空焊原因

空焊原因

PAD 設計 Reflow 振動 印刷

空焊原因

工字梁角焊缝未焊透高度UT探伤检测方法探讨

工字梁角焊缝未焊透高度UT探伤检测方法探讨 摘要:本文针对斐济工程中,工字梁(包括主梁、边梁等)T型接头角焊缝的未焊透尺寸的UT检测方法进行讨论,并通过大量实验以选择出合理的检测方法和检测工艺,使焊接接头中未焊透高度能够通过超声波检测被控制在允许的范围之内,满足使用要求,保证焊接质量,并避免了大量委托对外探伤检测费用,降低了成本,创造了良好的经济效益。 关键词:主梁、边梁、工字梁、坡口角焊缝、超声波探伤、未焊透高度、T 型接头 1、概述 由于斐济工程中设计图纸对二类缝中组合焊缝及角焊缝未做特殊焊透要求,因而在我们在施工中参照DL/T5018规范4.4.9中“板材的组合焊缝,如设计无特殊焊透要求,腹板与翼缘板的未焊透深度不应大于板厚的25%,最大不超过4mm”的规定要求来进行探伤。但对于怎样确定组合焊缝及角焊缝未焊透高度这方面在全国同行业都是一个技术难题,一般探伤检测方法都是用于全焊透焊缝的,而专门针对检测未焊透高度方面的探伤检测方法及例案却是很少很少。为了解决这一技术难题,我们翻阅了大量关于此类的技术文献及标准,并做了大量的试验工作,最终圆满解决了这一技术难题,并避免了大量委托对外探伤检测费用,降低了成本,创造了良好的经济效益。 斐济工程中,门叶主梁、边梁T型角接接头采用CO2焊打底,埋弧自动焊盖面的方式进行焊接,其主、边梁广泛采用坡口角焊缝,这类焊缝允许焊缝根部有局部未焊透。为满足使用要求,保证焊接质量,常常要求对焊缝进行探伤。由于门叶主、边梁结构限制和对内部缺陷特别是未焊透高度的检测要求较高,不管是射线探伤(RT)还是表面探伤MT及PT都不能满足检测要求,只有超声波(UT)探伤检测方法比较灵活,不受工件结构复杂影响,并且缺陷检测率较高,是一种常用的探伤检测方法,因而最终我们选择了UT探伤。 由于部分熔透坡口角焊缝是坡口焊缝和角焊缝的组合,因此,对其进行UT检验时除应采用《钢焊缝手工超声波探伤方法和探伤结果分级》(GB11345-89)和《水电水利工程钢闸门制造安装及验收规范》(DL/T5018-2004)等方法外,还应对焊根处的未焊透尺寸进行超声波评价。其中,前者对于角焊缝的UT检验是行之有效的,后者是不成熟的。本文主要针对未焊透尺寸的UT检测方法进行讨论,以选择合理的检测方法和检测工艺,使焊接接头中未焊透尺寸能够通过超声波检测被控制在允许的范围之内。 T型角焊缝未焊透的特点

劲拓波峰焊保养维护规范

百度文库- 让每个人平等地提升自我 ※※目录※※

加强劲拓波峰焊的维护保养﹐延长机器及其关键零组件的使用寿命﹐维持 设备稳定性﹐保证生产中设备正常运转﹐提高生产效率 二、范围 深圳和而泰智能控制股份有限公司(工厂)所有的劲拓波峰焊,

三、参考文件 劲拓波峰焊操作和维护手册 四、使用工具 白布﹐酒精溶液或水﹐高温油﹐油枪﹐毛刷﹐铜刷﹐铲刀﹐吸尘器﹐ 五、保养规范内容 1﹒日保养操作规范说明 (1)清洁机器外观部分﹒(如下图) 方法: 1)用水及白布清洁玻璃窗及外表面﹒ 2) 用吸尘器﹐毛刷清洁进口﹑出口处锡渣及灰尘; 3) 用吸尘器与白布清洁抽风口﹒ 进口出口抽风口 2﹒周保养操作规范说明 (1)﹒清洁进口区域﹒ 方法﹕1)用白布清洁Sensor表面﹒(如图2-1) 2)松开毛刷固定螺栓﹐用吸尘器吸取进口处锡渣及杂物﹐再用铜刷 刷除表面的油渍及粘在表面的锡渣﹐然后用白布将灰尘等擦拭干 净﹔重新固定毛刷﹒(如图2-2) 图2-1 sensor 图2-2 毛刷 (2)清洁链爪部分 方法﹕1)打开洗链爪装置的储液缸排水阀﹐放掉废溶剂﹔ 2)用白布加清洗剂将储液缸擦拭干凈﹔然后关闭排水阀﹐重新添加 清洗剂﹒(如图2-3) 3)打开控制面板上洗爪开关﹐检查清洗剂流量是否适中﹐否则调节 流量控制开关阀﹐使流量设定适中﹒(如图2-4)

图2-3流量控制开关储液缸排水阀图2-4 洗爪开关 (3)﹒清洁FLUX喷雾器部分﹒ 方法﹕1)打开前门﹐取出flux过滤网﹐用白布加酒精将过滤网上面的污物擦拭干凈﹒(如图2-5) 2)用毛刷粘酒精刷除flux喷头﹐再用白布擦拭干净﹒(如图2-6) 3)用毛刷粘酒精刷除无杆气缸护罩上的flux残留物﹔打开护罩﹐用白布和酒精清洁无杆气缸上的污物﹒(如图2-7) 4)用白布和清洗剂清洁喷雾装置﹒(如图2-8) 图2-5 flux过滤网图2-6 flux喷头 图2-7 无杆气缸图2-8 喷雾装置

波峰焊参数设置与调制

根据单板生产资料信息,确定设备初始温度设定如下: 链数的设置: 依据本公司的设备特点与PCB 的特点设定: 表2链数的设置 单面板 ~minute 双面板 ~minute 波峰参数的设置: 波峰参数包括:单/双波峰的使用,波峰马达转数的设置: 当加工的单板为THT 混装板时,采用单波峰(第二波峰即平滑波)进行加工; 如下图所示: 图2 单面板波峰焊加工 当要进行焊接的为双面SMT 混装板,采用双波峰进行加工; 预热温度参数设置 PCB 结构 预热温度1 预热温度2 单面板 100~120 150~170C 双面板 120~140 170~190C

图3 双面板波峰焊加工 波峰高度设置通过设置波峰马达转速来控制,调整波峰马达转速,使得实际波峰和印制板刚接触时,波峰高度达到PCB板厚度的1/3~1/2,此时波峰马达转速就是合适的设置。 当使用波峰焊治具时,波峰高度的调节: 图4波峰高度的调节 (焊接时间过短升高波峰高度;焊接时间过长降低波峰高度) 设定锡温: 锡炉的温度一般情况下为265℃ 流量设定: 根据PCB板的特点来制定

厚度>2.5mm的双面板 厚度<2.5mm的双面板35ml/min 偏差值为:土5ml/min F LUX流量20ml/min 25ml/min 30ml/min PCB板特点 厚度<2.5mm的单面板厚度>2.5mm的单面板 3工艺调制 输入、输出项 输入:波峰焊工艺初始设定参数,试制产品板 输出:调制、优化后的工艺参数(记录),辅助工装 工艺调制流程图 工艺调制流程图说明: 开始. A-确定过板方向 1.进行波峰焊接的单板一般情况下进板方向与所加工单板的长边平行,如下图所示:

焊接过程中容易出现的问题及产生原因

焊接过程中易出现的问题及原因分析; 焊接缺陷所谓焊接缺陷,就是使焊接接头金属性能变坏。手工电弧焊在压力容器的焊接过程中,容易出现的缺陷有有尺寸偏差、咬边、气孔、未焊透、夹渣、裂纹、焊瘤等。在知道其产生原因后,我们找出了相应的方法,尽量减少这些缺陷所带来的危害。 尺寸偏差 焊缝宽度、余高、焊脚尺寸等焊缝尺寸过大或过小。 产生原因:焊条直径及焊接规范选择不当;坡口设计不当;运条手势不良。 危害:尺寸过小,强度降低;尺寸过大,应力集中,疲劳强度降低 防止措施:正确选用焊接规范,良好运条。 咬边 由于焊接参数选择不当,或操作方法不正确,沿焊趾的母材部位产生的沟槽或凹陷。 产生咬边的原因:操作方法不当,焊接规范选择不正确,如焊接电流太大、电弧过长、运条方式和角度不当、坡口两侧停留时间太长或太短均有产生咬边的可能。 咬边的危害:咬边将减少母材的有效截面积、在咬边处可能引起应力集中、特别是低合金高强钢的焊接,咬边的边缘组织被淬硬,易引起裂纹。防止措施:正确选用焊接规范,不要使用过大的焊接电流,要采用短弧焊,坡口两边运条稍慢、焊缝中间稍快,焊条角度要正确。气孔 气孔产生原因:焊件表面氧化物、锈蚀、污染未清理;焊条吸潮;焊接电流过小,电弧过长,焊速太快;药皮保护效果不佳,操作手势不良。危害:减小焊缝有效截面,降低接头致密性,减小接头承载能力和疲劳强度。 防止措施1、清除焊丝,工作坡口及其附近表面的油污、铁锈、水分和杂物。2、采用碱性焊条、焊剂,并彻底烘干。3、采用直流反接并用短电弧施焊。4、焊前预热,减缓冷却速度。5、用偏强的规范施焊。 未焊透 产生原因:坡口、间隙设计不良;焊条角度不正确,操作手势不良;热输入不足,电流过小,焊速太快;坡口焊渣、氧化物未清除。 危害:形成尖锐的缺口,造成应力集中,严重影响接头的强度、疲劳强度等。 防止未焊透的措施:加大焊接电流,加焊盖面焊缝。 夹渣 产生原因:焊件表面氧化物,层间熔渣没有清除干净;焊接电流过小,焊速太快;坡口设计不当;焊道熔敷顺序不当;操作手势不良。 危害:减小焊缝有效截面,江都接头强度,冲击韧性等。 防止夹渣的措施1、极高焊接操作技术,焊接过程中始终要保持熔池清晰、熔渣与业态金属良好分离。2、彻底清理坡口及两侧的油污、氧化物等。3、按焊接工艺规程正确选择焊接规

波峰焊保养要点

波峰焊保养要点 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-DQS58-MG198)

波峰焊保养要点 一、检查时钟设定 二、添加助焊剂 三、助焊剂喷头清洗 四、玻璃门擦拭 五、检查链爪 六、锡渣清理 七、预热区残留物清理 八、助焊剂周边清理 九、运输轨道平行校验 十、运输轨道宽度调节轴润滑 十一、抽风装置检查

十二、电气设备检查 一、检查时钟设定 检查定时开关设置状态,确保第二天生产时,波峰焊能够提前熔锡,保证生产的正常进行,冬季一般在班前提前3.5小时 开炉,夏季2.5小时左右即可。 二、添加助焊剂 检查助焊剂桶中助焊剂的量是否够用,确保助焊剂不会出现断料,不同的助焊剂最好不要混合使用。 三、助焊剂喷头清洗 先在喷头周围滴上酒精,溶解干涸的助焊剂块。 然后用静电刷蘸酒精擦洗喷头。 四、玻璃门擦拭 先用湿毛巾擦拭玻璃镜面,再用干毛巾擦干水渍。 五、检查链爪

在某一个链爪上做个标记,打开运输模式,检查一个循环过程内的所有链爪是否有变形,蘸锡的情况(蘸锡需清理),若 有变形则修复,不能修复就需要更换。 六、锡渣清理 逆时针转动摇把,降低炉胆高度,确保炉胆可以移出,不能触碰到轨道。 逆时针转动摇把,缓慢平稳的移出炉胆,不能剧烈抖动,防止锡液溅出。 戴耐高温手套操作,使用长柄漏勺舀出炉渣,再用长柄勺舀出炉灰,高温环境,一定要注意安全,防止烫伤。 清理出来的锡渣倒在专用桶内,不要随意丢弃,等聚集一批之后,可以回收置换锡条。炉渣清理完成之后,再小心的将炉 胆摇到原先位置,恢复正常高度。 七、预热区杂质清理 打开预热区盖子,用上面的挂扣将盖子挂住,确保挂到位。然后用小刷子扫除里面的灰尘,杂质。 八、助焊剂周边清理 在有漏洒助焊剂的地方,用稀释剂浸泡擦洗。包括机器内部,地面等都需要及时清理,否则会干涸,难以清理。九、运行轨道平行校验

波峰焊制程规范

波峰焊制程规范 拟制: 审核: 会签:

1.生产前设备机器的设置: 1.1.调整传送PCBA的轨道宽度,保证波峰焊链爪在运送PCBA时安全并不至于导致PCBA 板或托盘弯曲 1.2.检查阻焊剂是否足够,不足则添加足够的助焊剂 1.3.检查锡槽锡量是否足够,不足则添加适量的锡棒 1.4.技术人员参照《波峰焊参数设定表》调整波峰焊参数,同时要有足够的时间使预热及锡槽温度达到参数设定值 1.5.有特殊要求的产品和客户指定的作业,需要根据对应的SAP进行作业 2.生产程序: 2.1.完成生产前设备设置后才可以开始生产,具体流程为: 基板载入基板感应延时触发喷助焊剂结束喷助焊剂预热加热波峰焊接冷却基板流出 2.2.更具SIP要求是否使用产品对应的波峰焊托盘装载PCBA过波峰焊,波峰焊托盘治具 有生产到工装室领取 2.3.生产当线组长待技术员将波峰焊参数调整好后,确认没有问题后,开始试过1PCS产 品,确认焊锡性是否良好,如有问题反映给当线工程师调机处理,如无问题,则可正常开线。 2.4.正常生产后,技术人员应随时观察产品焊接品质,并且需要观察辅料是否需要添加。 2.5.波峰焊预热温度界限应该设定为设定温度±10℃,当预热温度超出设定值界限时,设 备要能报警提示,应立即通知工程师查看是否有设备异常,出现设备异常则需要停线处理,带处理完成后,重新测温,温度达到制程要求后方可继续生产。 2.6.波峰焊锡槽温度界限应该控制在设定温度±5℃,当锡槽温度超出设定值界限时,设备 要能报警提示,应立即通知工程师查看是否有设备异常,出现设备异常则需要停线处理,带处理完成后,重新测温,温度达到制程要求后方可继续生产。 2.7.有特殊要求的产品或客户指定的作业,需要根据对应的SOP进行操作。 拟制: 审核: 会签:

助焊剂对焊接影响及常见的不良状况原因分析

助焊剂对焊接的影响及常见的不良状况原因分析: 助焊剂对焊接质量的影响很多,客户经常反映的由助焊剂引起的不良问题,主要有以下几个方面: (一)、焊后线路板板面残留多、板子脏。 从助焊剂本身来讲,主要原因可能是助焊剂固含量高、不挥发物太多,而这些物质焊后残留在了板面上,从而造成板面残留多,另外从客户工艺及其他方面来分析有以下几个原因: 1.走板速度太快,造成焊接面预热不充分,助焊剂中本来可以挥发的物质未能充分挥发; 2.锡炉温度不够,在经过焊接高温的瞬间助焊剂中相关物质未能充分分解、挥发或升华; 3.锡炉中加了防氧化剂或防氧化油,焊接过程中这些物质沾到焊接面而造成的残留; 4.助焊剂涂敷的量太多,从而不能完全挥发; 5.线路板元件孔太大,在预热和焊接过程中使助焊剂上升到零件面造成残留; 6.有时虽然是使用免清洗助焊剂,但焊完之后仍然会有较明显残留,这可能是因为线路板焊接面本身有预涂松香(树脂)的保护层,这个保护层本来的分布是均匀的,所以在焊接前看不出来板面很脏,但经过焊接区时,这个均匀的涂层被破坏,从而造成板面很脏的状况出现; 7.线路板在设计时,预留过孔太少,造成助焊剂在经过预热及锡液时,造成助焊剂中易挥发物挥发不畅;8.在使用过程中,较长时间未添加稀释剂,造成助焊剂本身的固含量升高; (二)、上锡效果不好,有焊点吃锡不饱满或部分焊点虚焊及连焊。出现这种状况的原因主要有以下几个方面: 1、助焊剂活性不够,不能充分去除焊盘或元件管脚的氧化物; 2、助焊剂的润湿性能不够,使锡液在焊接面及元件管脚不能完全浸润,造成上锡不好或连焊。 3、使用的是双波峰工艺,第一次过锡时助焊剂中的有效成分已完全分解,在过第二次波峰时助焊剂已起不到去除氧化及浸润的作用; 4、预热温度过高,使活化剂提前激发活性,待过锡波时已没活性,或活性已很弱,因此造成上锡不良; 5、发泡或喷雾不恰当,造成助焊剂的涂布量太少或涂布不均匀,使焊接面不能完全被活化或润湿; 6、焊接面部分位置未沾到助焊剂,造成不能上锡; 7、波峰不平或其他原因造成焊接面区域性没有沾锡。 8、部分焊盘或焊脚氧化特别严重,助焊剂本身的活性不足以去除其氧化膜。 9、线路板在波峰炉中走板方向不对,有较密的成排焊点与锡波方向垂直过锡,造成了连焊。(如图所示)图三,推荐的过板方向 10、锡含量不够,或铜等杂质元素超标,造成锡液熔点(液相线)升高,在同样的温度下流动性变差。 11、手浸锡时操作方法不当,如浸锡时间、浸锡方向把握不当等。 (三)、焊后有腐蚀现象造成元器件、焊盘发绿或焊点发黑。主要原因有以下几个方面: 1、助焊剂中活化物质的活性太强,在焊后未能充分分解,从而造成继续腐蚀。 2、预热不充分(预热温度低,或走板速度快)造成助焊剂残留多,活化物质残留太多。 3、助焊剂残留物或离子态残留本身不易腐蚀,而这些物质发生吸水现象以后所形成的物质会造成腐蚀现象。

波峰焊作业指导书

篇一:波峰焊作业指导书 篇二:波峰焊作业指导书 波峰焊作业指导书: 1.目得:确保波峰焊机在使用时各参数符合所生产产品得要求,保证工序能力得到有效得连续监视与控制。 2.范围:适用于有无铅波峰焊。 3.职责: 3、1生产技术部波峰焊技术员负责对波峰焊机得使用与操作及保养。 3、2生产技术部负责波峰焊机相关参数得检测、效验。 3、3品保部负责监控与纠正措施得发起,验证。 3、4技术部负责锡样检测。 4、波峰焊相关工作参数设置与标准: 1.助焊剂参数设置根据规范设置如下: 现公司使用得助焊剂: 生产厂家助焊剂焊点面预热温度(℃) 一远gm—1000 减摩agf-780ds-aa80-120 kester979110-130 注:如客户对产品焊点面预热温度有特殊要求,则根据客户书面批准得文件执行。 4、2锡条成分比例参数: 现公司使用得锡条: 类型生产厂家型号焊锡成分比 有铅一远 sn63pb37 无铅减摩np503 4、3正常情况下公司助焊剂得比重范围规定:(减摩agf-780ds-aa 0、825±0、3 、一远gm-1000 0、795±0、3、 kester979 1、020±0、010)如果客户有特殊要求,则生产技术部工程师应依据客户要求具体得工艺注明,波峰焊技术员将按要求进行控制。 4、4以上焊点预热温度均指产品上得实际温度,波峰焊机预热温度设定值以当日获得合格波峰焊曲线时设定温度为准。 4、5所有波峰焊机得有铅产品锡炉温度控制在(245±5)℃测温温度曲线pcb板上元件得焊点温度得最低值为215℃;无铅产品锡炉温度控制在(255±5)℃,pcb板上元件得焊点温度得最低值为235℃。 4、6如客户或产品对温度曲线参数有单独规定与要求,应根据公司波峰焊机得实际性能与客户协商确定标准以满足客户与产品得要求(此项需生产技术部主管批准执行)。 4、7浸锡时间为:波峰1控制在0、3~1秒,波峰2控制在2~3秒; 4、8传送速度为:1、0~1、5米/分钟; 4、9夹送倾角5-8度。 4、10 助焊剂喷雾压力为2-3psi; 4、11针阀压力为2-4psi; 4、12除以上参数设置标准范围外,如果客户对其产品有特殊指定要求则由生产技术部工程师反映在具体作业指导书上依其规定执行。 5.波峰焊机面板显示工作参数控制: 5、1波峰焊操作工工作内容及要求: 5、1、1根据波峰焊接生产工艺给出得参数严格控制波峰焊机电脑参数设置。 5、1、2每天按时记录波峰焊机参数。 5、1、3每小时抽检10个样品,检查不良点数状况,并记录数据。5、1、4保证放在喷雾型波峰焊机传送带得连续2块板之间得距离不小于5cm。

焊缝无损检测中未焊透与未熔合的识别

焊缝无损检测中未焊透与未熔合的识别 摘要:未焊透与未熔合是油气输送管道对接焊缝的常见缺陷,且危害性较大。介绍了未焊透与未熔合缺陷的概念及其特征,分析了未焊透和未熔合缺陷的危害及产生原因。为了能正确辨识焊缝中的未焊透和未熔合缺陷,避免漏检、错判并能准确地判别检测结果,提高缺陷的检出率,给出了超声波检测和X射线检测对该类缺陷的识别方法。最后,提出了预防焊缝中产生未焊透和未熔合缺陷的措施。 0 前言 焊接技术已广泛应用于各种结构的制造,特别是在石油工业中,焊接更是制造各种油气输送管道的主要方法。以西气东输工程项目为例,全长约4300km的输气管道,焊接接头数量达35万个以上,整个管道上的焊缝长度至少1.5万km[1]。超声波检测和X射线检测是检查焊缝缺陷并提供焊缝质量评定的主要检测手段。未熔合是焊缝的常见缺陷,且危害性较大,国内外钢结构标准均不允许该类缺陷的存在。为了避免漏检、错判并能准确识别检测结果,笔者结合自己的现场经验,重点对油气输送管道的未焊透与未熔合缺陷作以介绍并加以区分。 1未焊透和未熔合的概念等特征 1.1未焊透GB 6417—1986《金属熔化焊焊缝缺陷分类及说明》中,未焊透被定义为在焊接时接头的根部未完全熔透的现象。未焊透是否为缺陷应根据产品的技术规范或者设计要求来评价[2]。常见的未焊透形貌如图1所示。 未焊透缺陷主要出现在单面焊的V形坡口根部及双面焊的X形坡口钝边,其应力集中系数较小。 1.2未熔合

GB 6417—1986《金属熔化焊焊缝缺陷分类及说明》中,未熔合被定义为在焊缝金属和母材之间或焊道金属和焊道金属之间未完全熔化结合的部分。未熔合分为侧壁未熔合、层间未熔合和根部未熔合。常见的未熔合形貌如图2所示。未熔合常出现在焊接接头的根部(根部未熔合)、焊道间(层间焊道未熔合)、焊道和母材坡口之间(坡口侧未熔合)、焊缝和母材(溢流或焊瘤)之间等。 2未焊透和未熔合的危害及产生原因 2.1未焊透未焊透的危害:减少了焊缝的有效截面积,使焊接接头的强度下降;因未焊透引起的应力集中严重降低焊缝的疲劳强度;未焊透可能成为裂纹源,从而造成对焊缝的破坏。 未焊透的产生原因:焊接参数选择不当,如焊接电流太小、运行速度太快、焊条角度不当、电弧发生偏吹、对接间隙太小以及坡口角度不当等,未焊透与焊接冶金因素关系不大;操作失误,如在不开坡口的双面埋弧自动焊中,双面焊时中心对偏等[3];坡口加工不良,如钝边太厚或一侧厚、一侧薄,加上焊接电流太小等。 2.2未熔合 未熔合是一种面积型缺陷,坡口侧未熔合和根部未熔合明显减小了承载截面积,应力集中比较严重,其危害性仅次于裂纹。未熔合的产生原因:焊接面未清理干净,有油污或铁锈;坡口形状不合理,有死角;焊接电流太小;焊枪没有充分摆动;焊工擅自提高电流以加快焊接速度等。 3超声波对未焊透和未熔合的检测 3.1对未焊透的检测 焊缝中的未焊透多为根部未焊透或中间钝边未焊透,一般延伸状况较直。超声波检测时回波规则单一,反射强,从焊缝两侧探伤都容易发现。特别是根部未焊透,其回波的起波速度较快,反应强烈,焊缝两次扫查都能发现,且反射波幅大致相同。沿焊道方向移动探头时,可见其有一定的延伸长度且回波高度变化不显著,具有规则的长条形缺陷特征,当声束相对其延伸方向改变角度时,其回波的波幅迅速降低[4]。由于未焊透产生于较规则的钝边处,所以检测时有很强的端角反射波,探头前后移动时,波形较稳定,转动或摆动探头时,波形消失较快,焊缝两侧检测时水平距离定位落点有一定间距,约等于对口间隙。用超声波检测未焊透时,波形单一,反射波幅度大,探头平移时,波形较稳定,反射波动态包络面大且比较规范。 3.2对未熔合的检测用超声波检测V形坡口的焊缝未熔合时,通常情况是在外壁扫查时发现在焊缝的另一侧图1常见的焊缝未焊透形貌·52·焊管2011年6月有较强的回波,而探头移至该侧用一次波扫查时,该位置回波很低甚至没有,二次波扫查则有较强的

焊缝内部和外部常见的缺陷分析

焊缝内部和外部常见的缺陷分析 焊缝缺陷的种类很多,在焊缝内部和外部常见的缺陷可归纳为以下几种: 一、焊缝尺寸不合要求 焊波粗、外形高低不平、焊缝加强高度过低或过高、焊波宽度不一及角焊缝单边或下陷量过大等均为焊缝尺寸不合要求,其原因是: 焊件坡口角度不当或装配间隙不均匀。 焊接电流过大或过小,焊接规范选用不当。 运条速度不均匀,焊条(或焊把)角度不当。 二、裂纹 裂纹端部形状尖锐,应力集中严重,对承受交变和冲击载荷、静拉力影响较大,是焊缝中最危险的缺陷。按起产生的原因可分为冷裂纹、热裂纹和再热裂纹等。 (冷裂纹)指在200℃以下产生的裂纹,它与氢有密切的关系,其产生的主要原因是: 对大厚工件选用预热温度和焊后缓冷措施不合适。 焊材选用不合适。 焊接接头刚性大,工艺不合理。 焊缝及其附近产生脆硬组织。 焊接规范选择不当。 (热裂纹)指在300℃以上产生的裂纹(主要是凝固裂纹),其产生的主要原因是: 成分的影响。焊接纯奥氏体钢、某些高镍合金钢和有色金属时易出现。 焊缝中含有较多的硫等有害杂质元素。 焊接条件及接头形状选择不当。 (再热裂纹)即消除应力退火裂纹。指在高强度的焊接区,由于焊后热处理或高温下使用,在热影响区产生的晶间裂纹,其产生的主要原因是: 消除应力退火的热处理条件不当。 合金成分的影响。如铬钼钒硼等元素具有增大再热裂纹的倾向。 焊材、焊接规范选择不当。 结构设计不合理造成大的应力集中。 三、气孔 在焊接过程中,因气体来不及及时逸出而在焊缝金属内部或表面所形成的空穴,其产生的原因是: 焊条、焊剂烘干不够。 焊接工艺不够稳定,电弧电压偏高,电弧过长,焊速过快和电流过小。 填充金属和母材表面油、锈等未清除干净。 未采用后退法熔化引弧点。 预热温度过低。

常见的焊接缺陷及缺陷图片

常见得焊接缺陷(1) 常见得焊接缺陷 (1)未焊透:母体金属接头处中间(X坡口)或根部(V、U坡口)得钝边未完全熔合在一起而留下得局部未熔合。未焊透降低了焊接接头得机械强度,在未焊透得缺口与端部会形成应力集中点,在焊接件承受载荷时容易导致开裂。 (2)未熔合:固体金属与填充金属之间(焊道与母材之间),或者填充金属之间(多道焊时得焊道之间或焊层之间)局部未完全熔化结合,或者在点焊(电阻焊)时母材与母材之间未完全熔合在一起,有时也常伴有夹渣存在。 (3)气孔:在熔化焊接过程中,焊缝金属内得气体 或外界侵入得气体在熔池金属冷却凝固前未来得及逸出而残留在焊缝金属内部或表面形成得空穴或孔隙,视其形态可分为单个气孔、链状气孔、密集气孔(包括蜂窝状气孔)等,特别就是在电弧焊中,由于冶金过程进行时间很短,熔池金属很快凝固,冶金过程中产生得气体、液态金属吸收得气体,或者焊条得焊剂受潮而在高温下分解产生气体,甚至就是焊接环境中得湿度太大也会在高温下分解出气体等等,这些气体来不及析出时就会形成气孔缺陷。尽管气孔较之其它得缺陷其应力集中趋势没有那么大,但就是它破坏了焊缝金属得致密性,减少了焊缝金属得有效截面积,从而导致焊缝得强度降低。

某钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,未焊透 某钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,密集气孔 (4)夹渣与夹杂物:熔化焊接时得冶金反应产物,例如非金属杂质(氧化物、硫化物等)以及熔渣,由于焊接时未能逸出,或者多道焊接时清渣不干净,以至残留在焊缝金属内,称为夹渣或夹杂物。视其形态可分为点状与条状,其外形通常就是不规则得,其位置可能在焊缝与母材交界处,也可能存在于焊缝内。另外,在采用钨极氩弧焊打底+手工电弧焊或者钨极氩弧焊时,钨极崩落得碎屑留在焊缝内则成为高密度夹杂物(俗称夹钨)。 W18Cr4V(高速工具钢)-45钢棒 对接电阻焊缝中得夹渣断口照片 钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,局部夹渣

波峰焊保养

波峰焊日常点检维护使用规范 一、宗旨 为使生产部设备正常有效运行,避免因设备保养使用不当造成设备损坏,从而影响经济效益,特制订本规范。 二、注意事项 a)严禁未经培训的人员操作本设备 b)设备开机前必须检查传输链条上是否有杂物 c)设备运转中要随时检查传送链条上是否有卡链现象,发现卡链要及时处理 d)设备运转中要监控设备其他部件有无异常,发现问题要及时处理 e)设备停止运行后,要对设备进行5S整理 f)绝对不能将助焊剂滴入预热箱、锡炉、电箱和其他有高温的地方,这样容易引发火 灾。 g)每天开机前应检查锡炉中焊锡的量,保证焊锡够用 h)严禁在关机前加锡,这样容易在下次开机时产生爆锡现象 i)注意保持电箱内部清洁,以免造成电气事故 j)在调整波峰焊高度时,应按下“急停”按钮,保护好现场,通知相关人员维修 三、波峰焊日点检 a)检查助焊剂罩过滤网并清除多余的助焊剂残留物 1.助焊剂过滤网每周用天那水清洗一次 2.每周要对抽风罩内进行清洁 b)检查喷雾系统喷雾是否均匀,横移气缸是否畅通 1.喷头每天要清洗,其方法是:在较小的助焊剂筒内加入酒精,打开球阀, 关闭较大的助焊剂筒的球阀,启动喷雾5-10分钟即可 2.每周将喷头摘下,浸泡在天那水中两小时即可 c)检查锡炉氧化黑粉、氧化渣是否过多 1.为减少锡炉内氧化物的产生,可在锡炉内添加防氧化油、豆油、非氧化合 金等 2.设备每运行1小时,应检查一次锡炉氧化黑粉的数量,并用汤漏将锡渣捞 出 d)检查波峰焊平波是否平稳,200H彻底清洗锡炉一次 1.锡槽内的氧化物堆积过多,会引起波封不稳、锡槽冒泡,甚至马达停转等 问题 2.此时可以松开固定喷口的螺丝,将喷口拆下,捞去喷口内部的锡渣即可 3.锡槽内的焊锡在使用数月后,合金成分会发生变化,影响了焊接质量,此 时应更换焊锡 e)检查洗爪液中是否有清洗水,每周更换一次,注意在不加水时不要开启洗爪马达 f)检查松香液管、接头处有无被腐蚀、漏夜现象,每月更换一次 g)检查油雾器中润滑油的数量,注意添加 h)保持日常清洁,不要将异物放入设备中 四、波峰焊月保养

波峰焊参数设置与调制

Author: Reviewed by: Approved by: 1.范围和简介: 1.1范围: 本规范规定了常规波峰焊工艺的调制过程. 1.2简介: 本规范对常规波峰焊的工艺调制过程进行了定义,基本的顺序是先根据单板的设计和生产资料确定设备的基本参数,然后根据温度曲线的测量结果对基本参数进行修正,在根据统计的试制缺陷信息完成最后的工艺参数调制,形成最终的生产操作指令。 2.参数设置: 2.1.设置流程: 开始预热参数设置链数的设置波峰参数设置单板BOM 、工艺规程、辅料要求的确认设定锡温 设定FLUX 流量及相关参数结束图1 波峰焊参数设置流程图

2.2参数设置流程说明: 2.2.1预热温度参数的设置: 根据单板生产资料信息,确定设备初始温度设定如下: 预热温度参数设置 PCB结构预热温度1 预热温度2 单面板100~120 150~170C 双面板120~140 170~190C 2.2.2链数的设置: 依据本公司的设备特点与PCB的特点设定: 表2链数的设置 单面板 1.0~1.5meter/minute 双面板0.5~1.0meter/minute 2.2.3波峰参数的设置: 波峰参数包括:单/双波峰的使用,波峰马达转数的设置: 当加工的单板为THT混装板时,采用单波峰(第二波峰即平滑波)进行加工; 如下图所示: 图2 单面板波峰焊加工 Author: Reviewed by: Approved by:

And Adjustment Issue date: 2010-12-07 Edition No: 01 Author: Reviewed by: Approved by: 当要进行焊接的为双面SMT混装板,采用双波峰进行加工; 图3 双面板波峰焊加工 波峰高度设置通过设置波峰马达转速来控制,调整波峰马达转速,使得实际波峰和印制板刚接触时,波峰高度达到PCB板厚度的1/3~1/2,此时波峰马达转速就是合适的设置。 当使用波峰焊治具时,波峰高度的调节: 图4波峰高度的调节 (焊接时间过短升高波峰高度;焊接时间过长降低波峰高度)

常见的焊接缺陷及缺陷图片

常见的焊接缺陷(1) 常见的焊接缺陷 (1)未焊透:母体金属接头处中间(X坡口)或根部(V、U坡口)的钝边未完全熔合在一起而留下的局部未熔合。未焊透降低了焊接接头的机械强度,在未焊透的缺口和端部会形成应力集中点,在焊接件承受载荷时容易导致开裂。 (2)未熔合:固体金属与填充金属之间(焊道与母材之间),或者填充金属之间(多道焊时的焊道之间或焊层之间)局部未完全熔化结合,或者在点焊(电阻焊)时母材与母材之间未完全熔合在一起,有时也常伴有夹渣存在。 (3)气孔:在熔化焊接过程中,焊缝金属内的气体 或外界侵入的气体在熔池金属冷却凝固前未来得及逸出而残留在焊缝金属内部或表面形成的空穴或孔隙,视其形态可分为单个气孔、链状气孔、密集气孔(包括蜂窝状气孔)等,特别是在电弧焊中,由于冶金过程进行时间很短,熔池金属很快凝固,冶金过程中产生的气体、液态金属吸收的气体,或者焊条的焊剂受潮而在高温下分解产生气体,甚至是焊接环境中的湿度太大也会在高温下分解出气体等等,这些气体来不及析出时就会形成气孔缺陷。尽管气孔较之其它的缺陷其应力集中趋势没有那么大,但是它破坏了焊缝金属的致密性,减少了焊缝金属的有效截面积,从而导致焊缝的强度降低。

某钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,未焊透 某钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,密集气孔 (4)夹渣与夹杂物:熔化焊接时的冶金反应产物,例如非金属杂质(氧化物、硫化物等)以及熔渣,由于焊接时未能逸出,或者多道焊接时清渣不干净,以至残留在焊缝金属内,称为夹渣或夹杂物。视其形态可分为点状和条状,其外形通常是不规则的,其位置可能在焊缝与母材交界处,也可能存在于焊缝内。另外,在采用钨极氩弧焊打底+手工电弧焊或者钨极氩弧焊时,钨极崩落的碎屑留在焊缝内则成为高密度夹杂物(俗称夹钨)。 W18Cr4V(高速工具钢)-45钢棒 对接电阻焊缝中的夹渣断口照片 钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,局部夹渣

焊接不良原因及处理方法

CO2气体保护焊的焊接缺陷产生的原因及防止方法 A、焊缝金属裂纹 1、焊缝深宽比太大;焊道太窄(特别是角焊缝和底层焊道) 1、增大电弧电压或减小焊接电流,以加宽焊道而减小熔深;减慢行走速度,以加大焊道的横截面。 2、焊缝末端处的弧坑冷却过快 2、采用衰减控制以减小冷却速度;适 当地填充弧坑;在完成焊缝的顶部采 用分段退焊技术,一直到焊缝结束。 3、焊丝或工件表面不清洁 (有油、锈、漆等) 3、焊前仔细清理 4、焊缝中含C、S量高而Mn量低 4、检查工件和焊丝的化学成分,更换合格材料 5、多层焊的第一道焊缝过薄 5、增加焊道厚度 B、夹渣 1、采用多道焊短路电弧(熔焊渣型夹杂物) 1、在焊接后续焊道之前,清除掉焊缝边上的渣壳 2、高的行走速度(氧化膜型夹杂物) 2、减小行走速度;采用含脱氧剂较高的焊丝;提高电弧电压 C、气孔 1、保护气体覆盖不足;有风 1、增加保护气体流量,排除焊缝区的全部空气;减小保护气体的流量,以防止卷入空气;清除气体喷嘴内的飞 溅;避免周边环境的空气流过大,破 坏气体保护;降低焊接速度;减小喷嘴到工件的距离;焊接结束时应在熔池凝固之后移开焊枪喷嘴。 2、焊丝的污染 2、采用清洁而干燥的焊丝;清除焊丝 在送丝装置中或导丝管中黏附上的润滑剂。 3、工件的污染 3、在焊接之前,清除工件表面上的全部油脂、锈、油漆和尘土;采用含脱氧剂的焊丝 4、电弧电压太高 4、减小电弧电压 5、 5、喷嘴与工件距离太大 5、减小焊丝的伸出长度 6、6、气体纯度不良 6、更换气体或采用脱水措施 7、气体减压阀冻结而不能供气 7、应串接气瓶加热器 8、喷嘴被焊接飞溅堵塞 8、仔细清除附着在喷嘴内壁的飞溅物 9、输气管路堵塞 9、检查气路有无堵塞和弯折处 D、咬边 1、焊接速度太高 1、减慢焊接速度 2、电弧电压太高 2、降低电压 3、电流过大 3、降低送丝速度 4、停留时间不足 4、增加在熔池边缘的停留时间 5、焊枪角度不正确 5、改变焊枪角度,使电弧力推动金属流动 E、未熔合 1、焊缝区表面有氧化膜或锈皮 1、在焊接之前,清理全部坡口面和焊缝区表面上的轧制氧化皮或杂质

波峰焊温度线测试方法

波峰焊温度曲线测试方法 新功能:? 松香涂布窗口能让你在每次使优化器时轻松获得松香涂布信息. ? 松香涂布窗口在过炉时不会接触波峰,因此也不必担心松香在过炉时被蒸发掉. ? 你会从松香的涂布状况信息中受益.如你所知,松香喷得好与不好是直接影响焊接品质的又一重要因素.而这一信息和前面讲的重要参数都会在优化器过一次锡炉后聚集在一起. ? 不必关掉波峰,不会对生产有任何影响,只是轻松地看松香测量测量窗口一下就行了? 如果想对松香量做SPC,也很简单:过炉前用相应精度的电子秤称一下松香涂布窗口,过炉后再称一下,取后一次和前一次的称量值的差,就是松香的涂布量.取足够多的数据后,设定好控制上限和下限.就能轻松做SPC了. 松香量测量窗口和优化器整机宽度近似, 可以订做。体参数: PCB到波峰的資料前波峰和後波峰溫度資料板底和板面波峰與板之間的平行度預熱溫度浸錫時間最高溫度浸錫深度 Delta T (最高溫和預熱的差) 接觸長度最大的預熱升溫率輸送鏈的速度焊接時的最大升溫率“斯维普”优化器和传统测温仪的比较 1. 认识波峰焊的关键参数1.1 PCB板和波峰间的数据参数影响浸锡时间焊点的强度.形成一个可靠的焊点必须要足够长的浸锡时间, 63/37的焊锡需0.6秒,无铅 (3.0Ag0.5Cu) 需1.2秒. 输送速度预热效果、与后波峰后流量的配合、浸锡时间. PCB板与波峰接触长度在输送速度的配合下,影响的也是浸锡时间 (=接触长度/速度) 左右平衡度上锡不良,可能导致一侧的元件不上锡 (漏焊). 浸锡深度板面上锡以及后流速度. 松香涂布量及均匀度直接影响PCB的焊接效果 1.2 板底板面的温度数据参数影响预热温度助焊剂的溶剂挥发、激活助焊剂活性成份、减少板变形、减少过锡时的温度差 (Delta T 亦即热冲击). Delta T 即通常讲的热冲击,定义为过波峰时的最高温和预热最高温的差。其大小会影响元件的可靠性,一般元件能承受的值为120-150℃. 最高预热升温速率元件可靠性.通常不大于3℃. 过波峰时的最大升温速率元件可靠性. 过锡最高温视探头安装位置而定. 2.优化器和传统测温仪关注的重点和主要差异参数“斯维普”优化器传统测温仪浸锡时间精确到0.1秒测不到或靠估计 PCB板与波峰接触长度精确到0.1mm 测不到左右平衡度精确到0.1秒测不到浸锡深度精确到0.1mm 测不到 Delta T 精确到1℃ 测不到过锡最高温关注板面关注板底注:通常贴片元件的规格都能承受在260℃时停留10秒,而锡温实际上只有245℃ (无铅是255℃),均在260℃以下,因此测得了浸锡时间就不必再测板底最高温.3.优化器标准测量板的探头安装及测量的位置TC-1: 测量PCB板面的预热温度和预热升温速率.TC-2: 测量PCB板底的预热温度和预热升温速率.TC-3: 测量 a. PCB板面预热. b. PCB板面过波峰时达到的最高温. c. PCB板面在整个测量过程中的最大升温速. d. ΔT: 板面过锡最高 温与预热最高温的差.

自动焊接的不良原因及对策

自動焊接的不良原因及對策 第一節吃錫不良(POOR WETTING) 其現象為線路的表面有部份未沾到錫,原因為: 1.表面附有油脂、雜質等,可以溶劑洗淨 2.基板制造過程時的打磨粒子遺留在線路表面,此為印刷電路板制 造廠家的問題。 3.SILCON OIL,一般脫模劑及潤滑油中含有此種油類,很不容易被 完全清洗干淨,所以在電子零件的制造過程中,應盡量避免化學品含SILICON OIL者。焊錫爐中所用的氧化防止油也須留意不是此類的油。 4.由於貯存時間、環境或制造不當,基板或零件的錫面氧化及銅面 晦暗情形嚴重。換用助焊劑通常無法解決此問題,重焊一次將有助於吃錫效果。 5.助焊劑使用條件調整不當,如發泡所需的空氣壓力及高度等。比 重亦是很重要的因素之一,因為線路表面助焊劑分佈數量的多寡受比重所影響。檢查比重亦可排除因標簽貼錯,貯存條件不良等原因而致誤用不當助焊劑的可能性。 6.焊錫時間或溫度不夠。一般焊錫的操作溫度應較其溶點溫度高 55~80℃。 7.不適合之零件端子材料,檢查零件,使得端子清潔,浸沾良好。 8.預熱溫度不夠,可調整預熱溫度,使基板零件側表面溫度達到要 求之溫度約90℃~110℃。 9.焊錫中雜質成份太多,不符合要求,可按時測量焊旬錫中之雜質, 若不合規定超過標准,則更換合標准之焊錫。

第二節NG退錫(DE-WETTI) 多發生於鍍錫鉛基板,與吃錫不良的情形相似;但在於線路表面與錫波脫離時,大部份已沾附在其上的焊錫又拉回到錫爐中,所以情況較吃錫不良嚴重,重焊一次不一定能改善。原因是基板制造工廠在鍍錫鉛前未將表面清洗干淨,此時可將不良之基板送回工廠重新處理。 第三節冷焊或焊點不光滑(CCLD SOLDER OR DISTURBED SOLDERING) 此情況可被列為焊點不均勻的一種,發生於基板脫離錫波正在凝固時,零件受外力影響移動而形成的焊點。 保持基板在焊錫過後的傳送動作平穩,例如加強零件的固定,注意零件線腳方向等;總之,待焊錫的基板午到足夠的冷卻后再移動,可避免此一問題的發生,解決的辦法為再過一次錫波。 至於冷焊,錫溫太高或太低都有可能造成此情形。 第四節焊點裂痕(CRACK SOLDERING) 造成的原因為基板,貫穿孔及焊點中零件腳等熱膨脹收縮系數方面配合不當,可以說實際上不算是焊錫的問題,而是牽涉到線路及零件設計時,材料及尺寸在熱方面的配合。 另基板裝配品的碰撞、重疊也是主因之一。因此,基板裝配品皆不可碰撞、重疊、堆積;又,用切斷機剪切線腳更是主要殺手,對策是采用自動插件機或事先剪腳或購買不必再剪腳的的尺寸的零件。 第五節錫量過多(EXCESS SOLDER) 過大的焊點對電流的流通並無幫助,但對焊點的強度則有不良影響,形成的原因為:

波峰焊的操作与维护保养

波峰焊的操作与维护保养 一.开关机及相关准备工作: 1 日东SAC-3JS锡炉开启操作程序: 1.1 打开电脑,选择并进入开机画面,输入密码登入系统选项。 1.2 鼠标选择按钮开关,点击“开机、预热1开、预热2开、预热3开、传送开、喷雾开、洗爪开”等控制开关(“锡炉”为常开状态)。 2.3 选择“设置窗”,进行参数范围设定。 2.4预热区1:90-280℃(参考温度90℃),预热区2:90-280℃(参考温度100℃)。预热区3:90-280℃(参考温度110℃);锡炉:260±10℃;波峰1高度:10-30,波峰2高度:10-30。传送带:600-1900mm/min,风机转速:0-2000RPM;喷雾原点:-100—500; 2.5 设定完毕,按“确定”回到主画面。 2 安达JN-350A锡炉开启操作程序: 2.1 确保电源打开的情况下,将定时器中“开/自动/关”按键打至显示“ON”,然后按至正常定时状态的“AUTO”。 2.2 确保锡炉中锡已融化的状态下,依次按下“预热1、预热2、预热3、传送、喷雾、洗爪、波峰1、波峰2、冷却”等控制开关。 2.3 预热及炉温等参数设置同上2.4条。 3 其它准备工作: 3.1 加入助焊剂(容量为槽的4/5)并量测比重:0.8-0.830g/cm3。 3.2 加入稀释剂/酒精于清洗槽,使之容量为容器的4/5并开启清洗开关进行爪勾清洗。 3.3 使用生产的实物板调节传送带宽度,范围为:50-350mm。宽度以能滑动为准,不能过松或过紧;双波高度以到线路板厚度一半一准。 3.4 调整喷雾系统的气压值,气缸气压:4-6公斤。喷雾流量:20-50ml/min。气压流量:20-50ml/min。(每分钟喷30次) 3.5 察看喷雾是否均匀(正常的喷量以均匀喷到板底但又不流动为准),波峰是否正常,以及其他参数实际值是否在设定值范围,一切OK 就可进行炉温测试,测试OK后过首件,待首件正常即可量产。 4 锡炉的关机: 4.1 机器必须保持在自动状态下,并设定好定时开机时间。 4.2 在电脑主画面/面板上关闭各个设定,除锡温为“开”状态,其余均为“关”。 4.3 用电脑控制的波峰直接点击主画面的关闭窗口。 4.4 用电脑控制的波峰关闭电脑,结束操作。 二.波峰的日常维护和保养: 1 锡炉的点检: 1.1 做好机器点检记录。 1.2 日期:当日点检日期。 1.3 线别:生产机种所在的生产线。 1.3.1 点检者:机器操作人姓名。 1.3.2 确认者:PE技术员、工程师姓名。 1.3.3 机器点检时,在记号栏用表单规定的记号填写。 2 锡炉及相关作业要求: 2.1 非波峰操作/工程人员及被承认有资格操作的人员,不可擅自调整锡炉。 2.2 除长时间停用锡炉外,锡温应该保持长开状态。 2.3 遇紧急状况时,应立即按下红色“紧急停止”开关,要重新运转机器时,应该将所有开关按照程序重新操作。 2.4 助焊剂-稀释剂-锡条的厂商和规格: 2.4.1 助焊剂(FLUX)厂商:苏州柯士达FD-308 2.4.2 酒精厂商:未确定。 2.4.3 锡条厂商:宁波银羊 2.4. 3.1 M705成分百分比:Sn/Ag/Cu=99.2/0.3/0.5 2.4. 3.2 M708不含Cu,其主要是用于稀释M705中的Cu含量。 2.4. 3.3 规定Cu含量不可超过0.9%,Pb含量不可超过0.05%。 2.4. 3.4 规定当新焊锡熔于锡缸后正常使用,需连续性每10天提取焊锡缸内焊锡送样于焊锡供应商进行焊锡成分化验,待连续生产并化 验2个月后,查看其成分变化不大时可每3月进行1次化验。 2.5 温度曲线量测规定: 2.5.1 温度曲线量测必须做记录。 2.5.2 必须符合助焊剂厂商所提供的最佳状态下生产。 2.5.3 有BGA的PCB一定要量测上板面BGA中心点。 2.5.4 零件密集区或IC上需放测试点。 2.5.5 板面测试点至少2点,板底测试点至少1点。 2.5.6 度测试需在生产前使用实物板测试并确认OK后方可过板生产。 2.5.7 每测试点需使用焊锡或红胶将零件与测试线探头连接固定。 2.5.8每板每机种测试1次温度曲线,当中换线换机种时必须进行重新测量。 2.6 温度曲线判定: 2.6.1 PCB预热段时间为80-130秒。板底预热段最高温度为:单面铜箔贯穿80-110℃;双面铜箔贯穿板:90-120℃。 2.6.2 PCB板面测试温度最高(经过波峰热冲击)温度不可超过160℃(除特别产品客户要求外)。 2.6.3 PCB过预热到焊接段的板底温度落差需保持在5℃范围以内。 2.6.4 PCB焊接时间:紊流波≤1秒,平流波为2-4秒。 2.6.5 PCB过波峰后急速冷却,到达160℃时的冷却时间不可高于11秒。 2.6.6 PCB在使用紊流波与平流波时,两段波峰焊接温度的落差点必须在195℃以上 2.6.7 当所测温度曲线超出标准时,必须停止生产,立即向上级反映并进行改善,直到温度测试OK后方可重新开线生产。 2.6.8 KIC炉温曲线测试图(如下): 2.7 助焊剂的点检: 2.7.1 每工作日上午和下午必须提前5分钟测量助焊剂比重,并且将量测值做记录(喷雾系统记录表)。 2.7.2 每2小时测量一次助焊剂比重,并检查1次喷雾状况:使用Alpha425型稀释剂清洁1次喷头。 2.7.3 助焊剂喷雾均匀度使用2片光板当中夹一张传真纸进行穿透测试,喷雾范围使用A4 纸或传真纸包住PCB底板进行喷雾检测。

相关文档
最新文档