电容式传感器
合集下载
电容式传感器

1、特点: 1)温度稳定性好
电容值与电极材料无关,仅取决于电极的几何尺寸,且空 气等介质的损耗很小。因此仅需从强度、温度系数等机械性考 虑,合理选择尺寸即可,本身发热极小,影响稳定性甚微。 2)结构简单,适用性强。
3)动态响应好。 (固有频率很高,动态响应时间很短外,又由于其介质损耗小, 可以用较高频率供电,因此系统工作频率高。 4)可以实现非接触式测量,具有平均效应。
d d0
d d0
2
d d0
3
C
C1
C2
C0
2
d d0
2
d d0
3
2
d d0
C
0
1
d d0
2
d d0
4
略去高次项,则
C
2
d d0
C0
传感器的灵敏度为 K C 2C0 d d0
其非线性误差为
( d )3
d 0 (d /d 0)2 100%
( d ) d0
灵敏度较单组变极距型提高了一倍,非线性大大减小。
②等有U关sc ,与任电何源这电些压参U数的、波固动定都电将容使C0及输电出容特式性传产感生器误的差ε,0因、此A 固定电容C0必须稳定,且需要高精度的交流稳压源。 ③由于电容传感器的电容小,容抗很高,故传感器与放大器之 间的联结,需要有屏蔽措施。 ④不适用于差动式电容传感器的测量。
五、电容式传感器的特点及设计要点
主要缺点:
输出阻抗高,负载能力差 寄生电容影响大
输出特性是非线性
2、设计要点
设计时可从以下几个方面考虑:
1)减小环境温度、湿度等变化所产生的误差,保证绝缘材料
的绝缘性能;
2)消除和减小边缘效应 边缘效应不仅使电容传感器灵敏度降低而且产生非线性,
电容值与电极材料无关,仅取决于电极的几何尺寸,且空 气等介质的损耗很小。因此仅需从强度、温度系数等机械性考 虑,合理选择尺寸即可,本身发热极小,影响稳定性甚微。 2)结构简单,适用性强。
3)动态响应好。 (固有频率很高,动态响应时间很短外,又由于其介质损耗小, 可以用较高频率供电,因此系统工作频率高。 4)可以实现非接触式测量,具有平均效应。
d d0
d d0
2
d d0
3
C
C1
C2
C0
2
d d0
2
d d0
3
2
d d0
C
0
1
d d0
2
d d0
4
略去高次项,则
C
2
d d0
C0
传感器的灵敏度为 K C 2C0 d d0
其非线性误差为
( d )3
d 0 (d /d 0)2 100%
( d ) d0
灵敏度较单组变极距型提高了一倍,非线性大大减小。
②等有U关sc ,与任电何源这电些压参U数的、波固动定都电将容使C0及输电出容特式性传产感生器误的差ε,0因、此A 固定电容C0必须稳定,且需要高精度的交流稳压源。 ③由于电容传感器的电容小,容抗很高,故传感器与放大器之 间的联结,需要有屏蔽措施。 ④不适用于差动式电容传感器的测量。
五、电容式传感器的特点及设计要点
主要缺点:
输出阻抗高,负载能力差 寄生电容影响大
输出特性是非线性
2、设计要点
设计时可从以下几个方面考虑:
1)减小环境温度、湿度等变化所产生的误差,保证绝缘材料
的绝缘性能;
2)消除和减小边缘效应 边缘效应不仅使电容传感器灵敏度降低而且产生非线性,
电容式传感器介绍

演讲人
电容式传感器介绍
电容式传感器原理
电容式传感器分类
电容式传感器发展趋势
电容式传感器应用实例
电容式传感器原理
电容式传感器定义
电容式传感器是一种通过检测电容变化来测量物理量的传感器。
电容式传感器主要由两个平行电极板组成,其中一个电极板固定,另一个电极板可以移动。
当被测物体靠近或远离固定电极板时,两个电极板之间的电容会发生变化,从而实现对被测物体的测量。
01
工业自动化:用于检测和控制生产过程中的各种参数
02
消费电子:应用于手机、电脑等电子产品的触摸屏和按键控制
03
汽车电子:用于汽车安全气囊、刹车系统等安全设备的控制
04
医疗设备:用于医疗设备的检测和控制,如心电图仪、血压计等
电容式传感器分类
变极距式电容传感器
工作原理:通过改变两个极板之间的距离来改变电容量
4
谢谢
01
变介质式电容传感器
01
原理:利用介质的介电常数变化来检测目标物
02
应用:广泛应用于液位、压力、流量等测量领域
03
特点:结构简单、灵敏度高、响应速度快
04
局限性:受介质特性影响较大,需要选择合适的介质材料
电容式传感器应用实例
触摸屏应用
1
智能手机:电容式触摸屏广泛应用于智能手机,实现多点触控操作。
02
集成化:电容式传感器将与其他传感器进行集成,实现多参数测量,提高测量效果。
微型化:电容式传感器将向微型化方向发展,便于安装和使用,降低成本。
04
节能、环保
低功耗设计:降低能耗,提高能源利用率
1
环保材料:使用环保材料,减少对环境的影响
电容式传感器介绍
电容式传感器原理
电容式传感器分类
电容式传感器发展趋势
电容式传感器应用实例
电容式传感器原理
电容式传感器定义
电容式传感器是一种通过检测电容变化来测量物理量的传感器。
电容式传感器主要由两个平行电极板组成,其中一个电极板固定,另一个电极板可以移动。
当被测物体靠近或远离固定电极板时,两个电极板之间的电容会发生变化,从而实现对被测物体的测量。
01
工业自动化:用于检测和控制生产过程中的各种参数
02
消费电子:应用于手机、电脑等电子产品的触摸屏和按键控制
03
汽车电子:用于汽车安全气囊、刹车系统等安全设备的控制
04
医疗设备:用于医疗设备的检测和控制,如心电图仪、血压计等
电容式传感器分类
变极距式电容传感器
工作原理:通过改变两个极板之间的距离来改变电容量
4
谢谢
01
变介质式电容传感器
01
原理:利用介质的介电常数变化来检测目标物
02
应用:广泛应用于液位、压力、流量等测量领域
03
特点:结构简单、灵敏度高、响应速度快
04
局限性:受介质特性影响较大,需要选择合适的介质材料
电容式传感器应用实例
触摸屏应用
1
智能手机:电容式触摸屏广泛应用于智能手机,实现多点触控操作。
02
集成化:电容式传感器将与其他传感器进行集成,实现多参数测量,提高测量效果。
微型化:电容式传感器将向微型化方向发展,便于安装和使用,降低成本。
04
节能、环保
低功耗设计:降低能耗,提高能源利用率
1
环保材料:使用环保材料,减少对环境的影响
电容式传感器

当电容式传感器的供电电源频率较高时,传感器的灵敏度由kg变 为ke,ke与传感器的固有电感(包括电缆电感)有关,且随ω变化 而变化。
0 r1 L0 b0
d0
当L=0时,传感器的初始电容 C 0
0 L0 b0
d0
当被测电介质进入极板间L深度后,引起电容相对变化量为
C C C 0 ( r 2 1) L 电容变化量与电介质移动量L呈线性关系 C0 C0 L0
4. 变极距型电容传感器
初始电容 C 0 若极距缩小△d
d ) C0 0 r s d C C 0 C 2 d d d d 1 1 d d C 0 (1
0 r s
d
非线性关系
若△d/d<<1时,则上式可简化为
d C C0 C0 d
最大位移应小于间距的1/10
差动式改善其非线性 差动式
1 1 Xc d C S
被测量与d 成线性关系 无需满足 d d
3.4 电容式传感器
3.4.1 3.4.2 3.4.3 3.4.4 3.4.5 3.4.6 3.4.7 电容式传感器的工作原理 电容式传感器主要性能 电容式传感器的特点和设计要点 电容式传感器等效电路 电容式传感器测量电路 电容式传感器的应用 容栅式传感器
由于电容传感器电容量一般都很小,电源频率即使采用几兆赫, 容抗仍很大,而R很小可以忽略,因此
1 1 1 LC 1 j L R j L jCe jC jC jC
2
Ce
C 1 2 LC
C C Ce Ce Ce 2 1 LC 1 2 L(C C ) C C C C C Ce Ce 2 2 1 L(C C ) 1 L(C C ) 1 2 LC
0 r1 L0 b0
d0
当L=0时,传感器的初始电容 C 0
0 L0 b0
d0
当被测电介质进入极板间L深度后,引起电容相对变化量为
C C C 0 ( r 2 1) L 电容变化量与电介质移动量L呈线性关系 C0 C0 L0
4. 变极距型电容传感器
初始电容 C 0 若极距缩小△d
d ) C0 0 r s d C C 0 C 2 d d d d 1 1 d d C 0 (1
0 r s
d
非线性关系
若△d/d<<1时,则上式可简化为
d C C0 C0 d
最大位移应小于间距的1/10
差动式改善其非线性 差动式
1 1 Xc d C S
被测量与d 成线性关系 无需满足 d d
3.4 电容式传感器
3.4.1 3.4.2 3.4.3 3.4.4 3.4.5 3.4.6 3.4.7 电容式传感器的工作原理 电容式传感器主要性能 电容式传感器的特点和设计要点 电容式传感器等效电路 电容式传感器测量电路 电容式传感器的应用 容栅式传感器
由于电容传感器电容量一般都很小,电源频率即使采用几兆赫, 容抗仍很大,而R很小可以忽略,因此
1 1 1 LC 1 j L R j L jCe jC jC jC
2
Ce
C 1 2 LC
C C Ce Ce Ce 2 1 LC 1 2 L(C C ) C C C C C Ce Ce 2 2 1 L(C C ) 1 L(C C ) 1 2 LC
电容式传感器

当覆盖长度变化时,电容量也 随之变化。当内筒上移为a 时, 内外筒间的电容C1为:
D0
圆柱形电容式线位移传感器
3. 变介电常数型电容传感器 (a) 单组式平板形厚度传感器
C1 δx
C2 C3
C
厚度传感器
厚度传感器的等效电路
设固定极板长度为a、宽度为b、两极板间的距离 为δ;被测物的厚度和它的介电常数分别为δx和ε , ab 则
容抗大还要求传感器绝缘部分的电 阻值极高(几十MΩ以上),否则绝缘部分 将作为旁路电阻而影响传感器的性能(如 灵敏度降低),为此还要特别注意周围环 境如温湿度、清洁度等对绝缘性能的影响。
高频供电虽然可降低传感器输出阻抗, 但放大、传输远比低频时复杂,且寄生电 容影响加大,难以保证工作稳定。
(2)寄生电容影响大 传感器的初始电容量很小,而其引线电 缆电容(l~2m导线可达800pF)、测量电路 的杂散电容以及传感器极板与其周围导体 构成的电容等“寄生电容”却较大。
4.4.2 电容式传感器的类型和特性
1. 变极距型电容传感器
C
极板1
△C
δ
C0 极板2
△δ
0
变极距型电容传感器
δ0
δ
C-δ特性曲线
设动片未移动时极板间距为δ0 S 初始电容量为: C 0 0 下极板上移:
S S C C0 0 0 0 0 0 S
4.4 电容式传感器的工作原理及特性
4.4.1 基本工作原理 平行极板电容器的电容量为:
S 0 r S C
S ——极板的遮盖面积,单位为m2; ε ——极板间介质的介电系数; δ——两平行极板间的距离,单位为m; ε0 ——真空的介电常数,ε0 =8.854×10-12 F/m; εr ——极板间介质的相对介电常数,对于空气介质,εr ≈1。
电容式传感器

电容式传感器与电阻式、电感式传感器相比具有以下优点: ①测量范围大。 ②灵敏度高。 ③动态响应时间短。由于电容式传感器可动部分质量很小,
因此其固有频率很高,适用于动态信号的测量。 ④机械损失小。电容式传感器电极间相互吸引力十分微小,
又无摩擦存在,其自然热效应甚微,从而保证传感器具有较 高的精度。
上一页 下一页 返回
第三节 电气火灾消防知识
(3)接触不良引起过热如接头连接不牢或不紧密、动触点压 力过小等使接触电阻过大,在接触部位发生过热而引起火灾。
(4)通风散热不良大功率设备缺少通风散热设施或通风散热 设施损坏造成过热而引发火灾。
(5)电器使用不当如电炉、电熨斗、电烙铁等未按要求使用, 或用后忘记断开电源,引起过热而导致火灾。
上一页 下一页 返回
第一节 安全用电知识
正确使用绝缘操作用具,应注意以下两点:
(1)绝缘操作用具本身必须具备合格的绝缘性能和机械强度。
(2)只能在和其绝缘性能相适应的电气设备上使用。
2.绝缘防护用具
绝缘防护用具则对可能发生的有关电气伤害起到防护作用。 主要用于对泄漏电流、接触电压、跨步电压和其他接近电气 设备存在的危险等进行防护。常用的绝缘防护用具有绝缘手 套、绝缘靴、绝缘隔板、绝缘垫、绝缘站台等,如图7-3所示。 当绝缘防护用具的绝缘强度足以承受设备的运行电压时,才 可以用来直接接触运行的电气设备,一般不直接触及带电设 备。使用绝缘防护用具时,必须做到使用合格的绝缘用具, 并掌握正确的使用方法。
3.变介电常数式电容传感器 因为各种介质的相对介电常数不同,所以在电容器两极板间
插入不同介质时,电容器的电容量也就不同,利用这种原理 制作的电容传感器称为变介电常数式电容传感器,它们常用 来检测片状材料的厚度、性质,颗粒状物体的含水量以及测 量液体的液位等。
因此其固有频率很高,适用于动态信号的测量。 ④机械损失小。电容式传感器电极间相互吸引力十分微小,
又无摩擦存在,其自然热效应甚微,从而保证传感器具有较 高的精度。
上一页 下一页 返回
第三节 电气火灾消防知识
(3)接触不良引起过热如接头连接不牢或不紧密、动触点压 力过小等使接触电阻过大,在接触部位发生过热而引起火灾。
(4)通风散热不良大功率设备缺少通风散热设施或通风散热 设施损坏造成过热而引发火灾。
(5)电器使用不当如电炉、电熨斗、电烙铁等未按要求使用, 或用后忘记断开电源,引起过热而导致火灾。
上一页 下一页 返回
第一节 安全用电知识
正确使用绝缘操作用具,应注意以下两点:
(1)绝缘操作用具本身必须具备合格的绝缘性能和机械强度。
(2)只能在和其绝缘性能相适应的电气设备上使用。
2.绝缘防护用具
绝缘防护用具则对可能发生的有关电气伤害起到防护作用。 主要用于对泄漏电流、接触电压、跨步电压和其他接近电气 设备存在的危险等进行防护。常用的绝缘防护用具有绝缘手 套、绝缘靴、绝缘隔板、绝缘垫、绝缘站台等,如图7-3所示。 当绝缘防护用具的绝缘强度足以承受设备的运行电压时,才 可以用来直接接触运行的电气设备,一般不直接触及带电设 备。使用绝缘防护用具时,必须做到使用合格的绝缘用具, 并掌握正确的使用方法。
3.变介电常数式电容传感器 因为各种介质的相对介电常数不同,所以在电容器两极板间
插入不同介质时,电容器的电容量也就不同,利用这种原理 制作的电容传感器称为变介电常数式电容传感器,它们常用 来检测片状材料的厚度、性质,颗粒状物体的含水量以及测 量液体的液位等。
电容式传感器

C
电容量发生变化。
ΔC
o
传感器的输出特性 不是线性关系,而是如图所示的双曲线Δ关系。
(a)
(b)
工程上常采用以下两种近似处理方法: C
① 近似线性处理
② 近似非线性处理
ΔC
o
Δ
分析表明,提高传感器的灵
敏度和减小非线性误差是相互矛
1
盾的。在实际应用中,为了解决
这一矛盾,常采用如图所示的差
2
动结构。
12
3
1-被测带材; 2-轧辊; 3-电容极板
传感器与测试技术
1-电镀层(定极板);
5
1
2-膜片(动极板);
3-焊接密封圈;
p1
p2
4-隔离膜;5-硅油
4
2
3
2.电容式加速度传感器
加速度传感器均采用弹簧-质量-阻尼系统将被测加速度变换成力或 位移量,然后再通过传感器转换成相应的电参量。下图所示为电容式加速 度传感器的结构示意图。电容式加速度传感器的频率响应快、量程范围大, 阻尼物质采用空气或其他气体。
如图所示。
l
l
ax
x x
hx h
(a)
(a)测量介质厚度
(b)
(b)测量介质位置
d DБайду номын сангаас
(c)
(c)测量介质液位
1.2 电容式传感器的应用
1.电容式压差传感器
下图所示为电容式压差传感器的结构示意图,由一个金属膜片动极板和 两个在凹形玻璃圆盘上电镀成的定极板组成。电容式压差传感器的分辨率很 高,不仅用来测量压差,也可用来测量真空或微小绝对压力(0~0.75 Pa), 响应速度为100 ms。
传感器与测试技术
电容量发生变化。
ΔC
o
传感器的输出特性 不是线性关系,而是如图所示的双曲线Δ关系。
(a)
(b)
工程上常采用以下两种近似处理方法: C
① 近似线性处理
② 近似非线性处理
ΔC
o
Δ
分析表明,提高传感器的灵
敏度和减小非线性误差是相互矛
1
盾的。在实际应用中,为了解决
这一矛盾,常采用如图所示的差
2
动结构。
12
3
1-被测带材; 2-轧辊; 3-电容极板
传感器与测试技术
1-电镀层(定极板);
5
1
2-膜片(动极板);
3-焊接密封圈;
p1
p2
4-隔离膜;5-硅油
4
2
3
2.电容式加速度传感器
加速度传感器均采用弹簧-质量-阻尼系统将被测加速度变换成力或 位移量,然后再通过传感器转换成相应的电参量。下图所示为电容式加速 度传感器的结构示意图。电容式加速度传感器的频率响应快、量程范围大, 阻尼物质采用空气或其他气体。
如图所示。
l
l
ax
x x
hx h
(a)
(a)测量介质厚度
(b)
(b)测量介质位置
d DБайду номын сангаас
(c)
(c)测量介质液位
1.2 电容式传感器的应用
1.电容式压差传感器
下图所示为电容式压差传感器的结构示意图,由一个金属膜片动极板和 两个在凹形玻璃圆盘上电镀成的定极板组成。电容式压差传感器的分辨率很 高,不仅用来测量压差,也可用来测量真空或微小绝对压力(0~0.75 Pa), 响应速度为100 ms。
传感器与测试技术
电容式传感器

传感器技术及应用
电容式传感器
电容式传感器是把被测量的变化转换为电容量 变化的一类传感器。实质上是一个具有可变参数 的电容器。最常用的是平行板电容传感器和圆柱 形电容传感器。
可用来测量压力、力、位移、振动、液位、 成份含量等。
1.1 平行板电容式传感器工作原理
设两极板相互覆盖的有效面积为S(m2),两极板间 的距离为d0(m),极板间介质的介电常数为ε(F/m)。若 忽略板极边缘的影响,平板电容器的电容量C(F)为:
式中:f0为等效电路谐振频率,
f0
2
1 LC
一般当f≤10MHz时,还可忽略L的影响,并且 实际使用时,只要使用条件能保证与传感器标定时 的接线条件,L可不考虑。
ZC
(RS
RP
)
1 2 RP2C 2
j( RP2C 1 2 RP2C 2
L)
由于传感器的并联电阻Rp很大,串联电阻RS很
小,忽略这两项,则等效阻抗ZC为:
ZC 1 jL jC
因此,电容传感器的等效电容Ce可由下式求得:
1 1 jL jCe jC
Ce
C
1 2LC
1
(
C f
f0 )2
2.变介质圆柱形电容式传感器(变介电常数型)
当被测液体的液面在 同心圆柱形电极间发生变 化时,将导致电容的变化。
此时,相当于两个同 轴圆柱形电容C0、C1并联:
C
C0
C1
20 (h
ln R2
x)
21x
ln R2
2 0 h
ln R2
2
(1
ln
0
R2
)x
R1
R1
R1
R1
电容式液位计属于该类。输出电容与液面高度呈线性关系。
电容式传感器
电容式传感器是把被测量的变化转换为电容量 变化的一类传感器。实质上是一个具有可变参数 的电容器。最常用的是平行板电容传感器和圆柱 形电容传感器。
可用来测量压力、力、位移、振动、液位、 成份含量等。
1.1 平行板电容式传感器工作原理
设两极板相互覆盖的有效面积为S(m2),两极板间 的距离为d0(m),极板间介质的介电常数为ε(F/m)。若 忽略板极边缘的影响,平板电容器的电容量C(F)为:
式中:f0为等效电路谐振频率,
f0
2
1 LC
一般当f≤10MHz时,还可忽略L的影响,并且 实际使用时,只要使用条件能保证与传感器标定时 的接线条件,L可不考虑。
ZC
(RS
RP
)
1 2 RP2C 2
j( RP2C 1 2 RP2C 2
L)
由于传感器的并联电阻Rp很大,串联电阻RS很
小,忽略这两项,则等效阻抗ZC为:
ZC 1 jL jC
因此,电容传感器的等效电容Ce可由下式求得:
1 1 jL jCe jC
Ce
C
1 2LC
1
(
C f
f0 )2
2.变介质圆柱形电容式传感器(变介电常数型)
当被测液体的液面在 同心圆柱形电极间发生变 化时,将导致电容的变化。
此时,相当于两个同 轴圆柱形电容C0、C1并联:
C
C0
C1
20 (h
ln R2
x)
21x
ln R2
2 0 h
ln R2
2
(1
ln
0
R2
)x
R1
R1
R1
R1
电容式液位计属于该类。输出电容与液面高度呈线性关系。
电容式传感器

汽车气囊的保护作用
使用加速度传感器可以在汽车发生碰撞 时,经控制系统使气囊迅速充气 。
汽车气囊对驾驶员的保护作用
电容式接近开关
齐平式
非齐平式
电容式接近开关在物位测量控制中的使用演示
• 电容式接近开关的测量头通常是构成电容器的 电容式接近开关的测量头通常是构成电容器的 一个极板,而另一个极板是开关的外壳。 一个极板,而另一个极板是开关的外壳。这个 外壳在测量过程中通常是接地或与设备的机壳 相连接。 相连接。 • 当有物体移向接近开关时,不论它是否为导体, 当有物体移向接近开关时,不论它是否为导体, 由于它的接近, 由于它的接近,总要使电容的介电常数发生变 从而使电容量发生变化, 化,从而使电容量发生变化,使得和测量头相 连的电路状态也随之发生变化, 连的电路状态也随之发生变化,由此便可控制 开关的接通或断开。 开关的接通或断开。 • 这种接近开关检测的对象,不限于导体,可以 这种接近开关检测的对象,不限于导体, 是绝缘的液体或粉状物等。 是绝缘的液体或粉状物等。
电容测厚仪结构示意图 l一金属带材 2一电容极板 3一传动轮 4一轧辊
电容式转速传感器
• 电容式转速传感器的工作 原理: 原理: • 齿轮外沿面为电容器的动 极板. 极板 . 当电容器 定极板与 齿 顶相对时, 电容量最大, 顶相对时 , 电容量最大 , 而与齿隙相对电容量最小。 而与齿隙相对电容量最小 。 当齿轮转动时, 当齿轮转动时 , 电容量发 生周期性变化. 生周期性变化 . 通过测量 电路转换为脉冲信号, 电路转换为脉冲信号 , 设 频率计显示为f, 频率计显示为 ,则n=60f/z
电容式转速传感器的结构原理1电容式转速传感器的结构原理 一定极板: 电容式传感 齿轮 2一定极板:3-电容式传感 一定极板 器 4频率计 频率计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
H: 电极板的总长度;
d 、 D:电极板的内、外径;
另一种变介电常数的电容式传感器:
s
气隙
ε0ε r
δ
d
C
S d
d
0s
d d
0
r0
r
❖d不变, ε改变,如:测量粮食、纺织品、木材或煤 等非导电固体介质常数。
❖ε不变,d改变,如:测量纸张、绝缘薄膜等的厚度
例题
❖ 置于某储存罐的电容式液位传感器由半径为20mm和 4mm的两个同心圆柱体组成,并于存储罐等高。存储 罐也是圆柱体,半径为25cm,高为1.2m,被储存液体 的介电常数为2.1.试计算传感器的最大电容和最小电容 以及传感器用在该存储器内时的灵敏度。
二极管双T型电路
二极管双T型电路
若传感器输入不为 0, 则C1 ≠ C2, 那么I1≠I2, 此时RL 上必定有信号输出, 其输出在一个周期内的平均值
为
Usc
IfRf
R(R (R R
2R L ) L )2T
交流电桥平衡条件
Z1Z4 Z2Z3
•
Uo 0
在正弦交流情况下,桥臂阻抗可以写成复数的形式
Z=R+jX=Zejφ
若将电桥的平衡条件用复数的指数形式表示
Z1ejφ1·Z4ejφ4=Z2ejφ2·Z3ejφ3
根据复数相等的条件
Z1Z4=Z2Z3
φ1+φ4=φ2+φ3
二、变压器电桥
等效电路图:
E1
敏度愈高。
❖电容量C与极距δ呈非线性关系,减小初始极距
将引起非线性误差。
非线形分析:
C
C 0 C
s d 0 d
C0
1
1
d d 0
C C0
d d0
若:dd0
( 1
1
d
d
0
)
1
则:C C0
d d0
1
d d0
d d0
2
略去二次方以上高次项d0
差动电容结构 定极板
b x
灵敏系数为:
C b x
❖灵敏度为一常数,输出特性是线性的。
❖b↑、δ↓→k↑
❖适合于测量较大的直线位移和角位移。
同心圆筒形线位移电容式传感器
初始电容C0为:
D1
C0
2
ln
0 r L
D0
,
C0
rL
1.80ln D0
(L/
cm ; C
/
pF )
a
D1
D1
L
L :筒长
当覆盖长度变化时,电容量也
第四章 电容式传感器
第一节 基本工作原理、结构及特点 第二节 电容传感器的测量电路
第一节 基本工作原理、结构及特点
§第一节 工作原理、分类及应用 一、工作原理
平板式电容:C s
ε:介质介电常数
s :极板面积
δ
δ :极板间距离
s ε
➢ 变间隙电容传感器
电容式接近开关
➢ 变介电常数电容传感器
➢变面积电容传感器
1. 变间隙式
一、特性曲线、灵敏度、非线性 定极 板
电容:C S r0S
δε
动极 板
s
ε:极板间介质介电常数 ε0:真空介电常数 ε r::极板间介质相对介电常数 δ :极板间距离 s :极板面积
灵敏度分析:
k
dc
d
S 2
c
❖灵敏度K与极板间距平方成反比,极距愈小,灵
❖特别适合于结构上不能用差动电容传感器的场合。
现有一只电容位移传感器,其结构如图 (a)所示。已知L
=25mm,R=6mm,r=2mm。其中圆柱C为内电极,圆筒A、B
为两个外电极,D为屏蔽套筒,CBC构成一个固定电容CF,CAC是随 活动屏蔽套筒伸人位移量x而变的可变电容CX。并采用理想运放检 测电路如图 (b)所示,其信号源电压有效值USC=6V。问: ❖ 1. 求该电容传感器的灵敏度KC是多少? ❖ 2. 求该电容传感器的输出电压KV是多少?
运放式线路
Cx
C0
IX
U
I0
K
USC
按理想运算放大器的条件:
USC U
ZF Z1
j 1
cx
j 1
c0 cx
c0
Usc
UC0 0s
其中:CX
0s
❖从原理上解决了单电容变间隙传感器的非线性问题。
❖实际上,Zi≠∞,K ≠ ∞ ,所以,存在一定非线性, Zi 、K很大,非线性很小。 ❖USC与C0、U有关,所以需要高精度交流稳压源、高 质量电容C
第二节 电容传感器的测量电路
❖ 调幅测量电路
交流电桥 运算放大电路测量电路
❖ 脉冲调制测量电路
二极管T形网络 脉冲宽度调制电路
❖ 调频测量电路
交流电桥
一、平衡条件
g
g
U sc U
Z1Z4 Z2Z3
(Z1 Z2 )(Z3 Z4 )
平衡条件为
Z1Z4 Z2Z3 0 Z1 Z3 Z2 Z4
例:自动平衡电桥
➢工作过程
❖无油时,起始电容Cx=Cx0,若使Cx0=C0,此时输出为 零,指针指零,电桥无输出,系统处于平衡状态, E1Cx0= E2C0 ❖油量变化时,Cx=Cx0+△Cx △Cx =k1·h ❖电桥不平衡→输出U放大→两相电极转动→减速
❖→指针指示 ❖→电位器电刷转动 ❖→ 改变E ❖→电桥恢复平衡→输出电压为零、电机停止转动、指 针停在某角度上。
f
1
2
起始时:E1 E2 E 考虑(放大器输入阻抗)Z f
U sc
C1 C1
C2 C2
E
对差动变间隙电容器:
S C1
S C2
Usc
E 0
说明:
❖⑴Z→∞时,U=f(△δ),成线性关系
❖⑵USC与E有关,所以必须交流稳压,稳 频。
❖⑶需要放大、解调、滤波。
变压器电桥输出电路
C0
0A 0
动极板
C2 C1
定极板
C1
0
A
0
C2
0
A
0
➢差动结构分析
C1
C 0 1
0
2
0
0
3
C2
C 0 1
0
2
0
0
3
C C0
2 0
1
0
3
5
0
2 0
❖灵敏度提高一倍 ❖非线性减小
2、变面积式
△x
δ b
a
C
b(a
x)
C0
b
x
C
C C0
E2
I1
C1
Zf
If
I2
C2
j1
c1
I 1
If Z f
E1
1 j
c2
I2 If Z f
E2
I 1 I2 If 0
求得:If
(E1C1 E2C2 ) j 1 Z f (C1 C2 ) j
U IZ (E1C1 E2C2 ) j Z
sc f f 1 Z (C C ) j f
D0
圆柱形电容式线位移传感器
随之变化。当内筒上移为a 时,
内外筒间的电容C1为:
C1
2
0r L
ln D0
a
C
0
1
a L
,
D1
与a成线性关系。
3、变介电常数式:电容式液位计
c
2 1h
ln D
2 (H
ln D
h)
d
d
2H 2 (1 )h
ln D
ln D
d
d
ε1:液体介质的介电常数
ε0: 空气的介电常数;