相交线 竞赛

相交线   竞赛
相交线   竞赛

初一数学竞赛系列讲座(12)

相交线、平行线

一、知识要点:

1. 平面上两条不重合的直线,位置关系只有两种:相交和平行。

2. 两条不同的直线,若它们只有一个公共点,就说它们相交。即,两条直线相交有且只

有一个交点。

3. 垂直是相交的特殊情况。有关两直线垂直,有两个重要的结论:

(1) 过一点有且只有一条直线与已知直线垂直;

(2) 直线外一点与直线上所有点的连线中,垂线段最短。

4. 在同一平面内,不相交的两条直线称为平行线。平行线中要理解平行公理,能熟练地

找出“三线八角”图形中的同位角、内错角、同旁内角,并会运用与“三线八角”有关的平行线的判定定理和性质定理。

5. 利用平行公理及其推论证明或求解。

二、例题精讲

例1.如图(1),直线a 与b 平行,∠1=(3x+70)°,∠2=(5x+22)°,

求∠3的度数。

解:∵ a ∥b , ∴ ∠3=∠4(两直线平行,内错角相等)

∵ ∠1+∠3=∠2+∠4=180°(平角的定义)

∴ ∠1=∠2 (等式性质) 则 3x+70=5x+22 解得x=24

即∠1=142°

∴ ∠3=180°-∠1=38° 图(1)

评注:建立角度之间的关系,即建立方程(组),是几何计算常用的方法。

例2.已知:如图(2), AB ∥EF ∥CD ,EG 平分∠BEF ,∠B+∠BED+∠D =192°,

∠B -∠D=24°,求∠GEF 的度数。 解:∵AB ∥EF ∥CD ∴∠B=∠BEF ,∠DEF=∠D (两直线平行,内错角相等)

∵∠B+∠BED+∠D =192°(已知) 即∠B+∠BEF+∠DEF+∠D=192° ∴2(∠B+∠D )=192°(等量代换) 则∠B+∠D=96°(等式性质)

∵∠B -∠D=24°(已知) 图(2)

∴∠B=60°(等式性质)

即∠BEF=60°(等量代换)

∵EG 平分∠BEF (已知)

∴∠GEF=2

1∠BEF=30°(角平分线定义)

例3.如图(3),已知AB ∥CD ,且∠B=40°,∠D=70°,求∠DEB 的度数。

解:过E 作EF ∥AB

G

A

∵ AB ∥CD (已知) ∴ EF ∥CD (平行公理)

∴ ∠BEF=∠B=40° ∠DEF=∠D=70°(两直线平行,

内错角相等) ∵ ∠DEB=∠DEF -∠BEF

∴ ∠DEB =∠D -∠B=30° 评注:证明或解有关直线平行的问题时,如果不构成“三

线八角”,则应添出辅助线。 图(3)

例4.已知锐角三角形ABC 的三边长为a ,b ,c ,而h a ,h b ,h c 分别为对应边上的高线长,

求证:h a +h b +h c <a+b+c

分析:对应边上的高看作垂线段,而邻边看作斜线段

证明:由垂线段最短知,h a <c ,h b <a ,h c <b

以上三式相加得h a +h b +h c <a+b+c 研究垂直关系应掌握好垂线的性质。

1. 以过一点有且只有一条直线垂直于已知直线。

2. 垂线段最短。

例5.如图(4),直线AB 与CD 相交于O ,EF ⊥AB 于F ,GH ⊥CD 于H ,

求证EF 与GH 必相交。

分析:欲证EF 与GH 相交,直接证很困难,可考虑用反证法。 证明:假设EF 与GH 不相交。 ∵ EF 、GH 是两条不同的直线

∴ EF ∥GH ∵ EF ⊥AB ∴ GH ⊥AB

又因GH ⊥CD 故AB ∥CD (垂直于同一直线的两直线平行) 图(4) 这与已知AB 和CD 相交矛盾。

所以EF 与GH 不平行,即EF 与GH 必相交

评注:本题应用结论:

(1) 垂直于同一条直线的两直线平行。

(2) 两条平行线中的一条直线垂直于第三条直线,那么另一条直线也平行于第三条直线;

例6.平面上n 条直线两两相交且无3条或3条以上直线共点,有多少个不同交点? 解:2条直线产生1个交点,

第3条直线与前面2条均相交,增加2个交点,这时平面上3条直线共有1+2=3个交点;

第4条直线与前面3条均相交,增加3个交点,这时平面上4条直线共有1+2+3=6个交点; …

则 n 条直线共有交点个数:1+2+3+…+ (n-1)=2

1n(n-1) 评注:此题是平面上n 条直线交点个数最多的情形,需要仔细观察,由简及繁,深入思考,从中发现规律。

b a

c h a

例7.6个不同的点,其中只有3点在同一条直线上,2点确定一条直线,问能确定多少条直线?

解:6条不同的直线最多确定:5+4+3+2+1=15条直线,除去共线的3点中重合多算的2

条直线,即能确定的直线为15-2=13条。

另法:3点所在的直线外的3点间最多能确定3条直线,这3点与直线上的3点最多有3

×3=9条直线,加上3点所在的直线共有:3+9+1=13条

评注:一般地,平面上n 个点最多可确定直线的条数为:1+2+3+…+(n-1)=

2

1n(n-1)

例8.10条直线两两相交,最多将平面分成多少块不同的区域?

解:2条直线最多将平面分成2+2=4个不同区域;

3条直线中的第3条直线与另两条直线相交,最多有两个交点,此直线被这两点分成3段,每一段将它所在的区域一分为二,则区域增加3个,即最多分成2+2+3=7个不同区域; 同理:4条直线最多分成2+2+3+4=11个不同区域;

∴ 10条直线最多分成2+2+3+4+5+6+7+8+9+10=56个不同区域

推广:n 条直线两两相交,最多将平面分成2+2+3+4+…+n=1+21n(n+1)=2

1(n 2+n+2)块不同的区域

思考:平面内n 个圆两两相交,最多将平面分成多少块不同的区域?

例9.平面上n 条直线两两相交,求证所成得的角中至少有一个角不大于n

180 证明:平面上n 条直线两两相交最多得对顶角2

)1(-n n ×2=n(n-1)对,即2n(n-1)个角 平面上任取一点O ,将这n 条直线均平行移动过点O ,

成为交于一点O 的n 条直线,

这n 条直线将以O 为顶点的圆周角分为2n 个(共n 对)

互不重叠的角:α1、α2、α3、…、α2n

由平行线的性质知,这2n 个角中每一个都和原来n 条

直线中的某两条直线的交角中的一个角相等,即这2n 个角

均是原2n(n-1)个角中的角。 若这2n 个角均大于n 0180,则α1+α2+α3+…+α2n >2n ×n

180=360°, 而 α1+α2+α3+…+α2n =360°,产生矛盾

故 α1、α2、α3、…、α2n 中至少有一个小于n

180, O l 3l 2l n

即 原来的2n(n-1) 中至少有一个角不小于n

180 评注:通过平移,可以把原来分散的直线集中交于同一点,从而解决问题。

例10.(a )请你在平面上画出6条直线(没有三条共点),使得它们中的每条直线都恰与

另3条直线相交,并简单说明画法。

(b )能否在平面上画出7条直线(任意3条都不共点),使得它们中的每条直线都

恰与另3条直线相交,如果能请画出一例,如

果不能请简述理由。

解:(a )在平面上任取一点A 。 过A 作两直线m 1与n 1。在n 1 上取两点B ,C ,在

m 1上取两点D ,G 。过B 作m 2∥m 1,过C 作m 3∥m 1,过D 作n 2∥n 1,过G 作n 3∥n 1,这时m 2、m 3、n 2、n 3交得E 、

F 、H 、I 四点,如图所示。由于彼此平行的直线不相交,所以,图中每条直线都恰与另3条直线相交。 (b )在平面上不能画出没有3线共点的7条直线,使得

其中每条直线都恰与另外3条直线相交。

理由如下:

假设平面上可以画出7条直线,其中每一条都恰与其它3条相交,因两直线相交只有一个交点,又没有3条直线共点,所以每条直线上恰有与另3条直线交得的3个不同的交点。

根据直线去计数这些交点,共有3×7=21个交点,但每个交点分属两条直线,被重复计数一次,所以这7条直线交点总数为2

21=10.5个,因为交点个数应为整数,矛盾。 所以,满足题设条件的7条直线是画不出来的。

三、巩固练习

选择题

1.平面上有5个点,其中仅有3点在同一直线上,过每2点作一条直线,一共可以作直线( )条

A .6

B . 7

C .8

D .9

2.平面上三条直线相互间的交点个数是 ( )

A .3

B .1或3

C .1或2或3

D .不一定是1,2,3

3.平面上6条直线两两相交,其中仅有3条直线过一点,则截得不重叠线段共有( )

A .36条

B .33条

C .24条

D .21条

4.已知平面中有n 个点C B A ,,三个点在一条直线上,E F D A ,,,四个点也在一条直线上,除些之外,再没有三点共线或四点共线,以这n 个点作一条直线,那么一共可以画出38条不同的直线,这时n 等于( )

(A )9 (B )10 (C )11 (D )12

5.若平行直线AB 、CD 与相交直线EF 、GH 相交成如图示的图形,则共得同旁内角( )

A .4对

B .8对

C .12对

D .16对

6.如图,已知FD ∥BE ,则∠1+∠2-∠3=( )

A .90°

B .135°

C .150°

D .180°

F

第 5 题

第 6 题 第7题

7.如图,已知AB ∥CD ,∠1=∠2,则∠E 与∠F 的大小关系 ;

8.平面上有5个点,每两点都连一条直线,问除了原有的5点之外这些直线最多还 有 交点

9.平面上3条直线最多可分平面为 个部分。 10.如图,已知AB ∥CD ∥EF ,PS ⊥GH 于P ,∠FRG=110°,

则∠PSQ = 。 11.已知A 、B 是直线L 外的两点,则线段AB 的垂直平分线与直线的交点个数是 。

12.平面内有4条直线,无论其关系如何,它们的交点个数不会超过 个。

13.已知:如图,DE ∥CB ,求证:∠AED=∠A+∠B

14.已知:如图,AB ∥CD ,求证:∠B+∠D+∠F=∠E+∠G

第13题 第14题

15.如图,已知CB ⊥AB ,CE 平分∠BCD ,DE 平分∠CDA ,

∠EDC+∠ECD =90°,

求证:DA ⊥AB

16.平面上两个圆三条直线,最多有多少不同的交点?

17.平面上5个圆两两相交,最多有多少个不同的交点?最多将平面分成多少块区域?

18.一直线上5点与直线外3点,每两点确定一条直线,最多确定多

少条不同直线? 19.平面上有8条直线两两相交,试证明在所有的交角中至少有一个

角小于23°。

20.平面上有10条直线,无任何三条交于一点,欲使它们出现31个交点,怎样安排才能办到?画出图形。

第 15 题

初中数学几何辅助线技巧

几何常见辅助线口诀三角形 图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。 线段和差及倍半,延长缩短可试验。 线段和差不等式,移到同一三角去。 三角形中两中点,连接则成中位线。 三角形中有中线,倍长中线得全等。 四边形 平行四边形出现,对称中心等分点。 梯形问题巧转换,变为三角或平四。 平移腰,移对角,两腰延长作出高。 如果出现腰中点,细心连上中位线。 上述方法不奏效,过腰中点全等造。 证相似,比线段,添线平行成习惯。 等积式子比例换,寻找线段很关键。 直接证明有困难,等量代换少麻烦。 斜边上面作高线,比例中项一大片。 圆形

半径与弦长计算,弦心距来中间站。 圆上若有一切线,切点圆心半径联。 切线长度的计算,勾股定理最方便。 要想证明是切线,半径垂线仔细辨。 是直径,成半圆,想成直角径连弦。 弧有中点圆心连,垂径定理要记全。 圆周角边两条弦,直径和弦端点连。 弦切角边切线弦,同弧对角等找完。 要想作个外接圆,各边作出中垂线。 还要作个内接圆,内角平分线梦圆。 如果遇到相交圆,不要忘作公共弦。 内外相切的两圆,经过切点公切线。 若是添上连心线,切点肯定在上面。 要作等角添个圆,证明题目少困难。 由角平分线想到的辅助线 一、截取构全等: 如图,AB//CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。

分析:在此题中可在长线段BC上截取BF=AB,再证明CF=CD,从而达到证明的目的。这里面用到了角平分线来构造全等三角形。另外一个全等自已证明。此题的证明也可以延长BE与CD的延长线交于一点来证明。自己试一试。 二、角分线上点向两边作垂线构全等: 如图,已知AB>AD, ∠BAC=∠FAC,CD=BC。求证:∠ADC+∠B=180 分析:可由C向∠BAD的两边作垂线。近而证∠ADC与∠B之和为平角。 三、三线合一构造等腰三角形: 如图,AB=AC,∠BAC=90 ,AD为∠ABC的平分线,CE⊥BE.求证:BD=2CE。 分析:延长此垂线与另外一边相交,得到等腰三角形,随后全等。四、角平分线+平行线: 如图,AB>AC, ∠1=∠2,求证:AB-AC>BD-CD。

初中平面几何辅助线专题复习

初中平面几何辅助线专题复习 目录 第01讲辅助线的初步认识 第02讲截长补短法 第03讲中点模型——倍长中线 第04讲三垂直模型 第05讲角平分线模型(一) 第06讲角平分线模型(二) 第07讲手拉手模型——全等 第08讲最短路径问题 第09讲平面直角坐标系中的几何问题

第01讲辅助线的初步认识 【知识提要】 初中辅助线的添加时几何部分学习的重要内容,同时也是学生学习的难点之所在。当 问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立 已知与未知的桥梁,把问题转化为自己能解决的问题,这是解决问题常用的策略。 辅助线的添加通常有两种情况: 1.按定义添辅助线: 如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线 段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。 2.按基本图形添辅助线: 每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往 往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫 做“补图”!这样可防止乱添线,添辅助线也有规律可循。 本节课我们就以启东作业中的问题为例,来介绍常见的辅助线的画法. 【典型例题】 例1:小春在做数学作业时,遇到一个这样的问题:如图,AB=CD,BC=AD,请说明 ∠A =∠C 的道理. BC=AD,所以只需连接BD,构造全等三角形即可. D

例2. 如图,O 是△ABC 内一点,连接OB 和OC. 你能说明OB +OC < AB + AC 的理由吗? 【思路点拨】要证明线段之间的不等关系,要将线段放在三角形中,利用三边关系来证明。△ABC 和△OBC 中无法解决,所以只需要将OB (OC )延长交AC (AB )于点D ,在△ABD (△ACD )和△OCD (△OBD )利用三边关系解决即可. 归纳:构造线段时辅助线的写法: 1. 连接**。例如:连接AB 2. 延长**。①例如:延长AB 交CD 于E 点;②延长AB 到E ,使BE = AB . 例题3:已知:如图AB ∥DE . 求证:∠B +∠C +∠D = 360° 【思路点拨】要证明这三个角的和是360°,可以 构造周角,2个180度或四边形的内角和来证明。 通过作平行线就可实现角的位置的转移,将角移动到 适当的位置。 归纳:构造平行线时辅助线的写法: 1. 过*作* ∥ *。例如:过点A 作AB ∥CD. 练习:叙述并证明三角形内角和定理。 例题4:已知:如图,△ABC 的∠B 的外角的平分线BD 和∠C 的外角平分线CE 相交于点P 求证:点P 也在∠BAC 的平分线上。 【思路点拨】已知CP 和BP 为外角平分心线,要证明P 角平分线上,只需要过P 向AM 、AN 、BC 归纳:构造垂线,中线,角平分心线时辅助线的写法: 1. 垂线:过*作*⊥*于点*。例如:过点A 作AB ⊥CD 于点B . C E A N B

初中几何辅助线大全 最全

三角形中作辅助线的常用方法举例 一、延长已知边构造三角形: 例如:如图7-1:已知AC =BD ,AD ⊥AC 于A ,BC ⊥BD 于B , 求证:AD =BC 分析:欲证 AD =BC ,先证分别含有AD ,BC 的三角形全等,有几种方案:△ADC 与△BCD ,△AOD 与△BOC ,△ABD 与△BAC ,但根据现有条件,均无法证全等,差角的相等,因此可设法作出新的角,且让此角作为两个三角形的公共角。 证明:分别延长DA ,CB ,它们的延长交于E 点, ∵AD ⊥AC BC ⊥BD (已知) ∴∠CAE =∠DBE =90° (垂直的定义) 在△DBE 与△CAE 中 ∵?? ???=∠=∠∠=∠)()() (已知已证公共角AC BD CAE DBE E E ∴△DBE ≌△CAE (AAS ) ∴ED =EC EB =EA (全等三角形对应边相等) ∴ED -EA =EC -EB 即:AD =BC 。 (当条件不足时,可通过添加辅助线得出新的条件,为证题创造条件。) 二 、连接四边形的对角线,把四边形的问题转化成为三角形来解决。 三、有和角平分线垂直的线段时,通常把这条线段延长。 例如:如图9-1:在Rt △ABC 中,AB =AC ,∠BAC =90°,∠1=∠2,CE ⊥BD 的延长于E 。求证:BD =2CE 分析:要证BD =2CE ,想到要构造线段2CE ,同时CE 与 ∠ABC 的平分线垂直,想到要将其延长。 证明:分别延长BA ,CE 交于点F 。 ∵BE ⊥CF (已知) ∴∠BEF =∠BEC =90° (垂直的定义) 在△BEF 与△BEC 中, 1 9-图D C B A E F 1 2 A B C D E 1 7-图O

相交线与平行线典型例题及拔高训练

相交线与平行线典型例 题及拔高训练 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

第五章相交线和平行线典型例题及强化训练课标要求 ①了解对顶角,知道对项角相等。 ②了解垂线、垂线段等概念,了解垂线段最短的性质,体会点到直线距离的意义。 ③知道过一点有且仅有一条直线垂直干已知直线,会用三角尺或量角器过一点画一条直线的垂线。 ④知道两直线平行同位角相等,进一步探索平行线的性质 ⑤知道过直线外一点有且仅有一条直线平行于已知直线,会用角尺和直尺过已知直线外一点画这条直线的平行线。 ⑥体会两条平行线之间距离的意义,会度量两条平行线之间的距离。 典型例题 1.判定与性质 例1判断题: 1)不相交的两条直线叫做平行线。() 2)过一点有且只有一条直线与已知直线平行。() 3)两直线平行,同旁内角相等。() 4)两条直线被第三条直线所截,同位角相等。() 答案:(1)错,应为“在同一平面内,不相交的两条直线叫做平行线”。 (2)错,应为“过直线外一点,有且只有一条直线与已知直线平行”。 (3)错,应为“两直线平行,同旁内角互补”。 (4)错,应为“两条平行线被第三条直线所截,同位角相等”。 例2已知:如图,AB∥CD,求证:∠B+∠D=∠BED。

分析:可以考虑把∠BED 变成两个角的和。如图5,过E 点引一条直线EF ∥AB ,则有∠B =∠1,再设法 证明∠D =∠2,需证 EF ∥CD ,这可通过已知AB ∥CD 和EF ∥AB 得到。 证明:过点E 作EF ∥AB ,则∠B =∠1(两直线平行,内错角相等)。 ∵AB ∥CD (已知), 又∵EF ∥AB (已作), ∴EF ∥CD (平行于同一直线的两条直线互相平行)。 ∴∠D =∠2(两直线平行,内错角相等)。 又∵∠BED =∠1+∠2, ∴∠BED =∠B +∠D (等量代换)。 变式1已知:如图6,AB ∥CD ,求证:∠BED =360°-(∠B +∠D )。 分析:此题与例1的区别在于E 点的位置及结论。我们通常所说的∠BED 都是指小于平角的角,如果把∠BED 看成是大于平角的角,可以认为此题的结论与例1的结论是一致的。因此,我们模仿例1作辅助线,不难解决此题。 证明:过点E 作EF ∥AB ,则∠B +∠1=180°(两直线平行,同旁内角互补)。 ∵AB ∥CD (已知), 又∵EF ∥AB (已作), ∴EF ∥CD (平行于同一直线的两条直线互相平行)。 ∴∠D +∠2=180°(两直线平行,同旁内角互补)。 ∴∠B +∠1+∠D +∠2=180°+180°(等式的性质)。 又∵∠BED =∠1+∠2, A B E D F

用旋转法………作辅助线证明平面几何题.

用旋转法………作辅助线证明平面几何题 旋转法就是在图形具有等邻边特征时,可以把图形的某部分绕等邻边的公共端点,旋转另一位置的引辅助线的方法。 1、旋转方法主要用途是把分散的元素通过旋转集中起来,从而为证题创造必要的条 件。 2、旋转时要注意旋转中心、旋转方向、旋转角度的大小(三要素:中心、方向、大小); 3、旋转方法常用于竺腰三角形、等边三角形及正方形等图形中。 例1: 例2 已知,在Rt ABC 中;∠BAC=90?; D为BC边上任意一点,求证:2AD2=BD2+CD2. 证明:把ABD绕点A逆时钍方向旋转90?,得?ACE,则ABD??ACE,∴BD=CE,∠B=∠ACE; ∠BAD=∠CAE, AD=AE。 又∠BAC=90?;∴∠DAE=90? 所以: D E2=AD2+AE2=2AD2。 因为:∠B+∠ACB=90? 所以:∠DCE=90? CD2+CE2=DE2=2AD2 即: 2AD2=BD2+CD2。 注:也可以把ADC顺时针方向旋转90?来证明。 注 C D

已知,P 为等边ABC 内一点,PA=5,PB=4,PC=3,求∠BPC 的度数。证明:把ABP 绕点B 顺时钍方向旋转90?,得?CBD ,则ABP ??CBD ,∴, ∠ABP=∠CBD ,所以 ∠BAP+∠PBC=∠CBD+∠PBC=60?,所以 BPD 为等边三角形。 ∠PBD=60?所以: C D 2=PD 2+PC 2。因为: ∠DPC=90? 所以: ∠BPC=∠BPD+∠DPC=60?+90?=150? 注:也可以把CAP 绕点C 逆时针方向旋转60?来证明。 D C 例3: 如图:在正方形ABCD 中,E 为AD 边上一点,BF 平分∠CBE 交CD 于F 点。求证:BE=CF+AE 证明:把ABE 绕点B 顺时针方向旋转90?得BCN 。 则:ABE ?BCN ,所以: ∠ABE=∠CBN ,BE=BN ,AE=CN 。因为:四边形ABCD 是正方形,所以:CD AB ,∠NFB=NBF 因为:∠ABF=∠ABE+∠EBF ,∠NBF=∠NBC+∠CBF ,而:∠EBF=∠FBC ;∠NBF=∠NFB 所以:BN=NF=CN+CF 所以:BE=AE+CF 。注:也可以把BCF 绕点B 逆时针方向旋转90?来证明。

初中几何常见辅助线作法口诀

初中几何常见辅助线作法口诀 人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。 三角形 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。四边形 平行四边形出现,对称中心等分点。梯形里面作高线,平移一腰试试看。平行移动对角线,补成三角形常见。证相似,比线段,添线平行成习惯。等积式子比例换,寻找线段很关键。直接证明有困难,等量代换少麻烦。斜边上面作高线,比例中项一大片。 圆 半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径连。切线长度的计算,勾股定理最方便。要想证明是切线,半径垂线仔细辨。是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。要想作个外接圆,各边作出中垂线。还要作个内接圆,内角平分线梦圆如果遇到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。若是添上连心线,切点肯定在上面。要作等角添个圆,证明题目少困难。辅助线,是虚线,画图注意勿改变。假如图形较分散,对称旋转去实验。基本作图很关键,平时掌握要熟练。解题还要多心眼,经常总结方法显。切勿盲目乱添线,方法灵活应多变。分析综合方法选,困难再多也会减。虚心勤学加苦练,成绩上升成直线。

作辅助线的常用方法

在利用三角形三边关系证明线段不等关系时,如直接证不出 来,可连接两点或廷长某边构成三角形,使结论中出现的线段在一个或几个三角形中,再运用三角形三边的不等关系证明,如: 例1、 已知如图1-1:D 、E 为△ABC 内两点, 求证:AB+AC>BD+DE+CE. 证明:(法一) 将DE 两边延长分别交AB 、AC 于M 、N , 在△AMN 中,AM+AN > MD+DE+NE;(1) 在△BDM 中,MB+MD>BD ; (2) 在△CEN 中,CN+NE>CE ; (3) 由(1)+(2)+(3)得: AM+AN+MB+MD+CN+NE>MD+DE+NE+BD+CE ∴AB+AC>BD+DE+EC (法二:图1-2) 延长BD 交 AC 于F ,廷长CE 交BF 于G , 在△ABF 和△GFC 和△GDE 中有: AB+AF> BD+DG+GF (三角形两边之和大于第三边)…(1) GF+FC>GE+CE (同上)………………………………..(2) DG+GE>DE (同上)…………………………………….(3) 由(1)+(2)+(3)得: AB+AF+GF+FC+DG+GE>BD+DG+GF+GE+CE+DE ∴AB+AC>BD+DE+EC 。 一、 在利用三角形的外角大于任何和它不相邻的内角时如直接证不出来时,可连接两 点或延长某边,构造三角形,使求证的大角在某个三角形的外角的位置上,小角处于这个三角形的内角位置上,再利用外角定理: 例如:如图2-1:已知D 为△ABC 内的任一点,求证:∠BDC>∠BAC 。 因为∠BDC 与∠BAC 不在同个三角形中,没有直接的联系,可适当添加辅助线构造新的三角形,使∠BDC 处于在外角的位置,∠BAC 处于 在内角的位置; 证法一:延长BD 交AC 于点E ,这时∠BDC 是△EDC 的外角, A B C D E N M 1 1-图A B C D E F G 2 1-图A B C D E F G 1 2-图

相交线与平行线:经典专题训练及答案

专题训练:相交线与平行线 一、选择题(每小题4分,共48分) 1.如果两个角的一边在同一直线上,另一边互相平行,那么这两个角的关系是( )。 A.相等 B.互补 C.相等或互补 D.相等且互补 2.已知∠AOB=30°,又自∠AOB 的顶点O 引射线OC ,若∠AOC : ∠AOB=4 : 3 ,那么∠BOC 等于( )。 A.10° B. 40° C.70° D. 10°或70° 3.一个角等于它的补角的5倍,那么这个角的补角的余角是( )。 A.30° B.60° C.45° D.以上答案都不对 4.用一副三角板可以作出大于0°而小于180°的角的个数( )。 A . 5个 B .10个 C . 11个 D .以上都不对 5.在平面上画出四条直线,交点的个数最多应该是( ) A.4个 B . 5个 C . 6个 D . 8个 6.已知三条直线a,b,c ,下列命题中错误的是( ) A.如果a ∥b,b ∥c,那么a ∥c B .如果a ⊥b,b ⊥c,那么a ⊥c C .如果a ⊥b,b ⊥c,那么a ∥c D .如果a ⊥b,a ∥c,那么b ⊥c 7.如果两条平行线被第三条直线所截得的8个角中,有一个角的度数已知, 则( )。 A.只能求出其余3个角的度数 B.能求出其余5个角的度数 C .只能求出其余6个角的度数 D. 能求出其余7个角的度数 8.若两条平行线被第三条直线所截,则下列说法错误的是( )。 A.一对同位角的平分线互相平行 B.一对内错角的平分线互相平行 C .一对同旁内角的平分线互相垂直 D .一对同旁内角的平分线互相平行 9.在同一平面内互不重合的三条直线,它们的交点个数是( )。 A .可能是0个,1个,2个 B .可能是0个,2个,3个 C .可能是0个,1个,2个或3个 D .可能是1个或3个 10.下列说法,其中正确的是( )。 A .两条直线被第三条直线所截,内错角相等; B .不相交的两条直线就是平行线; C .点到直线的垂线段,叫做点到直线的距离; D .同位角相等,两直线平行。 11.下列关于对顶角的说法: (1)相等的角是对顶角 (2)对顶角相等 (3)不相等的角不是对顶角 (4)不是对顶角不相等 其中正确的有( )。 A .1个 B .2个 C .3个 D .4个 12.如果∠α与∠β是邻补角,且∠α> ∠β,那么∠β的余角是( )。 A .12 (∠α±∠β) B . 12 ∠α C . 12 (∠α-∠β) D .不能确定

初中数学圆的辅助线八种作法

中考数学圆的辅助线 在平面几何中,与圆有关的许多题目需要添加辅助线来解决。百思不得其解的题目,添上合适的辅助线,问题就会迎刃而解,思路畅通,从而有效地培养学生的创造性思维。添加辅助线的方法有很多,本文只通过分析探索归纳几种圆中常见的辅助线的作法。下面以几道题目为例加以说明。 1.有弦,可作弦心距 在解决与弦、弧有关的问题时,常常需要作出弦心距、半径等辅助线,以便应用于垂径定理和勾股定理解决问题。 例1 如图1, ⊙O 的弦AB 、CD 相交于点P , 且AC=BD 。求证:PO 平分∠APD 。 分析1:由等弦AC=BD 可得出等弧 = 进一步得出 = ,从而可证等弦AB=CD ,由同圆中 等弦上的弦心距相等且分别垂直于它们所对应的弦,因此可作辅助线OE ⊥AB ,OF ⊥CD ,易证△OPE ≌△OPF ,得出PO 平分∠APD 。 证法1:作OE ⊥AB 于E ,OF ⊥CD 于F AC=BD => = => = => AB=CD => OE=OF ∠OEP=∠OFP=90° => △OPE ≌△OPF 0OP=OP =>∠OPE=∠OPF => PO 平分∠APD 分析2:如图1-1,欲证PO 平分∠APD ,即证 AB ( BD , ( CD ( D C B P O A E F P B 图 1 AC ( AC ( BD ( AB ( CD (

∠OPA=∠OPD ,可把∠OPA 与∠OPD 构造在两个 三角形中,证三角形全等,于是不妨作辅助线 即半径OA ,OD ,因此易证△ACP ≌△DBP ,得AP=DP ,从而易证△OPA ≌△OPD 。 证法2:连结OA ,OD 。 ∠CAP=∠BDP ∠APC=∠DPB =>△ACP ≌△DBP AC=BD =>AP=DP OA=OD =>△OPA ≌△OPD =>∠OPA=∠OPD =>PO 平分∠APD OP=OP 2.有直径,可作直径上的圆周角 对于关系到直径的有关问题时,可作直径上的圆周角,以便利用直径所对的圆周角是直角这个性质。 例2 如图2,在△ABC 中,AB=AC , 以AB 为直径作⊙O 交BC 于点D ,过D 作⊙O 的切线DM 交AC 于M 。求证 DM ⊥AC 。 分析:由AB 是直径,很自然想到其所 B D C M A O . A 2 1 图 2 D C B P O A P B 图1-1

初中几何证明题思路及做辅助线总结

中考几何题证明思路总结 一、证明两线段相等 1.两全等三角形中对应边相等。 2.同一三角形中等角对等边。 3.等腰三角形顶角的平分线或底边的高平分底边。 4.平行四边形的对边或对角线被交点分成的两段相等。 5.直角三角形斜边的中点到三顶点距离相等。 6.线段垂直平分线上任意一点到线段两段距离相等。 7.角平分线上任一点到角的两边距离相等。 8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。 二、证明两角相等 1.两全等三角形的对应角相等。 2.同一三角形中等边对等角。 3.等腰三角形中,底边上的中线(或高)平分顶角。 4.两条平行线的同位角、错角或平行四边形的对角相等。 5.同角(或等角)的余角(或补角)相等。 6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。 三、证明两直线平行 1.垂直于同一直线的各直线平行。 2.同位角相等,错角相等或同旁角互补的两直线平行。 3.平行四边形的对边平行。 4.三角形的中位线平行于第三边。 5.梯形的中位线平行于两底。 6.平行于同一直线的两直线平行。 7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。 四、证明两直线互相垂直 1.等腰三角形的顶角平分线或底边的中线垂直于底边。 2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。 3.在一个三角形中,若有两个角互余,则第三个角是直角。 4.邻补角的平分线互相垂直。 5.一条直线垂直于平行线中的一条,则必垂直于另一条。 6.两条直线相交成直角则两直线垂直。 7.利用到一线段两端的距离相等的点在线段的垂直平分线上。 8.利用勾股定理的逆定理。 9.利用菱形的对角线互相垂直。 10.在圆中平分弦(或弧)的直径垂直于弦。 11.利用半圆上的圆周角是直角。

最新初中数学相交线与平行线经典测试题

最新初中数学相交线与平行线经典测试题 一、选择题 1.如图,四边形ABCD 中,//,,AB CD AD CD E F =、分别是AB BC 、的中点,若140,∠=?则D ∠=( ) A .40? B .100? C .80? D .110? 【答案】B 【解析】 【分析】 利用E 、F 分别是线段BC 、BA 的中点得到EF 是△BAC 的中位线,得出∠CAB 的大小,再利用CD ∥AB 得到∠DCA 的大小,最后在等腰△DCA 中推导得到∠D. 【详解】 ∵点E 、F 分别是线段CB 、AB 的中点,∴EF 是△BAC 的中位线 ∴EF ∥AC ∵∠1=40°,∴∠CAB=40° ∵CD ∥BA ∴∠DCA=∠CAB=40° ∵CD=DA ∴∠DAC=∠DCA=40° ∴在△DCA 中,∠D=100° 故选:B 【点睛】 本题考查中位线的性质和平行线的性质,解题关键是推导得出EF 是△ABC 的中位线. 2.如图,11∥l 2,∠1=100°,∠2=135°,则∠3的度数为( ) A .50° B .55° C .65° D .70° 【答案】B 【解析】 【分析】 如图,延长l 2,交∠1的边于一点,由平行线的性质,求得∠4的度数,再根据三角形外角

性质,即可求得∠3的度数. 【详解】 如图,延长l 2,交∠1的边于一点, ∵11∥l 2, ∴∠4=180°﹣∠1=180°﹣100°=80°, 由三角形外角性质,可得∠2=∠3+∠4, ∴∠3=∠2﹣∠4=135°﹣80°=55°, 故选B . 【点睛】 本题考查了平行线的性质及三角形外角的性质,熟练运用平行线的性质是解决问题的关键. 3.下列说法中,正确的是( ) A .过一点有且只有一条直线与已知直线垂直 B .过直线外一点有且只有一条直线与已知直线平行 C .垂于同一条直线的两条直线平行 D .如果两个角的两边分别平行,那么这两个角一定相等 【答案】B 【解析】 【分析】 根据平行线的性质和判定,平行线公理及推论逐个判断即可. 【详解】 A 、在同一平面内,过一点有且只有一条直线与已知直线垂直,故本选项不符合题意; B 、过直线外一点有且只有一条直线与已知直线平行,故本选项符合题意; C 、在同一平面内,垂直于同一条直线的两直线平行,故本选项不符合题意; D 、如果两个角的两边分别平行,那么这两个角相等或互补,故本选项不符合题意; 故选:B . 【点睛】 此题考查平行线的性质和判定,平行线公理及推论,能熟记知识点的内容是解题的关键. 4.如图,已知ABC ?,若AC BC ⊥,CD AB ⊥,12∠=∠,下列结论:①//AC DE ;②3A ∠=∠;③3EDB ∠=∠;④2∠与3∠互补;⑤1B ∠=∠,其中正确的有( )

初中几何辅助线大全

初中数学辅助线的添加浅谈人们从来就是用自己的聪明才智创造条件解决问题的,当问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这是解决问题常用的策略。 一.添辅助线有二种情况: 1按定义添辅助线: 如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。 2按基本图形添辅助线: 每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。举例如下: (1)平行线是个基本图形: 当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线 (2)等腰三角形是个简单的基本图形: 当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。 (3)等腰三角形中的重要线段是个重要的基本图形:

出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。 (4)直角三角形斜边上中线基本图形 出现直角三角形斜边上的中点往往添斜边上的中线。出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。 (5)三角形中位线基本图形 几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。 (6)全等三角形: 全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线 (7)相似三角形:

几何专题——辅助线

几何专题——辅助线 平面几何是初中教学的重要组成部分,它的基础知识在生产实践和科学研究中有着广泛的应用,又是继续学习数学和其他学科的基础,但许多初中生对几何证实题感到困难,尤其是对需要添加辅助线的证实题,往往束手无策。 一、辅助线的定义: 为了证实的需要,在原来图形上添画的线叫做辅助线。 二、几种常用的辅助线:连结、作平行线、作垂线、延长等 注意:1)添加辅助线是手段,而不是目的,它是沟通已知和未知的桥梁,不能见到题目,就无目的地添加辅助线。一则没用、二则辅助线越多,图形越乱,反而妨碍思考问题。 2)添加辅助线时,一条辅助线只能提供一个条件 三、正确添加辅助线歌 人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。 还要刻苦加钻研,找出规律凭经验。图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。 要证线段倍与半,延长缩短可试验。三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。平行四边形出现,对称中心等分点。 梯形里面作高线,平移一腰试试看。平行移动对角线,补成三角形常见。 证相似,比线段,添线平行成习惯。等积式子比例换,寻找线段很关键。 直接证实有困难,等量代换少麻烦。斜边上面作高线,比例中项一大片。 半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径连。 切线长度的计算,勾股定理最方便。要想证实是切线,半径垂线仔细辨。 是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。 圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。 要想作个外接圆,各边作出中垂线。还要作个内接圆,内角平分线梦圆 假如碰到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。 若是添上连心线,切点肯定在上面。要作等角添个圆,证实题目少困难。 辅助线,是虚线,画图注重勿改变。假如图形较分散,对称旋转去实验。 基本作图很关键,平时把握要熟练。解题还要多心眼,经常总结方法显。 切勿盲目乱添线,方法灵活应多变。分析综合方法选,困难再多也会减。 虚心勤学加苦练,成绩上升成直线。几何证题难不难,关键常在辅助线; 知中点、作中线,中线处长加倍看;底角倍半角分线,有时也作处长线; 线段和差及倍分,延长截取证全等;公共角、公共边,隐含条件须挖掘; 全等图形多变换,旋转平移加折叠;中位线、常相连,出现平行就好办; 四边形、对角线,比例相似平行线;梯形问题好解决,平移腰、作高线; 两腰处长义一点,亦可平移对角线;正余弦、正余切,有了直角就方便; 非凡角、非凡边,作出垂线就解决;实际问题莫要慌,数学建模帮你忙; 圆中问题也不难,下面我们慢慢谈;弦心距、要垂弦,碰到直径周角连; 切点圆心紧相连,切线常把半径添;两圆相切公共线,两圆相交公共弦; 切割线,连结弦,两圆三圆连心线;基本图形要熟练,复杂图形多分解; 以上规律属一般,灵活应用才方便。

相交线与平行线常考题目及答案(绝对经典)

相交线与平行线 一.选择题(共3小题) 1.在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是() A.平行B.垂直C.平行或垂直 D.无法确定 2.如图,直线AB、CD相交于O,OE⊥AB,OF⊥CD,则与∠1互为余角的有() A.3个B.2个C.1个D.0个 3.如图所示,同位角共有() A.6对B.8对C.10对D.12对

二.填空题(共4小题) 4.一块长方体橡皮被刀切了3次,最多能被分成块. 5.如图,P点坐标为(3,3),l1⊥l2,l1、l2分别交x轴和y轴于A点和B 点,则四边形OAPB的面积为. 6.如图,直线l1∥l2,∠1=20°,则∠2+∠3= . 7.将一副学生用三角板按如图所示的方式放置.若AE∥BC,则∠AFD的度数是. 三.解答题(共43小题) 8.已知:直线EF分别与直线AB,CD相交于点F,E,EM平∠FED,AB∥CD,H,P分别为直线AB和线段EF上的点.

(1)如图1,HM平分∠BHP,若HP⊥EF,求∠M的度数. (2)如图2,EN平分∠HEF交AB于点N,NQ⊥EM于点Q,当H在直线AB上运动(不与点F重合)时,探究∠FHE与∠ENQ的关系,并证明你的结论. 9.我们知道,两条直线相交,有且只有一个交点,三条直线相交,最多只有三个交点,那么,四条直线相交,最多有多少个交点?一般地,n条直线最多有多少个交点?说明理由. 10.如图,直线AB,CD相交于点O,OA平分∠EOC. (1)若∠EOC=70°,求∠BOD的度数. (2)若∠EOC:∠EOD=4:5,求∠BOD的度数. 11.如图,直线EF,CD相交于点0,OA⊥OB,且OC平分∠AOF,(1)若∠AOE=40°,求∠BOD的度数; (2)若∠AOE=α,求∠BOD的度数;(用含α的代数式表示) (3)从(1)(2)的结果中能看出∠AOE和∠BOD有何关系?

初中平面几何常见添加辅助线的方法(完整资料).doc

此文档下载后即可编辑 初中几何辅助线做法 辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。 三角形 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。 四边形 平行四边形出现,对称中心等分点。梯形里面作高线,平移一腰试试看。 平行移动对角线,补成三角形常见。证相似,比线段,添线平行成习惯。 等积式子比例换,寻找线段很关键。直接证明有困难,等量代换少麻烦。 斜边上面作高线,比例中项一大片。 圆 半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径连。 切线长度的计算,勾股定理最方便。要想证明是切线,半径垂线仔细辨。 是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。 圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。

要想作个外接圆,各边作出中垂线。还要作个内接圆,内角平分线梦圆。 如果遇到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。 若是添上连心线,切点肯定在上面。要作等角添个圆,证明题目少困难。 辅助线,是虚线,画图注意勿改变。假如图形较分散,对称旋转去实验。 基本作图很关键,平时掌握要熟练。解题还要多心眼,经常总结方法显。 切勿盲目乱添线,方法灵活应多变。分析综合方法选,困难再多也会减。 一、见中点引中位线,见中线延长一倍 在几何题中,如果给出中点或中线,可以考虑过中点作中位线或把中线延长一倍来解决相关问题。 二、在比例线段证明中,常作平行线。 作平行线时往往是保留结论中的一个比,然后通过一个中间比与结论中的另一个比联系起来。 三、对于梯形问题,常用的添加辅助线的方法有 1、过上底的两端点向下底作垂线 2、过上底的一个端点作一腰的平行线 3、过上底的一个端点作一对角线的平行线 4、过一腰的中点作另一腰的平行线 5、过上底一端点和一腰中点的直线与下底的延长线相交 6、作梯形的中位线 7、延长两腰使之相交 四、在解决圆的问题中 1、两圆相交连公共弦。 2、两圆相切,过切点引公切线。 3、见直径想直角 4、遇切线问题,连结过切点的半径是常用辅助线 5、解决有关弦的问题时,常常作弦心距。

初中几何辅助线大全最全

初中几何辅助线大全-最全 三角形中作辅助线的常用方法举例 一、延长已知边构造三角形: 例如:如图7-1 :已知AC= BD, AD丄AC于A , BC丄BD于B, 求证:AD= BC 分析:欲证AD = BC,先证分别含有AD, BC的三角形全等,有几种方案:△KDC与ABCD , △XOD与△BOC’MBD与ABAC,但根据现有条件,均无法证全等,差角的相等,因此可 设法作出新的角,且让此角作为两个三角形的公共角。 证明:分别延长DA CB它们的延长交于E点, ?/ AD丄AC BC丄BD (已知) ???/ CAE=Z DBE = 90 ° (垂直的定义) 在厶DBE与△ CAE中 E E(公共角) DBE CAE(已证) BD AC(已知) ? A DBE^A CAE (AAS ?ED= EC EB = EA (全等三角形对应边相等) ?ED- EA= EC— EB 即:AD= BC (当条件不足时,可通过添加辅助线得出新的条件,为证题创造条件。) 、连接四边形的对角线,把四边形的问题转化成为三角形来解决。 三、有和角平分线垂直的线段时,通常把这条线段延长。 例如:如图9-1 :在Rt△ ABC中,AB= AC, / BAC= 90°,/ 1 = Z 2, CEL BD的延长于E。求证:BD= 2CE

分析:要证BD = 2CE,想到要构造线段2CE,同时CE

与/ABC的平分线垂直,想到要将其延长。 证明:分别延长BA CE交于点F。 ?/ BEX CF (已知) ???/ BEF=/ BEC= 90°(垂直的定义) 在厶BEF与厶BEC中, 1 2(已知) BE BE(公共边) BEF BEC(已证) 1 ? △ BEF^A BEC(ASA ?- CE=FE」CF (全等三角形对应边相等) 2 ?// BAC=90 BE 丄CF (已知) ???/ BAC=/ CAF= 90°/ 1 + / BDA= 90°/ 1 + Z BFC= 90° ???/ BDA=/ BFC 在厶ABM A ACF中 BAC CAF (已证) BDA BFC (已证) AB = AC(已知) ? △ ABD^A ACF (AAS ? BD= CF (全等三角形对应边相等)? BD= 2CE 四、取线段中点构造全等三有形。 例如:如图11-1 : AB= DC / A=/ D 求证:/ ABC=/ DCB 分析:由AB = DC ,ZA =/D,想到如取AD的中点N,连接NB , NC,再由SAS公理有△ ABN也Q CN,故BN = CN , ZABN =ZDCN。下面只需证/ NBC =ZNCB,再取BC的中点 M,连接MN,则由SSS公理有△ NBM也A CM,所以/NBC = ZNCB。问题得证。 证明:取AD, BC的中点N、M连接NB NM NC贝U AN=DN BM=C皿在厶ABN和厶DCN

平面几何辅助线添加技法总结与例题详解

平面几何辅助线添加技法总结与例题详解 一.添辅助线有二种情况: 1按定义添辅助线: 如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。 2按基本图形添辅助线: 每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。举例如下: (1)平行线是个基本图形: 当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线 (2)等腰三角形是个简单的基本图形: 当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。 (3)等腰三角形中的重要线段是个重要的基本图形: 出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。 (4)直角三角形斜边上中线基本图形 出现直角三角形斜边上的中点往往添斜边上的中线。出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。 (5)三角形中位线基本图形 几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。 (6)全等三角形:

初中几何画辅助线的99条规律

初中几何画辅助线的99条规律 都说几何难,那是你没找到画辅助线的规律,一起来看看这99条规律,对几何做题一定大有帮助。 规律1 如果平面上有n(n≥2)个点,其中任何三点都不在同一直线上,那么每两点画一条直线,一共可以画出n(n-1)条。 规律2 平面上的n条直线最多可把平面分成〔n(n+1)/2+1〕个部分。 规律3 如果一条直线上有n个点,那么在这个图形中共有线段的条数为n(n-1)条。 规律4 线段(或延长线)上任一点分线段为两段,这两条线段的中点的距离等于线段长的一半。 规律5 有公共端点的n条射线所构成的角的个数一共有n(n-1)个。 规律6 如果平面内有n条直线都经过同一点,则可构成小于平角的角共有2n(n-1)个。 规律7 如果平面内有n条直线都经过同一点,则可构成n(n-1)对对顶角。 规律8 平面上若有n(n≥3)个点,任意三个点不在同一直线上,过任意三点作三角形一共可作出n(n-1)(n-2)个。 规律9 互为邻补角的两个角平分线所成的角的度数为90°。 规律10 平面上有n条直线相交,最多交点的个数为n(n-1)个。 规律11 互为补角中较小角的余角等于这两个互为补角的角的差的一半。

规律12 当两直线平行时,同位角的角平分线互相平行,内错角的角平分线互相平行,同旁内角的角平分线互相垂直。 规律13 在证明直线和圆相切时,常有以下两种引辅助线方法: ⑴当已知直线经过圆上的一点,那么连结这点和圆心,得到辅助半径,再证明所作半径与这条直线垂直即可。 ⑵如果不知直线与圆是否有交点时,那么过圆心作直线的垂线段,再证明垂线段的长度等于半径的长即可。 规律14 成“8”字形的两个三角形的一对内角平分线相交所成的角等于另两个内角和的一半。 规律15 在利用三角形三边关系证明线段不等关系时,如果直接证不出来,可连结两点或延长某边构造三角形,使结论中出现的线段在一个或几个三角形中,再利用三边关系定理及不等式性质证题。 注意:利用三角形三边关系定理及推论证题时,常通过引辅助线,把求证的量(或与求证有关的量)移到同一个或几个三角形中去然后再证题。 规律16 三角形的一个内角平分线与一个外角平分线相交所成的锐角,等于第三个内角的一半。 规律17 三角形的两个内角平分线相交所成的钝角等于90o加上第三个内角的一半。 规律18 三角形的两个外角平分线相交所成的锐角等于90o减去第三个内角的一半。 规律19 从三角形的一个顶点作高线和角平分线,它们所夹的角等于三角形另外两个角差(的绝对值)的一半。 注意:同学们在学习几何时,可以把自己证完的题进行适当变换,从而使自己通过解一道题掌握一类题,提高自己举一反三、灵活应变的能力。

数学几何问题添加辅助线方法大全

数学几何问题添加辅助线方法大全 规律1.如果平面上有n(n ≥2)个点,其中任何三点都不在同一直线上,那么每两点画 一条直线,一共可以画出 1 2 n(n -1)条. 规律2.平面上的n 条直线最多可把平面分成〔1 2 n(n+1)+1〕个部分. 规律3.如果一条直线上有n 个点,那么在这个图形中共有线段的条数为 1 2 n(n -1)条. 规律4.线段(或延长线)上任一点分线段为两段,这两条线段的中点的距离等于线段 长的一半. 例:如图,B 在线段AC 上,M 是AB 的中点,N 是BC 的中点. 求证:MN = 12 AC 证明:∵M 是AB 的中点,N 是BC 的中点 ∴AM = BM = 12AB ,BN = CN = 12BC ∴MN = MB+BN = 12AB + 12BC = 1 2 (AB + BC) ∴MN = 1 2 AC 练习:1.如图,点C 是线段AB 上的一点,M 是线段BC 的中点. 求证:AM = 1 2 (AB + BC) 2.如图,点B 在线段AC 上,M 是AB 的中点,N 是AC 的中点. 求证:MN = 12 BC 3.如图,点B 在线段AC 上,N 是AC 的中点,M 是BC 的中点. N M C B A M C B A N M C B A

求证:MN = 12 AB 规律5.有公共端点的n 条射线所构成的交点的个数一共有 1 2 n(n -1)个. 规律6.如果平面内有n 条直线都经过同一点,则可构成小于平角的角共有2n (n -1) 个. 规律7. 如果平面内有n 条直线都经过同一点,则可构成n (n -1)对对顶角. 规律8.平面上若有n (n ≥3)个点,任意三个点不在同一直线上,过任意三点作三角 形一共可作出 1 6 n (n -1)(n -2)个. 规律9.互为邻补角的两个角平分线所成的角的度数为90o . 规律10.平面上有n 条直线相交,最多交点的个数为 1 2 n(n -1)个. 规律11.互为补角中较小角的余角等于这两个互为补角的角的差的一半. 规律12.当两直线平行时,同位角的角平分线互相平行,内错角的角平分线互相平行, 同旁内角的角平分线互相垂直. 例:如图,以下三种情况请同学们自己证明. 规律13.已知AB ∥DE,如图⑴~⑹,规律如下: 规律14.成“8”字形的两个三角形的一对内角平分线相交所成的角等于另两个内角和的一半. 例:已知,BE 、DE 分别平分∠ABC 和∠ ADC ,若∠A = 45o ,∠C = 55o ,求∠E 的度数. 解:∠A +∠ABE =∠E +∠ADE ① 1()∠ABC+∠BCD+∠CDE=360?E D C B A +=∠CDE ∠ABC ∠BCD 2()E D C B A -=∠CDE ∠ABC ∠BCD 3()E D C B A -=∠CDE ∠AB C ∠BC D 4() E D C B A +=∠CDE ∠AB C ∠BC D 5() E D C B A +=∠CDE ∠ABC ∠BCD 6() E D C B A M B A H G F E D B C A H G F E D B C A H G F E D B C A N M C B A

相关文档
最新文档