地方独立坐标系采用抵偿高程面的任意带高斯投影的分析

地方独立坐标系采用抵偿高程面的任意带高斯投影的分析
地方独立坐标系采用抵偿高程面的任意带高斯投影的分析

高斯投影坐标正反算VB程序

高斯投影坐标正反算 V B程序 文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

高斯投影坐标正反算 学院: 班级: 学号: 姓名: 课程名称: 指导老师:

实验目的: 1.了解高斯投影坐标正反算的基本思想; 2.学会编写高斯正反算程序,加深了解。 实验原理: 高斯投影正算公式中应满足的三个条件: 1. 中央子午线投影后为直线; 2. 中央子午线投影后长度不变; 3. 投影具有正形性质,即正形投影条件。 高斯投影反算公式中应满足的三个条件: 1. x坐标轴投影成中央子午线,是投影的对称轴; 2. x轴上的长度投影保持不变; 3. 正形投影条件,即高斯面上的角度投影到椭球面上后角度没有 变形,仍然相等。 操作工具: 计算机中的 代码: Dim a As Double, b As Double, x As Double, y As Double, y_#

Dim l_ As Double, b_ As Double, a0#, a2#, a4#, a6#, a8#, m2#, m4#, m6#, m8#, m0#, l0#, e#, e1# Dim deg1 As Double, min1 As Double, sec1 As Double, deg2 As Double, min2 As Double, sec2 As Double Private Sub Command1_Click() Dim x_ As Double, t#, eta#, N#, W#, k1#, k2#, ik1%, ik2%, dh% deg1 = Val min1 = Val sec1 = Val deg2 = Val min2 = Val sec2 = Val l_ = (deg1 * 3600 + min1 * 60 + sec1) / 206265 b_ = (deg2 * 3600 + min2 * 60 + sec2) / 206265 dh = Val k1 = ((l_ * 180 / + 3) / 6) k2 = (l_ * 180 / / 3) ik1 = Round(k1, 0) ik2 = Round(k2, 0) If dh = 6 Then l0 = 6 * ik1 - 3 Else

我国四大常用坐标系及高程坐标系学习资料

我国四大常用坐标系及高程坐标系 1.北京54坐标系(BJZ54) 北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。 新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。它的原点不在北京而是在前苏联的普尔科沃。 北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/298.3; 2.西安80坐标系 1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。为此有了1980年国家大地坐标系。1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG75地球椭球体。该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。 西安80坐标系,属三心坐标系,长轴6378140m,短轴6356755,扁率1/298.25722101 3.WGS-84坐标系 WGS-84坐标系(WorldGeodeticSystem)是一种国际上采用的地心坐标系。坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局(BIH)1984.0定义的协议地极(CTP)方向,X轴指向BIH1984.0的协议子午面和CTP赤道的交点,Y轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系。这是一个国际协议地球参考系统(ITRS),

高斯平面直角坐标与大地坐标转换

高斯平面直角坐标系与大地坐标系 1 高斯投影坐标正算公式 (1)高斯投影正算:已知椭球面上某点的大地坐标()B L ,,求该点在高斯投影平面上的直角坐标()y x ,,即()),(,y x B L ?的坐标变换。 (2)投影变换必须满足的条件 中央子午线投影后为直线; 中央子午线投影后长度不变; 投影具有正形性质,即正形投影条件。 (3)投影过程 在椭球面上有对称于中央子午线的两点1P 和2P ,它们的大地坐标分别为(B L ,)及(B l ,),式中l 为椭球面上P 点的经度与中央子午线)(0L 的经度差:0L L l -=, P 点在中央子午线之东, l 为正,在西则为负,则投影后的平面坐标一定为),(1y x P '和),(2y x P -'。 (4)计算公式 ??? ? ???''+-''+''+-''+''''=''+-''+''''+ =54255 32234 22342 2)185(cos 120)1(6cos )95(cos sin 2sin 2l t t B N l t B N l B N y l t B B N l B N X x ρηρρηρρ 当要求转换精度精确至时,用下式计算: ?????? ???????''-++-' '+''+-' '+''''=''+-''+''++-''+''''+ =52224255 32233 64256 44223422)5814185(cos 720)1(cos 6cos )5861(cos sin 720)495(cos sin 24sin 2l t t t B N l t B N l B N y l t t B B N l t B B N l B N X x ηηρηρρρηηρρ 2 高斯投影坐标反算公式 (1)高斯投影反算:已知某点的高斯投影平面上直角坐标()y x ,,求该点在椭球面上的大

地理坐标系及我国大地坐标系和高程系

地理坐标系及我国大地坐标系和高程系 地理坐标系是指用经纬度表示地面点位的球面坐标系。在大地测量学中,对于地理坐标系统中的经纬度有三种描述:即天文经纬度、大地经纬度和地心经纬度。 大地控制的主要任务是确定地面点在地球椭球体上的位置。这种位置包括两个方面:一是点在地球椭球面上的平面位置,即经度和纬度;二是确定点到大地水准面的高度,即高程。为此,必须首先了解确定点位的坐标系。 1.地理坐标系 对地球椭球体而言,其围绕旋转的轴叫地轴。地轴的北端称为地球的北极,南端称为南极;过地心与地轴垂直的平面与椭球面的交线是一个圆,这就是地球的赤道;过英国格林威治天文台旧址和地轴的平面与椭球面的交线称为本初子午线。以地球的北极、南极、赤道和本初子午线等作为基本要素,即可构成地球椭球面的地理坐标系统(图2-3)。其以本初子午线为基准,向东,向西各分了1800,之东为东经,之西为西经;以赤道为基准,向南、向北各分了900,之北为北纬,之南为南纬。 地理坐标系是指用经纬度表示地面点位的球面坐标系。在大地测量学中,对于地理坐标系统中的经纬度有三种描述:即天文经纬度、大地经纬度和地心经纬度。 (1)天文经纬度 天文经度在地球上的定义,即本初子午面与过观测点的子午面所夹的二面角;天文纬度在地球上的定义,即为过某点的铅垂线与赤道平面之间的夹角。天文经纬度是通过地面天文测量的方法得到的,其以大地水准面和铅垂线为依据,精确的天文测量成果可作为大地测量中定向控制及校核数据之用。 (2)大地经纬度 地面上任意一点的位置,也可以用大地经度L、大地纬度B表示。大地经度是指过参考椭球面上某一点的大地子午面与本初子午面之间的二面角,大地纬度是指过参考椭球面上某一点的法线与赤道面的夹角(图2-3)。大地经纬度是以地球椭球面和法线为依据,在大地测量中得到广泛采用。

高斯平面直角坐标系与大地坐标系相互转化

高斯平面直角坐标系与大地坐标系相互转化 高斯平面直角坐标系与大地坐标系转换 1. 高斯投影坐标正算公式(1) 高斯投影正算:已知椭球面上某点的大地坐标(L,B),求该点在高斯投影平面上的直角坐标(x,y),即(L,B)->(x,y)的坐标变换。(2) 投影变换必须满足的条件中央子午线投影后为直线; 中央子午线投影后长度不变; 投影具有正形性质,即正形投影条件。(3) 投影过程在椭球面上有对称于中央子午线的两点P 1 和P 2 ,它们的大地坐标分别为(L,B)及(l,B),式中l 为椭球面上P 点的经度与中央子午线(L 0 )的经度差:l=L-L 0 ,P 点在中央子午线之东,l 为正,在西则为负,则投影后的平面坐标一定为P 1 ’(x,y)和P 2 ’(x,-y)。(4) 计算公式 4 ' ' 2 2 3 4 ' ' 2 ' ' 2 ' ' ) 9 5 ( cos sin 2 sin 2 l t B B N Bl N X x 5 ' ' 4 2 5 5 ' ' 3 ' ' 2 2 3 ' ' ' ' ' ' ) 18 5 ( cos 120 ) 1 ( 6 cos l t t B N l t B N Bl N y 当要求转换精度精确至0.001m时,用下式计算: 6 ' ' 4 2 5 6 ' ' 4 ' ' 4 2 2 3 4 ' ' 2 ' ' 2 ' ' ) 58 61 ( cos sin 720 ) 4 9 5 ( cos sin 24 sin 2 l t t B B N l t B B N Bl N X x 5 ' ' 2 2 2 4 2 5 5 ' ' 3 ' ' 2 2 3 3 ' ' ' ' ' ' ) 58 14 18 5 ( cos 720 ) 1

3度6度带高斯投影详解.

3度6度带高斯投影 选择投影的目的在于使所选投影的性质、特点适合于地图的用途,同时考虑地图在图廓范围内变形较小而且变形分布均匀。海域使用的地图多采用保角投影,因其能保持方位角度的正确。 我国的基本比例尺地形图(1:5千,1:1万,1:2.5万,1:5万,1:10万,1:25万,1:50万,1:100万)中,大于等于50万的均采用高斯-克吕格投影(Gauss-Kruger),这是一个等角横切椭圆柱投影,又叫横轴墨卡托投影(Transverse Mercator);小于50万的地形图采用等角正轴割园锥投影,又叫兰勃特投影(Lambert Conformal Conic);海上小于50万的地形图多用等角正轴圆柱投影,又叫墨卡托投影(Mercator)。一般应该采用与我国基本比例尺地形图系列一致的地图投影系统。 地图坐标系由大地基准面和地图投影确定,大地基准面是利用特定椭球体对特定地区地球表面的逼近,因此每个国家或地区均有各自的大地基准面,我们通常称谓的北京54坐标系、西安80坐标系实际上指的是我国的两个大地基准面。我国参照前苏联从1953年起采用克拉索夫斯基(Krassovsky)椭球体建立了我国的北京54坐标系,1978年采用国际大地测量协会推荐的IAG 75地球椭球体建立了我国新的大地坐标系--西安80坐标系,目前GPS定位所得出的结果都属于WGS84坐标系统,WGS84基准面采用WGS84椭球体,它是一地心坐标系,即以地心作为椭球体中心的坐标系。因此相对同一地理位置,不同的大地基准面,它们的经纬度坐标是有差异的。 采用的3个椭球体参数如下(源自“全球定位系统测量规范 GB/T 8314-2001”): 椭球体与大地基准面之间的关系是一对多的关系,也就是基准面是在椭球体基础上建立的,但椭球体不能代表基准面,同样的椭球体能定义不同的基准面,如前苏联的Pulkovo 1942、非洲索马里的Afgooye基准面都采用了Krassovsky

常用坐标系与高程系简介

常用坐标系与高程系简介 2009-09-27 10:06:45| 分类:GIS技术| 标签:|字号大中小订阅 坐标系的概念 1.坐标系的定义: P的位置,可以用一组基于某一时间系统时刻t的空间结构的数学描述来确定,则这个空间结构可以称为坐标系,数学描述称为P点在该坐标系中的坐标。牛顿运动学原理要求坐标系是惯性的,惯性是每个物体所固有的当没有外力作用时保持静止或匀速直线运动的属性,基于这个特性,惯性坐标系的定义需与时间无关,通常这样的坐标系需要三个属性来描述(这应该是三维空间的本性吧),首先一个是原点(O),就是坐标系的中心点,第二个是过原点的任意直线(这里称为Z轴),第三个是过原点且与Z轴不重合的任意直线(这里称为X轴),如果X轴与Z轴垂直,会带来较优美的数学描述,我们称这样的坐标系是笛卡尔坐标系。P点的位置可以用P到原点的距离r,OP与Z轴的夹角,OP与X 轴的夹角来描述(当然也可以有其它等价描述),可以证明这个描述确定的P点是唯一的。 2.GPS领域常用坐标系模型: GPS测量中,最常用的坐标系模型是协议地球坐标系,该坐标系随同地球一起旋转,讨论随地球一起自转的目标位置,用这类坐标系方便;另外一类是协议天球坐标系,这个坐标系随同太阳系一同旋转,与地球自转无关,讨论卫星轨道运动时,用这类坐标系方便。 的,原点是地球质心(O),Z轴指向地球自转轴(天极,向北为正),X轴指向春分点,根据春分点的定义可以证明X轴与Z轴互相垂直,且X轴在赤道面上,同时为数学描述方便,引入与XOZ成右手旋转关系的Y轴。因为地球自转轴受其它天体影响(日、月)在空间产生进动,使得春分点变化(章动和岁差),导致用“瞬时天极”定义的坐标系不断旋转,而旋转的坐标系表现出非惯性的特性,不能直接应用牛顿定律。我们可以用某一历元时刻的天极和春分点(协议天极和协议春分点)定义一个三轴指向不变的天球 坐标系,称为固定极天球坐标系。 (O),Z轴为地球自转轴,X轴指向地球上赤道的某一固定“刚性”点,所谓“刚性”是指其自转速度与地球一致,同时也为数学描述方便,引入与XOZ成右手旋转关系的Y轴。地球不是一个严格刚性的球体,Z轴在地球上随时间而变,称为极移,同天球坐标系一样,需要指定一个固定极为Z轴,这样的地球坐标系称为固定极地球坐标系。可以证明当观察地球上的物体时,该坐标系是惯性的。如果一个坐标系OXYZ,O不是地球质心,Z轴与地球自转轴平行,则这个坐标系具有与地球相同的自转角速度,我们也把此类坐标系称为地球坐标系。 3.协议坐标系统: 系呢?通常,理论上坐标系由定义的坐标原点和坐标轴指向来确定。坐标系一经定义,任意几何点都具有唯一一组在该坐标系内的坐标值,反之,一组该坐标系内的坐标值就唯一定义了一个几何点。实际应用中,在已知若干参考点的坐标值后,通过观测又可反过来定义该坐标系。可以将前一种方式称为坐标系的理论定义。而由一系列已知点所定义的坐标系称为协议坐标系,这些已知参考点构成所谓的坐标框架。在点位坐标值不存在误差的情况下,这两种方式对坐标系的定义是一致的。事实上点位的坐标值通常是通过一定的测量手段得到,它们总是有误差的,由它们定义的协议坐标系与原来的理论定义的坐标系会有所不同,凡依据这些点测定的其它点位坐标值均属于这一协议坐标系而不属于理论定义的坐标系。由坐标框架定义的固定极天球坐标系和固定极地球坐标系,称为协 议天球坐标系和协议地球坐标系。

坐标系转换与高斯投影

坐标系转换与高斯投影(1) 坐标转化并不是一个新的课题,随着测绘事业的发展,全球一体化的形成,越来越要求全球测绘资料的统一。由于地球曲率客观存在,传统测绘作业通视受到很大限制,测绘资料的统一存在巨大的约束。另外由于每一个国家的大地坐标系的建立和发展具有一定的历史特性,仅常用的大地坐标系就有150余个。在同一个国家,在不同的历史时期由于习惯的改变或经济的发展变化也会采用不同的坐标系统。例如:在我国建国之后,为了尽快搞好基础建设,我国采用了克氏椭球与我国实际相结合的北京54坐标系;随着经济的发展北京54坐标系的缺陷也随之被表露的越来越明显,特别是对我国经济较发达的东南沿海地区的影响表现得更为明显,进而我国开始研究并使用国家80坐标系。 GPS卫星导航系统满足了全球范围、全天候、连续实时以及三维导航和定位的要求。正是由于GPS卫星的这些特性,这种技术就很快被广大测绘工作者接受,但是由于坐标系统的不同,对GPS技术的推广使用造成了一定的障碍。 为了描述卫星运动,处理观测数据和表示测站位置,需要建立与之相应的坐标系统。在GPS 测量中,通常采用两种坐标系统,即协议天球坐标系和协议地球坐标系。 其中协议地球坐标系采用的是1984年世界大地坐标系(Word Geodetic System 1984即WGS-84)。WGS-84坐标系是美国国防部研制确定的大地坐标系,是一种协议地球坐标系。WGS-84坐标系的定义是:原点是地球的质心,空间直角坐标系的Z轴指向BIH(1984.0)定义的地极(CTP)方向,即国际协议原点CIO,它由IAU和IUGG共同推荐。X轴指向BIH定义的零度子午面和CTP 赤道的交点,Y轴和Z,X轴构成右手坐标系。WGS-84椭球采用国际大地测量与地球物理联合会第17届大会测量常数推荐值,采用的两个常用基本几何参数: 长半轴a=6378137m;扁率f=1:298.257223563。 而我国采用的坐标系并不是WGS-84坐标系而是BJ-54坐标系,这个坐标系与前苏联的1942年普耳科沃坐标系有关, 属于参心大地坐标系(大地原点、高程基准和高程异常见后文),参考椭球为克拉索夫斯基椭球,其主要参数为: 长半轴 a=6378245,扁率 f=1/298.3。 这就使得同一点在不同的坐标系下有不同的坐标值,使测绘资料的应用受到很大的限制,并且对GPS系统的广泛使用造成了一定的约束性,对我们国家测绘事业的发展不利。

高斯坐标系

大地坐标系是大地测量的基本坐标系。常用于大地问题的细算,研究地球形状和大小,编制地图,火箭和卫星发射及军事方面的定位及运算,若将其直接用于工程建设规划、设计、施工等很不方便。所以要将球面上的大地坐标按一定数学法则归算到平面上,即采用地图投影的理论绘制地形图,才能用于规划建设。 椭球体面是一个不可直接展开的曲面,故将椭球体面上的元素按一定条件投影到平面上,总会产生变形。测量上常以投影变形不影响工程要求为条件选择投影方法。地图投影有等角投影、等面积投影和任意投影三种。 其中等角投影又称为正形投影,它保证在椭球体面上的微分图形投影到平面后将保持相似。这是地形图的基本要求。正形投影有两个基本条件: ①保角条件,即投影后角度大小不变。 ②长度变形固定性,即长度投影后会变形,但是在一点上各个方向的微分线段变形比m是个常数k: 式中:ds—投影后的长度,dS—球面上的长度。 1.高斯投影的概念 高斯是德国杰出的数学家、测量学家。他提出的横椭圆柱投影是一种正形投影。它是将一个横椭圆柱套在地球椭球体上,如下图所示: 椭球体中心O在椭圆柱中心轴上,椭球体南北极与椭圆柱相切,并使某一子午线与椭圆柱相切。此子午线称中央子午线。然后将椭球体面上的点、线按正形投影条件投影到椭圆柱上,再沿椭圆柱N、S 点母线割开,并展成平面,即成为高斯投影平面。在此平面上: ①中央子午线是直线,其长度不变形,离开中央子午线的其他子午线是弧形,凹向中央子午线。离开中央子午线越远,变形越大。 ②投影后赤道是一条直线,赤道与中央子午线保持正交。

③离开赤道的纬线是弧线,凸向赤道。 高斯投影可以将椭球面变成平面,但是离开中央子午线越远变形越大,这种变形将会影响测图和施工精度。为了对长度变形加以控制,测量中采用了限制投影宽度的方法,即将投影区域限制在靠近中央子午线的两侧狭长地带。这种方法称为分带投影。投影带宽度是以相邻两个子午线的经差来划分。有6°带、3°带等不同投影方法。 6°带投影是从英国格林尼治子午线开始,自西向东,每隔6°投影一次。这样将椭球分成60个带,编号为1~60带,如下图所示: 各带中央子午线经度(L)可用下式计算: 式中n为6°带的带号。 已知某点大地经度L,可按下式计算该点所属的带号: 有余数时,为n的整数商+1。 3°带是在6°带基础上划分的,其中央子午线在奇数带时与6°带中央子午线重合,每隔3°为一带,共120带,各带中央子午线经度(L)为: 式中n′为3°带的带号。 我国幅员辽阔,含有11个6°带,即从13~23带(中央子午线从75°~135°),21个3°带,从25~45带。北京位于6°带的第20带,中央子午线经度为117°。 2.高斯平面直角坐标系 根据高斯投影的特点,以赤道和中央子午线的交点为坐标原点。,中央子午线方向为x轴,北方向为正。赤道投影线为y轴,东方向为正。象限按顺时针Ⅰ、Ⅱ、Ⅲ、Ⅳ排列,如下图所示:

测量坐标和高程(完)

1. 水准面:液体受重力而形成的静止表面称为水准面。 是一个处处与重力方向垂直的连续曲 面。有无数个水准面。同一水准面上的重力位处处相等;同一水准面上任一点的铅垂线都与水准面相正交。 2. 与平静的平均海水面相重合、并延伸通过陆地而形成的封闭曲面称为大地水准面. 大地水准面包围的形体称为大地体(Geoid )。水准面和铅垂线是野外观测的基准面和基准线。 3. 代表地球形状和大小的旋转椭球成为地球椭球。地球椭球分类 a) 总地球椭球:与全球范围内的大地水准面最佳拟合 b) 参考椭球:与某个区域的大地水准面最佳拟合,其椭球面成为参考椭球面。 参考椭球有许多个,总地球椭球只有一个。 4. 大地水准面差距:地球椭球与大地水准面的距离 垂线偏差:地面一点对大地水准面的垂线和对于地球椭球面的法线夹角. 5. 大地原点:确定大地水准面和参考椭球面的相互关系。 6. 参考椭球的作用: 参考椭球面:一个以椭圆的短轴为旋转轴的旋转椭球体的表面。椭球体的大小和大地体十分接近。参考椭球面可用数学模型表示。 1、代表地球的数学表面; 2、大地测量计算的基准面; 3、研究大地水准面的参考面; 4、地图投影的参考面。 地球的形状是一个南北极稍扁的,类似于一个椭圆绕其短轴旋转的椭球体。 7. 测量工作的基准线和基准面 测量工作的基准线—铅垂线 。 测量工作的基准面—大地水准面。 测量内业计算的基准线—法线。 测量内业计算的基准面—参考椭球面。 8. 测量工作及基本原则 1、 从整体到局部; 2、先控制后碎部 ; 3、复测复算、步步检核。前一步工作未检核不进行后一步工作 优点:① 减少误差积累;② 避免错误发生; ③ 提高工作效率。 9. ρo=180o/π=57.3o ρ ′=3438′ ρ " =206265 " 10. 水准面曲率对水平距离的影响 结论:当D=10km 时,所产生的相对误差为1:120万,最精密距离测量的容许误差位1/100万,这样小的误差,对精密量距来说也是允许的。因此,在10km 为半径的圆面积之内进行距离测量时,可以把水准面当作水平面看待,而不考虑地球曲率对距离的影响。 11. 水准面曲率对水平角度的影响 球面角超 2R D 31D ΔD ??? ??=206265:6371::''2 ''ρρεkm R P R P 地球的半径 球面多边形的面积 =

高斯投影坐标正算公式

高斯投影坐标正算公式 高斯投影坐标正反算公式 2.2.2. 1高斯投影坐标正算公式: B, x,y 高斯投影必须满足以下三个条件: ⑴中央子午线投影后为直线;⑵中央子午线投影后长度不变;⑶投影具有正形性质,即正形投影条件。 由第一条件知中央子午线东西两侧的投影必然对称于中央子午线,即 式中,x为的偶函数,y为的奇函数;,即, 如展开为的级数,收敛。 (2-10) 式中是待定系数,它们都是纬度B的函数。 由第三个条件知: 分别对和q求偏导数并代入上式 (2-11) 上两式两边相等,其必要充分条件是同次幂前的系数应相等,即

(2-12) (2-12)是一种递推公式,只要确定了就可依次确定其余各系数。 由第二条件知:位于中央子午线上的点,投影后的纵坐标x应等于投影前从赤道量至该点的子午线弧长X,即(2-10)式第一式中,当时有: (2-13) 顾及(对于中央子午线) 得: (2-14,15) (2-16) 依次求得并代入(2-10)式,得到高斯投影正算公式

(2-17) 2.2.2. 2高斯投影坐标反算公式 x,y B, 投影方程: (2-18) 高斯投影坐标反算公式推导要复杂些。 ⑴由x求底点纬度(垂足纬度),对应的有底点处的等量纬度,求x,y与 的关系式,仿照式有, 由于y和椭球半径相比较小(1/16.37),可将展开为y的幂级数;又由于是对称投影,q必是y的偶函数,必是y的奇函数。 (2-19) 是待定系数,它们都是x的函数. 由第三条件知: ,

, (2-20) (2-19)式分别对x和y求偏导数并代入上式 上式相等必要充分条件,是同次幂y前的系数相等, 第二条件,当y=0时,点在中央子午线上,即x=X,对应的点称为底点,其纬度为底点纬度,也就是x=X时的子午线弧长所对应的纬度,设所对应的等量纬度为。也就是在底点展开为y的幂级数。 由(2-19)1式 依次求得其它各系数 (2-21) (2-21)1 ………… 将代入(2-19)1式得

我国三大常用坐标系区别

我国三大常用坐标系区别 (北京54、西安80和WGS-84) 北京, 西安, 坐标系 我国三大常用坐标系区别(北京54、西安80和WGS-84) Gis应用2009-09-27 10:06 阅读13 评论0 字号:大大中中小小我国三大常用坐标系区别(北京54、西安80和WGS-84) 1、北京54坐标系(BJZ54) 北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。1954年北京坐标系的历史: 新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。它的原点不在北京而是在前苏联的普尔科沃。 北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/298.3; 2、西安80坐标系 1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。为此有了1980年国家大地坐标系。1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG 75地球椭球体。该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。 西安80坐标系,属三心坐标系,长轴6378140m,短轴6356755,扁率1/298.25722101 3、WGS-84坐标系 WGS-84坐标系(World Geodetic System)是一种国际上采用的地心坐标系。坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局(BIH)1984.0定义的协议地极(CTP)方向,X轴指向BIH1984.0的协议子午面和CTP赤道的交点,Y轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系。这是一个国际协议地球参考系统(ITRS),是目前国际上统一采用的大地坐标系。GPS广播星历是以WGS-84坐标系为根据的。 WGS84坐标系,长轴6378137.000m,短轴6356752.314,扁率1/298.257223563。 由于采用的椭球基准不一样,并且由于投影的局限性,使的全国各地并不存在一至的转换参数。对于这种转换由于量较大,有条件的话,一般都采用GPS联测已知点,应用GPS软件自动完成坐标的转换。当然若条件不许可,且有足够的重合点,也可以进行人工解算。 附: 我国常用高程系

高斯平面直角坐标与大地坐标转换

高斯平面直角坐标系与大地坐标系 1 高斯投影坐标正算公式 (1)高斯投影正算:已知椭球面上某点的大地坐标()B L ,,求该点在高斯投影平面上的直角坐标()y x ,,即()),(,y x B L ?的坐标变换。 (2)投影变换必须满足的条件 ● 中央子午线投影后为直线; ● 中央子午线投影后长度不变; ● 投影具有正形性质,即正形投影条件。 (3)投影过程 在椭球面上有对称于中央子午线的两点1P 和2P ,它们的大地坐标分别为(B L ,)及(B l ,),式中l 为椭球面上P 点的经度与中央子午线)(0L 的经度差:0L L l -=, P 点在中央子午线之东, l 为正,在西则为负,则投影后的平面坐标一定为),(1y x P '和),(2y x P -'。 (4)计算公式 ??? ? ???''+-''+''+-''+''''=''+-''+''''+ =54255 32234 223422)185(cos 120)1(6cos )95(cos sin 2sin 2l t t B N l t B N l B N y l t B B N l B N X x ρηρρηρρ 当要求转换精度精确至0.OOlm 时,用下式计算: ?????? ???????''-++-' '+''+-''+''''= ''+-' '+''++-''+''''+ =52224255 3223364256 4 422342 2)5814185(cos 720)1(cos 6cos )5861(cos sin 720)495(cos sin 24sin 2l t t t B N l t B N l B N y l t t B B N l t B B N l B N X x ηηρηρρρηηρρ 2 高斯投影坐标反算公式 (1)高斯投影反算:已知某点的高斯投影平面上直角坐标()y x ,,求该点在椭球面上的大地坐标()B L ,,即()),(,B L y x ?的坐标变换。 (2)投影变换必须满足的条件 ● x 坐标轴投影成中央子午线,是投影的对称轴; ● x 轴上的长度投影保持不变; ● 投影具有正形性质,即正形投影条件。

我国四大常用坐标系及高程坐标系

我国四大常用坐标系及高程坐标系 1、北京54坐标系(BJZ54) 北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位, 它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。 新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大 地测量和测图工作,迫切需要建立一个参心大地坐标系。由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我 国大地坐标系,定名为1954年北京坐标系。因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。它的原点不在北京而是在前苏联的普尔科沃。 北京54坐标系,属三心坐标系,长轴6378245m短轴6356863,扁率1/298.3 ; 2、西安80坐标系 1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。 为此有了1980年国家大地坐标系。1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG75地球椭球体。该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐 标系,又简称西安大地原点。基准面采用青岛大港验潮站1952- 1979年确定的黄海平均海水面(即1985国家高程基准)。 西安80坐标系,属三心坐标系,长轴6378140m短轴6356755,扁率1/298.25722101 3、W G-84坐标系 WG—84坐标系(WorldGeodeticSystem )是一种国际上采用的地心坐标系。坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局(BIH)1984.0定义的协议地极(CTP方向,X轴指向BIH1984.0的协议子午面和CTP赤道的交点,丫轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系。这是一个国际协议地球参考系统(ITRS),是目前国际上统一采用的大地坐标系。GPS^播星历是以WGS-84坐标系为根据的。 WGS8坐标系,长轴6378137.000m,短轴6356752.314,扁率1/298.257223563。 由于采用的椭球基准不一样,并且由于投影的局限性,使的全国各地并不存在一至的转换参数。对于这种转换由于量较大,有条件的话,一般都采用GPS联测已知点,应用GPS软件自动完成坐标的转换。当然若条件不许可,且有足够的重合点,也可以进行人工解算。 4、2000国家大地坐标系 英文缩写为CGCS200O 2000国家大地坐标系是全球地心坐标系在我国的具体体现,其原点为包括海洋和大气的整个地球的质量中心。2000国家大地坐标系采用的地球椭球参数如下:长半轴a=6378137m 扁率f=1/298.257222101, 地心引力常数GM=3.986004418< 1014m3s2 自转角速度3 =7.292115 < 10-5rads-1 我国常用高程系 “ 1956年黄海高程系”,是在1956年确定的。它是根据青岛验潮站1950年到1956年的黄海验潮资料,求出该站验潮井里横按铜丝的高度为 3.61米,所以就确定这个钢丝以下3.61米处为黄海平均海水面。从这个平均海水面起,于1956年推算出青岛水准原点的高程为72.289米。 国家85高程基准其实也是黄海高程基准,只不过老的叫“1956年黄海高程系统”,新的叫“ 1985国家高程基准”,新的比旧的低0.029m 我国于1956年规定以黄海(青岛)的多年平均海平面作为统一基面,为中国第一个国家高程系

(完整word版)高斯投影正反算公式_新

高斯投影坐标正反算 一、相关概念 大地坐标系由大地基准面和地图投影确定,由地图投影到特定椭圆柱面后在南北两极剪开展开而成,是对地球表面的逼近,各国或地区有各自的大地基准面,我国目前主要采用的基准面为: 1.WGS84基准面,为GPS基准面,17届国际大地测量协会上推荐,椭圆柱长半轴a=6378137m,短半轴 b=6356752.3142451m; 2.西安80坐标系,1975年国际大地测量协会上推荐,椭圆柱长半轴a=6378140m,短半轴b=6356755.2881575m; 3.北京54坐标系,参照前苏联克拉索夫斯基椭球体建立,椭圆柱长半轴a=6378245m, 短半轴b=6356863.018773m; 通常所说的高斯投影有三种,即投影后: a)角度不变(正角投影),投影后经线和纬线仍然垂直; b)长度不变; c)面积不变; 大地坐标一般采用高斯正角投影,即在地球球心放一点光源,地图投影到过与中央经线相切的椭圆柱面上而成;可分带投影,按中央经线经度值分带,有每6度一带或每3度一带两种(起始带中央经线

经度为均为3度,即:6度带1带位置0-6度,3度带1带位置1.5-4.5 度),即所谓的高斯-克吕格投影。 图表11高斯投影和分带 地球某点经度(L)为过该点和地球自转轴的半圆与子午线所在半圆夹角,东半球为东经,西半球为西经;地球某点纬度(B)为所在水平面法线与赤道圆面的线面角。 正算是已知大地坐标(L,B),求解高斯平面坐标(X,Y),为确保Y值为正,Y增加500公里;反算则是由高斯平面坐标(X,Y)求解大地坐标(L,B)。 二、计算模型: 地球椭球面由椭圆绕地球自转轴旋转180度而成。

高斯投影及其中央子午线的判断

一、高斯-克吕格投影 1、高斯-克吕格简介 高斯-克吕格(Gauss-Kruger)投影简称“高斯投影”,又名"等角横切椭圆柱投影”,地球椭球面和平面间正形投影的一种。德国数学家、物理学家、天文学家高斯(Carl FriedrichGauss,1777一1855)于十九世纪二十年代拟定,后经德国大地测量学家克吕格(Johannes Kruger,1857~1928)于1912年对投影公式加以补充,故名。该投影按照投影带中央子午线投影为直线且长度不变和赤道投影为直线的条件,确定函数的形式,从而得到高斯一克吕格投影公式。投影后,除中央子午线和赤道为直线外,其他子午线均为对称于中央子午线的曲线。设想用一个椭圆柱横切于椭球面上投影带的中央子午线,按上述投影条件,将中央子午线两侧一定经差范围内的椭球面正形投影于椭圆柱面。将椭圆柱面沿过南北极的母线剪开展平,即为高斯投影平面。取中央子午线与赤道交点的投影为原点,中央子午线的投影为纵坐标x 轴,赤道的投影为横坐标y轴,构成高斯克吕格平面直角坐标系。 2、高斯-克吕格特性 (1)等角投影——投影前后的角度相等,但长度和面积有变形; (2)等距投影——投影前后的长度相等,但角度和面积有变形; (3)等积投影——投影前后的面积相等,但角度和长度有变形。 3、投影的基本概念 它是一种横轴等角切圆柱投影。它把地球视为球体,假想一个平面卷成一个横圆柱面并把它套在球体外面,使横轴圆柱的轴心通过球的中心,球面上一根子午线与横轴圆柱面相切。这样,该子午线在圆柱面上的投影为一直线,赤道面与圆柱面的交线是一条与该子午线投影垂直的直线。将横圆柱面展开成平面,由这两条正交直线就构成高斯-克吕格平面直角坐标系。为减少投影变形,高斯-克吕格投影分为3o带和6o带投影。

坐标系投影方式的选择及坐标转换

坐标系投影方式的选择及坐标转换 [摘要]通过对几种常用投影方式的分析对比,详细剖述了海外项目投影方式的选择及应用,并配以实例阐述了坐标系之间的相互转换及注意事项。 [关键字]海外项目投影方式坐标转换 响应国家”走出去”的资源战略方针,国内很多公司都有项目在国外;每一个项目在进场前,要充分收集项目的相关资料,对测量技术人员来说,尤其要清楚项目区域已有测量资料的坐标系,高程系及投影方式,任何一种坐标系在建立前都要确定其投影方式。所以我们应该对常用的一些投影方式有基本的认识。 1坐标系投影方式的选择 1.1高斯-克吕格投影 高斯-克吕格(Gauss-Kruger)投影,简称高斯投影,是一种”等角横切圆柱投影”,具体的投影特征在这里不作说明,但是应该对下面几点应该有清醒的认识。 1)在国内大部份地区使用高斯投影。 2)高斯投影有两种分带方式,3度分带和6度分带。3度分带大多用于大比例尺测图,主要指比例尺大于1:10000以上的地形测图。 3)3度带是把全球分为120个带,起始带的经度是1.5~4.5度,中央经线为3度,带号为1,4.5~7.0度为第2带,中央经线为6度,以此类推。 4)6度带是把全球分为60个带,起始带的经度是0~6度,中央经线为3度,带号为1,6~12度为第2带,中央经线为9度,以此类推。 5)高斯投影为保证东向坐标值(测量指的是Y值)不小于0,所以将纵坐标轴西移了500公里。 1.2UTM投影 UTM投影全称Universal Transverse Mercator,译成中文是:通用横轴墨卡托投影。使用UTM投影时需要注意以下几点: 1)UTM投影是世界上最常用的一种投影方式,特别是不发达国家。 2)UTM投影自西经180°起每隔经差6度自西向东分带,第1带的中央经线为-177°,包含的范围是-180°~-174°。第2带的中央经线为-171度,所含的范

测量坐标、高斯投影、全站仪(附图)

一、三北关系 真子午线北方向是沿地面某点真子午线的切线方向(通常用天文大地测量或陀螺经纬仪直接测定); 坐标纵线北方向是高斯投影时投影带的中央子午线的方向,也是高斯平面直角坐标系的坐标纵轴线方向。也叫图北、方格北,是指在某张地图上纵向方格线指示的"上"方。也就是所谓的上北下南。(可以根据测量仪器测出的坐标数据确定)磁子午线北方向是磁针在地面某点自由静止后磁针所指的方向(罗盘指向)。磁偏角,是磁子午线与真子午线间的夹角,通常以δ表示,并规定以真子午线北方向为准,磁子午线位于以东时称为东偏、其角值为正,位于以西时称西偏、其角值为负(大同磁偏角4度,偏西,06年测的,20年内可以用); 磁坐偏角,是磁子午线与坐标纵线问的夹角,常以δm表示,并规定以坐标纵线北方向为准,磁子午线位于以东时称东偏、其角值为正,位于以西时称西偏、其角值为负; 坐标纵线偏角,参见“子午线收敛角”。 二、地形图的应用

三、参考椭球体与高斯投影(坐标和高程表述地表形态的参数) 1)参考椭球体的表面是一个可以用数学公式表达的规则曲面,它是测量计算和投影制图的基准面。建立大地原点,就是为了确定中国基础测绘的统一坐标系,作为一切定位、定向等基础地理信息数据的基础。测量是研究地球表面的科学,人们都知道地球大体是一个椭圆形,但它的表面(包括大地水准面)很不规则,不便进行测量计算。而测量成果需借助一个与地球形状大小相似的、表面光滑的参考椭球面向外推算,原点的建立,就是解决了参考椭球的定位、定向问题,即在中国领土范围内,使地球大地水准面与参考椭球体面基本吻合,并在这一点将二者关系固定下来,从而使全国的测量有一个统一的、标准的、切合中国实际的计算投影面。

使用ArcGIS实现WGS84经纬度坐标到北京54高斯投影坐标的转换

使用ArcGIS实现WGS84经纬度坐标到北京54高斯投影坐标的转换 【摘要】本文针对从事测绘工作者普遍遇到的坐标转换问题,简要介绍ArcGIS实现WGS84经纬度坐标到北京54高斯投影坐标转换原理和步骤。 【关键词】ArcGIS 坐标转换投影变换 1坐标转换简介 坐标系统之间的坐标转换既包括不同的参心坐标之间的转换,或者不同的地心坐标系之间的转换,也包括参心坐标系与地心坐标系之间的转换以及相同坐标系的直角坐标与大地坐标之间的坐标转换,还有大地坐标与高斯平面坐标之间的转换。在两个空间角直坐标系中,假设其分别为O--XYZ和O--XYZ,如果两个坐标系的原点相同,通过三次旋转,就可以使两个坐标系重合;如果两个直角坐标系的原点不在同一个位置,通过坐标轴的平移和旋转可以取得一致;如果两个坐标系的尺度也不尽一致,就需要再增加一个尺度变化参数;而对于大地坐标和高斯投影平面坐标之间的转换,则需要通过高斯投影正算和高斯投影反算,通过使用中央子午线的经度和不同的参考椭球以及不同的投影面的选择来实现坐标的转换。 如何使用ArcGIS实现WGS84经纬度坐标到BJ54高斯投影坐标的转换?这是很多从事GIS工作或者测绘工作者普遍遇到的问题。本文目的在于帮助用户解决这个问题。 我们通常说的WGS-84坐标是指经纬度这种坐标表示方法,北京54坐标通常是指经过高斯投影的平面直角坐标这种坐标表示方法。为什么要进行坐标转换?我们先来看两组参数,如表1所示: 表1 BJ54与WGS84基准参数 很显然,WGS84与BJ54是两种不同的大地基准面,不同的参考椭球体,因而两种地图下,同一个点的坐标是不同的,无论是三度带六度带坐标还是经纬度坐标都是不同的。当要把GPS接收到的点(WGS84坐标系统的)叠加到BJ54坐标系统的底图上,那就会发现这些GPS点不能准确的在它该在的地方,即“与实际地点发生了偏移”。这就要求把这些GPS点从WGS84的坐标系统转换成BJ54的坐标系统了。 有关WGS84与BJ54的坐标转换问题,实质是WGS-84椭球体到BJ54椭球体的转换问题。如果我们是需要把WGS84的经纬度坐标转换成BJ54的高斯投影坐标,那就还会涉及到投影变换问题。因此,这个转换过程,一般的GPS数据处理软件都是采用下述步骤进行的:

相关文档
最新文档