有限元_MPC问题多点约束

有限元_MPC问题多点约束
有限元_MPC问题多点约束

有限元边界条件和载荷

X边界条件和载荷 10.1边界条件 施加的力和/或者约束叫做边界条件。在HyperMesh中,边界条件存放在叫做load collectors的载荷集中。Load collectors可以通过在模型浏览器中点击右键来创建(Create > Load Collector)。 经常(尤其是刚开始)需要一个load collector来存放约束(也叫做spc-单点约束),另外一个用来存放力或者压力。记住,你可以把任何约束(比如节点约束自由度1和自由度123)放在一个load collector中。这个规则同样适用于力和压力,它们可以放在同一个load collector中而不管方向和大小。 下面是将力施加到结构的一些基本规则。 1.集中载荷(作用在一个点或节点上) 将力施加到单个节点上往往会出现不如人意的结果,特别是在查看此区域的应力时。通常集中载荷(比如施加到节点的点力)容易产生高的应力梯度。即使高应力是正确的(比如力施加在无限小的区域),你应该检查下这种载荷是不是合乎常理?换句话说,模型中的载荷代表了哪种真实加载的情形? 因此,力常常使用分布载荷施加,也就是说线载荷,面载荷更贴近于真实情况。 2.在线或边上的力 上图中,平板受到10N的力。力被平均分配到边的11个节点上。注意角上的力只作用在半个单元的边上。

上图是位移的云图。注意位于板的角上的红色“热点”。局部最大位移是由边界效应引起的(例如角上的力只作用在半个单元的边上),我们应该在板的边线上添加均匀载荷。 上述例子中,平板依然承受10N的力。但这次角上节点的受力减少为其他节点受力的一半大小。 上图显示了由plate_distributed.hm文件计算得到的平板位移的云图分布。位移分布更加均匀。 3.牵引力(或斜压力) 牵引力是作用在一块区域上任意方向而不仅仅是垂直于此区域的力。垂直于此区域的力称为压力。

内燃机零部件有限元计算中边界条件处理的研究

内燃机零部件有限元计算中边界条件处理的研究 * 孙 军 汪景峰 桂长林 (合肥工业大学机械与汽车工程学院 合肥 230009) 摘 要:有限元方法已经成为内燃机零部件应力和变形计算的主要手段,但是目前在内燃机零部件有限元分析中采用的边界条件是否合理,有无必要采用更符合实际的边界条件?本文以曲轴为例,模拟实际 状况,采用不同的边界条件进行了有限元计算。计算结果表明,边界条件处理对曲轴有限元分析结果影响很大。因此,为了提高内燃机零部件有限元计算结果的精度,非常有必要根据实际情况确定边界条件。 关键词:边界条件 有限元 内燃机中图分类号:TK412.4 文献标识码:A 文章编号:1671-0630(2005)03-0006-03 Study on Boundary Condition in Finite Ele ment Calculation for Parts of Internal Co mbustion Engi ne Sun Jun ,W ang Jingfeng ,Gui Changlin H efeiUn i v ersity of Techno l o gy (H efei 230009) Abst ract :The fi n ite ele m ent m et h od has beco m e the m a i n m eans to calcu late t h e stress and de f o r m ation o f parts for inter na l co m bustion engine .Bu,t whether the boundary conditi o ns used i n FE ana l y sis on parts o f i n -ter nal co m busti o n eng ine are reasonable ?Is it necessary to use the boundary condition ,wh ich ism ore adapta -b le to the facts ?As an exa m p le ,the crankshaft is ca lculated by FE usi n g d ifferent boundary conditi o ns that si m ulate factual conditi o ns .The resu lts sho w t h at the boundary conditi o ns have i m portant effects on the results of FE analysis o f crankshaf.t Therefo re ,it is necessary to choose boundary cond itions acco r d i n g to factua l con -d iti o n i n o r der to i m prove the prec isi o n of calcu l a ti n g resu lts for parts o f i n ternal co m bustion eng i n e .K eyw ords :Boundary conditi o n ,F i n ite ele m en,t I C eng i n e 前言 随着有限元计算技术的进步,有限元方法目前已 经成为内燃机零部件应力和变形计算的主要手段。内燃机零部件的有限元分析,类似于其他问题的有限元分析,边界条件的处理是否合理直接影响计算结果的精确性。本文以曲轴为例,分析目前采用的边界条件是否合理,有无必要采用更符合实际的边界条件。 目前在曲轴有限元计算中,载荷边界条件的处理(重点是作用在轴颈表面的力处理)基本采用的是定 型模式,其假设作用在轴颈上的载荷(其与曲轴轴承油膜压力对应)为分布载荷,沿轴线方向均布或呈抛物线分布,沿圆周方向呈余弦分布 [1~4] 。这种处理方 法简单易行,但其属于较理想的状况,因为实际曲轴轴承的油膜压力分布规律复杂,且随时间变化。沿轴向抛物线型的油膜压力分布规律仅适合于无限短且轴颈轴线与轴承孔中心线平行的滑动轴承,实际的曲轴轴承为有限长轴承,且由于受到诸多因素的影响,如载荷作用下轴的变形、轴承的制造与装配误差和轴的热变形 * 基金项目:国家自然科学基金资助项目(50175023) 作者简介:孙军(1960-),男,硕士,研究方向,内燃机现代设计理论与方法。 第34卷 第3期2005年6月小型内燃机与摩托车 S MALL I N TERNAL COM B UST I O N ENG I N E AND MOTORCYCLE Vo.l 34No .3 June .2005

有限元法与有限差分法的主要区别

有限元法与有限差分法的主要区别 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。对于二维三角形和四边形电源单元,常采用的插值函数为有La grange插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高阶插值函数等。对于有限元方法,其基本思路和解题步骤可归纳为(1)建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值问题等价的积分表达式,这是有限元法的出发点。(2)区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连接、不重叠的单元。区域单元划分是采用有限元方法的前期准备工作,这部分工作量比较大,除了给计算单元和节点进行编号和确定相互之间的关系之外,还要表示节点的位置坐标,同时还需要列出自然边界和本质边界的节点序号和相应的边界值。(3)确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足一定插

IDESA有限元分析_第6篇第26章 基于几何施加边界条件

第26章MasterFEM 教程:定义边界条件 前面的教程简单介绍了仿真分析的流程。本篇将介绍更多高级定义边界条件的内容(载荷和约束)。 用户将学会: ?创建约束和约束集。 ?创建载荷和载荷集。 ?创建边界条件集。 ?解算定义以上边界条件的模型。 ?创建均布载荷。 ?解算定义以上边界条件的模型。 ?比较不同工况下的结果。 开始前必备知识: 熟悉MasterFEM界面和创建零件。 熟悉在模型文件中管理零件。 熟悉拉伸特征和旋转特征的布尔运算。 熟悉仿真分析流程。 熟悉自由网格划分。 设置1/3 如果还没有运行一个新的模型文件,创建一个新文件并命名。 ·1·

·2· File Open 打开模型文件菜单 确信用户是在以下工作状态和任务当中 : 设置工作单位为毫米(mm) Options Units 设置2/3 工作内容:按照以下尺寸草绘封闭形状的图形。 提示 : 为什么:这个零件代表了典型机构连杆的应力集中部位。

工作内容: 命名零件 提示: 命名菜单 设置3/3 工作内容:创建一个和零件关联的有限元模型(FEM1)。 提示 保存模型文件。 File Save 警告! 如果软件提示用户保存模型文件,用户应选择:No 记住:只有教程中提示保存模型文件,而不是软件提示保存的时候,用户才可以执行保存文件操作。 为什么: 在上一次保存以后的错误操作不能撤销恢复,用户可以选择重新打开文件,恢复到上一次保存时的状态。 提示: ·3·

重新打开模型文件的快捷键:按Control-Z。 创建约束和约束集1/3 工作内容:全约束以下高亮表面。 怎样做: 表面上定义约束的菜单 OK 创建约束和约束集2/3 注意事项: 会产生约束符号。 在几何边缘、表面、顶点的约束用不同的颜色和符号表示。 ·4·

有限元在传热学中的应用

有限元在传热学中的应用 ——温度场的有限元分析 摘要:热分析在许多工程应用中扮演着重要角色。有限元法是热分析中常用,高效的数值 分析方法。利用有限元法可以求解传热学中温度场的重要参数,在材料成型中,在铸造这一块有着重大意义。 1、有限元法的应用: 有限元法是随着电子计算机的发展迅速发展起来的一种现代计算方法,首先在连续力学领域——飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后也很广泛用于求解热传导、电磁场、流体力学等连续问题。在传热学中,如果导热物体的几何形状不规则,边界条件复杂,很难有解析解。解决这类问题的最好办法就是数值解法,而数值解法中最具实用性和使用最广泛的就是有限单元法。 2、有限元数值解法的基本思路: 将连续求解区域减走势只在节点处相连接的一组有限个单元的组合体,把节点温度作为基本未知量,然后用插值函数以节点温度表示单元内任意一点处温度,利用变分原理建立用以求解节点未知量(温度)是有限元法方程,通过求解这些方程组,得到求解区域内有限个离散点上的温度近似解,并以这些温度近似解代替实际物体内连续的温度分布。随着单元数目的增加,单元尺寸的减少。单元满足收敛要求。近似解就可收敛于精确解。 3、有限元数值解法的基本步骤 有限元法在工程实际中应用的广泛性和通用性,体现在分析许多工程问题是,如力学中的位移场和应力场分析,传热学中的温度场分析,流体力学中的流场分析,都可以归结为给定边界条件下求解其控制方程的问题,虽然各个问题中的物理性质不同,却可采用同样的步骤求解。具体步骤为(1):结构离散。(2):单元分析。(3):整体分析。(4):边界条件处理与求解。(5):结果后处理。 有限元分析实际问题的主要步骤为:建立模型,推倒有限元方程式,求解有限元方程组,数值结果表述。 4、用于传热学的意义 有限元法作为具有严密理论基础和广泛应用效力的数值分析工具,近年来,以由弹性平面问题扩展到空间问题,板壳问题。从固体力学扩展到流体力学、传热学等连续介质力学领域;它在工程技术中的作用,已从分析和校核扩展到优化设计。并和计算机辅助设计相结合,形成了完整的计算机辅助设计系统。它解决了传热学中边界条件复杂或呈非线性,有均匀内热源等传统方法无法求解的问题。 温度场方程

有限元法有限差分法有限体积法的区别

有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。 构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。有限元插值函数分为两大类,一类只要求插值多项式本身在插值

有限元法求解问题的基本步骤

有限元法求解问题的基本步骤 1. 结构离散化 对整个结构进行离散化,将其分割成若干个单元,单元间彼此通过节点相连; 2. 求出各单元的刚度矩阵[K](e) [K](e)是由单元节点位移量{Q}(e)求单元节点力向量{F}(e)的转移矩阵,其关系式为:{F}(e)= [K](e) { O}(e); 3. 集成总体刚度矩阵[K]并写出总体平衡方程 总体刚度矩阵[K]是由整体节点位移向量{①}求整体节点力向量的转移矩阵,其关系式为{F}= [K] {①},此即为总体平衡方程。 4. 引入支撑条件,求出各节点的位移 节点的支撑条件有两种:一种是节点n沿某个方向的位移为零,另一种是节点n沿某个方 向的位移为一给定值。

5. 求出各单元内的应力和应变 对于有限元方法,其基本思路和解题步骤可归纳为: (1)建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值问题等价的积分表达式,这是有限元法的出发点。 ⑵区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连 接、不重叠的单元。区域单元划分是采用有限元方法的前期准备工作,这部分工作量比较大, 除了给计算单元和节点进行编号和确定相互之间的关系之外,还要表示节点的位置坐标,同时还需要列出自然边界和本质边界的节点序号和相应的边界值。 (3)确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足一定插值条件 的插值函数作为单元基函数。有限元方法中的基函数是在单元中选取的,由于各单元具有规则的几何形状,在选取基函数时可遵循一定的法则。 (4)单元分析:将各个单元中的求解函数用单元基函数的线性组合表达式进行逼近;再将近 似函数代入积分方程,并对单元区域进行积分,可获得含有待定系数(即单元中各节点的参

有限元边界条件和载荷_图文(精)

X 边界条件和载荷 10.1边界条件 施加的力和 /或者约束叫做边界条件。在 HyperMesh 中,边界条件存放在叫做load collectors的载荷集中。 Load collectors可以通过在模型浏览器中点击右键来创建 (Create > Load Collector。 经常(尤其是刚开始需要一个 load collector来存放约束(也叫做 spc-单点约束 ,另外一个用来存放力或者压力。记住,你可以把任何约束(比如节点约束自由度 1和自由度 123放在一个 load collector中。这个规则同样适用于力和压力,它们可以放在同一个 load collector中而不管方向和大小。 下面是将力施加到结构的一些基本规则。 1. 集中载荷(作用在一个点或节点上 将力施加到单个节点上往往会出现不如人意的结果, 特别是在查看此区域的应力时。通常集中载荷 (比如施加到节点的点力容易产生高的应力梯度。即使高应力是正确的(比如力施加在无限小的区域 ,你应该检查下这种载荷是不是合乎常理?换句话说,模型中的载荷代表了哪种真实加载的情形? 因此,力常常使用分布载荷施加,也就是说线载荷,面载荷更贴近于真实情况。 2. 在线或边上的力

上图中,平板受到 10N 的力。力被平均分配到边的 11个节点上。注意角上的力只作用在半个单元的边上。 上图是位移的云图。注意位于板的角上的红色“ 热点” 。局部最大位移是由边界效应引起的(例如角上的力只作用在半个单元的边上 ,我们应该在板的边线上添加均匀载荷。

上述例子中,平板依然承受 10N 的力。但这次角上节点的受力减少为其他节点受力的一半大小。 上图显示了由 plate_distributed.hm文件计算得到的平板位移的云图分布。位移分布更加均匀。 3. 牵引力(或斜压力 牵引力是作用在一块区域上任意方向而不仅仅是垂直于此区域的力。垂直于此区域的力称为压力。

流体力学有限元分析中的边界条件处理

流体力学有限元分析中的边界条件处理 梁启国 尹敏镐 赵永凯 高殿荣 燕山大学 大庆石化总厂 摘 要 阐述了流体力学有限元分析中应用流函数 - 涡量法时典型边界条件的处理方 法 ,并给出计算实例 . 关键词 有限元 涡 - 流函数法 边界条件 分类号 O357 . 1 引言 求解不可压缩粘性流体二维流动问题的数值方法有速度 - 压力法 、涡 - 流函数法和流函数法 ,其中涡 - 流函数法应用较广1 ~4 . 在应用涡 - 流函数法进行有限元分析时 ,数值边界条件的处理不但影响解的精度而且影响解的稳定性2 . 本文结合工程实际给出了在有限元分析中确定几种典型边界条件的方法. 0 边界条件的处理 如图 1 所示的沿背部台阶的不可压缩粘性流 体二维流动. C 点为角点. 在涡 - 流函数方程的求解过程中 , 不仅需要 知道边界上的流函数和涡量值 ,有时还要对边界 上的涡量值不断地进行修正. 下面分别讨论各种 边界上的流函数值和涡量值. 设Δ x 和Δy 分别为 x 方向和 y 方向的有限元划分网格间距 , i 和 j 分别 为 x 方向和 y 方向的步长指标. 1) 壁面边界处理 若壁面是不可渗透的 ,则沿壁面的流函数 Ψ 为常数. 一阶精度的壁涡公式为 : 1 图 1 沿背部台阶的边界条件 2 (Ψ i , j - Ψ i , j +1 ) Ωi , j c c + O (Δy ) ( 1) = (Δy ) 2 c 二阶精度的壁涡公式为 : 3 (Ψ i , j - Ψ i , j +1 ) Ωi , j + 1 + O ( (Δy ) 2 ) Ωi , j c c c ( 2) = (Δy ) 2 2 c 图 2 用内点上的 Ψ i , j +1 , Ωi , j +1 表示边界上的涡量值 . 二阶壁涡公 c c 式在大网格雷诺数和变网格情况下往往引起数值不稳定和计算不收敛 ; 一阶壁涡公式虽

有限元法边界条件的处理

有限元法边界条件的处理 边界上的节点通常有两种情况, 1. 一种边界上的节点可自由变形,此时节点上的载荷等于0,或者节点上作用某种外载荷,可以令该点的节点载荷等于规定的载荷Q。这种情况的处理是比较简单的。 2. 另一种边界上的节点,规定了节点位移的数值。这种情况下,有两种方法可以处理: * 划0置1法 * 置大数法 划0置1法是精确的方法,置大数法则是近似的方法。下面分别介绍这两种方法 置大数法 假设v自由度的位移已知为b(b可以为0或者其他任意值)。 1. 将v自由度相应对角线上的刚度系数k(v,v) 换成一个极大的数,例如可以换成k(v,v)*1E8 k(v,v) ---> k(v,v) * 1E8 2. 将v自由度相应节点载荷F(v) 换成F(v) * 1E8 * b F(v) ---> F(v) * 1E8 * b 3. 其余均保留不变,求出的 v =~ b 此方法的处理只需要修改两个数值即可,简单方便,虽然求得的是近似值,但一般仍然推荐使用。 置大数法来源于约束变分原理,本质和罚函数是一样的,得到的都是一个非精确值,施加起来在程序实现上相对简单,但是过大的大数可能引起线性方程的病态,造成在某些求解方法下无法求解,过小的大数有可能引起计算的误差,因此大数的选择也算是一个优化的过程吧,因此如果位移边界条件为0的话,主1副0的方法通用性更好吧 而位移非零的情况下,还有一种类似主1副0的方法可以采用吧,不过程序处理相对麻烦一点,我一下也没找到,你不妨找找看 这是在不增加方程个数的情况下的处理方式,拉格朗日乘子法好像也可以处理边界条件,但是会增加方程的个数,所以大家一般都不太用来着,拉格朗日乘子法和罚函数法的原理可以看一下王勖成写的那本有限元,如果英文好,不放看看监克维奇的那本英文的《finite element method》

输电线舞动的有限元分析及边界条件_图文(精)

第 14卷第 2期 重庆电力高等专科学校学报 2009年 6月 Vol . 14 No . 2 Journal of Chongqing Electric Power College Jun . 2009 输电线舞动的有限元分析及边界条件 陈仁全 1, 2 , 张占龙 1, 丁明亮 2, 王勇 1, 2 (1. 重庆大学电气工程学院 , 重庆 400030; 2. 重庆电力高等专科学校 , 重庆400053 【摘要】以有限个梁单元模拟输电导线状态 , 采用最小位能原理推导出有限元方程 , 最后利用强制边界条件给出单元位移和应力方程 , 并运用仿真系统进行模态和谐响应分析。其结果可为以后线路优化设计提供依据。【关键词】舞动 ; 有限单元法 ; 风荷载 ; 仿真 【中图分类号】 T M726. 3【文献标识码】 A 【文章编号】 100828032(2009 022*******

收稿日期 :2008211226 作者简介 :陈仁全 (1971- , 讲师 , 研究方向 :输电线路的运行、检修和设计。1输电线模型的有限元格式 2节点的梁单元是有限元方法中较早提出 , 并 且至今仍广泛应用的单元 , 拟仿真的应用极为广泛 , , 精确。 1. 1典型的 2节点平面梁单元 , 编码为 i, j 的位移 分量如图 1所示 。 图 1平面梁单元

在有限元方法中 , 单元的位移模式或称为位移函数一般采用多项式作为近似函数 , 因为多项式运算简单 , 并且随着项数的增多 , 可以逼近任何一段光滑的函数曲线 , 多项式的选取采用由低次到高次。 用节点位移表示梁单元的位移模式 , 轴向位移 的位移模式取的线性函数 , 而挠度则 V 用三次多项式表示 , 即 : u =[h (x ]{a} (1 v =[H (x ]{b}(2 {和 {, 可以。 i x , 、节点挠 {u}=[u i u j ] T (3 {v}=[v i θi v j θj ]T (4 将节点坐标带入式 (1 和 (2 , 节点坐标可以 表示为 : {u}=[Ai ]{a} (5 {v}=[A2]{b} (6 于是得到用节点位移表示的位移模式并改成矩阵形式 : {f}= Hu (x Hv (x [A]{δ}

有限元法与边界元法ppt

有限元法与边界元法
武汉大学水利水电学院 赵 昕
1
5.1 加权余量法
设有微分方程
L(u) = f (在区域Ω中)
解u也应该满足积分方程 ∫ [L(u) ? f ]δudΩ = 0 Ω
——加权余量法的出发点
δu类似于虚位移,是一个满足一定边界条件的任意的变分函数。 在给定u值的边界Γ1上,δu的边界条件取为0。
3
∫ ∑ ∑ Ω
? ? ??
L????
n
α
j =1
jφ j
????
?
f
???? ???
n i =1
βiWi
??dΩ ?
=
0
δu是满足 得
δu Γ1
=0
的任意函数,不妨取某个βi =1,其余的β为0
∫ ∑ Ω
? ? ??
L????
n
α jφj
j =1
???? ?
f
? ?Wi dΩ ??
=
0
(i = 1,……,n)
——加权余量法的基本关系式(一个求解系数αj的代数方程组)
n
∑ 线性微分方程→ 线性代数方程组: aij α j = bi (i = 1,……,n) j =1
∫ ( ) aij = Wi L φ j dΩ Ω 5
∫ bi = Wi f dΩ Ω
有限元法
有限单元法(Finite Element Method),简称有限元法(FEM):将流 动区域分为许多三角形、矩形或曲边形等各种形状的单元。
优点:适应边界形状不规则的区域,便于处理自然边界条件,比较适合 求解椭圆型方程和扩散方程的数值解。
计算程序虽然比较复杂,但比较标准规范,便于使用。
有限元方法的理论基础:变分原理或加权余量法——将微分方程的求 解变成求积分方程的近似解的问题,避开微分方程求解的困难,对近 似解的可微性要求也可以降低。所以下面介绍加权余量法。
2
假设一个满足第一类边界条件的近似解
∑ u~ = n α j φ j j =1
其中φ
j
(j
=1,…,n)为一组事先选取的线性无关的基函数,
αj为相应的待定系数。
不满足原微分方程,形成的误差称为余量 ε = L(u~) ? f
欲使加权后的ε在区域Ω中在平均意义下为零
∫ εδudΩ = ∫[L(u~) ? f ]δudΩ = 0
Ω
Ω
n
∑ 可取权因子 δu = βiWi i =1
Wi(i =1,…,n)是一组线性无关的基函数(权函数)。
4
选择权函数Wi : (1)`取Wi ≡ 1,→有限体积法。
(2)最小二乘法。取
∫ ∫ ∫ ? < ε, ε >= ? ε2dΩ = ?ε2 dΩ =2 ε ?ε dΩ =0
?α i
?α i Ω
Ω ?αi
Ω ?αi
相当于
Wi
=
?ε ?α i
= L(φi )
(3)伽辽金法,取 Wi=φi 则
∫ ∑ ? n
?
?L( α j φ j ) ? f ?φi dΩ = 0

j =1
?
( ) n
∑ α j ∫ φi L φ j dΩ = ∫ φi f dΩ
j =1 Ω
Ω
6

有限元法的基础理论

一、里兹法与迦辽金法(摘自电磁场有限元方法 金建铭) 1. 里兹法 里兹法是一种变分方法,其中边值问题用变分表达式(也称泛函)表示,泛函的极小值对应于给定边界条件下的控制微分方程。通过求泛函相对于其变量的极小值可得到近似解。 2. 伽辽金法 伽辽金法属于残数加权方法类型,它通过对微分方程的残数求加权的方法得到方程的解。 若u 是方程的近似解,将u 代入方程可得到非零的残数: r Lu f =- u 的最佳近似应能使残数r 在Ω内所有点上有最小值。残数加权方法要求: 0i i R rd ωΩ =Ω=? 这里i R 表示残数的加权积分,i ω是所选的加权函数。 在伽辽金法中,加权函数与近似解展开中所用的函数相同。通常,这样可得到最精确的 解。 二、有限元方法 里兹法和伽辽金法中,在整个解域内找出能表示或至少近似表示问题真实解的试探函数是非常重要的。然而对于许多问题,这个步骤是十分困难的,对二维和三维问题尤其如此。为此,我们可将整个区域划分成小子域,并应用定义在每个子域上的试探函数。因为子域是小区域,因而在每一子域内函数的变化不大,所以定义在子域上的试探函数通常比较简单。这正是有限元法的基本思想。应用里兹法的过程通常称为里兹有限元法或变分有限元法,而应用伽辽金方法的过程通常称为伽辽金有限元方法。 有限元法与经典里兹法和伽辽金法的不同之处是在试探函数的公式上。在经典里兹法和伽辽金法中,试探函数由定义在全域上的一组基函数组成。这种组合必须能够(至少近似)表示真实解,也必须满足适当的边界条件。在有限元法中,试探函数是由定义在组成全域的子域上的一组基函数构成。因为子域很小,所以定义在子域上的基函数能够十分简单。 三、关于形函数(摘自有限元法在电磁计算中的应用 张榴晨) 对于一个待求的微分方程,用一组线性独立的尝试函数i ψ和待定系数i C 来表示方程的近似解,并用加权余数法(迦辽金法)来求解这些待定系数。求解待定系数的代数方程组为: 1 []1,2,,n i j i j i d C q d j n ψψψΩ Ω =??Ω=Ω =∑? ? 这里j ψ为所选择的加权函数,应用迦辽金法时,所选取的加权函数即为尝试函数。 有限元中应用的尝试函数代表了单元上近似解的一种插值关系,它决定了近似解在单元上的形状。因此尝试函数在有限元法中又称为形函数。对于一维有限元来说,形函数为一个直线段;对一维高阶有限元来说,形函数为一个曲线段;对二维一阶有限元来说,形函数为一个平面;对二维高阶有限元来说,形函数为一个曲面;三维有限元来说,形函数为多维平面或曲面。选择形函数时可以使一个任意元上的函数只与该元所对应的节点势函数值有关,而与其它各点的值无关。 1. 一维有限元

有限元法简介

电磁学中有限元法简介 摘要:本文简单介绍了有限元法的历史、优点、基本原理及一维的有限元法,并用使用HFSS软件设计了一个各项参数都符合要求的3dB 的功率分配器。 1.有限元法的历史 有限元法起源于航空力学,最早思想是由Courant在1943年提出,但真正确定有限元的学科和命名的则是Clough 在1960年给出。我国著名学者冯康也对有限元法做了开创性贡献。20世纪70年代开始,开始在电磁领域移植有限元法,由于其本身的优点,逐渐成为了电磁场数值分析的一个主要分支。有限元法,简称FEM。有限元法有着扎实的理论基础,所给出的结果是变分稳定的。2.有限元法的优点 ?有限元法采用物理上离散与分片多项式插值,因此具有对材料、边界、激励的广泛适应性。 ?有限元法基于变分原理,将数理方程求解变成代数方程组的求解,因此非常简易 ?有限元法采用矩阵形式和单元组装方法,其各个环节易于标准化,程序通用性强,且有较高的计算精度,便于编制程序和维护,适宜于制作商业软件。?国际学术界对有限元法的理论、计算技术、以及各方面的应用做了大量的工作,许多问题均有现成的程序,可用的商业软件资源相对较多。 3.泛函和变分 最速降线问题 问题的提出:设点A与原点重合,点B的坐标是(a,b),重物从A点下落,求出A,B之间的使重物从A运动到B的时间最短的路径。

可以求出A 到B 的总时间: T 中只含有y 和'y 。 变分命题的描述 : T 是(),'y x y 的泛函; y 满足边界条件(0)0,()y y a b == ; 求一个函数y 使得泛函T 有最小值,也就是有极值。泛函T 取极值的时候其变分为0,记为:0T δ= 4. 一维有限元法 有限元法就是变分问题的数值解法,其基本思想是把场方程转化为能量积分的变分问题(能量最小)。 静电场中,所有满足相同边界条件的位函数u 中,真实的u 将保持能量最小。 在这里,通过研究平板电容器的电位分布问题来介绍有限元法的基本思想。 设电位()u x 满足: 220d u dx = ,00u = ,0N u =Φ 。 不妨取(0,1)区间为例来进行分析,这样也具有普遍意义。 T =?

相关文档
最新文档