经典的分形算法 (1)

经典的分形算法 小宇宙2012-08-11 17:46:33 小宇宙 被誉为大自然的几何学的分形(Fractal)理论,是现代数学的一个新分支,但其本质却是一种新的世界观和方法论。它与动力系统的混沌理论交叉结合,相辅相成。它承认世界的局部可能在一定条件下,在某一方面(形态,结构,信息,功能,时间,能量等)表现出与整体的相似性,它承认空间维数的变化既可以是离散的也可以是连续的,因而拓展了视野。 分形几何的概念是美籍法国数学家曼德布罗(B.B.Mandelbrot)1975年首先提出的,但最早的工作可追朔到1875年,德国数学家维尔斯特拉斯(K.Weierestrass)构造了处处连续但处处不可微的函数,集合论创始人康托(G.Cantor,德国数学家)构造了有许多奇异性质的三分康托集。1890年,意大利数学家皮亚诺(G.Peano)构造了填充空间的曲线。1904年,瑞典数学家科赫(H.von Koch)设计出类似雪花和岛屿边缘的一类曲线。1915年,波兰数学家谢尔宾斯基(W.Sierpinski)设计了象地毯和海绵一样的几何图形。这些都是为解决分析与拓朴学中的问题而提出的反例,但它们正是分形几何思想的源泉。1910年,德国数学家豪斯道夫(F.Hausdorff)开始了奇异集合性质与量的研究,提出分数维概念。1928年布利干(G.Bouligand)将闵可夫斯基容度应用于非整数维,由此能将螺线作很好的分类。1932年庞特里亚金(L.S.Pontryagin)等引入盒维数。1934年,贝塞考维奇(A.S.Besicovitch)更深刻地提示了豪斯道夫测度的性质和奇异集的分数维,他在豪斯道夫测度及其几何的研究领域中作出了主要贡献,从而产生了豪斯道夫-贝塞考维奇维数概念。以后,这一领域的研究工作没有引起更多人的注意,先驱们的工作只是作为分析与拓扑学教科书中的反例而流传开来。 真正令大众了解分形是从计算机的普及肇始,而一开始,分形图的计算机绘制也只是停留在二维平面,但这也足以使人们心驰神往。近来,一个分形体爱好者丹尼尔?怀特(英国一钢琴教师)提出一个大胆的方法,创造出令人称奇的3D分形影像,并将它们命名为芒德球(mandelbulb)。

基于分形几何的分形图绘制与分析

基于分形几何的分形图绘制与分析 摘要:基于分形几何的分形图绘制方法源于l系统、迭代函数系统ifs、复动力系统等。在运用分形原理及算法编程绘制多种分形图的基础上,重点对ifs参数进行实验分析,ifs吸引集实现了对原图形的几何变换。分形图的演变具有渐变性。 关键词:分形几何迭代函数系统分形图绘制渐变 1 分形几何学 现代数学的一个新的分支——,它是由美籍法国数学家曼德勃罗(b.b.mandelbrot)1973年在法兰西学院讲课时,首次提出了分形几何的设想。分形(fractal)一词,是曼德勃罗创造出来的,其原意具有不规则、支离破碎等意义,分形几何学是一门以非规则几何形态为研究对象的几何学。由于不规则现象在自然界是普遍存在的,因此分形几何又称为描述大自然的几何学。分形几何的诞生无论是在理论上还是在实践上都具有重要价值。 2 分形的定义 目前分形还没有最终的科学定义,曼德勃罗曾经为分形下过两个定义: (1)分形是hausdorff-besicovitch维数严格大于拓扑维数的集合。因为它把许多hausdorff维数是整数的分形集合排除在外,例如,经典分形集合peano曲线分形维数 (2)局部与整体以某种方式自相似的形,称为分形。 然而,经过理论和应用的检验,人们发现这两个定义很难包括分形

如此丰富的内容。实际上,对于什么是分形,到目前为止还不能给出一个确切的定义,正如生物学中对“生命”也没有严格明确的定义一样,人们通常是列出生命体的一系列特征来加以说明。对分形的定义也可同样的处理。 (ⅰ) 分形集合在任意小尺度下,它总有复杂的细节,或者说它具有精细的结构。 (ⅱ) 分形集合是非常不规则的,用传统的几何语言无法来描述它的局部和整体,它既不是满足某些条件的点的轨迹,也不是某些简单方程的解集。 (ⅲ) 分形集具有某种自相似形式,可能是近似的自相似或者统计的自相似。 (ⅳ) 以某种方式定义的分形集合的“分形维数”,严格大于它相应的拓扑维数。 (ⅴ) 在大多数令人感兴趣的情形下,分形集合是以非常简单的递归的方法产生的。 3 分形研究的对象 几何学的研究对象是物体的形状,在自然界中,许多物体的形状是极不规则的,例如:弯弯曲曲的海岸线,起伏不平的山脉,变化无偿的浮云,以及令人眼花缭乱的满天繁星,等等。这些物体的形状有着共同的特点,就是极不规则,极不光滑。但是,所有的经典几何学都是以规则而光滑的形状为其研究对象的,例如:初等平面几何的主要研究对象是直线与圆;平面解析几何的主要研究对象是一

分形维数浅释

分形维数(Fractal Dimension)浅释 笔者: 喻麟佑博士(美国亚利桑那大学物理学博士)2012年3月于广州

前言: 最近,数学课下课后,有学生问我一个网上流传的数学问题,令很多学生困惑。简化以后,大意可以由下图描述: 三角形的两个斜边一直往下折,折了无穷次后,看起来不就是和底边一样了?那 么,1 + 1了?要回答类似这个问题,必须了解分形(Fractal)的原理才行。其实这两个斜边,折了无穷次后,是一个分形的结构,和一条直线是大不相同的。现在,我们来了解一下分形的原理。 正文: 分形 (Fractal) ,又称“碎形”或“残形”。这种几何形状,对很多人而言,其实并不陌生,大家或多或少都可在一些书本、杂志封面、海报或月历等地方看到过。自从20世纪80年代开始 [注一] ,“混沌 (chaos)”,“奇异吸引子 (strange attractors)”,“分形 (fractal)”, 还有与以上相关的许多新名词,如雨后春笋般呈现,且被人们所津津乐道。无论是专业人士的讨论或一般茶余饭后的闲谈皆然。 分形几何,有若干特性,例如“自相似性(self-similarity)”等等。本文由一个最耐人寻味的特性切入,那就是分形维数(Fractal Dimension)。并且,也借此讨论过程,得以对分形(碎形)有更深入的了解。

首先,众所周知,一般几何所用的维数,或维度 (Dimension) 是整数,如一 个点是0维,一条线段是1维,一个在平面上的几何图形是2维,如一个方形或一个圆形;再者,一个立方体或一个球形,则被视为3维。 然而,分形,却具有非整数的维数。这是怎么回事呢?为了解释清楚,我们 先看看一条线段(如图一): 图一 如果我们把此线段分割一次,则 1n =,12N =,12 L ε= 式中 L 是一个常数, n 是分割的次数, n N 乃分割n 次后的总碎片数, n ε是分割n 次后的每一碎片的长度 第二次分割(每个线段再分割一次): 2n =,2242N ==,22 42L L ε= = 第三次分割(每个线段再分割一次): 3n =,3382N ==,3382 L L ε= =

基于分形模型的分布式虚拟现实系统的应用研究

※编程技术应用实践 应用实践※※ 基于分形模型的分布式虚拟现实系统的应用研究 刘鹏 (太原工业学院) 【摘要】比较深入地分析和说明了开发基于分形模型的分布式虚拟现实系统的可行性及其应用价值,并给出了详细的设计方案。 【关键词】分形模型;分布式虚拟现实系统;设计方案 1引言 在分布式虚拟现实系统的分析和设计中,特别关注交互性,这就要求开发出的系统必须具有较快的响应速度和较大的吞吐量【1】。而且,VR系统要求很强的实时性,图形更新速率至少要求16桢/s,图形客体行为反映的滞后要低于0.1s。随着技术的发展,对象的细节层次越来越复杂,就目前计算机图形学的水平而言,只要有足够的时间,就能生成准确度相当高的像照片一样的逼真图像。然而这种提高真实感的方法是采用增加物体多边形来获得,从而使计算复杂,绘图速度大大降低,无法满足DVR系统的需要【2】。 2DVR系统及其特点简介 DVR是指基于网络的虚拟环境,在这个环境中,位于不同物理位置的多个用户和多个 虚拟环境通过网络相连接,并共享信息。它是网络和虚拟现实结合的产物,是一个支持多人通过网络实时进行交互的软件系统,每个用户在一个VR环境中通过计算机与其他用户进行交互。DVR系统一般由显示器,通信和控制设备,处理系统,数据网络四个基本部件组成【3】。 DVR追求良好的交互性,这就使得其对系统的响应速度和吞吐量有较高的要求。为了获得较好的交互反应时间,系统必须由相当少的软件层组成,在客户和服务器之间传递的数据量必须足够小。吞吐量受客户和服务器的处理速度,数据传输率的影响。在远程服务器上的数据必须从服务器进程传递到客户进程,经过两个计算机上若干个软件层。软件层的吞吐量与网络的吞吐量一样重要【1】。与此同时,DVR还要求系统具有良好的实时性,保持较高的图形刷新速率等。 3分形模型及其在DVR系统设计中的应用价值 3.1分形模型概述 正如分形之父Mandelbrot所说的那样,分形是大自然的几何学。分形几何学是描述复杂自然形状及其形成机制的有力手段,为人类构建自然图形提供了一种新的科学基础,形成了一种全新的自然图像——生成论的自然图像。分形几何学能够借助迭代模拟自然界的复杂形状,这正是分形模型的独特魅力所在【4】。目前,发展较为成熟的分形几何模型有L-System(L-系统)与IFS(Iterated Function System,迭代函数系统)。它们都能以极少的存储数据来生成逼真度相当高的复杂自然形状。而且,对于任何自然物形态,都可以通过计算机把它们转换成IFS编码,即数据模型【4】。因此,分形模型具有极其广阔的应用前景。 3.2分形模型在DVR系统设计中的应用价值 传统DVR系统中的几何模型一般用多边形来表示,通常具有两个信息:一个包含点的位置信息,另一个是点的拓扑结构信息,用来说明这些点之间的连接【2】。因此,在生成实体时通常要求较大的数据量,对网络的带宽要求很高。而且,在生成较为复杂的实体模型时,限于大量的数据传输和计算,使得图形的 1

分形维数算法

分形维数算法 分形包括规则分形和无规则分形两种。规则分形是指可以由简单的迭代或者是按一定规律所生成的分形,如Cantor集,Koch曲线,Sierpinski海绵等。这些分形图形具有严格的自相似性。无规则分形是指不光滑的,随机生成的分形,如蜿蜒曲折的海岸线,变换无穷的布朗运动轨迹等。这类曲线的自相似性是近似的或统计意义上的,这种自相似性只存于标度不变区域。 对于规则分形,其自相似性、标度不变性理论上是无限的(观测尺度可以趋于无限小)。不管我们怎样缩小(或放大)尺度(标度)去观察图形,其组成部分和原来的图形没有区别,也就是说它具有无限的膨胀和收缩对称性。因些对于这类分形,其计算方法比较简单,可以用缩小测量尺度的或者不断放大图形而得到。分形维数 D=lnN(λ)/ln(1/λ) (2-20) 如Cantor集,分数维D=ln2/ln3=0.631;Koch曲线分数维D=ln4/ln3=1.262; Sierpinski海绵分数维D=ln20/ln3=2.777。 对于不规则分形,它只具有统计意义下的自相似性。不规则分形种类繁多,它可以是离散的点集、粗糙曲线、多枝权的二维图形、粗糙曲面、以至三维的点集和多枝权的三维图形,下面介绍一些常用的测定方法[26]。 (1)尺码法 用某个选定尺码沿曲线以分规方式测量,保持尺码分规两端的落点始终在曲线上。不断改变尺码λ,得到一系列长度N(λ),λ越小、N越大。如果作lnN~lnλ图后得到斜率为负的直线,这表明存在如下的幂函数关系 N~λ-D(2-21) 上式也就是Mandelbrot在《分形:形状、机遇与维数》专著中引用的Richardson公式。Richardson是根据挪威、澳大利亚、南非、德国、不列颠西部、葡萄牙的海岸线丈量结果得出此公式的,使用的测量长度单位一般在1公里到4公里之间。海岸线绝对长度L被表示为: L=Nλ~λ1-D(2-22) 他得到挪威东南部海岸线的分维D≈1.52,而不列颠西部海岸线的分维D≈1.3。这说明挪威的海岸线更曲折一些[27]。

各种有趣的分形

各种有趣的分形 我们看到正方形,圆,球等物体时,不仅头脑里会迅速反映出它是什么,同时,只要我们有足够的数学知识,我们头脑中也反映出它的数学概念,如正方形是每边长度相等的四边形,圆是平面上与某一点距离相等的点的集合,等等。 但是,当我们看到一个山的形状时,我们会想到什么?"这是山",没错,山是如此的不同于其他景象,以至于你如果绘画水平不高,根本画不出象山的东西。可是,山到底是什么?它既不是三角形,也不是球,我们甚至不能说明山具有怎样的几何轮廓,但为什么我们却有如此直观而又强烈的山的印象?分形的创始人是曼德布洛特思考了这个问题。让 图中的风景图片又是说明分形的另一 很好的例子。这张美丽的图片是利用分 形技术生成的。在生成自然真实的景物 中,分形具有独特的优势,因为分形可 以很好地构建自然景物的模型。 这是一棵厥类植物,仔细观察,你会发 现,它的每个枝杈都在外形上和整体相 同,仅仅在尺寸上小了一些。而枝杈的 枝杈也和整体相同,只是变得更加小 了。 Sierpinski三角形具有严格的自相似特 性

Kohn雪花具有严格的自相似特性 分维及分形的定义 分维概念的提出 对于欧几里得几何所描述的整形来说,可以由长度、面积、体积来测度。但用这种办法对分形的层层细节做出测定是不可能的。曼德尔布罗特放弃了这些测定而转向了维数概念。分形的主要几何特征是关于它的结构的不规则性和复杂性,主要特征量应该是关于它的不规则性和复杂性程度的度量,这可用“维数”来表征。维数是几何形体的一种重要性质,有其丰富的内涵。整形几何学描述的都是有整数维的对象:点是零维的,线是一维的,面是二维的,体是三维的。这种几何对象即使做拉伸、压缩、折叠、扭曲等变换,它们的维数也是不变的;这种维数称为“拓扑维”,记为d。例如当把一张地图卷成筒,它仍然是一个二维信息载体;一根绳子团成团,仍然是一维结构。但曼德尔布罗特认为,在分形世界里,维数却不一定是整数的。特别是由于分形几何对象更为不规则,更为粗糙,更为破碎,所以它的分数维(简称“分维”,记为D)不小于它的拓扑维,即D≥d。 维数和测量有密切关系。如为了测一平面图形的面积,就要用一个边长为l、面积为l2的标准面元去覆盖它,所得的数目就是所测的面积。

分形图形与分形的产生

分形图形 分形理论是非线性科学的主要分支之一,它在计算机科学、化学、生物学、天文学、地理学等众多自然科学和经济学等社会科学中都有广泛的应用。分形的基本特征是具有标度不变性。其研究的图形是非常不规则和不光滑的已失去了通常的几何对称性;但是,在不同的尺度下进行观测时,分形几何学却具有尺度上的对称性,或称标度不变性。研究图形在标度变换群作用下不变性质和不变量对计算机图形技术的发展有重大的意义。 说到分形(fractal),先来看看分形的定义。分形这个词最早是分形的创始人曼德尔布诺特提来的,他给分形下的定义就是:一个集合形状,可以细分为若干部分,而每一部分都是整体的精确或不精确的相似形。分形这个词也是他创造的,含有“不规则”和“支离破碎”的意思。分形的概念出现很早,从十九世纪末维尔斯特拉斯构造的处处连续但处处不可微的函数,到上个世纪初的康托三分集,科赫曲线和谢尔宾斯基海绵。但是分形作为一个独立的学科被人开始研究,是一直到七十年代曼德尔布诺特提出分形的概念开始。而一直到八十年代,对于分形的研究才真正被大家所关注。 分形通常跟分数维,自相似,自组织,非线性系统,混沌等联系起来出现。它是数学的一个分支。我之前说过很多次,数学就是美。而分形的美,更能够被大众所接受,因为它可以通过图形化的方式表达出来。而更由于它美的直观性,被很多艺术家索青睐。分形在自然界里面也经常可以看到,最多被举出来当作分形的例子,就是海岸线,源自于曼德尔布诺特的著名论文《英国的海岸线有多长》。而在生物界,分形的例子也比比皆是。 近20年来,分形的研究受到非常广泛的重视,其原因在于分形既有深刻的理论意义,又有巨大的实用价值。分形向人们展示了一类具有标度不变对称性的新世界,吸引着人们寻求其中可能存在着的新规律和新特征;分形提供了描述自然形态的几何学方法,使得在计算机上可以从少量数据出发,对复杂的自然景物进行逼真的模拟,并启发人们利用分形技术对信息作大幅度的数据压缩。它以其独特的手段来解决整体与部分的关系问题,利用空间结构的对称性和自相似性,采用各种模拟真实图形的模型,使整个生成的景物呈现出细节的无穷回归的性质,丰富多彩,具有奇妙的艺术魅力。分形对像没有放大极限,无论如何放大,总会看到更详细的结构。借助于分形的计算机生成,从少量的数据生成复杂的自然景物图形,使我们在仿真模拟方面前进了一大步。在分形的诸多研究课题中,分形的计算机生成问题具有明显的挑战性,它使传统数学中无法表达的形态(如山脉、花草等)得以表达,还能生成一个根本“不存在”的图形世界。分形在制造以假乱真的景物方面的进展和潜在的前途,使得无论怎样估计它的影响也不过分。可以肯定,分形图案在自然界真实物体模拟、仿真形体生成、计算机动画、艺术装饰纹理、图案设计和创意制作等具有广泛的应用价值。 分形图形简介一、关于分形与混沌 关于分形的起源,要非常准确的找出来是非常困难的。研究动态系统、非线形数学、函数分析的科学家,已数不胜数。尽管分形的早期线索已非常古老,但这一学科却还很年轻。比如关于动态系统和细胞自动机的大部分工作可以追溯到冯-诺依曼;但是,直到Mandelbrot 才如此清楚地将自然现象和人工现象中的混沌及分形同自相似性联系在一起。大家如果对此感兴趣,可进一步查阅有关资料。下面我们看一看分形的概念。 什么是分形呢?考虑到此文的意图,我们无意给出它严格的定义,就我们的目的而言,一个分形就是一个图象,但这个图象有一个特性,就是无穷自相似性。什么又是自相似呢?在自然和人工现象中,自相似性指的是整体的结构被反映在其中的每一部分中。比如海岸线,常举的例子,你看它10公里的图象(曲线),和一寸的景象(曲线)是相似的,这就是自相似性。 与分形有着千差万屡的关系的,就是混沌。混沌一词来源与希腊词汇,原意即“张开咀”,但是在社会意义上,它又老爱和无序联系在一起。解释分形和混沌的联系,要注意到分形是

分形几何学

2 分形几何学的基本概念 本章讨论分形几何学的一些基本内容,其中:第1节讨论自相似性与分形几何学的创立;第2节讨论分形几何学的数学量度,即三种不同的维数计算方法;第3节讨论应用分形几何方法所实现的对自然有机体的模拟。 2.1自相似性与分形几何学 无论人们通过怎样的方式把欧几里得几何学的形体与自然界关联起来,欧氏几何在表达自然的本性时总是会遇到一个难题:即它无法表现自然在不同尺度层次上的无穷无尽的细节。欧氏几何形体在局部放大后呈现为直线或光滑的曲线,而自然界的形体(如山脉、河流、云朵等)则在局部放大后仍呈现出与整体特征相关的丰富的细节(图版2-1图1),这种细节特征与整体特征的相关性就是我们现在所说的自相似性。

自相似性是隐含在自然界的不同尺度层次之间的一种广义的对称性,它使自然造化的微小局部能够体现较大局部的特征,进而也能体现其整体的特征。它也是自然界能够实现多样性和秩序性的有机统一的基础。一根树枝的形状看起来和一棵大树的形状差不多;一朵白云在放大若干倍以后,也可以代表它所处的云团的形象;而一段苏格兰的海岸线在经过数次局部放大后,竟与放大前的形状惊人地相似(图版2-1图2)。这些形象原本都是自然界不可琢磨的形状,但在自相似性这一规律被发现后,它们都成为可以通过理性来认识和控制的了。显然,欧氏几何学在表达自相似性方面是无能为力了,为此,我们需要一种新的几何学来更明确地揭示自然的这一规律。这就是分形几何学产生的基础。

1977年,曼德布罗特(Benoit Mandelbrot)出版了《自然的分形几何学》(The Fractal Geometry of Nature)一书,自此分形几何学得以建立,并动摇了欧氏几何学在人们形态思维方面的统治地位。分形几何学的研究对象是具有如下特性的几何形体:它们能够在不断的放大过程中,不停地展现出自相似的、不规则变化着的细节(图2-1图3)。这些几何形状不同于欧氏几何形体的一维、二维或三维形状,它们的维数不是简单的1、2或3,而是处于它们之间或之外的分数。 科赫曲线(Koch Curve)是分形几何学基本形体中的一个典型实例,它是由这样一种规律逐次形成的:用一根线段做为操作对象,对其三等分,把中间一段向侧面旋转60度,并增加另一段与之长度相同的线段把原来的三条线段连接为一体,这四条线段组成的形状就是第一代的科赫曲线;分别对它的每一条线段重复上述的操作,将形成第二代科赫曲线;再对其每一条线段进行上述操作,可得第三代,等等;如此迭代下去(图版2-1图4)。显然,对每一代的构成元素的同样操作决定了自相似性的代代传递,使形成的科赫曲线已经明确地具有了自然的特征。如果再进一步在操作中增加一点随机成分的话,那么所得的随机科赫曲线的自然性就更强列了。[回本章页首] 2.2维数计算:分形几何学的数学量度 既然分形几何学是一种严格的数学,那么它一定有自身的数学量度。分形几何学的数学量度是分形几何形体的维数。如前所述,分形几何形体的维数不是整数而是分数,它的计算是分形几何的创立者们在总结归纳的基础上产生的。 分形几何体的维数计算的数学推导是复杂的,也不是我们所关心的内容。但维数计算所代表的形象意义却值得我们关注。如前所述,分形几何形体的本质属性是自相似性,而这一自相似性一定是在同一形体的不同层次之间(不论是对自然形体的不同程度的放大,还是对人工形体迭代操作所得到的不同代)得以体现的。因而,分形几何形的维数正是在形状的不同层次的比较之间所反映出来的规律。这一规律所代表的是分形几何形状在空间中的扩张趋势。维数越大,就表明它在空间的扩张趋势越强,形状本身的变化可能性也越丰富。

分形岩石力学

分形岩石力学 背景:随着经济全球化和信息技术的高速发展,特别对于发展中国家的来说,经济建设成为重中之重,当然经济建设活动中很多都是以岩石工程为对象的经济建设。所以我们对矿产资源勘探、能源消耗方面及力学研究方面的要求越来越高,人们对岩石力学提出更多更高的要求。发展和提高岩石力学的理论和方法的研究水平已变得非常重要。所以把非线性学科引入岩石力学的研究中句很重要的现实意义。实践表明,分形几何是研究岩石力学的有力工具,首先岩石力学是一个随机、多变、不稳定以及许多不确定因素影响的一个复杂的非线性系统。由于地址的演化,不同平尺度的地质现象很具有相似性,一些较小尺度的地质现象往往重演着大尺度的地质现象的演化过程,所以把分形理论引入到岩石力学的研究当中去是非常适合的和正确的。结合分形理论我们能够比较精确的刻画出岩体结构的复杂程度,定量表征岩石的完整性和节理岩体的质量。这些都给岩石力学的研究带来了极大的便宜。 一、分形的概念和定义 分形的英文词fractal来源于拉丁文fractus,由Mandelbrot1975年引入国内对fractal的翻译方法有“碎片”、“碎形”、“分数维”和“分维”等等。近年来人们开始一致使用“分形”这一译法。 定义一:是由Mandelbrot第一个给出的-----设集合F?R n的Hausdorff的维数是D。如果F的Hausdorff维数D严格大于它的拓扑维数D T=n,即D>D T,我们称集合F为分形集,简称为分形。 即: F={D:D>D T} 定义二:局部与整体以某种方式相似的形叫分形。 定义二强调了自相似的特性,反应了自然界中很广泛的一类物质的基本属性:局部与局域,局部与整体在形态、功能、信息、时间与空间等方面具有统计意义上的自相似性。但是相比定义一,定义二缺乏了不具有自相似但却满足D>D T的这一类集合。 Falconer对分形提出了一个新的认识,即把分形看成是具有某些性质的集合,而不去寻找精确的定义,因为严格的定义几乎总要排除一些特殊的东西。他提出一个分形可以描述为: 定义三:F是分形,如果F具有如下典型性质: ①具有精细的结构,具有任意小的比例细节; ②具有不规则性,它的整体和局部都不能用传统的几何语言来描述; ③一般具有近似的或统计意义的部分与整体之间的自相似性; ④通常以某种方式定义的“分形维数”大于它的拓扑维数; ⑤可以通过令人感兴趣的递归、迭代等简单的方法生成。 类似地Edgar给出了一个分形的粗滤定义: 定义四:分形集合就是比在经典集合考虑的集合更不规则的集合。这个集合无论被放大多少倍,越来越小的细节仍能看到。

分形几何的数学基础

课程名称(中文):分形几何的数学基础 课程名称(英文):Mathematical foundation of Fractal geometry 一)课程目的和任务: 分形几何的概念是由B.Mandelbrot 1975年首先提出的,数十年来它已迅速发展成为一门新兴的数学分支,它的应用几乎涉及到自然科学的各个领域。本课程为分形几何研究方向研究生的专业必修课程。主要内容包括:抽象空间,拓扑空间及度量空间中的测度理论基础、分形的(Hausdorff,packing及box-counting)维数理论及其计算技巧、分形的局部结构、分形的射影及分形的乘积等。其目的是使学生基本理解并掌握分形几何学基本概貌和基本研究方法及技巧,从而使他们能够阅读并理解本专业的文献资料。 二)预备知识:测度论,概率论 三)教材及参考书目: 教材:分形几何――数学基础及其应用肯尼思.法尔科内著东北大学出版社 参考书目:1)Rogers C.A. Hausdorff measures, Cambridge University Press, Cambridge, 1970. 2)文志英,分形几何的数学基础,上海科技教育出版社,上海,2000. 3)周作领,瞿成勤,朱智伟,自相似集的结构---Hausdorff测度与上凸密度(第二版),科学出版社,2010。 四)讲授大纲(中英文) 第一章数学基础 1)集合论基础 2)函数和极限 3)测度和质量分布 4)有关概率论的注记 第二章豪斯道夫测度和维数 1)豪斯道夫测度 2)豪斯道夫维数 3)豪斯道夫维数的计算――简单的例子 4)豪斯道夫维数的等价定义 5)维数的更精细定义 第三章维数的其它定义 1)计盒维数 2)计盒维数的性质与问题 3)修改的计盒维数 4)填充测度与维数 5)维数的一些其它定义 第四章计算维数的技巧 1)基本方法 2)有限测度子集 3)位势理论方法 4)傅立叶变换法 第五章分形的局部结构

分形统计模型的理论研究及其在地质学中的应用

第33卷 第2期1998年4月 SC IEN T I A GEOLO G I CA S I N I CA V o l .33N o.2 A p r .,1998 3地矿部“九五”基础研究重点项目《矿产定量预测的勘查评价新理论研究》和中国博士后科学基金项目资助。申 维,男,1957年2月生,博士后,数学地质专业。 1997210207收稿,1997209209改回,王桂凤编辑。 分形统计模型的理论研究及其在 地质学中的应用 3 申 维 赵鹏大 (中国地质大学数学地质研究所 武汉 430074) 摘 要 本文提出了一般分形模型和一般分维数的概念,认为许多地质模型是一般分形模型的特例,指出幂函数分布和帕累托分布是分形统计模型的数学基础,论证了幂函数分布在高端截尾条件下具有尺度不变的分形性质,根据非线性回归模型参数估计的方法,提出了求分维数的新方法,该方法具有许多优点。通过在计算机上产生随机数对分形统计模型进行模拟研究,以及通过实例说明分形统计模型应用的方法及步骤,并解释了分维数的实际意义。 关键词 分形统计模型 分维数 模拟研究 成矿预测 由于人类社会和自然界中广泛地存在无序、混乱、不规则和不光滑的复杂现象,传统的理论只能是简化或定性地刻画它们。分形理论的提出为揭示隐藏于混乱复杂现象中的精细结构和定量地刻画描述它们提供了理论基础。 分形理论创立于70年代中期,其研究对象为自然界和社会活动中广泛存在的无序(无规则)而具有自相似性的系统。分形论借助于自相似性原理洞察隐藏于混乱现象中的精细结构;为人们从局部认识整体,从有限认识无限提供新的方法论;为不同学科发现规律性提供崭新的语言和定量的描述;为现代科学技术提供新思想新方法。分形理论不但为复杂的现象提供了一种简便的定量描述工具,而且它是一种辩证的思想方法和认识方法:部分与整体有相似性是整个的相对缩影,含有整体的信息,因而人们可以通过认识部分来认识整体。 1 一般分形模型 设非线性模型 y =f (x ,Η )+Ε(1) 式中:x 为可观测的已知变量,可以是向量;y 为可观测的随机变量;Ε为不可观测具有零 均值和有限方差Ρ2>0独立同分布F 的随机误差项(Ρ2未知);Η=(Η1,Η2,…,Ηp )′为未知参数,定义域为欧氏空间R p 上的一个子空间(;f 称为模型函数,它的函数形式已知,但含有未知参数Η。如果f 是Η的线性函数,则(1)式化为线性模型,否则就称为非线性模型。

各种有趣的分形

各种有趣得分形 我们瞧到正方形,圆,球等物体时,不仅头脑里会迅速反映出它就是什么,同时,只要我们有足够得数学知识,我们头脑中也反映出它得数学概念,如正方形就是每边长度相等得四边形,圆就是平面上与某一点距离相等得点得集合,等等。 但就是,当我们瞧到一个山得形状时,我们会想到什么?”这就是山”,没错,山就是如此得不同于其她景象,以至于您如果绘画水平不高,根本画不出象山得东西。可就是,山到底就是什么?它既不就是三角形,也不就是球,我们甚至不能说明山具有怎样得几何轮廓,但为什么我们却有如此直观而又强烈得山得印象?分形得创始人就是曼德布洛特思考了这个问 图中得风景图片又就是说明分形得另 一很好得例子。这张美丽得图片就是利 用分形技术生成得。在生成自然真实得 景物中,分形具有独特得优势,因为分形 可以很好地构建自然景物得模型、 这就是一棵厥类植物,仔细观察,您会发 现,它得每个枝杈都在外形上与整体相 同,仅仅在尺寸上小了一些。而枝杈得 枝杈也与整体相同,只就是变得更加小 了。 Sierpinski三角形具有严格得自相似 特性

Kohn雪花具有严格得自相似特性 分维及分形得定义 分维概念得提出 对于欧几里得几何所描述得整形来说,可以由长度、面积、体积来测度。但用这种办法对分形得层层细节做出测定就是不可能得、曼德尔布罗特放弃了这些测定而转向了维数概念、分形得主要几何特征就是关于它得结构得不规则性与复杂性,主要特征量应该就是关于它得不规则性与复杂性程度得度量,这可用“维数”来表征。维数就是几何形体得一种重要性质,有其丰富得内涵、整形几何学描述得都就是有整数维得对象:点就是零维得,线就是一维得,面就是二维得,体就是三维得。这种几何对象即使做拉伸、压缩、折叠、扭曲等变换,它们得维数也就是不变得;这种维数称为“拓扑维”,记为d。例如当把一张地图卷成筒,它仍然就是一个二维信息载体;一根绳子团成团,仍然就是一维结构。但曼德尔布罗特认为,在分形世界里,维数却不一定就是整数得。特别就是由于分形几何对象更为不规则,更为粗糙,更为破碎,所以它得分数维(简称“分维”,记为D)不小于它得拓扑维,即D≥d。 维数与测量有密切关系、如为了测一平面图形得面积,就要用一个边长为l、面积为l2得标准面元去覆盖它,所得得数目就就是所测得面积。如果用长度l去测面积,就会得到无穷大;而如果用l3去测这块面

中学数学中的分形几何.

中学数学中的分形几何 广西桂林市恭城瑶族自治县栗木中学数学组何桂荣(542502) 桂林市第十八中学数学组蒋雪祥(541004) 内容提要:本文论述了规则图形的容量维,对容量维的计算作了说明,同时还对4个较为著名的与中学有关的,或是可以用于启发学生思维的分形问题进行了分析。 关键字:容量维 Sierpinski三角毯 Koch曲线 Koch岛 Sierpinski-Menger海绵 1973年,曼德勃罗(B.B.Mandelbrot)在法兰西学院讲课时,首次提出了分维和分形几何的设想。分形(Fractal)一词,是曼德勃罗创造出来的,其原意具有不规则、支离破碎等意义,分形几何学是一门以非规则几何形态为研究对象的几何学。由于不规则现象在自然界是普遍存在的,因此分形几何又称为描述大自然的几何学。数千年来,几何学的发展从来没有二十世纪诞生的分形几何那样对物理学和数学发展产生如此巨大的影响。分形几何对我们大多数人来说是陌生的,因为它看起来离我们太远。其实分形就在我们身边,在近年的竞赛与高考中,分形的影子已经出现。中学数学中的分形与数学研究中的分形所看的角度与研究目标都不同,可以说是羊头狗肉之分吧。笔者试对此进行一点探讨,以抛砖引玉尔。 一、规则图形的容量维 为了描述混沌学中奇怪吸引子的这种奇特结构,曼德尔布罗特(Mandelbrot)最早(1975年)引进了分形(既其维数是非整数的对象)的概念。维数是描述客体的重要几何参量。也可以说,维数是为了确定几何对象中一个点的位置所需的独立坐标数目。已经知道:点是零维,线是一维,平面是二维,而立方体是三维的。这种维数称为拓扑维,用字母"d"表示。维数也可以这样来考虑:比如,取一线段,将该线段的长度乘2,就得到另一个线段,长度为n=2个原线段长度。

第6讲分形几何学

实用标准文案 第6讲分形几何学 主要内容: 一、概述 二、分维的测定方法(重点内容) 三、分维应用实例(重点内容) 四、问题讨论 一、概述 分形几何的概念是美籍法国数学家曼德尔布罗特(B.B.Mandelbrot)1975年首先提出的,被誉为大自然的几何学,它是现代数学的一个新分支,但其本质却是一种新的世界观和方法论。分形理论与动力系统的混沌理论交叉结合,相辅相成。分形理论是用来研究自然界中没有特征长度但又具有自相似性的图形和现象。自然界的许多事物和现象均表现出极为复杂的形态,并非是一种严格的数学分形,而是具有统计意义上的自相似性。分形几何学是应用数学的一个重要组成部分,在数学、物理、化学、生物、医学、地质、材料、工程技术等学科中得到广泛的应用。近年来,对分形几何的研究发展很快,在—些前沿课题上取得了较大的进展。 1、基本概念 (1)整数维与分数维 “维”(dimension)是几何学及空间理论的基本概念,是能有效度量几何物体的标准体所需要的独立坐标的数目,是表示几何体形状与分布特征的重要参数。 在拓朴学和欧几里得几何学中,维数只能是整数。如直线是一维的,平面是二维的,普通空间是三维的。如果在三维空间中引入直角坐标,就可用三个实数(x,y,Z)代表空间的一点:n维空间的一点一般可用n个实数(x1,x2,…,xn)来表示。在相对论中,所讨论的时空是四维空间,时空的点,可用坐标(x,y,z,t)来表示,其中t表示时间。可见时空空间的维数也是整数。 然而,欧氏空间只是对现实空间的一个最简单的近似描述。正如B.B.Mandelbrot在其1982年出版的《自然分形几何学》一书中所说:“山峰并不是圆锥形,海岸线不是圆弧形,闪电的传播也不是直线的”。为了更确切地描述自然界的无规则现象,法国数学家Benoit B.Mandelbrot于1977年首次提出了不是整数的维数——分数维(fractal dimension)的新概念。 例如,英国海岸线的维数D为1.25,宇宙中物质分布的D为1.2。研究表明,凡是可用分

相关文档
最新文档