机器视觉之图像采集原理
机器视觉技术的原理及应用

机器视觉技术的原理及应用随着人工智能技术的不断发展,机器视觉技术也逐渐成为了人们关注的焦点之一。
机器视觉技术是一种通过计算机模拟人眼进行图像识别和分析的技术,其主要应用于工业自动化、安防监控、医疗健康、智能家居等领域。
本文将详细介绍机器视觉技术的原理及应用。
一、机器视觉技术的原理机器视觉技术是基于数字图像的处理,通过对传感器采集的视觉信息进行图像处理和分析,从而实现对图像的识别和理解。
机器视觉技术的核心技术是图像处理技术和模式识别技术。
1. 图像处理技术图像处理技术是机器视觉技术的基础。
它包括图像获取、预处理、特征提取、分割、增强、变形、压缩和重构等过程。
其中,预处理是将采集到的图像进行去噪、滤波和几何校正等处理,使图像更加清晰、准确。
特征提取是从预处理后的图像中提取出被识别物体的特征,如颜色、纹理、形状、大小等。
分割是将图像中的前景和背景进行分离,以便进一步处理。
增强是通过图像处理技术提高图像质量,如增强对比度、锐度等。
2. 模式识别技术模式识别技术是机器视觉技术的核心部分,其主要任务是对预处理后的图像进行解析、分类和识别。
机器视觉技术主要采用的模式识别技术包括统计学、人工神经网络、支持向量机和决策树等。
其中,人工神经网络是最常用的模式识别技术之一,其模拟人类大脑的神经元构建识别模型,通过学习训练数据来实现对图像的分类和识别。
二、机器视觉技术的应用机器视觉技术在工业自动化、安防监控、医疗健康、智能家居等领域有广泛的应用。
1. 工业自动化机器视觉技术在工业制造中的应用主要是利用计算机视觉系统对制造过程进行监控和控制。
例如,机器人在生产过程中通过图像检测技术实现自我定位和精确定位,从而提高了生产效率和制品质量。
在生产线上,机器视觉技术实现了产品的缺陷检测和质量控制,从而提高了产品的一致性和可靠性。
2. 安防监控机器视觉技术在安防监控领域是一种非常有效的技术。
通过数字摄像机、视频处理和传输技术,将监控的图像信号传输给计算机进行处理和分析。
机器视觉工作原理

机器视觉工作原理机器视觉是一门涵盖图像处理、模式识别、计算机视觉、机器学习等多学科交叉的技术领域。
它通过模仿人类视觉系统,利用计算机和相应的硬件设备,实现对图像和视频进行感知、分析和理解的过程。
本文将详细介绍机器视觉的工作原理。
一、图像采集机器视觉的首要任务是从外部环境中获取图像信息。
常用的图像采集设备包括摄像机、扫描仪、摄像头等。
在采集图像时,设备会将光学信号转换为电信号,并经过模数转换器转化为数字信号。
二、图像预处理由于采集到的图像可能存在噪声、光照变化等问题,需要进行预处理来提高图像质量。
图像预处理的主要任务包括去噪、增强、调整图像尺寸等。
去噪可以通过滤波器进行,增强则可以通过改变对比度、亮度等来实现。
三、特征提取特征提取是机器视觉中的核心环节,它通过分析图像中的关键特征,将其转化为计算机可识别的形式。
在图像处理领域,常用的特征提取算法包括边缘检测、角点检测、纹理分析等。
这些算法可以在图像中找到目标物体的形状、纹理、颜色等特征。
四、目标检测与识别目标检测是指在图像中找到感兴趣的目标并标记出来,而目标识别则是将检测到的目标与已知的目标进行匹配,从而确定它们的类别。
常用的目标检测与识别方法包括模板匹配、神经网络、机器学习等。
这些方法可以根据已有的数据对目标进行分类和识别。
五、目标跟踪目标跟踪是指在视频序列中实时追踪目标的位置和运动。
通过对前后帧图像的比较和分析,能够准确地追踪目标物体的移动、变形等。
常用的目标跟踪算法包括卡尔曼滤波、粒子滤波、MeanShift等。
六、决策与控制通过前面的步骤,机器视觉系统已经获取了目标物体的特征和位置信息。
接下来,根据预先设定的策略,决策系统会根据分析结果做出相应的决策,并传递给控制系统。
控制系统可以通过执行机械动作、控制输出信号等方式实现对目标物体的操控。
七、应用领域机器视觉技术在众多领域都有广泛应用,包括工业制造、无人驾驶、医疗影像、物体识别、安防监控等。
机器视觉中的图像采集技术

收稿日期:20021025作者简介:刘焕军,硕士生,研究方向为图像处理、机器视觉;王耀南,教授,博士生导师,主要从事图像处理,智能控制等方面的研究工作;段 峰,博士生,研究方向为图像处理、机器视觉。
机器视觉中的图像采集技术刘焕军,王耀南,段 峰(湖南大学电气与信息工程学院,长沙 410082)摘 要:文章介绍了图像采集系统的构成以及在机器视觉中的重要性,阐述了图像采集系统中关于摄像机、镜头、图像采集卡和光源等方面的诸多实用技术,论述了设计图像采集系统时要注意的问题和原则。
关键词:机器视觉;图像采集;摄像机;图像采集卡;光源Abstract :The structure of image capture and its importance in machine vision is introduced in this paper.Some issues about camera and lens,frame grabber ,light source are ex pounded.The question and principle w hen people design imag e capture are also discussed .Key words :m achine vision;im age capture;camera;frame grabber;lig ht source0 引言机器视觉是指用计算机来实现人的视觉功能,也就是用计算机来实现对客观世界的识别。
一个典型的机器视觉系统一般包括图像采集部分、图像处理部分、通信和I/O 部分以及输出和执行机构等。
图像采集是一个重要的环节,它将对象的可视化图像和特征转化为能被计算机处理的一系列数据。
由于机器视觉系统强调精度和速度,所以需要图像采集部分及时、准确地提供清晰的图像,只有这样,图像处理部分才能在比较短的时间内得出正确的结果。
由此可知图像采集部分的性能会直接影响整个机器视觉系统的性能。
机器视觉工作原理

机器视觉工作原理
机器视觉是指计算机模拟人类的视觉系统,通过摄像机或其他传感器采集图像数据,然后对这些数据进行处理和分析,从而实现对图像内容的理解和识别。
其工作原理可以概括为以下几个步骤:
1. 图像获取:通过摄像机、雷达等传感器采集到现实世界中的图像数据。
这些数据可以是二维图像,也可以是三维点云数据。
2. 图像预处理:对采集到的图像进行预处理,包括去除噪声、图像增强、边缘检测等。
这些预处理操作能够提高后续的图像处理和分析的准确性和效率。
3. 特征提取:通过各种图像处理算法,从图像中提取出有用的特征信息。
例如,可以提取出图像中的边缘、角点、纹理等特征。
4. 特征匹配与跟踪:通过比较和匹配提取到的特征,进行对象的跟踪和识别。
例如,在视频中跟踪目标的运动轨迹。
5. 目标检测与识别:利用机器学习和深度学习等算法,对图像中的目标进行检测和识别。
这可以是对已知目标的分类,也可以是对未知目标的辨识。
6. 结果输出和应用:将处理和分析得到的结果进行输出,可以是显示在屏幕上、保存到文件中,也可以是控制其他系统的动作。
例如,自动驾驶车辆根据视觉系统的分析结果进行行驶决
策。
总之,机器视觉的工作原理是通过采集、预处理、特征提取、特征匹配、目标检测与识别等一系列处理步骤,将图像数据转化为对现实世界的理解和识别。
这样可以实现对图像内容的分析、处理和应用。
图像采集与图像采集系统概述

图像采集示意图
coms图像采集系统原理.
coms .
图 像 采 集 系 统 原 理
图像采集基本知识 视频采集 •即将视频转换成PC机可使用的数字格式。 微视专业图象采集卡是将视频信号经过AD转换后,经过PCI总线实时传到内存 和显存。 •在采集过程中,由于采集卡传送数据采用PCI Master Burst方式,图象传送速 度高达33MB/S,可实现摄像机图像到计算机内存的可靠实时传送,并且几乎不 占用CPU时间,留给CPU更多的时间去做图像的运算与处理。 •图象速率及采集的计算公式 •帧图像大小(Image Size):W×H(长×宽)---您必须首先了解:需要采集 多大的图象尺寸? • 颜色深度∶d(比特数)---希望采集到的图象颜色(8Bit灰度图象还是 16/24/32Bit真彩色) 帧 速∶f---标准PAL制当然就是25帧,非标准就没准了!500-1000帧都有可能 数 据 量∶Q(MB)---图象信号的数据量
4、分辨率:采集卡能支持的最大点阵反映了其分辨率的性能。一般采集卡能支持 768*576点阵,而性能优异的采集卡其支持的最大点阵可达64K*64K。单最大点数和 单帧最大行数也可反映采集卡的分辨率性能。 5、采样频率:采样频率反映了采集卡处理图像的速度和能力。在进行高度图像采集 时,需要注意采集卡的采样频率是否满足要求。 6、传输速率:主流图像采集卡与主板间都采用PCI接口,其理论传输速du132MB/S 。 随着数字化信息的快速发展,图像采集卡在监控、远程教学、大屏拼接、医疗等众 多行业中都有着广泛的应用。
• 视频采集卡是我们进行视频处理必不可少的硬件设备,是视频数字化合数字 • 化视频编辑后期制作中必不可少的硬件设备。通过视频采集卡,可以把摄像 • 机拍摄的视频信号从摄像带上转存到计算机中,利用相关的视频编辑软件 • , • 对数字化的视频信号进行后期编辑处理,比如剪切画面,添加滤镱,字幕和 • 音效,设置转场效果以及加入各种视频特效等等,最后将编辑完成的视频信 • 号转换成标准的VCD,DVD以及网上流媒体等格式,方便传播和保存
机器视觉技术原理

机器视觉技术原理
机器视觉技术是一种利用计算机视觉和图像处理技术,使计算机能够模拟和理解人类视觉系统的能力。
其原理基于以下几个核心步骤:
1. 图像获取:机器视觉系统首先需要获取待处理的图像或视频。
这可以通过相机、摄像机或其他图像传感器来实现。
2. 图像预处理:在对图像进行进一步分析之前,通常需要进行预处理步骤。
这包括图像去噪、增强对比度、调整颜色平衡等操作,以提高后续处理的效果。
3. 特征提取:在特征提取阶段,机器视觉系统会从图像中提取出代表目标或感兴趣区域的关键特征。
这些特征可以是边缘、角点、纹理、颜色、形状等。
4. 特征匹配:特征匹配是将提取的特征与已知的模板或数据库中的特征进行比对的过程。
通过比对,机器视觉系统可以确定目标的位置、识别物体等。
5. 目标检测和识别:在目标检测和识别阶段,机器视觉系统可以根据先前提取的特征和模型,对图像中的物体进行检测、分类和识别。
这可能涉及使用机器学习算法。
6. 决策和输出:最后,机器视觉系统会根据分析结果做出决策,并将结果以可视化形式或其他方式输出,如标记目标位置、显示识别结果等。
1/ 1。
机器视觉技术的原理及应用案例

机器视觉技术的原理及应用案例一、机器视觉技术的原理机器视觉是利用计算机对图像进行处理和分析来获取相关信息的技术。
它主要包括采集图像、图像处理和图像识别三个环节。
1. 采集图像采集图像是机器视觉的第一步。
常用的采集设备有CCD相机、工业相机、激光扫描仪等。
这些设备可以按照不同的需求选择不同的分辨率、灵敏度、速度和适应不同环境的设备。
2. 图像处理图像处理是机器视觉中最重要的环节。
根据不同的应用场景,可以采取不同的算法和技术,在此只介绍一些常用的技术。
(1)图像增强:将原始图像变成更容易被处理的高质量图像的方法,包括暗区增强、对比度调整、锐化等技术。
(2)特征提取:通过将图像的特征提取出来进行分析,如边缘检测、色彩分析、形状分析等,得到有用的信息。
(3)图像配准:将两幅图像的特征匹配,以便进行更深层次的分析和计算。
如点匹配、区域匹配等。
(4)背景分割:将图像中的前景和背景分离,进而更好的完成下一步的处理和分析。
3. 图像识别图像识别是机器视觉的核心技术,它是基于特征提取和处理得到的信息进行分类和判断的过程。
常用的技术包括:(1)分类器技术:将特征分类并分配给预定的对象,如SVM、神经网络等。
(2)匹配技术:将提取的特征与预定的模型匹配,以确定图像所属对象的过程。
(3)语义分析:将从图像中提取出的关键信息与背景知识结合起来进行分析,以提高识别的准确性。
二、机器视觉技术的应用案例机器视觉技术已经广泛应用于各个领域,以下列举了一些具有代表性的应用案例。
1. 工业制造机器视觉技术在工业制造领域中有着广泛的运用,包括自动化制造、品质检测和安全监测等方面。
如汽车生产中的精密零件测量、电子产品中的质量检测、钢铁厂的物料分拣等。
2. 医疗保健机器视觉技术在医疗保健领域中主要应用于影像检测和医疗辅助诊断。
如CT、MRI等扫描器的影像识别、医疗图像分类、医疗图像分割等。
3. 农业机器视觉技术在农业领域中的应用也越来越广泛,主要应用于作物检测、品种识别和病虫害监测等方面。
机器视觉(1)

第二节 工业相机
一、工业相机的基本概念(1)
传感器的尺寸
图像传感器感光区域的面积大小。这个尺寸直接 决定了整个系统的物理放大率。如:1/3“、1/2” 等。绝大多数模拟相机的传感器的长宽比例是4: 3 (H:V),数字相机的长宽比例则包括多种:1: 1,16:9,3:2 etc。
机器视觉中的图像采集技术硬件基础知识
机器视觉中的图像采集技术硬件基础知识
第一节 工业镜头
二、镜头的分类(3)
按照用途分
微距镜头(或者成为显微镜头) 用于拍摄较小的目标具有很大的放大比
远心镜头 包括物方远心镜头和像方远心镜头以及双边远心镜头。
机器视觉中的图像采集技术硬件基础知识
第一节 工业镜头
二、镜头的分类(4)
关于远心镜头
远心指的是一种光学的设计模式:系统的出瞳和入瞳的位置 在无限远处。
MTF能够同时表征系统重现物方空间的几何和灰度细 节能力,是衡量成像系统性能的最佳方式。 对于一个实际的成像系统,细节密集地方的对比度要 小于细节稀疏位置的对比度
成像系统中的每个环节都对系统最终的MTF产生影像, 包括滤色片,镜头,图像传感器,后期处理电路等等。
机器视觉中的图像采集技术硬件基础知识
实际焦距×43mm 镜头成像圆的直径
机器视觉中的图像采集技术硬件基础知识
第一节 工业镜头
二、镜头的分类(2)
按照功能分
变焦距镜头 镜头的焦距可以调节,镜头的视角,视野可变
定焦距镜头 镜头的焦距不能调节,镜头视角固定。聚焦位置和光圈可以 调节
定光圈镜头 光圈不能调节,通常情况下聚焦也不能调节。
美制 RS – 170 Norm
欧制 CCIR - Norm
640 480 480
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
联为智能教育
图像采集原理
视频采集
即将视频转换成PC机可使用的数字格式。
维视专业图象采集卡是将视频信号经过AD转换后,经过PCI总线实时传到内存和显存。
在采集过程中,由于采集卡传送数据采用PCIMasterBurst方式,图象传送速度高达33MB/S,可实现摄像机图像到计算机内存的可靠实时传送,并且几乎不占用CPU时间,留给CPU更多的时间去做图像的运算与处理。
图象速率及采集的计算公式
帧图像大小(Image Size):W×H(长×宽)---您必须首先了解:需要采集多大的图象尺寸?
颜色深度∶d(比特数)---希望采集到的图象颜色(8Bit灰度图象还是16/24/32Bit真彩色)
帧速∶f---标准PAL制当然就是25帧,非标准就没准了!500-1000帧都有可能
数据量∶Q(MB)---图象信号的数据量
采样率∶A(MB)---采集卡的采样率,通过其产品手册可知
计算公式∶ Q=W×H×f×d/8
判断标准∶如果A>Q×1.2,则该采集卡能够胜任采集工作。
视频源
使用各种图象采集卡,首先需要您提供采集或压缩用的视频源。
视频源可以是∶
VCD影碟机、已有的录像带、摄录机、LD视盘、CCD摄像头、监视器的视频输出等等。
一台摄录机和使用摄录机录制的录像带.一台盒式录像机或磁带录像机和已录制的录像带.LD光盘播放机LD光盘或VideoCD播放机和VCD摄录机或CCD摄像机在医疗影像中,视频源常常是CT、X光机、B超、内窥镜、甚至MRI核磁共振等等。
各种工业、军事上的高速非标准视频信号,如每秒200帧、500帧、甚至上千帧…
(如用DALSA、PULNIX等高档数字像机作为视频源)
其它标准图像源设备必须使用NTSC或PAL格式,有复合视频或S-Video,甚至RGB输出接口;非标准信号需要得到其行频、场频等信息,可用示波器或微视测试卡。
如需声音采集则还需要单声道或立体声的RCA音频输出接口。
您可使用我们提供的视频信号线将视频源设备与PC机的图象采集卡相应端口相连。