解析几何

解析几何
解析几何

高中解析几何知识点

曲线与方程 (2)求曲线方程的基本方法 直线 一、直线的倾斜角与斜率 1、倾斜角的概念:(1)倾斜角:当直线 与x 轴相交时,取x 轴作为基准,x 轴正向与直线 向上方向之间所成的角 叫做直线 的倾斜角。 (2)倾斜角的范围:当 与x 轴平行或重合时,规定它的倾斜角 为0°因此0°≤ <180°。 2、直线的斜率 (1)斜率公式:K=tan ( ≠90°) (2)斜率坐标公式:K=12 1 2x x y y -- (x1≠x 2) (3)斜率与倾斜角的关系:一条直线必有一个确定的倾斜角,但不一定有斜率。当 =0°时,k=0;当0°< <90°时,k >0,且 越大,k 越大;当 =90°时,k 不存在;当90°< <180°时,k <0,且 越大,k 越大。 二、两直线平行与垂直的判定 1、两直线平行的判定: (1)两条不重合的直线的倾斜角都是90°,即斜率不存在,则这两直线平行; (2)两条不重合的直线,若都有斜率,则k1=k2 1 ∥2 2、两直线垂直的判定:

已知直线l 经过点00(,)P x y ,且斜率为k ,则方程00()y y k x x -=-为直线的点斜式方程. 直线l 与y 轴交点(0,)b 的纵坐标b 叫做直线l 在y 轴上的截距.直线y kx b =+叫做直线的斜截式方程. 已知直线上两点112222(,),(,)P x x P x y 且1212(,)x x y y ≠≠,则通过这两点的直线方程为11 12122121(,) y y x x x x y y y y x x --=≠≠--, 由于这个直线方程由两点确定,所以我们把它叫直线的两点式方程,简称两点式 已知直线l 与x 轴的交点为(,0)A a ,与y 轴的交点为(0,)B b ,其中0,0a b ≠≠,则直线l 的方程1 =+b y a x 叫做直线 的截距式方程. 注意:直线与x 轴交点(a ,0)的横坐标a 叫做直线在x 轴上的截距;直线与y 轴交点(0,b )的纵坐标b 叫做直线在y 轴上的截距. 关于,x y 的二元一次方程0Ax By C ++=(A ,B 不同时为0)叫做直线的一般式方程,简称一般式. 已知平面上两点111222(,),(,)P x y P x y ,则22122121()()PP x x y y =-+-. 特殊地:(,)P x y 与原点的距离为 22 OP x y =+. 直线名称 已知条件 直线方程 使用范围 点斜式 111(,),P x y k 11() y y k x x -=- k 存在 斜截式 b k , y kx b =+ k 存在 两点式 ) ,(11y x (),22y x 11 2121 y y x x y y x x --= -- 12x x ≠ 12y y ≠ 截距式 b a , 1x y a b += 0a ≠ 0b ≠

2017年高考数学试题分项版解析几何解析版

2017年高考数学试题分项版—解析几何(解析版) 一、选择题 1.(2017·全国Ⅰ文,5)已知F 是双曲线C :x 2 -y 2 3 =1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则△APF 的面积为( ) A .13 B .12 C .23 D .32 1.【答案】D 【解析】因为F 是双曲线 C :x 2- y 2 3 =1的右焦点,所以F (2,0). 因为PF ⊥x 轴,所以可设P 的坐标为(2,y P ). 因为P 是C 上一点,所以4-y 2P 3=1,解得y P =±3, 所以P (2,±3),|PF |=3. 又因为A (1,3),所以点A 到直线PF 的距离为1, 所以S △APF =12×|PF |×1=12×3×1=32. 故选D. 2.(2017·全国Ⅰ文,12)设A ,B 是椭圆C :x 23+y 2 m =1长轴的两个端点.若C 上存在点M 满 足∠AMB =120°,则m 的取值范围是( ) A .(0,1]∪[9,+∞) B .(0,3]∪[9,+∞) C .(0,1]∪[4,+∞) D .(0,3]∪[4,+∞) 2.【答案】A 【解析】方法一 设焦点在x 轴上,点M (x ,y ). 过点M 作x 轴的垂线,交x 轴于点N , 则N (x,0). 故tan ∠AMB =tan(∠AMN +∠BMN ) =3+x |y |+3-x |y |1-3+x |y |· 3-x |y |=23|y |x 2+y 2-3. 又tan ∠AMB =tan 120°=-3, 且由x 23+y 2m =1,可得x 2 =3-3y 2 m , 则23|y |3-3y 2m +y 2-3=23|y |(1-3m )y 2=- 3.

解析几何常用知识点总结

解析几何常用知识点总结

————————————————————————————————作者: ————————————————————————————————日期: ?

“解析几何”一网打尽 (一)直线 1.[)?? ? ??≠≠--==∈2112122tan 0x x x x y y k l ,,,直线的倾斜角πααπα 2.直线的方程 (1)点斜式 11() y y k x x -=- (直线l 过点111(,) P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距). (3)一般式 0Ax By C ++=(其中A、B 不同时为0). 特别的:(1)已知直线纵截距,常设其方程为或;已知直线横截距,常设其方程为 (直线斜率k 存在时,为k 的倒数)或.知直线过点,常设其方程为 或 (2)直线在坐标轴上的截距可正、可负、也可为0. 直线两截距相等 直线的斜率为-1或直线过原点; 直线两截距互为相反数 直线的斜率为1或直线过原点; 直线两截距绝对值相等 直线的斜率为或直线过原点. (3)在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中一般提到的两条直线可以理解为它们不重合. 3、几个距离公式 (1)两点间距离公式: 2 2 11221212(,)(,)()()A x y B x y AB x x y y =-+-点点 (2)00(,)x y P 到直线0Ax By C ++=的距离为002 2 Ax By C d A B ++= + 特别地,当直线L: 0x x =时,点P (00,x y )到L 的距离0d x x =-; 当直线L: 0y y =时,点P (00,x y )到L的距离0d y y =-. (3).两平行线间的距离公式:设1211222 2 :0,:0,C C l Ax By C l Ax By C d a b -++=++==+则 4.两直线的位置关系:; ;重合 5.三角形的重心坐标公式 :△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123 (,)33 x x x y y y G ++++. b y kx b =+0x =0x x my x =+m 0y =00(,) x y 00()y k x x y =-+0 x x =???1±12121212121()0l l k k k k A A B B ⊥?=-?+=、都存在时{ { 1212 211212121221 //()k k A B A B l l k k b b AC A C ==? ?≠≠、都存在时

高中平面解析几何知识点总结

高中平面解析几何知识点总结 一.直线部分 1.直线的倾斜角与斜率: (1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把 x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α 叫做直线 的倾斜角. 倾斜角)180,0[?∈α,?=90α斜率不存在. (2)直线的斜率: αtan ),(211 21 2=≠--= k x x x x y y k .两点坐标为111(,)P x y 、222(,)P x y . 2.直线方程的五种形式: (1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ). 注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =. (2)斜截式:b kx y += (b 为直线l 在y 轴上的截距). (3)两点式:121 121x x x x y y y y --= -- (12y y ≠,12x x ≠). 注:① 不能表示与x 轴和y 轴垂直的直线; ② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意 直线.

(4)截距式:1=+b y a x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线. (5)一般式:0=++C By Ax (其中A 、B 不同时为0). 一般式化为斜截式: B C x B A y - - =,即,直线的斜率: B A k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =. 已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =. (2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合. 3.直线在坐标轴上的截矩可正,可负,也可为0. (1)直线在两坐标轴上的截距相等?直线的斜率为1-或直线过原点. (2)直线两截距互为相反数?直线的斜率为1或直线过原点. (3)直线两截距绝对值相等?直线的斜率为1±或直线过原点. 4.两条直线的平行和垂直: (1)若111:l y k x b =+,222:l y k x b =+,有

20102018江苏高考解析几何汇编(文)

2010-2018江苏高考解析几何汇编(文)

2010~2018年高考解析几何汇编 1、考纲要求:直线的斜率和倾斜角B直线方程C直线的平行与垂直关系B两直线的交点B两点间的距离、点到直线的距离B圆的标准方程与一般方程 C 直线与圆、圆与圆的位置关系B椭圆标准方程与性质B双曲线标准方程与性质 A 抛物线的标准方程与性质 A 2、高考解读:通常是两小一大,填空题一方面考查直线与圆的位置关系,另一 方面考查圆锥曲线的概念与几何性质,解答题主要是直线与圆、直线与圆锥曲 线的综合题,个别考题是基础题,多数考题是中档题,特别是解答题主要考查 学生的运算能力和学生的观察、推理以及创造性地综合分析、解决问题的能力, 有可能出现难题。 一、直线与圆的位置关系 ★★9.(5分)(2010?江苏)在平面直角坐标系xOy中,已知圆x2+y2=4上有且仅有四个点到直线12x﹣5y+c=0的距离为1,则实数c的取值范围是.★★★14.(5分)(2011?江苏)设集合 ,B={(x,y)|2m≤x+y≤2m+1,x,y∈R},若A∩B≠?,则实数m的取值范围是. ★★★12.(5分)(2012?江苏)在平面直角坐标系xOy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是. ★★9.(5分)(2014?江苏)在平面直角坐标系xOy中,直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为. ★★10.(5分)(2015?江苏)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx﹣y﹣2m﹣1=0(m∈R)相切的所有圆中,半径最大的圆的标准方 程为. ★★13.(5分)(2017?江苏)在平面直角坐标系xOy中,A(﹣12,0),B(0,6),点P在圆O:x2+y2=50上.若≤20,则点P的横坐标的取值范围是. ★★★12.(5分)(2018?江苏)在平面直角坐标系xOy中,A为直线l:y=2x

平面解析几何知识点总结.doc

基本要求① .掌握两条直线平行、垂直的条件,能根据直线方程判断两条直线的位置关系; ②.掌握两条直线的夹角公式、到角公式和点到直线的距离公式。 ③ . 掌握圆的标准方程和一般方程 . ④ . 掌握圆的方程的两种形式,并能合理合理运用; ⑤. 灵活运用圆的几何性质解决问题 . 1 直线方程的五种形式 点斜式:y y0k ( x x0 ) ,(斜率存在 ) 斜截式:y kx b (斜率存在 ) 两点式: y y1 x x 1, (不垂直坐标轴 ) y2 y1 x2 x1 截距式:x y 1 (不垂直坐标轴 ,不过原点 ) a b 一般式: Ax By C 0 2.直线与直线的位置关系: ( 1)有斜率的两直线 l1:y=k 1x+b1; l2:y=k 2x+b2;有:① l1∥ l2 k1=k2且 b1≠ b2;② l 1⊥ l2 k1·k2 =-1 ; ③ l 1与 l 2相交k 1≠ k2 ④l 1与 l 2重合k1=k2 且 b1=b2。( 2)一般式的直线l : A x+B y+C =0, l : A x+B y+C =0 有:① l ∥ l 2 AB-A B=0;且 BC-B 2 C ≠ 0 1 1 1 1 2 2 2 2 1 1 2 2 1 1 2 1 ② l1⊥ l2A1A2+B1B2=0 ③ l1与 l2相交 A 1B2-A 2B1≠ 0 ④ l1与 l2重合 A 1B2-A 2B1=0 且 B1C2-B 2C1=0。 3.点与直线的位置关系: 点 P( x , y )到直线 Ax+By+C=0的距离: d Ax0 By0 C 。 00 A2 B 2 平行直线 Ax+By+C1=0 与 Ax+By+C2=0 之间的距离为 d C1 C2 A2 B 2 两点间距离公式:| PP | (x x )2 ( y y )2 1 2 1 2 1 2 .4 直线系方程 ①过直线 l 1:A1x+B1y+C1=0, l 2:A2x+B2y+C2=0交点的直线系方程为:A1x+B1y+C1+λ( A2x+B2y+C2)=0(λ∈R)( 除l2外 ) 。 ②过定点 M ( x0 , y0 ) 的直线系方程为 y y0 k( x x0 ) (其中不包括直线x x0) ③和直线 Ax By C 0 平行的直线方程为Ax By C ' 0 (C C ') ④和直线 Ax By C 0 垂直的直线方程为Bx Ay C ' 0 5.圆的定义 : 平面内与定点距离等于定长的点的集合( 轨迹 ) 叫圆 . 在平面直角坐标系内确定一个圆需要三个独立条件: 如三个点 , 半径和圆心 ( 两个坐标 ) 等 . 2 2 2 6. 圆的方程 (1)标准式: (x-a) +(y-b) =r (r>0),其中 r 为圆的半径, (a, b)为圆心。 2 2 2 2 D E 1 D 2 E 2 4F (2)一般式: x +y +Dx+Ey+F=0(D+E -4F>0),其中圆心为( , ) ,半径为 2 2 2 (3) 参数方程 : x r cos , x a r cos (是参数) . 消去θ可得普通方程y r sin y b r sin ( 4) A(x 1, y1)B(x 2,y2)为直径的圆: (x-x1)(x-x 2)+(y-y 1)(y-y 2)=0; (5) .过圆与直线(或圆)交点的圆系方程: i)x2+y2+Dx+Ey+F+λ (Ax+By+C)=0,表示过圆与直线交点圆的方程

解析几何学习知识重点情况总结复习资料

一、直线与方程基础: 1、直线的倾斜角α: [0,)απ∈ 2 、直线的斜率k : 21 21 tan y y k x x α-== -; 注意:倾斜角为90°的直线的斜率不存在。 3、直线方程的五种形式: ①点斜式:00()y y k x x -=-; ②斜截式:y kx b =+; ③一般式:0Ax By C ++=; ④截距式:1x y a b +=; ⑤两点式: 121 121 y y y y x x x x --=-- 注意:各种形式的直线方程所能表示和不能表示的直线。 4、两直线平行与垂直的充要条件: 1111:0l A x B y C ++=,2222:0l A x B y C ++=, 1l ∥2l 1221 1221 A B A B C B C B =???≠?; 1212120l l A A B B ⊥?+= . 5、相关公式: ①两点距离公式:11(,)M x y ,22(,)N x y ,

MN = ②中点坐标公式:11(,)M x y ,22(,)N x y , 则线段MN 的中点1122 ( ,)22 x y x y P ++; ③点到直线距离公式: 00(,)P x y ,:0l Ax By C ++=, 则点P 到直线l 的距离d = ; ④两平行直线间的距离公式:11:0l Ax By C ++=,22:0l Ax By C ++=, 则平行直线1l 与2l 之间的距离d = ⑤到角公式:(补充)直线1111:0l A x B y C ++=到直线2222:0l A x B y C ++=的角为 θ,(0,)(,)22 ππ θπ∈U ,则2112 tan 1k k k k θ-=+? .(两倾斜角差的正切) 二、直线与圆,圆与圆基础: 1、圆的标准方程:222()()x a y b r -+-=; 确定圆的两个要素:圆心(,)C a b ,半径r ; 2、圆的一般方程:220x y Dx Ey F ++++=,(22 40D E F +->); 3、点00(,)P x y 与圆222:()()C x a y b r -+-=的位置关系: 点00(,)P x y 在圆内? 22200()()x a y b r -+-<; 点00(,)P x y 在圆上? 22200()()x a y b r -+-=; 点00(,)P x y 在圆外? 222 00()()x a y b r -+->; 4、直线:0l Ax By C ++=与圆222:()()C x a y b r -+-=的位置关系: 从几何角度看: 令圆心(,)C a b 到直线:0l Ax By C ++=的距离为d , 相离?d r >;

高中解析几何知识点

解析几何知识点 一、基本内容 (一)直线的方程 1、直线的方程 确定直线方程需要有两个互相独立的条件,而其中一个必不可少的条件是直线必须经过一已知点.确定直线方程的形式很多,但必须注意各种形式的直线方程的适用范围. 2、两条直线的位置关系 两条直线的夹角,当两直线的斜率k1,k2都存在且k1·k2≠ 外注意到角公式与夹角公式的区别. (2)判断两直线是否平行,或垂直时,若两直线的斜率都存在,可用斜率的关系来判断.但若直线斜率不存在,则必须用一般式的平行垂直条件来判断. 3、在学习中注意应用数形结合的数学思想,即将对几何图形的研究,转化为对代数式的研究,同时又要理解代数问题的几何意义. (二)圆的方程 (1)圆的方程 1、掌握圆的标准方程及一般方程,并能熟练地相互转化,一般地说,具有三个条件(独立的)才能确定一个圆方程.在求圆方程时,若条件与圆心有关,则一般用标准型较易,若

已知圆上三点,则用一般式方便,注意运用圆的几何性质,去简化运算,有时利用圆系方程也可使解题过程简化. 2、 圆的标准方程为(x -a )2+(y -b )2=r 2;一般方程x 2+y 2+Dx+Ey +F =0,圆心坐标 (,)22D E -- 3、 在圆(x -a )2+(y -b )2=r 2,若满足a 2+b 2 = r 2条件时,能使圆过原点;满足a=0,r >0条件时,能使圆心在y 轴上;满足b r =时,能使圆与x 轴相切;r =条件时, 能使圆与x -y =0相切;满足|a |=|b |=r 条件时,圆与两坐标轴相切. 4、 若圆以A (x 1,y 1)B (x 2,y 2)为直径,则利用圆周上任一点P (x ,y ), 1PA PB k k =-求出圆方程(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0 (2) 直线与圆的位置关系 ①在解决的问题时,一定要联系圆的几何性质,利用有关图形的几何特征,尽可能简化运算,讨论直线与圆的位置关系时,一般不用△>0,△=0,△<0,而用圆心到直线距离d <r ,d=r ,d >r ,分别确定相关交相切,相离的位置关系.涉及到圆的切线时,要考虑过切点与切线垂直的半径,计算交弦长时,要用半径、弦心距、半弦构成直角三角形,当然,不失一般性弦长式 ③已知⊙O 1:x 2+y 2 = r 2,⊙O 2:(x -a )2+(y -b )2=r 2;⊙O 3:x 2+y 2+Dx+Ey +F =0则以M (x 0,y 0)为切点的⊙O 1切线方程为xx 0+yy 0=r 2;⊙O 2切线方程 条切线,切线弦方程:xx 0+yy 0=r 2. (三)曲线与方程 (1)在平面内建立直角坐标系以后,坐标平面内的动点都可以用有序实数对x 、y 表示,这就是动点的坐标(x ,y ).当点按某种规律运动而形成曲线时,动点坐标(x ,y )中的变量x ,y 存在着某种制约关系.这种制约关系反映到代数中,就是含有变量x ,y 方程F (x ,y )=0. 曲线C 和方程F (x ,y )=0的这种对应关系,还必须满足两个条件: (1)曲线上的点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都在曲线上,这时,我们才能把这个方程叫做曲线的方程,

必修二平面解析几何初步知识点及练习带答案

1.直线的倾斜角与斜率: (1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着 交点按逆时针方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角. 倾斜角)180,0[?∈α,?=90α斜率不存在. (2)直线的斜率:αtan ),(211 21 2=≠--= k x x x x y y k .(111(,)P x y 、222(,)P x y ). 2.直线方程的五种形式: (1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ). 注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =. (2)斜截式:b kx y += (b 为直线l 在y 轴上的截距). (3)两点式: 1 21 121x x x x y y y y --= -- (12y y ≠,12x x ≠). 注:① 不能表示与x 轴和y 轴垂直的直线; ② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示 任意直线. (4)截距式: 1=+b y a x ( b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示 过原点的直线. (5)一般式:0=++C By Ax (其中A 、B 不同时为0). 一般式化为斜截式:B C x B A y -- =,即,直线的斜率:B A k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的 倒数)或0y =. 已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =. (2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合. 3.直线在坐标轴上的截矩可正,可负,也可为0. (1)直线在两坐标轴上的截.距相等...?直线的斜率为1-或直线过原点. (2)直线两截距互为相反数.......?直线的斜率为1或直线过原点. (3)直线两截距绝对值相等.......?直线的斜率为1±或直线过原点. 4.两条直线的平行和垂直: (1)若111:l y k x b =+,222:l y k x b =+ ① 212121,//b b k k l l ≠=?; ② 12121l l k k ⊥?=-. (2)若0:1111=++C y B x A l ,0:2222=++C y B x A l ,有 ① 1221122121//C A C A B A B A l l ≠=?且.② 0212121=+?⊥B B A A l l . 5.平面两点距离公式: (111(,)P x y 、222(,)P x y ),2212212 1)()(y y x x P P -+-=.x 轴上两点间距离:

解析几何文科带详细答案

北京一摸解析几何文科 1本小题共13分) 已知椭圆2222:1(0)x y C a b a b +=>>过点()0,1. (Ⅰ)求椭圆C 的方程; (Ⅱ)12,A A 为椭圆C 的左、右顶点,直线:l x =x 轴交于点 D ,点P 是椭圆C 上异于12,A A 的动点,直线12,A P A P 分别交直线l 于, E F 两点.证明:DE DF ?恒为定值. 2.(本题满分14分) 已知椭圆22 22:1(0)x y C a b a b +=>>的两个焦点分别为1(F ,2F ,点(1,0)M 与椭圆短轴的两个端点的连线相互垂直. (Ⅰ)求椭圆C 的方程; (Ⅱ)过点(1,0)M 的直线l 与椭圆C 相交于A ,B 两点,设点(3,2)N ,记直线AN ,BN 的斜率分别 为1k ,2k ,求证:12k k +为定值. 3.(本小题满分14分) 已知椭圆122 22=+b y a x (0>>b a 1, 短轴长为(Ⅰ)求椭圆的方程; (Ⅱ)过左焦点F 的直线与椭圆分别交于A 、B 两点,若线段AB 求直线AB 的方程. 4.(本小题满分14分) 已知椭圆:C 22221(0)x y a b a b +=>>的离心率为3 F . (Ⅰ)求椭圆C 的方程; (Ⅱ)设直线5 :2 l y kx =- 交椭圆C 于A ,B 两点,若点A ,B 都在以点(0,3)M 为圆心 的圆上,求k 的值.

5(本小题满分13分) 已知椭圆:C 22 22 1 (0)x y a b a b +=>>的右顶点(2,0)A , ,O 为坐标原点. (Ⅰ)求椭圆C 的方程; (Ⅱ)已知P (异于点A )为椭圆C 上一个动点,过O 作线段 AP 的垂线l 交椭圆C 于点,E D ,求 DE AP 的取值范围. 6.(本小题共14分) 已知椭圆122 22=+b y a x )0(>>b a 的长轴长为24,点P (2,1)在椭圆上,平行于OP (O 为坐 标原点)的直线l 交椭圆于B A ,两点,l 在y 轴上的截距为m . (Ⅰ)求椭圆的方程; (Ⅱ)求m 的取值范围; (Ⅲ)设直线PB PA ,的斜率分别为1k ,2k ,那么1k +2k 是否为定值,若是求出该定值,若不是请说明理由. 7(本小题共14分) 已知椭圆C :22221(0)x y a b a b +=>> (2,0)M -. (Ⅰ)求椭圆C 的标准方程; (Ⅱ)设斜率为1的直线l 与椭圆C 相交于11(,)A x y ,22(,)B x y 两点,连接MA ,MB 并延长交直线 x =4于P ,Q 两点,设y P ,y Q 分别为点P ,Q 的纵坐标,且121111 P Q y y y y +=+ .求△ABM 的面积.

解析几何知识点总结

抛物线的标准方程、图象及几何性质:0>p

关于抛物线知识点的补充: 1、定义: 2、几个概念: ① p 的几何意义:焦参数p 是焦点到准线的距离,故p 为正数; ② 焦点的非零坐标是一次项系数的1 4 ; ③ 方程中的一次项的变量与对称轴的名称相同,一次项的系数符号决定抛物线的开口方向。 ④ 通径:2p 3、如:AB 是过抛物线)0(22 >=p px y 焦点F 的弦,M 是AB 的中点,l 是抛物线的准线,l MN ⊥,N 为垂足,l BD ⊥,l AH ⊥,D ,H 为垂足,求 证: (1)DF HF ⊥; (2)BN AN ⊥; (3)AB FN ⊥; (4)设MN 交抛物线于Q ,则Q 平分MN ; (5)设),(),,(2211y x B y x A ,则2 21p y y -=,2 214 1p x x = ;

(6)p FB FA 2| |1 | |1= +; (7)D O A ,,三点在一条直线上 (8)过M 作AB ME ⊥,ME 交x 轴于E ,求证:||2 1||AB EF =,||||||2 FB FA ME ?=; 关于双曲线知识点的补充: 1、 双曲线的定义:平面与两个定点21,F F 的距离的差的绝对值等于常数(小于||21F F )的点的轨迹。 第二定义:平面与一个定点的距离和到一条定直线的距离的比是常数)1(>e e 的点的轨迹。两个定点为双曲线的焦点,焦点间距离叫做焦距;定直线叫做准线。常数叫做离心率。 注意: a PF PF 2||||21=-与a PF PF 2||||12=-(||221F F a <)表示双曲线的一支。 ||221F F a =表示两条射线;||221F F a >没有轨迹; 2、 双曲线的标准方程 ①焦点在x 轴上的方程:22221x y a b -=(a>0,b>0); ②焦点在y 轴上的方程:22 221y x a b -= (a>0,b>0); ③当焦点位置不能确定时,也可直接设椭圆方程为:mx 2-ny 2=1(m ·n<0); ④双曲线的渐近线:改1为0,分解因式则可得两条渐近线之方程. 3、双曲线的渐近线: ①求双曲线12 2 22=-b y a x 的渐近线,可令其右边的1为0,即得02222=-b y a x ,因式分解得到。②与双曲线122 2 2 =-b y a x 共渐近线的双曲线系方程是λ=-2222b y a x ; 4、等轴双曲线: 为2 2 2 t y x =-,其离心率为2 5、共轭双曲线: 6、几个概念:

2010~2018江苏高考解析几何汇编(文)

2010~2018年高考解析几何汇编 1、考纲要求:直线的斜率和倾斜角B直线方程C直线的平行与垂直关系B两直线的交点B两点间的距离、点到直线的距离B圆的标准方程与一般方程C 直线与圆、圆与圆的位置关系B椭圆标准方程与性质B双曲线标准方程与性质A 抛物线的标准方程与性质A 2、高考解读:通常是两小一大,填空题一方面考查直线与圆的位置关系,另一方面考查圆锥曲线的概念与几何性质,解答题主要是直线与圆、直线与圆锥曲线的综合题,个别考题是基础题,多数考题是中档题,特别是解答题主要考查学生的运算能力和学生的观察、推理以及创造性地综合分析、解决问题的能力,有可能出现难题。 一、直线与圆的位置关系 ★★9.(5分)(2010?江苏)在平面直角坐标系xOy中,已知圆x2+y2=4上有且仅有四个点到直线12x﹣5y+c=0的距离为1,则实数c的取值范围是.★★★14.(5分)(2011?江苏)设集合 ,B={(x,y)|2m≤x+y≤2m+1,x,y∈R},若A∩B≠?,则实数m的取值范围是. ★★★12.(5分)(2012?江苏)在平面直角坐标系xOy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是. ★★9.(5分)(2014?江苏)在平面直角坐标系xOy中,直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为. ★★10.(5分)(2015?江苏)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx﹣y﹣2m﹣1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为. ★★13.(5分)(2017?江苏)在平面直角坐标系xOy中,A(﹣12,0),B(0,6),点P在圆O:x2+y2=50上.若≤20,则点P的横坐标的取值范围是. ★★★12.(5分)(2018?江苏)在平面直角坐标系xOy中,A为直线l:y=2x

解析几何知识点总结

抛物线的标准方程、图象及几何性质:0>p

1、定义: 2、几个概念: ① p 的几何意义:焦参数p 是焦点到准线的距离,故p 为正数; ② 焦点的非零坐标是一次项系数的1 4 ; ③ 方程中的一次项的变量与对称轴的名称相同,一次项的系数符号决定抛物线的开口方向。 ④ 通径:2p 3、如:AB 是过抛物线)0(22 >=p px y 焦点F 的弦,M 是AB 的中点,l 是抛物线的准线,l MN ⊥,N 为垂足,l BD ⊥,l AH ⊥,D ,H 为垂足,求证: (1)DF HF ⊥; (2)BN AN ⊥; (3)AB FN ⊥; (4)设MN 交抛物线于Q ,则Q 平分MN ; (5)设),(),,(2211y x B y x A ,则2 21p y y -=,2 214 1p x x =; (6)p FB FA 2| |1 | |1= +; (7)D O A ,,三点在一条直线上 (8)过M 作AB ME ⊥,ME 交x 轴于E ,求证:||2 1||AB EF =,||||||2 FB FA ME ?=;

1、 双曲线的定义:平面内与两个定点21,F F 的距离的差的绝对值等于常数(小于||21F F )的点的轨迹。 第二定义:平面内与一个定点的距离和到一条定直线的距离的比是常数)1(>e e 的点的轨迹。两个定点为双曲线的焦点,焦点间距离叫做焦距;定直线叫做准线。常数叫做离心率。 注意: a PF PF 2|||| 21=-与a PF PF 2||||12=-(||221F F a <)表示双曲线的一支。 ||221F F a =表示两条射线;||221F F a >没有轨迹; 2、 双曲线的标准方程 ①焦点在x 轴上的方程:22221x y a b -=(a>0,b>0); ②焦点在y 轴上的方程:22 221y x a b -= (a>0,b>0); ③当焦点位置不能确定时,也可直接设椭圆方程为:mx 2 -ny 2 =1(m ·n<0); ④双曲线的渐近线:改1为0,分解因式则可得两条渐近线之方程. 3、双曲线的渐近线: ①求双曲线12 2 22 =-b y a x 的渐近线,可令其右边的1为0,即得022 22=-b y a x ,因式分解得到。②与双曲线122 2 2 =-b y a x 共渐近线的双曲线系方程是λ=-2222b y a x ; 4、等轴双曲线: 为2 22t y x =-,其离心率为2 5、共轭双曲线: 6、几个概念: ①焦准距:b 2 c ; ②通径:2b 2 a ; ③等轴双曲线x 2-y 2=λ (λ∈R,λ≠0):渐近线是y=±x,离心率为:2 ;④22 221x y a b -=焦点三角形的面积:b 2 cot θ2 (其中∠F 1PF 2=θ); ⑤弦长公式:c 2 =a 2 -b 2 ,而在双曲线中:c 2 =a 2 +b 2 ,

解析几何知识点总结

解析几何知识点总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

解析几何知识点总结 第一部分:直线 一、直线的倾斜角与斜率 1.倾斜角α (1)定义:直线l 向上的方向与x 轴正向所成的角叫做直线的倾斜角。 (2)范围:(0,180) 2.斜率:直线倾斜角α的正切值叫做这条直线的斜率. k=tan α (1).倾斜角为90°的直线没有斜率。 (2).每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率(直线垂直于x 轴时,其斜率不存在),这就决定了我们在研究直线的有关问题时,应考虑到斜率的存在与不存在这两种情况,否则会产生漏解。 (3)设经过A (x1,y1)和B (x2,y2)两点的直线的斜率为K , 则当X1≠X2时,k=tan α=Y1-Y2/X1-X2;当X1=X2时,α=90°;斜率不存在; 二、直线的方程 1.点斜式:已知直线上一点P (x 0,y 0)及直线的斜率k (倾斜角α)求直线的方程用点斜式:y-y 0=k(x-x 0) 注意:当直线斜率不存在时,不能用点斜式表示,此时方程为x=x0; 2.斜截式:若已知直线在y 轴上的截距(直线与y 轴焦点的纵坐标)为b ,斜率为k ,则直线方程:y=kx+b ;特别地,斜率存在且经过坐标原点的直线方程为:y=kx 注意:正确理解“截距”这一概念,它具有方向性,有正负之分,与“距离”有区别。 3.两点式:若已知直线经过(x1,y1)和(x2,y2)两点,且(X1≠X2,y1≠y2)则直线的方 程:1 21 121x x x x y y y y --=--; 注意:①不能表示与x 轴和y 轴垂直的直线; ②当两点式方程写成如下形式0))(())((112112=-----x x y y y y x x 时,方程可以适应在于任何一条直线。 4截距式:若已知直线在x 轴,y 轴上的截距分别是a ,b (a ≠0,b ≠0)则直线方程: 1=+b y a x ; 注意:1).截距式方程表不能表示经过原点的直线,也不能表示垂直于坐标轴的直线。 2).横截距与纵截距相等的直线方程可设为x+y=a;横截距与纵截距互为相反数的直线方程可设为x-y=a 5一般式:任何一条直线方程均可写成一般式:Ax+By+C=0;(A,B 不同时为零);反之,任何一个二元一次方程都表示一条直线。 位置关系 2 22111::b x k y l b x k y l +=+= 0 :0:22221111=++=++C y B x A l C y B x A l

高中数学解析几何知识点总结

高中数学解析几何知识 点总结 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

§0 7. 直线和圆的方程 知识要点 一、直线方程. 1. 直线的倾斜角:一条直线向上的方向与x 轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与x 轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是 )0(1800παα ≤≤. 注:①当 90=α或12x x =时,直线l 垂直于x 轴,它的斜率不存在. ②每一条直线都存在惟一的倾斜角,除与x 轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定. 2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式. 特别地,当直线经过两点),0(),0,(b a ,即直线在x 轴,y 轴上的截距分别为)0,0(,≠≠b a b a 时,直线方程是:1=+b y a x . 注:若23 2--=x y 是一直线的方程,则这条直线的方程是23 2--=x y ,但若 )0(23 2 ≥-- =x x y 则不是这条线. 附:直线系:对于直线的斜截式方程b kx y +=,当b k ,均为确定的数值时,它表示一条确定的直线,如果b k ,变化时,对应的直线也会变化.①当b 为定植,k 变化时,它们表示过定点(0,b )的直线束.②当k 为定值,b 变化时,它们表示一组平行直线. 3. ⑴两条直线平行: 1l ∥212k k l =?两条直线平行的条件是:①1l 和2l 是两条不重合的直线. ②在1l 和2l 的斜 率都存在的前提下得到的. 因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误. (一般的结论是:对于两条直线21,l l ,它们在y 轴上的纵截距是21,b b ,则 1l ∥212k k l =?,且21b b ≠或21,l l 的斜率均不存在,即2121A B B A =是平行的必要不充分条 件,且21C C ≠)

H 解析几何(文科)

H 解析几何 H1 直线的倾斜角与斜率、直线的方程 22.H1、H2、H7[2012·浙江卷] 如图1-6,在直角坐标系xOy 中,点P ??? ?1,12到抛物线C :y 2=2px (p >0)的准线的距离为54 .点M (t,1)是C 上的定点,A ,B 是C 上的两动点,且线段AB 被直线OM 平分. (1)求p ,t 的值; (2)求△ABP 面积的最大值. 22.解:(1)由题意知????? 2pt =1,1+p 2=54 , 得????? p =12,t =1. (2)设A (x 1,y 1),B (x 2,y 2),线段m ), 由题意知,设直线AB 的斜率为k (k ≠0). 由? ???? y 21=x 1,y 22=x 2,得 (y 1-y 2)(y 1+y 2)=x 1-x 2. 故k ·2m =1. 所以直线AB 方程为y -m =12m (x -m ), 即x -2my +2m 2-m =0. 由? ???? x -2my +2m 2-m =0,y 2=x 消去x ,整理得 y 2-2my +2m 2-m =0, 所以Δ=4m -4m 2>0,y 1+y 2=2m ,y 1·y 2=2m 2-m . 从而|AB |=1+1k 2·|y 1-y 2 | =1+4m 2·4m -4m 2. 设点P 到直线AB 的距离为d ,则

d =|1-2m +2m 2|1+4m 2 . 设△ABP 的面积为S ,则 S =12 |AB |·d =|1-2(m -m 2)|·m -m 2. 由Δ=4m -4m 2>0,得0<m <1. 令u =m -m 2,0<u ≤12 ,则 S =u (1-2u 2), 设S (u )=u (1-2u 2),0<u ≤12 ,则S ′(u )=1-6u 2. 由S ′(u )=0得u =66∈??? ?0,12,所以 S (u )max =S ????66=69 . 故△ABP 面积的最大值为69 . 17.H1、H7[2012·浙江卷] 定义:曲线C 上的点到直线l 的距离的最小值称为曲线C 到直线l 的距离.已知曲线C 1:y =x 2+a 到直线l :y =x 的距离等于曲线C 2:x 2+(y +4)2=2到直线l :y =x 的距离,则实数a =________. 17.[答案] 94 [解析] 本题在新定义背景下考查直线、圆和抛物线的方程,一、二次曲线之间的位置关系与导数几何意义等基础知识,考查学生综合运用知识的能力和学情,考查函数方程和数形结合的数学思想.求出曲线C 1到直线l 的距离和曲线C 2到直线l 的距离,建立等式,求出参数a 的值. 曲线C 2:x 2+(y +4)2=2到直线l :y =x 的距离为圆心到直线的距离与圆的 半径之差,即d -r =|-4|2-2=2,由y =x 2+a 可得y ′=2x ,令y ′=2x =1,则x =12,在曲线C 1上对应的点P ????12,14+a ,所以曲线C 1到直线l 的距离即为点P ??? ?12,14+a 到直线l 的距离,故????12-14-a 2=????14-a 2,所以????14-a 2 =2,可得????a -14=2,a =-74或a =94,当a =-74时,曲线C 1:y =x 2-74与直线l :y =x 相交,两者距离为0,不合题意,故a =94 . 4.H1、F1[2012·上海卷] 若d =(2,1)是直线l 的一个方向向量,则l 的倾斜角的大小为________(结果用反三角函数值表示). 4.arctan 12 [解析] 考查直线的方向向量、斜率与倾斜角三者之间的关系,关键是求出直线的斜率. 由已知可得直线的斜率k =12,k =tan α,所以直线的倾斜角α=arctan 12 . 20.H5、F1、H1[2012·陕西卷] 已知椭圆C 1:x 24 +y 2=1,椭圆C 2以C 1的长轴为短轴,且与C 1有相同的离心率. (1)求椭圆C 2的方程; (2)设O 为坐标原点,点A ,B 分别在椭圆C 1和C 2上,OB →=2OA →,求直线AB 的方程. 20.解:(1)由已知可设椭圆C 2的方程为y 2a 2+x 24 =1(a >2),

相关文档
最新文档