高一数学下学期第一次月考试题

合集下载

陕西省西安高新第一中学2023-2024学年高一下学期第一次月考数学试题

陕西省西安高新第一中学2023-2024学年高一下学期第一次月考数学试题

陕西省西安高新第一中学2023-2024学年高一下学期第一次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知集合{}1N|24x A x -=∈<,集合{}3|log (1)1B x x =+<,则A B =I ( )A .(3),-∞B .(1,3)-C .{0,1}D .{0,1,2}2.如图,在△OAB 中,点P 在边AB 上,且32AP PB =.则OP =u u u r ( )A .3255OA OB +u u u r u u u r B .2355OA OB +u u u r u u u rC .3255OA OB -u u u r u u u rD .2355OA OB -u u ur u u u r3.已知向量,a b r r 为非零向量,向量,a b rr 之间夹角为,:p θθ为钝角,:0q a b ⋅<r r ,则p 是q 的( )条件.A .充要B .必要不充分C .充分不必要D .既非充分也非必要4.如图,测量河对岸的塔高AB 时可以选与塔底B 在同一水平面内的两个测点C 与D ,测得∠BCD =15°,∠BDC =30°,CD =30m ,并在点C 测得塔顶A 的仰角为60°,则塔高AB 等于( )A .B .C .D .5.函数2()1cos 1e xf x x ⎛⎫=- ⎪+⎝⎭的部分图象为( ) A . B .C .D .6.已知()f x 为R 上偶函数,且对1212,[0,),x x x x ∀∈+∞≠时,都有()()12120f x f x x x -<-成立,若()1.1,(sin1),2a fb fc f -⎛=== ⎝则( ) A .a b c << B .b a c << C .c a b << D .b<c<a7.在锐角ABC V 中,内角,,A B C 的对边分别为a ,b ,c ,且1b =,cos cos A a B a -=,则( ) A .ππ64A <<B .ππ63A << C .ππ43A << D .ππ42A << 8.已知ABC V 中,,,ABC 所对的边为,,,a b c 若,,O P H 为ABC V 所在平面内点,则下列说法正确的个数为( )①若1()3PO PA PB PC =++u u u r u u u r u u u r u u u r,则O 为三角形ABC 的重心;②若222222HA BC HB CA HC AB +=+=+u u u r u u u r u u u r u u u r u u u r u u u r ,则点H 是ABC V 的垂心;③若O 是ABC V 的外心,则sin2sin2sin20A OA B OB C OC ⋅+⋅+⋅=u u u r u u u r u u u r r;④若O 是ABC V 的内心,则0a OA b OB c OC ⋅+⋅+⋅=u u u r u u u r u u u r r.A .1个B .2个C .3个D .4个二、多选题9.已知平面向量()2,1a =-r,(2,)b t =r ,则下列说法错误的是( )A .若6t =,则向量a r 与b r的夹角为锐角B .若a b r r=,则1t =C .a r方向上的单位向量为⎝⎭D .若3t =,则向量a r 在b r上的投影为10.已知函数()sin (0)f x x x ωωω=>的最小正周期为π,则下列各选项正确的是( )A .2ω=B .将()f x 图象上所有的点向右平移π6个单位长度,可得到2sin 2y x =的图象C .()f x 在π5π,612⎛⎫⎪⎝⎭上单调递增D .直线π6x =是图象的一条对称轴11.在ABC V 中,,,a b c 分别为,,A B C 的对边,则下列叙述正确的是( )A .若cos cos b C cB b +=,则ABC V 是等腰三角形. B .若A B >,则cos2cos2A B <.C .若2,3,30a b A ︒==∠=,则解此三角形的结果有一解.D .若角C 为钝角,则333a b c +<. 12.下列说法正确的是( )A .若12x <,则1221x x +-的最大值是1- B .若,,x y z 都是正数,且2x y z ++=,则411x y z+++的最小值是3 C .若0,0,228x y x xy y >>++=,则2x y +的最小值是3 D .若实数,x y 满足22228x xy y ++=,则2x y +的最大值是4三、填空题13.已知平面向量,a b r r 满足||1a =r ,||2,b a =r r与b r 的夹角为60︒,则|2|a b +r r 的值.14.ABC V 的内角,,A B C 所对应边为,,a b c ,若π2,4a A ==,则sin sin +=+b cB C . 15.若ABC V为边长为P 满足2CP =u u u r ,则AP BP ⋅u u u r u u u r 的取值范围为. 16.已知函数241,1()log 3,1xx f x x x ⎧-⎪=⎨+>⎪⎩…集合21()2()02M x f x t f x t ⎧⎫⎛⎫=-++=⎨⎬ ⎪⎝⎭⎩⎭∣,若集合M中有3个元素,则实数t 的取值范围为.四、解答题17.已知向量()2,1a =r ,()1,3b =-r.(1)当实数k 为何值时,()()ka b a b -⊥+r r r r?(2)若2AB a b =-u u u r r r,BC a mb =+u u u r r r ,且A 、B 、C 三点共线,求实数m 的值.18.(1)已知函数()log (2)4,(0a f x x a =-->且1),()a f x ≠图像过定点M ,若角α的顶点在坐标原点,始边与x 轴非负半轴重合,角α终边经过点M ,求3sin(π)cos π2cos(2π)sin()αααα⎛⎫++- ⎪⎝⎭-+-的值.(2)已知()3sin 30,901805αα︒︒︒+=<<,求cos α的值.19.如图所示,在平面四边形ABCD中,1,2,AD CD AC ===(1)求cos CAD ∠的值.(2)若B为锐角,2,sin BC BAC =∠=B . 20.已知函数()πsin )(0,0,||)2(f x A x B A ωϕωϕ=++>><的部分图象如图所示.(1)求函数()f x 的解析式及其单调递增区间; (2)将函数()y f x =的图象上所有的点向右平移π12个单位,再将所得图象上每一个点的横坐标变为原来的2倍(纵坐标不变),得到函数()y g x =的图象.若方程()0g x m -=在7π0,3⎡⎤⎢⎥⎣⎦上有三个不相等的实数根()123123,,x x x x x x <<,求()123tan 2x x x ++的值.21.在锐角ABC V 中,内角A B C ,,的对边分别为a b c ,,,且满足cos cos cos c a bC A B+=+ (1)求角C 的大小;(2)若c A 与角B 的内角平分线相交于点D ,求ABD △面积的取值范围. 22.如图,在边长为1的正三角形ABC 中,O 为中心,过点O 的直线交边AB 与点M ,交边AC 于点N .(1)用AB u u u r ,AC u u ur 表示AO u u u r ;(2)若34AM =,求AN 的值; (3)求22OM ON +的最大值与最小值.。

四川省成都市2023-2024学年高一下学期第一次月考数学试题含答案

四川省成都市2023-2024学年高一下学期第一次月考数学试题含答案

武侯高中高2023级2023——2024下期第一次月考试题数学(答案在最后)学校:__________姓名:__________班级:__________考号:__________一、单选题1.如图,四边形ABCD 中,AB DC =,则必有()A.AD CB= B.DO OB= C.AC DB= D.OA OC= 【答案】B 【解析】【分析】根据AB DC =,得出四边形ABCD 是平行四边形,由此判断四个选项是否正确即可.【详解】四边形ABCD 中,AB DC =,则//AB DC 且AB DC =,所以四边形ABCD 是平行四边形;则有AD CB =-,故A 错误;由四边形ABCD 是平行四边形,可知O 是DB 中点,则DO OB =,B 正确;由图可知AC DB≠,C 错误;由四边形ABCD 是平行四边形,可知O 是AC 中点,OA OC =-,D 错误.故选:B .2.下列说法正确的是()A.若a b ∥ ,b c ∥,则a c∥ B.两个有共同起点,且长度相等的向量,它们的终点相同C.两个单位向量的长度相等D.若两个单位向量平行,则这两个单位向量相等【答案】C 【解析】【分析】A.由0b =判断;B.由平面向量的定义判断;C.由单位向量的定义判断; D.由共线向量判断.【详解】A.当0b = 时,满足a b ∥ ,b c ∥,而,a c 不一定平行,故错误;B.两个有共同起点,且长度相等的向量,方向不一定相同,所以它们的终点不一定相同,故错误;C.由单位向量的定义知,两个单位向量的长度相等,故正确;D.若两个单位向量平行,则方向相同或相反,但大小不一定相同,则这两个单位向量不一定相等,故错误;故选:C3.若a b ,是平面内的一组基底,则下列四组向量中能作为平面向量的基底的是()A.,a b b a --B.21,2a b a b++ C.23,64b a a b-- D.,a b a b+- 【答案】D 【解析】【分析】根据基底的知识对选项进行分析,从而确定正确答案.【详解】A 选项,()b a a b -=-- ,所以a b b a -- ,共线,不能作为基底.B 选项,1222a b a b ⎛⎫+=+ ⎪⎝⎭ ,所以12,2a b a b ++ 共线,不能作为基底.C 选项,()64223a b b a -=-- ,所以64,23a b b a --共线,不能作为基底.D 选项,易知a b a b +-,不共线,可以作为基底.故选:D4.将函数2cos 413y x π⎛⎫=-+ ⎪⎝⎭图象上各点的横坐标伸长到原来的2倍,再向左平移3π个单位,纵坐标不变,所得函数图象的一条对称轴的方程是()A.12x π=B.6x π=-C.3x π=-D.12x π=-【答案】B 【解析】【分析】根据图像的伸缩和平移变换得到2cos(2)13y x π=++,再整体代入即可求得对称轴方程.【详解】将函数2cos 413y x π⎛⎫=-+ ⎪⎝⎭图象上各点的横坐标伸长到原来的2倍,得到2cos 213y x π⎛⎫=-+ ⎪⎝⎭,再向左平移3π个单位,得到2cos[2()]12cos(2)1333y x x πππ=+-+=++,令23x k π+=π,Z k ∈,则26k x ππ=-,Z k ∈.显然,=0k 时,对称轴方程为6x π=-,其他选项不符合.故选:B5.设a ,b 是非零向量,“a a bb =”是“a b =”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B 【解析】【分析】根据向量相等、单位向量判断条件间的推出关系,结合充分、必要性定义即知答案.【详解】由a a b b =表示单位向量相等,则,a b 同向,但不能确定它们模是否相等,即不能推出a b =,由a b =表示,a b 同向且模相等,则a a b b = ,所以“a a bb =”是“a b =”的必要而不充分条件.故选:B6.已知向量,a b ,且2,52,72AB a b BC a b CD a b =+=-+=+,则下列一定共线的三点是()A.,,A B CB.,,B C DC.,,A B DD.,,A C D【答案】C 【解析】【分析】利用向量的共线来证明三点共线的.【详解】2,52,72AB a b BC a b CD a b =+=-+=+,则不存在任何R λ∈,使得AB BC λ=,所以,,A B C 不共线,A 选项错误;则不存在任何R μ∈,使得BC CD μ=,所以,,B C D 不共线,B 选项错误;由向量的加法原理知242BD BC CD a b AB =+=+=.则有//BD AB ,又BD 与AB有公共点B ,所以,,A B D 三点共线,C 选项正确;44AB BC a b AC ==-++,则不存在任何R t ∈,使得AC tCD = ,所以,,A C D 不共线,D 选项错误.故选:C .7.已知sin α=5,且α为锐角,tan β=-3,且β为钝角,则角α+β的值为()A.4π B.34π C.3π D.23π【答案】B 【解析】【分析】先求出tan α12=,再利用两角和的正切公式求出tan(α+β)=-1,判断出角α+β的范围,即可求出α+β的值.【详解】sin α,且α为锐角,则cos α5=,tan αsin 1cos 2αα==.所以tan(α+β)=tan tan 1tan tan αβαβ+-=13211(3)2--⨯-=-1.又α+β∈3(,22ππ,故α+β=34π.故选:B8.筒车亦称“水转筒车”,是一种以水流作动力,取水灌田的工具,唐陈廷章《水轮赋》:“水能利物,轮乃曲成.升降满农夫之用,低徊随匠氏之程.始崩腾以电散,俄宛转以风生.虽破浪于川湄,善行无迹;既斡流于波面,终夜有声.”如图,一个半径为4m 的筒车按逆时针方向每分钟转一圈,筒车的轴心O 距离水面的高度为2m .在筒车转动的一圈内,盛水筒P 距离水面的高度不低于4m 的时间为()A.9秒B.12秒C.15秒D.20秒【答案】D 【解析】【分析】画出示意图,结合题意和三角函数值可解出答案.【详解】假设,,A O B 所在直线垂直于水面,且4AB =米,如下示意图,由已知可得12,4OA OB OP OP ====,所以1111cos 602OB POB POB OP ∠==⇒∠=︒,处在劣弧 11PP 时高度不低于4米,转动的角速度为360660︒=︒/每秒,所以水筒P 距离水面的高度不低于4m 的时间为120206=秒,故选:D.二、多选题9.已知函数()cos f x x x =+,则下列判断正确的是()A.()f x 的图象关于直线π6x =对称 B.()f x 的图象关于点π,06⎛⎫- ⎪⎝⎭对称C.()f x 在区间2π,03⎡⎤-⎢⎥⎣⎦上单调递增 D.当π2π,33x ⎛⎫∈-⎪⎝⎭时,()()1,1f x ∈-【答案】BC 【解析】【分析】利用辅助角公式化简函数()f x 的解析式,利用正弦型函数的对称性可判断AB 选项;利用正弦型函数的单调性可判断C 选项;利用正弦型函数的值域可判断D 选项.【详解】因为()πcos 2sin 6f x x x x ⎛⎫=+=+ ⎪⎝⎭,对于A选项,ππ2sin 63f ⎛⎫==⎪⎝⎭,故函数()f x 的图象不关于直线π6x =对称,A 错;对于B 选项,π2sin 006f ⎛⎫-== ⎪⎝⎭,故函数()f x 的图象关于点π,06⎛⎫- ⎪⎝⎭对称,B 对;对于C 选项,当2π03x -≤≤时,πππ266x -≤+≤,则函数()f x 在区间2π,03⎡⎤-⎢⎥⎣⎦上单调递增,C 对;对于D 选项,当π2π33x -<<时,ππ5π666x -<+<,则1πsin 126x ⎛⎫-<+≤ ⎪⎝⎭,所以,()(]π2sin 1,26f x x ⎛⎫=+∈- ⎪⎝⎭,D 错.故选:BC.10.下图是函数()sin()(0π)f x A x ωϕϕ=+<<的部分图像,则()A.2πT =B.π3ϕ=C.π,06⎛⎫-⎪⎝⎭是()f x 的一个对称中心 D.()f x 的单调递增区间为5πππ,π1212k k ⎡⎤-++⎢⎥⎣⎦(Z k ∈)【答案】BCD 【解析】【分析】由图象可得πT =,由2πT ω=可求出ω,再将π12⎛⎝代入可求出ϕ可判断A ,B ;由三角函数的性质可判断C ,D .【详解】根据图像象得35ππ3ππ246124T T =-=⇒=⇒=ω,故A 错误;π12x =时,πππ22π2π1223k k ⨯+=+⇒=+ϕϕ,0πϕ<< ,π3ϕ∴=,故()π23f x x ⎛⎫=+ ⎪⎝⎭,故B 正确;因为πππ20663f ⎡⎤⎛⎫⎛⎫-=⋅-+= ⎪ ⎪⎢⎝⎭⎝⎭⎣⎦,所以π,06⎛⎫- ⎪⎝⎭是()f x 的一个对称中心,C 正确;令πππ2π22π232k x k -+≤+≤+,解得5ππππ1212k x k -+≤≤+,Z k ∈.故D 正确.故选:BCD .11.潮汐现象是地球上的海水受月球和太阳的万有引力作用而引起的周期性涨落现象.某观测站通过长时间观察,发现某港口的潮汐涨落规律为πcos 63y A x ω⎛⎫=++ ⎪⎝⎭(其中0A >,0ω>),其中y (单位:m )为港口水深,x (单位:h )为时间()024x ≤≤,该观测站观察到水位最高点和最低点的时间间隔最少为6h ,且中午12点的水深为8m ,为保证安全,当水深超过8m 时,应限制船只出入,则下列说法正确的是()A.π6ω=B.最高水位为12mC.该港口从上午8点开始首次限制船只出入D.一天内限制船只出入的时长为4h 【答案】AC 【解析】【分析】根据题意可求得6π=ω,可知A 正确;由12点时的水位为8m 代入计算可得4A =,即最高水位为10m ,B 选项错误;易知ππ4cos 663y x ⎛⎫=++⎪⎝⎭,解不等式利用三角函数单调性可得从上午8点开始首次开放船只出入,一天内开放出入时长为8h ,即可判断C 正确,D 错误.【详解】对于A ,依题意π62T ω==,所以6π=ω,故A 正确;对于B ,当12x =时,ππcos 126863y A ⎛⎫=⨯++=⎪⎝⎭,解得4A =,所以最高水位为10m ,故B 错误;对于CD ,由上可知ππ4cos 663y x ⎛⎫=++⎪⎝⎭,令8y ≥,解得812x ≤≤或者2024x ≤≤,所以从上午8点开始首次开放船只出入,一天内开放出入时长为8h ,故C 正确,D 错误.故选:AC.三、填空题12.设e为单位向量,2a =r ,当,a e 的夹角为π3时,a 在e 上的投影向量为______.【答案】e【解析】【分析】利用投影向量的定义计算可得结果.【详解】根据题意可得向量a 在e 上的投影向量为22π21cos 31a e e a e e e e ee e⨯⨯⋅⋅⋅=== .故答案为:e13.已知向量a 、b 满足5a = ,4b = ,a 与b 的夹角为120,若()()2ka b a b -⊥+ ,则k =________.【答案】45##0.8【解析】【分析】运用平面向量数量积公式计算即可.【详解】因为5a = ,4b = ,a 与b的夹角为120 ,所以1cos12054102a b a b ⎛⎫⋅==⨯⨯-=- ⎪⎝⎭.因为()2ka b -⊥()a b +r r ,所以()()()()222222521610215120ka b a b kab k a b k k k -⋅+=-+-⋅=-⨯--=-=,解得45k =.故答案为:45.14.已知1tan 3x =,则1sin 2cos 2x x +=______【答案】2【解析】【分析】根据二倍角公式以及齐次式即可求解.【详解】2222222211121sin 2cos sin 2sin cos 1tan 2tan 332cos 2cos sin 1tan 113x x x x x x x x x x x ⎛⎫++⨯ ⎪+++++⎝⎭====--⎛⎫- ⎪⎝⎭.故答案为:2四、解答题15.已知1a b a == ,与b 的夹角为45︒.(1)求()a b a +⋅的值;(2)求2a b -的值【答案】(1)2(2【解析】【分析】(1)先求2,a a b ⋅ ,再根据运算法则展开计算即可;(2)先计算2b,再平方,进而开方即可.【小问1详解】因为22||1,||||cos 451122a a a b a b ==⋅=︒=⨯=所以2()112a b a a a b ++⋅=⋅=+=【小问2详解】因为22||2b b ==,所以2222|2|(2)444242a b a b a b a b -=-=+⋅=+--=所以|2|a b -=16.已知函数()222cos 1f x x x =+-.(1)求函数()f x 的最小正周期;(2)若3π,π4θ⎛⎫∈⎪⎝⎭且()85f θ=-,求cos 2θ的值.【答案】(1)π(2)410-【解析】【分析】(1)利用辅助角公式化简,求出最小正周期;(2)将θ代入可求出πsin 26θ⎛⎫+ ⎪⎝⎭,结合π26+θ的范围,求出πcos 26θ⎛⎫+ ⎪⎝⎭,因为ππ2266θθ=+-,由两角差的余弦公式求出结果.【小问1详解】()2π22cos 12cos 22sin 26f x x x x x x ⎛⎫=+-=+=+ ⎪⎝⎭,所以()f x 的最小正周期2ππ2T ==【小问2详解】()π82sin 265f θθ⎛⎫=+=- ⎪⎝⎭,所以π4sin 265θ⎛⎫+=- ⎪⎝⎭,因为3π,π4θ⎛⎫∈⎪⎝⎭,1π25π3663π,θ⎛⎫∈ ⎪⎝⎭+,所以π3cos 265θ⎛⎫+== ⎪⎝⎭,所以ππππππcos 2cos 2cos 2cos sin 2sin 666666θθθθ⎛⎫⎛⎫⎛⎫=+-=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3414525210-⎛⎫=⨯+-⨯=⎪⎝⎭.17.如图,在ABC 中,6AB =,60ABC ∠=︒,D ,E 分别在边AB ,AC 上,且满足2AD DB = ,3CE EA =,F 为BC 中点.(1)若DE AB AC λμ=+,求实数λ,μ的值;(2)若8AF DE ⋅=-,求边BC 的长.【答案】(1)23λ=-,14μ=.(2)8【解析】【分析】(1)根据向量的线性运算以及平面向量的基本定理求得正确答案.(2)利用转化法化简8AF DE ⋅=-,从而求得BC 的长.【小问1详解】∵2AD DB = ,3CE EA= ,∴23AD AB = ,14AE AC = ∴1243DE AE AD AC AB =-=- ,∴23λ=-,14μ=.【小问2详解】12AF BF BA BC BA =-=- ,()1212154343412DE AC AB BC BA BA BC BA =-=-+=+ ,22115115241282412AF DE BC BA BC BA BC BC BA BA ⎛⎫⎛⎫⋅=-⋅+=-⋅- ⎪ ⎪⎝⎭⎝⎭设BC a = ,∵6AB = ,60ABC ∠=︒,221115668824212AF DE a a ⋅=-⨯⨯-⨯=- ,即2560a a --=,解得7a =-(舍)或8a =,∴BC 长为8.18.设(,)P x y 是角θ的终边上任意一点,其中0x ≠,0y ≠,并记r =cot x y θ=,sec r xθ=,csc r y θ=.(Ⅰ)求证222222sin cos tan cot sec +csc θθθθθθ+--+是一个定值,并求出这个定值;(Ⅱ)求函数()sin cos tan cot sec +csc f θθθθθθθ=++++的最小值.【答案】(Ⅰ)定值为3;(Ⅱ)min ()1f θ=-;【解析】【分析】(Ⅰ)由题可知,分别将6个三角函数分别代入,进行简单的化简,即可得到定值3;(Ⅱ)将()f x 中的未知量均用sin ,cos θθ来表示,得到1sin cos ()sin cos sin cos sin cos g θθθθθθθθθ+=+++,运用换元法设sin cos t θθ+=,化简成2()111g t t θ=-++-,再利用对勾函数的性质即可得到最值.【详解】解:(Ⅰ)222222222222222222sin cos tan cot sec +csc =y x y x r r r x y r y xθθθθθθ+--++--++2222222221113x y r y r x r x y+--⇒++=++=;(Ⅱ)由条件,1cot tan x y θθ==,1sec cos x θ=,1csc sin θθ=令()sin cos tan cot sec +csc g θθθθθθθ=++++sin cos 11sin cos +cos sin cos sin θθθθθθθθ=++++1sin cos sin cos sin cos sin cos θθθθθθθθ+=+++,令sin cos t θθ+=,则sin cos =2sin()4t πθθθ=++[2,2]∈-,1t ≠±,且21sin cos 2t θθ-=,从而2222()11t g y t t t θ==++--22(1)1t t t +=+-221111t t t t =+=-++--,令1u t =-,则21y u u =++,[21,21]u ∈---,且0u ≠,2u ≠-.所以,(,122][322,)y ∈-∞-⋃++∞.从而()221f y θ=≥-,即min ()221f θ=-.19.已知函数()2000ππ2sin sin 2sin 266f x x x x C ωωω⎛⎫⎛⎫=+++-+ ⎪ ⎪⎝⎭⎝⎭(R C ∈)有最大值为2,且相邻的两条对称轴的距离为π2(1)求函数()f x 的解析式,并求其对称轴方程;(2)将()f t 向右平移π6个单位,再将横坐标伸长为原来的24π倍,再将纵坐标扩大为原来的25倍,再将其向上平移60个单位,得到()g t ,则可以用函数()sin()H g t A t B ωϕ==++模型来模拟某摩天轮的座舱距离地面高度H 随时间t (单位:分钟)变化的情况.已知该摩天轮有24个座舱,游客在座舱转到离地面最近的位置进仓,若甲、乙已经坐在a ,b 两个座舱里,且a ,b 中间隔了3个座舱,如图所示,在运行一周的过程中,求两人距离地面高度差h 关于时间t 的函数解析式,并求最大值.【答案】(1)()π2sin 26f x x ⎛⎫=- ⎪⎝⎭,ππ32k x =+,Z k ∈(2)ππ()50sin 126f x t ⎛⎫=-⎪⎝⎭,50【解析】【分析】(1)由二倍角公式与两角和与差的正弦公式化简得()0π2sin 216f x x C ω⎛⎫=-++ ⎪⎝⎭,再结合最值及周期即可得解析式;(2)由正弦型函数的平移变换与伸缩变换得变换后的解析式为ππ50sin 60122y t ⎛⎫=-+ ⎪⎝⎭,则ππ50sin 126h H H ⎛⎫=-==- ⎪⎝⎭甲乙,再求最值即可.【小问1详解】()00001cos 2π22sin 2cos 2cos 2126x f x x C x x C ωωωω-=⨯++=-++0π2sin 216x C ω⎛⎫=-++ ⎪⎝⎭,所以2121C C ++=⇒=-,因为相邻两条对称轴的距离为π2,所以半周期为ππ22T T =⇒=,故002ππ12=⇒=ωω,()π2sin 26f x x ⎛⎫=- ⎪⎝⎭令ππππ2π6232k x k x -=+⇒=+,Z k ∈【小问2详解】()f t 向右平移π6得到π2sin 22y t ⎛⎫=- ⎪⎝⎭,将横坐标伸长为原来的24π倍,得到ππ2sin 122y t ⎛⎫=- ⎪⎝⎭,将纵坐标扩大为原来的25倍,得到ππ50sin 122y t ⎛⎫=- ⎪⎝⎭,再将其向上平移60个单位,得到ππ50sin 60122y t ⎛⎫=-+ ⎪⎝⎭游客甲与游客乙中间隔了3个座舱,则相隔了2ππ4243⨯=,令ππ50sin 60122H t ⎛⎫=-+ ⎪⎝⎭甲,则π5π50sin 60126H t ⎛⎫=-+ ⎪⎝⎭乙,则πππ5π50sin sin 122126h H H t t ⎛⎫⎛⎫=-=--- ⎪ ⎪⎝⎭⎝⎭甲乙π1πcos 12212t t =-ππ50sin 126t ⎛⎫=- ⎪⎝⎭,π12ω=,24T =,024t ≤≤,故πππ11π61266t -≤-≤,当πππ1262t -=或3π82t ⇒=或20时,max 50h =。

2023-2024学年湖南省衡阳一中高一(下)第一次月考数学试卷+答案解析

2023-2024学年湖南省衡阳一中高一(下)第一次月考数学试卷+答案解析

2023-2024学年湖南省衡阳一中高一(下)第一次月考数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知,,若集合,则的值为()A.B.C.1D.22.已知命题p :任意,,命题q :存在,若“p 且q ”是假命题,则实数a 的取值范围是()A. B.C.D.3.设正实数x ,y ,z 满足,则的最大值为()A.4 B.2C.3D.14.,则当t 变化时,的最小值为()A.2020B.2019C.2018D.20175.已知函数,其中,,若对任意,恒成立,则的最小值为()A.B.C.D.6.如图所示,矩形ABCD 中,,点E 为AB 中点,若,则()A.B.C.3D.7.已知函数定义域为,,对任意的,,当时,有若,则实数a 的取值范围是()A. B.C.D.8.将函数的图象向右平移个单位长度后得到函数的图象,若的图象关于直线对称,则下列结论正确的是()A. B.是奇函数C.在上单调递增D.二、多选题:本题共3小题,共18分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得6分,部分选对的得2分,有选错的得0分。

9.已知函数的部分图象如图所示,若,,则()A.B.的单调递增区间为C.的图象关于点对称D.的图象关于直线对称10.已知函数其中表示不大于x的最大整数,则()A.是奇函数B.是周期函数C.在上单调递增D.的值域为11.在中,D为BC边上的中点,是边AB上的一个定点,,且对于AB上任一点P,恒有,则下列结论中正确的是()A. B.存在点P,使C. D.三、填空题:本题共3小题,每小题5分,共15分。

12.已知,点M是内一点且,则的面积为______.13.函数的最小值______.14.已知,,,,且,则的最小值为______.四、解答题:本题共5小题,共77分。

解答应写出文字说明,证明过程或演算步骤。

15.本小题13分已知的内角所对的边分别为,且,若,求的值;若的面积,求的值.16.本小题15分已知函数的最小正周期为将化简成的形式;设函数,求函数在上的值域.17.本小题15分已知,我们定义函数表示不小于x的最小整数,例如:,若,求实数x的取值范围;求函数的值域,并求满足的实数x的取值范围.18.19.本小题17分在中,a,b,c分别为内角A,B,C的对边,且求A;点D在边BC上,且,,求面积的最大值.答案和解析1.【答案】B【解析】解:因为,所以,解得,或,,当时,不满足集合元素的互异性,故,,故选:根据集合相等的定义求出m,n,即可得解.本题主要考查了集合相等条件的应用,属于基础题.2.【答案】D【解析】解:命题p为真时,恒成立,即,,,则;命题q为真时,,即,解得:或命题“p且q”是真命题时,可得或,所以命题“p且q”是假命题时,可得且,即故选:首先分别求两个命题为真命题时a的取值范围,取其补集即可得答案.本题考查复合命题的真假判断与应用,考查运算求解能力,是基础题.3.【答案】D【解析】解:因为正实数x,y,z满足,则,当且仅当时取等号.故选:先把代入到所求式子,然后进行分离变形,结合基本不等式即可求解.本题主要考查了基本不等式在最值求解中的应用,属于基础题.4.【答案】D【解析】解:函数,对称轴为,当,在上单调递增,所以;当,即时,在上单调递减,;当,即时,此时,,无最小值;当,即时,,综上知,的最小值为故选:根据对称轴和区间的位置关系对t的值进行讨论,从而求出,继而求出其最小值即可.本题考查二次函数在动区间上的最值,考查了分类讨论思想,属于难题.5.【答案】C【解析】解:,①当时,,对称轴为,在上单调递增,所以,则,所以②当时,,对称轴为,在上递增,在上递减,所以,则,所以③当时,若,,;若,,当时,,,,;当时,,,,综上所述:的最小值为故选:先按a的不同取值区间分类讨论在上的最大值,得到a与b的关系,结合a的范围,求得的最小值,再取不同情况下最小值中的最小者即可.本题主要考查了不等式恒成立与最值关系的转化,体现了分类讨论及转化思想的应用,属于中档题.6.【答案】B【解析】【分析】本题考查了向量的垂直与数量积的关系、模的计算公式,属于基础题.如图所示,建立直角坐标系.利用,可得,再利用向量模的计算公式即可得出.【解答】解:如图所示,建立直角坐标系.则,设,,,,,解得故选:7.【答案】D【解析】解:由题意可知,当时,有,即,令,则当时,,则函数在上单调递减,由,可得,即,所以,解得,即实数a 的取值范围是故选:根据题意,构造函数,即可得到函数在上单调递增,结合函数的单调性求解不等式,即可得到结果.本题主要考查利用导数研究函数的单调性,属于中档题.8.【答案】C 【解析】解:将函数的图象向右平移个单位长度后,得到函数的图象.若的图象关于直线对称,则,,求得,故,故A 、B 错误.在上,,函数单调递增,故C 正确.由于,故D 错误.故选:由题意,利用函数的图象变换规律,得到的解析式,再根据正弦函数的图象和性质,得出结论.本题主要考查函数的图象变换规律,正弦函数的图象和性质,属于中档题.9.【答案】AD【解析】解:根据已知函数的部分图象可得:,因为,,所以,所以,即,所以,将代入解析式中得:,所以,即,因为,所以,所以,故A正确;令,得,故B不正确;因为,所以的图象不关于点对称,故C不正确;因为,所以的图象关于直线对称,故D正确.故选:根据已知函数的部分图象可得,再结合函数的周期可得,然后将代入求得,即可求得函数的解析式,进而判断选项A的正误;利用三角函数的图象与性质求出函数的单调区间,即可判断选项B的正误;利用代入验证法判断函数的对称中心和对称轴即可判断选项C、D的正误.本题考查由三角函数的部分图象求函数的解析式、三角函数的图象与性质,考查学生的逻辑思维能力和直观想象能力,属中档题.10.【答案】BD【解析】解:由题意,表示不大于x的最大整数,则,所以,则函数是以3为周期的函数,当时,;当时,,又是以3为周期的函数,则的值域为,B和D均正确;,,所以,故不是奇函数,A错误;当时,,故在上无单调性,C错误.故选:结合已知定义,结合函数的奇偶性,单调性及周期性检验各选项即可判断.本题以新定义为载体,主要考查了函数的周期性,奇偶性及单调性的判断,属于中档题.11.【答案】ACD【解析】解:A:,故A正确.B:由A知,,又恒成立,,即恒成立,不正确.C:由恒成立,是点D与直线AB上各点距离的最小值,,,正确.D:取AB的中点为O,,为OB中点,,,为等腰三角形,,正确.故选:由题意画出图形,利用平面向量的加减运算及数量积运算逐一分析4个命题得答案.本题考查平面向量的数量积运算,考查命题的真假判断与应用,考查逻辑思维能力与推理论证能力,是中档题.12.【答案】【解析】解:取AC的中点D,由,得,即,即,可知点M为BD的中点,所以故答案为:根据题意,取AC的中点D,利用平面向量的线性运算法则判断出点M的位置,进而利用三角形面积公式算出的面积.本题主要考查平面向量的线性运算法则、三角形的面积公式及其性质等知识,属于基础题.13.【答案】【解析】解:,当且仅当,即,时取等号.故答案为:先对已知函数进行变形,然后结合乘1法及基本不等式即可求解.本题主要考查了乘1法及基本不等式在最值求解中的应用,属于中档题.14.【答案】【解析】解:根据,可得,所以,由,得,结合且,可得,所以当且仅当,即时,等号成立.因此,的最小值为,可得的最小值为,的最小值为故答案为:根据题意,取对数得,然后利用基本不等式与“1的代换”,算出的最小值为,由此得出的最小值,进而可得的最小值.本题主要考查对数的运算法则、利用基本不等式求最值等知识,考查了计算能力、逻辑推理能力,属于中档题.15.【答案】解:Ⅰ为的内角,且,,,,由正弦定理得:;Ⅱ,,【解析】本题考查正弦定理、余弦定理的运用,考查学生分析解决问题的能力,属于中档题.Ⅰ先求出,再利用正弦定理求的值;Ⅱ由的面积求c的值,利用余弦定理求b的值.16.【答案】解:,根据题意可得,解得,故;由知,则,所以当或时,取得最小值,最小值为,当时,取得最大值,最大值为,故在上的值域为【解析】利用二倍角公式和辅助角公式化简函数,利用周期性求解,即可解答;利用诱导公式求得,然后根据正弦函数性质求解值域即可.本题主要考查了三角函数恒等变换,以及正弦函数的性质的综合应用,考查了转化思想和函数思想的应用,属于中档题.17.【答案】解:由表示不小于x的最小整数,,得,所以实数x的取值范围是;函数定义域为而函数在上单调递增,值域为因此,即,所以函数的值域为显然由,得,则有,而时,不等式不成立,则,必有,即,因此,,解得,所以实数x的取值范围【解析】由已知定义即可得x的范围;由已知结合基本初等函数的性质先求出的值域,再由已知建立不等式关系即可得关于x的不等式,即可求.本题以新定义为载体,主要考查了函数值域的求解,属于中档题.18.【答案】【解析】19.【答案】解:,,即,,;由题意得,两边平方得,整理得,,当且仅当,时,等号成立,,故面积的最大值为【解析】由正弦定理角化边,再结合余弦定理,即可得出答案;由向量建立等量关系,结合基本不等式,即可得出答案.本题考查解三角形,考查转化思想,考查逻辑推理能力和运算能力,属于中档题.。

高一下学期第一次月考数学试题(解析版

高一下学期第一次月考数学试题(解析版
在 中角 所对的边分别为 __________.
(1)求角 ;
(2)求 的取值范围.
【18题答案】
【答案】(1)条件选择见解析
(2)
【解析】
【分析】(1)若选①由正弦定理得 即可求出 ;若选②由正弦定理得 即可求出 .
(2)用正弦定理得表示出 得到 利用三角函数求出 的取值范围.
【小问1详解】
若选①则由正弦定理得
【解析】
【分析】由题可得 .作差法可判断A;用基本不等式可判断B;分别化简不等式左边和右边可判断C;假设法可判断D.
【详解】如图
易知 .
A: (当 时取等号) 故A正确;
B: (当 时取等号)故B正确;
C:
又 (当 时取等号) 故C正确;
D:假设 成立



当 且 时上式不成立故D错误.
故选:ABC.
同理由 三点共线则存在实数 使得
所以 解得 所以 所以A正确.
又由 且
可得 解得 则
可得 所以B正确;
又由
当且仅当 时等号成立所以C正确.
又由 可得 所以D不正确.
故选:ABC.
12.设 分别为 中ab两边上的高 的面积记为S.当 时下列不等式正确的是( )
A. 【20题答案】
【答案】(1)
(2)
【解析】
【分析】(1)由最大值和最小值求得 的值由 以及 可得 的值再由最高点可求得 的值即可得 的解析式由正弦函数的对称中心可得 对称中心;
(2)由图象的平移变换求得 的解析式由正弦函数的性质可得 的值域令 的取值为 的值域解不等式即可求解.
【小问1详解】
由题意可得: 可得 所以
A. B.
C. D.

2023-2024学年新疆乌鲁木齐市高一下册第一次月考数学试题(含解析)

2023-2024学年新疆乌鲁木齐市高一下册第一次月考数学试题(含解析)

2023-2024学年新疆乌鲁木齐市高一下册第一次月考数学试题一、单选题1.已知复数z 满足1i z =-,则z 的虚部是()A .1-B .1C .i -D .i【正确答案】A【分析】由虚部定义可得结果.【详解】由虚部定义可知:z 的虚部为1-.故选:A.2.已知,a b →→为非零不共线向量,向量8a k b →→-与k a b →→-+共线,则k =()A .B .-C .±D .8【正确答案】C利用向量共线的充要条件是存在实数λ,使得8()a k b k a b λ→→→→-=-+,及向量相等列方程解得.【详解】解: 向量8a k b →→-与k a b →→-+共线,∴存在实数λ,使得8()a k b k a b λ→→→→-=-+,即8a k b k a b λλ→→→→-=-+,又 ,a b →→为非零不共线向量,∴8kk λλ=-⎧⎨-=⎩,解得.k =±故选:C.本题考查向量共线的条件,向量相等的条件,属于基础题.3.在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若sin :sin :sin 2:4:5A B C =,则cos B =()A .1320B .3740C .516-D .18【正确答案】A【分析】由正弦定理可得::sin :sin :sin 2:4:5a b c A B C ==,利用余弦定理可求得cos B 的值.【详解】因为::sin :sin :sin 2:4:5a b c A B C ==,令2a t =,4b t =,()50c t t =>,则2222224251613cos 222520a cb t t t B ac t t +-+-===⨯⨯.故选:A.4.如图,在△ABC 中,AB a = ,AC b = ,DC =3BD ,A E=2EC ,则DE =()A .1334a b+ B .53124a b-C .3143a b+ D .35412a b-+ 【正确答案】D【分析】直接按照平面向量的三角形法则及题目中比例关系进行化简即可.【详解】由平面向量的三角形法则,可知()313135354343412412DE DC CE BC ACAC AB AC AB AC a b ⎛⎫=+=+-=--=-+=-+ ⎪⎝⎭.故选:D.5.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ;若()sin sin sin a A b B A c C +=,则C =()A .30︒B .60︒C .120︒D .150︒【正确答案】D【分析】利用正弦定理将已知式转化为边的形式,然后再利用余弦定理可求得结果【详解】因为sin (sin )sin a A b B A c C +=,所以由正弦定理得22()ab b c+=,化简得222a b c +-=,所以由余弦定理得222cos 2a b c C ab +-==因为(0,)C π∈,所以56C π=,即150C =︒故选:D6.已知4a = ,()1,0b =- 且()2a b b +⊥ ,则a 与b的夹角为()A .30B .60C .120D .150【正确答案】C【分析】根据向量垂直和向量数量积运算律可构造方程求得a b ⋅,由向量夹角公式可求得结果.【详解】()2a b b +⊥ ,()22220a b b a b b a b ∴+⋅=⋅+=⋅+= ,解得:2a b ⋅=- ,21cos ,412a b a b a b⋅-∴<>===-⨯⋅ ,,120a b ∴<>=o r r .故选:C.7.在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知()2cos cos cos +=B a C c A b,sin 2C =,则ABC 的形状为()A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形【正确答案】C【分析】利用正弦定理边化角可求得cos B ,得到π3B =;结合特殊角三角函数值和三角形内角和为π可求得结果.【详解】由正弦定理得:()2cos sin cos sin cos sin +=B A C C A B ,()2cos sin 2cos sin sin B A C B B B ∴+==,又()0,πB ∈,sin 0B ∴≠,1cos 2B ∴=,则π3B =;sin 2C =,()0,πC ∈,π3C ∴=或2π3,又πB C +<,π3C ∴=,()ππ3A B C ∴=-+=,ABC ∴ 为等边三角形.故选:C.8.在△ABC 中,24CA CB ==,F 为△ABC 的外心,则CF AB ⋅=()A .-6B .-8C .-9D .-12【正确答案】A【分析】设△ABC 的外接圆半径为r ,,CFA CFB βα∠=∠=.由余弦定理得到22cos 2r r α=-,和22cos 8r r β=-.把CF AB ⋅ 整理为CF AB ⋅22cos cos r r βα=-,整体代入即可.【详解】设△ABC 的外接圆半径为r ,,CFA CFB βα∠=∠=.由余弦定理得:2222cos BC BF CF BF CF α=+- ,即222cos r r α=-,所以22cos 2r r α=-2222cos AC AF CF AF CF β=+- ,即228cos r r β=-.所以22cos 8r r β=-.所以()CF AB CF AF FB+⋅=⋅ CF AF CF FB =+⋅⋅ 22cos cos cos cos r FC FA FC FB FC FA FC F r B βαβα=⋅⋅⋅⋅-=-=-因为22cos 2r r α=-,22cos 8r r β=-,所以()2222cos cos 826CF AB r r r r βα⋅=-=---=- .故选:A向量的基本运算处理的常用方法:(1)向量几何化:画出合适的图形,利用向量的运算法则处理;(2)向量坐标化:建立适当的坐标系,利用向量的坐标运算处理.二、多选题9.下列说法错误的是()A .若//,//a b b c,则// a cB .若a b =,则23a b<C .对任意非零向量a,a a是和它共线的一个单位向量D .零向量没有方向【正确答案】ABD【分析】对于A ,举例判断即可,对于B ,向量不能比较大小,对于C ,由单位向量的定义判断,对于D ,由向量的定义判断【详解】对于A ,当0b = 时,满足//,//a b b c,而a 与c 不一定共线,所以A 错误,对于B ,因为向量是有方向和大小的量,所以向量不能比较大小,所以B 错误,对于C ,因为a是非零向量,所以a a是和它共线的一个单位向量,所以C 正确,对于D ,因为向量是有方向和大小的量,所以零向量是有方向的,它的方向是任意的,所以D 错误,故选:ABD10.在△ABC 中,下列说法正确的是()A .若2sin a b A =,则6B π=B .若A B >,则sin sin A B>C.45AB B ∠︒==,若AC =D .若222b c a +>,则△ABG 为锐角三角形【正确答案】BC【分析】由正弦定理对选项ABC 进行变形求解,由余弦定理判断D .【详解】选项A ,2sin a b A =由正弦定理得sin 2sin sin A B A =,三角形中sin 0A ≠,所以1sin 2B =,而(0,)B π∈,所以6B π=或56B π=,A 错;选项B ,△ABC 中,sin sin a bA B=,所以sin sin A B a b A B >⇔>⇔>,B 正确;选项C ,由于sin sin AB ACC B=,4sin 3C π==,又AC AB <,所以C B >,C 角可能为锐角也可能为钝角,三角形有两解,C 正确;选项D ,222b c a +>,由余弦定理得cos 0A >,A 为锐角,但,B C 两个角大小不确定,不能得出其为锐角三角形,D 错.故选:BC .11.下列说法正确的是()A .在ABC 中,12BD DC =,E 为AC 的中点,则1263DE AC AB=-B .已知非零向量AB 与AC 满足0AB AC BC AB AC ⎛⎫ ⎪+⋅= ⎪⎝⎭,则ABC 是等腰三角形C .已知()3,4a = ,()0,1b =- ,则a 在b上的投影向量是()0,4D .在边长为4的正方形ABCD 中,点E 在边BC 上,且3BE EC =,点F 是CD 中点,则8AE BF ⋅= 【正确答案】ABC【分析】利用向量线性运算直接推导可得A 正确;设ABAC AP ABAC=+ ,可知直线AP 为BAC ∠的角平分线,结合⊥AP BC 可知B 正确;利用投影向量的求法可求得C 正确;以A 为坐标原点建立平面直角坐标系,利用向量数量积的坐标运算可知D 错误.【详解】对于A,如图所示,()2211233263DE DC CE BC EC AC AB AC AC AB =+=-=--=-,A 正确;对于B ,设AB ACAP AB AC=+,AB AB 表示与AB 同向的单位向量,AC ACuuu r uuu r 表示与AC 同向的单位向量,∴直线AP 为BAC ∠的角平分线,又0AP BC ⋅=,即⊥AP BC ,AB AC ∴=,ABC ∴ 为等腰三角形,B 正确;对于C ,cos ,4a ba ab b⋅<>==-,()0,1b b b==-,a ∴r 在b上的投影向量为()cos ,0,4b a a b b<>⋅=,C 正确;对于D ,以A 为坐标原点,,AB AD正方向为,x y 轴,可建立如图所示平面直角坐标系,则()0,0A ,()4,0B ,()4,3E ,()2,4F ,()4,3AE ∴= ,()2,4BF =-,()42344AE BF ∴⋅=⨯-+⨯=,D 错误.故选:ABC.12.已知两个不相等的非零向量,a b,两组向量12345,,,,x x x x x 和12345,,,,y y y y y 均由3个a 和2个b排列而成,记1122334455min ,S x y x y x y x y x y S =⋅+⋅+⋅+⋅+⋅ 表示S 所有可能取值中的最小值,则下列命题正确的是()A .S 有3个不同的值B .22min22S a a b b=+⋅+ C .若//a b ,则min S 与b 无关D .若2min ||2||,4||a b S b == ,则a b⊥【正确答案】AD【分析】求出S 的三种结果,得出min S ,对选项进行分析得出答案.【详解】,(1234.5i i x y i = ,,,)均由3个a和2个b 排列而成,所以1122334455S x y x y x y x y x y =⋅+⋅+⋅+⋅+⋅ 可能情况有三种︰22132S a b =+;2222S a a b b =+⋅+ ;234S a b a =⋅+ ,故A 选项正确;()222221223220S S S S a b a b a b a b a b-=-=+-⋅≥+-=-≥.则S 中最小为234S a b a =⋅+ ,即2min 4S a b a =⋅+,B 选项错误;若//a b 则2min 4S a b a =⋅+ 与b 有关,故C 选项错误;若2a b = ,222min 4444S a b a a b b b =⋅+=⋅+= ,有0a b ⋅= ,则a b ⊥ ,D 选项正确.故选:AD .三、填空题13.已知点(1,2)A ,点(4,5)B ,若2AP PB =,则点P 的坐标是________.【正确答案】P (3,4)【详解】试题分析:设(),P x y ,代入2AP PB =得()()1,224,53,3x y x y x y --=--∴==()3,3P ∴向量的坐标运算14.设23i 4i a b +=+,其中,a b 是实数,则i a b +=__________.【分析】由23i 4i a b +=+可得23a b =⎧⎨=⎩,从而得i 23i a b +=+,再根据复数的模定义即可求得i a b +.【详解】解:因为23i 4i a b +=+,所以243a b =⎧⎨=⎩,解得23a b =⎧⎨=⎩,所以i 23i a b +=+,所以|a b +15.李子坝站的“单轨穿楼”是重庆轨道交通的一大特色,吸引众多A 游客打卡拍照.阿伟为了测量李子坝站站台距离地面的高度AB ,采取了以下方法:在观最台的D 点处测得站台A 点处的仰角为45 ;后退15米后,在F 点处测很站台A 点处的仰角为30 ,已知阿伟的眼睛距离地面高度为 1.5CD EF ==米,则季子坝站站台F 的高度AB 为___________米.153182+【分析】假设AG 长度,AGC 使用勾股定理,AEC △使用正弦定理,解出AG 高度,进而求出AB 高度.【详解】假设AG 高度为x 米,则AC 2米,对AEC △使用正弦定理得:sin sin AC CEAEC CAE=行,所以sin 30sin(4530)AC CE=-o o,所以215sin 30sin 45cos30cos 45sin 30=-o o oo o,所以216224-x =解得15(31)2x =,所以1531315318222()==AB +,故153182+16.在锐角ABC 中,角,,A B C 所对的边分别为,,a b c ,它的面积等于)22234b c a +-且2222b c a a +=+,则ABC 的面积的取值范围是_________.【正确答案】333,2⎭【分析】根据三角形面积公式化简已知等式可求得A ,结合余弦定理可求得2a bc =,利用正弦定理边化角,再结合三角恒等变换知识可求得31π1sin 2264bc B =⎛⎫-+ ⎪⎝⎭,由正弦型函数值域求法可求得bc 取值范围,代入三角形面积公式即可.【详解】)2221sin 24ABCb c a S A +-==,2221sin 24b c a A A bc +-==,即tan A =π0,2A ⎛⎫∈ ⎪⎝⎭,π3A ∴=;由2222b c a a +=+得:22221cos 222b c a a a A bc bc bc +-====,2a bc ∴=;由正弦定理得:πsin sin sin 2sin 3a b c bcA B C ===,b ∴=sin c B =,()33sin sin sin sin bc B C B A B ∴===+⎝⎭31π1sin 2264B =⎛⎫-+ ⎪⎝⎭;ABC 为锐角三角形,π022ππ032B C B ⎧<<⎪⎪∴⎨⎪<=-<⎪⎩,解得:ππ62B <<,ππ5π2666B ∴<-<,1πsin 2126B ⎛⎫∴<-≤ ⎪⎝⎭,则[)4,6bc ∈,1sin 242ABC S bc A bc ⎫∴==∈⎪⎪⎭.故答案为.⎭四、解答题17.已知复数()222159i z m m m =--+-,其中R m ∈.(1)若z 为实数,求m 的值;(2)若z 为纯虚数,求1iz+的值.【正确答案】(1)3m =±(2)88i+【分析】(1)由题意得290m -=,求解即可;(2)先由题意求得16i z =,再根据复数的除法法则化简复数1iz +,由此可求得答案.【详解】(1)若z 为实数,则290m -=,解得3m =±.(2)若z 为纯虚数,则22215090m m m ⎧--=⎨-≠⎩,解得5m =,∴16i z =,故()()()16i 1i 16i 88i 1i 1i 1i 1i z -===++++-,18.已知向量,a b 满足()()26a b a b +⋅-=- ,且1a = ,2b = .(1)求a b ⋅ ;(2)求a 与b 的夹角θ(3)求a b + .【正确答案】(1)1-(2)2π3【分析】(1)根据向量数量积的运算律可直接构造方程求得结果;(2)利用向量夹角公式直接求解即可;(3)由a b + .【详解】(1)()()222276a b a b a a b b a b +⋅-=-⋅-=--⋅=- ,1a b ∴⋅=- .(2)11cos 122a b a b θ⋅-===-⨯⋅ ,又[]0,πθ∈,2π3θ∴=.(3)a b += 19.已知平面向量()1,a x = ,()23,b x x =+- ,x ∈R .(1)若a b ⊥ ,求a b - ;(2)若a 与b 的夹角为锐角,求x 的取值范围.【正确答案】(1)2或10(2)()()1,00,3-【分析】(1)根据垂直关系可构造方程求得x ,由向量模长的坐标运算可求得结果;(2)根据向量共线的坐标表示可求得x 的值,根据夹角为锐角可构造不等式组求得结果.【详解】(1)a b ⊥ ,2230a b x x ∴⋅=+-= ,解得:=1x -或3x =,当=1x -时,()0,2a b -=- ,2a b ∴-= ;当3x =时,()8,6a b -=-,10a b ∴-=;综上所述:2a b -= 或10(2)若,a b 共线,则()23x x x -=+,解得:0x =或2x =-,当0x =时,()1,0a = ,()3,0b = ,此时,a b 同向;当2x =-时,()1,2a =- ,()1,2b =- ,此时,a b 反向;∴若a 与b 的夹角为锐角,则22300a b x x x ⎧⋅=+->⎪⎨≠⎪⎩,解得:13x -<<且0x ≠,x ∴的取值范围为()()1,00,3- .20.在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且sin sin sin A C a b B a c--=+.(1)求角C 的大小;(2)若c =AB 边上的中线长为5,求ABC 的面积.【正确答案】(1)3π;(2)2.【分析】(1)利用正弦定理将角化边,反凑余弦定理,即可求得C ;(2)倍长中线至CD ,在DAC △中由余弦定理,结合(1)中所求,即可求得ab ,由面积公式即可求得结果.【详解】(1)由正弦定理得a c a b b a c--=+,化简得222a b c ab +-=.由余弦定理得2221cos 22a b c C ab +-==,由()0,πC ∈可得π3C =.(2)倍长AB 边上的中线至CD ,连接DA ,在DAC △中,由CAD ∠的余弦定理可得22221001cos 10022a b CAD a b ab ab +-∠==-⇒++=,又由(1)知222a b c ab +-=即2248a b ab +-=,所以26ab =,所以113133sin 262222S ab C ==⨯=.本题考查利用正弦定理和余弦定理解三角形,属综合基础题.21.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,满足sin sin 1sin sin sin sin A b B B C b A c B +=++(1)求角C ;(2)CD 是ACB ∠的角平分线,若33CD =,ABC 的面积为23c 的值.【正确答案】(1)3C π=;(2)23c =【分析】(1)先由正弦定理得21a b b c ba cb+=++,化简整理得222a b c ab +-=,再由余弦定理求得cos C ,即可求解;(2)先由面积求得8ab =,再由角平分线得AD b BD a =,结合平面向量得a b CD CA CB a b a b=+++ ,平方整理求得6a b +=,再由(1)中222a b c ab +-=即可求出c 的值.【详解】(1)由正弦定理得21a b b c ba cb+=++,即1a b b c a c +=++,整理得()()()()a a c b b c a c b c +++=++,化简得222a b c ab +-=,由余弦定理得2221cos 22a b c C ab +-==,又()0,C π∈,则3C π=;(2)由面积公式得11sin 222ab C ab ==8ab =,又CD 是ACB ∠的角平分线,则1sin 261sin 26ACD BCD CA CD S CA AD S CB BD CB CD ππ⋅⋅⋅===⋅⋅⋅ ,即AD b BD a =,则()b b a b CD CA AD CA AB CA CB CA CA CB a b a b a b a b =+=+=+-=+++++ ,所以()()()2222222222a b a ab b CD CA CB CA CA CB CB a b a b a b a b a b ⎛⎫=+=+⋅+ ⎪++⎝⎭+++ ,即()()()2222222162132a b ab a b ab a b a b a b =+⋅⋅++++,整理得()2221633a b a b =+,又8ab =,解得6a b +=,则()222220a b a b ab +=+-=,由(1)知22220812c a b ab =+-=-=,则c =.22.如图,某巡逻艇在A 处发现北偏东30°B 处有一艘走私船,正沿东偏南45°的方向以3海里/小时的速度向我海岸行驶,巡逻艇立即以/小时的速度沿着正东方向直线追去,1小时后,巡逻艇到达C 处,走私船到达D 处,此时走私船发现了巡逻艇,立即改变航向,以原速向正东方向逃窜,巡逻艇立即加速以/小时的速度沿着直线追击(1)当走私船发现了巡逻艇时,两船相距多少海里(2)问巡逻艇应该沿什么方向去追,才能最快追上走私船【正确答案】(1).(2)巡逻艇应该北偏东75︒方向去追,才能最快追上走私船.【分析】(1)在ABC 中,解三角形得BC =45ABC ︒∠=,在BCD △中,由余弦定理求得CD .(2)在BCD △中,解三角形得60BCD ︒∠=,90BDC ︒∠=,得到135CDE ︒∠=,在CDE 中,由正弦定理求得30∠= DCE ,结合图形知巡逻艇的追赶方向.【详解】(1)由题意知,当走私船发现了巡逻艇时,走私船在D 处,巡逻艇在C 处,此时313,1BD AC =⨯===由题意知903060BAC ︒︒︒∠=-=在ABC 中,AB AC =+=由余弦定理得2222cos BC AB AC AB AC BAC=+-⋅⋅∠221122=++-+⋅=所以BC =在ABC 中,由正弦定理得sin sin AC BC ABC BAC =∠∠,即sin sin 60ABC ︒=∠所以sin 45,ABC ABC ︒∠=∴∠=(135 舍去)所在180604575ACB ︒︒︒︒∠=--=又180********CBD ︒︒︒︒︒∠=---=在BCD △中,30,3,CBD BD BC ︒∠===由余弦定理得2222cos 30CD BC BD BC BD ︒=+-⋅⋅(22323cos33︒=+-⋅=⨯CD ∴=.(2)当巡逻艇经过t 小时经CE 方向在E 处追上走私船,则,3,3CE DE t CD ===在BCD △中,由正弦定理得:sin sin sin CD BD BC CBD BCD BDC ==∠∠∠3sin BCD ==∠所以sin 60BCD BCD ︒∠=∴∠=,90,135BDC CDE ︒︒∠=∠=在CDE 中,由正弦定理得:sin sin CE DE CDE DCE =∠∠则1sin2DCE ︒∠==,故30∠= DCE (150 舍)ACE ACB BCD DCE ∠=∠+∠+∠7560309075︒︒︒=+++ =故巡逻艇应该北偏东75︒方向去追,才能最快追上走私船.。

高一年级数学下学期第一次月考

高一年级数学下学期第一次月考

高一年级数学下学期第一次月考数学试题(任意角的三角函数)命题:尤师勋 王照阳本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟第Ⅰ卷 (选择题,共60分)一、选择题:(本大题共有12个小题,每小题5分,共60分. 在每小题所给的四个答案中有且只有一个答案是正确的)1、下列四个角中,①5-、②π37、③π511-④︒1206其中是第一象限角的个数是( ) A 、1个 B 、 2个 C 、3个 D 、4个2、在︒︒360~0之间与︒-35终边相同的角是( )A 、︒325B 、︒-125C 、︒35D 、︒2353、tan600︒的值是( )A 、3-B 、3C 、 D4、下列命题中的真命题是( )A 、三角形的内角是第一象限角或第二象限角B 、第一象限的角是锐角C .第二象限的角比第一象限的角大D 、角α是第四象限角的充分条件是παππk k 222<<-)(z k ∈ 5、已知α为第一象限角,则2α的终边所在的象限是( ) A 、第一或第二象限 B 、第二或第三象限C 、第一或第三象限D 、第二或第四象限6、若角α的终边过点)30cos ,30(sin ︒-︒,则αsin 等于( )A 、12B 、-12C 、-2D 、-37、若sin cos αα+=1tan tan αα+的值为( ) A 、1 B 、2 C 、1- D 、2-8、在ABC ∆中,“30A >︒”是“1sin 2A >”的 ( ) A 、仅充分条件 B 、仅必要条件 C 、充要条件 D 、既不充分也不必要条件9、若sin cos 1(,)2k k Z πθ=-≠∈,则θ所在象限是( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 10、下列说法正确的是( )A 、 对任意角α,如果α终边上一点坐标为()y x ,,都有x y =αtan B 、设()y x P ,是角α终边上一点,因为 ry =αsin ,所以αsin 与y 成正比 C 、负角的三角函数值是负的;零的三角函数值是零;正角的三角函数值是正的D 、对任意象限的角α,均有|cot tan ||cot ||tan |αααα+=+成立11、满足)()(),()(x f x f x f x f =--=+π的函数)(x f 可能是( )A 、x 2cosB 、x sinC 、2sin x D 、x cos 12、已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是( )A 、2B 、1sin 2C 、1sin 2D 、2sin第Ⅱ卷 (非选择题,共90分)二、填空题:(本大题共4小题,每小题5分,共20分.把答案填在答题卷中相应的横线上.)13. 函数()x x f cos -=的定义域是14、“等式()βγα2sin sin =+成立”是“γβα,,成等差数列”的________条件15、若20πα<<,则αααt a n s i n 、、按从小到大的顺序排列是_______(用不等式连接)16、已知51cos sin =+θθ, ),0(πθ∈,则θcot 的值为________三、解答题:(本大题共6小题70分,解答应写出文字说明,证明过程或演算步骤.)17、(本题满分10分)化简ααααsin 1sin 1sin 1sin 1+---+,其中α为第四象限角.18、(本题满分12分)若点()y P ,3-()0>y 在α的终边上,且y 42sin =α,求ααtan ,cos 的值.19、(本题满分12分)已知53cos -=θ, 求θsin , θtan 的值?20.(本题满分12分)扇形的弧长为320π,面积为10π,求此扇形所在圆的半径.21、(本题满分12分)已知2tan 1tan 1=-+αα,求下列各式的值 (1)ααααcos sin 2cos 2sin -- (2)sin αcos α + 222、(本题满分12分)已知6sin α2+sin αcos α-2cos 2α=0,α⎪⎭⎫⎢⎣⎡∈ππ,2 , 求αααππαtan )cos()2sin()cot(⋅-+⋅--的值.。

2023-2024学年吉林省延边州珲春第一高级中学高一(下)第一次月考数学试卷+答案解析

2023-2024学年吉林省延边州珲春第一高级中学高一(下)第一次月考数学试卷+答案解析

2023-2024学年吉林省延边州珲春第一高级中学高一(下)第一次月考数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知集合,,全集,则()A.B.C.D.I2.欧拉恒等式为虚部单位,e 为自然对数的底数被称为数学中最奇妙的公式,它是复分析中欧拉公式的特例:当自变量时,,得根据欧拉公式,复数的虚部为()A.B.C.D.3.在矩形ABCD 中,E 为线段AB 的中点,则()A. B.C.D.4.在中,角A ,B ,C 的对边分别为a ,b ,c ,若,且,则角A 的余弦值为()A.B.C.D.5.已知向量满足,则()A. B.0C.1D.26.若函数的零点所在的区间为,则实数a 的取值范围是()A. B.C.D.7.在中,已知角A 、B 、C 的对边分别是a 、b 、c ,且,,则的形状是()A.直角三角形 B.等腰三角形 C.等边三角形D.等腰直角三角形8.已O 知是的外心,,,则()A.10B.9C.8D.6二、多选题:本题共3小题,共18分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得6分,部分选对的得2分,有选错的得0分。

9.已知复数,则()A. B.复数z的共轭复数为C.复平面内表示复数z的点位于第一象限D.复数z是方程的一个根10.在中,角A,B,C的对边分别为a,b,根据下列条件,判断三角形解的情况,其中正确的是()A.,,,有唯一解B.,,,无解C.,有两解D.,,,有唯一解11.设P为所在平面内一点,则下列说法正确的是()A.若,则点P是的重心B.若,则点P是的垂心C.若,则点P是的内心D.若,则点P是的外心三、填空题:本题共3小题,每小题5分,共15分。

12.已知复数是纯虚数,其中i为虚数单位,则实数m的值为______.13.已知,,²,则的最小值为______.14.拿破仑定理是法国著名军事家拿破仑波拿巴最早提出的一个几何定理:“以任意三角形的三条边为边,向外构造三个等边三角形,则这三个等边三角形的外接圆圆心恰为另一个等边三角形此等边三角形称为拿破仑三角形的顶点”.在中,已知,且,现以BC,AC,AB为边向外作三个等边三角形,其外接圆圆心依次记为,,,则的面积最大值为______.四、解答题:本题共5小题,共77分。

河南省南阳市2024届高一数学下学期第一次月考试题

河南省南阳市2024届高一数学下学期第一次月考试题

河南省南阳市2024届高一数学下学期第一次月考试题一、选择题(本大题共12小题,每小题只有一个正确答案,每小题5分,共60分) 1.已知集合{}12A x x =-<<,{}0B x x =<,则A B =()A .{}10x x -<<B .{}02x x <<C .{}20x x -<<D .{}12x x -<<2.命题“x R ∀∈,210x x ++≤”的否定为()A .x R ∀∈,210x x ++≥B .x R ∃∈,210x x ++>C .x R ∃∉,210x x ++>D .x R ∀∉,210x x ++≤3.已知x ,y 为实数,则“3x ≥,2y ≥”是“6xy ≥”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.若集合A ={x |x =2k +1,k ∈Z },B ={x |x =2k -1,k ∈Z },C ={x |x =4k -1,k ∈Z },则A ,B ,C 的关系是()A .C ⊆A =BB .A ⊆C ⊆BC .A =B ⊆CD .B ⊆A ⊆C5.设{}2=8150A x x x -+=,{}=10B x ax -=,若A B B =,求实数a 的值的个数()A .1B .2C .3D .46.若,,a b c ∈R ,0a b <<,则下列不等式正确的是()A .11a b<B .||||a c b c >C .2ab b <D .22()(11)a c b c +<+7.已知集合{}|215A x x =->,()(){}|10B x x a x a =--+≥,若A B R =,则a 的取值范围是()A .[)4,+∞B .[)3,+∞C .(],4-∞D .(],3-∞8.若x ,y ∈R ,则0x y +>的一个充分不必要条件()A .1x y +>-B .0x y >>C .0xy >D .220x y ->9.若不等式20ax x c -->的解集为1{|1}2x x -<<,则函数a x cx y --=2的图象可以为()A .B .C .D .10.关于x 的不等式22630(0)x ax a a -+-≥>的解集为[]12x x ,,则12123ax x x x ++的最小值是()A .4B .26C .2D .26311.已知正数y x ,满足2=+y x ,则下列选项不正确的是()A .yx 11+的最小值是2 B .xy 的最大值是1 C .22y x +的最小值是4D .)1(+y x 的最大值是49 12.在整数集Z 中,被4除所得余数k 的所有整数组成一个“类”,记为[]k ,即,0,1,2,3k =.给出如下四个结论:①[]20151∈;②[]22-∈;③[][][][]0123Z =⋃⋃⋃; ④“整数a ,b 属于同一‘类’的充要条件是“[]0a b -∈”.其中正确的个数为() A .1 B .2C .3D .4二、填空题(本大题共4小题,共20分)13.用列举法表示集合{}=<--∈=03522x x N x B 14.已知:p 44+<<-a x a ;:q (2)(3)0x x --<,若q 是p 的充分条件,则a 的取值范围为______ 15.已知45>x ,则14245y x x =-+-的最小值为16.若命题“x R ∀∈,223ax ax -+>0都成立”是假命题,则实数a 的取值范围为________ 三、解答题(本大题共6小题,共70分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

)cos 2,cos (sin θθθP
2019学年高一数学下学期第一次月考试题
考试范围:必修4第一章1--6节 考试时间:120分钟
第I 卷 选择题
一.选择题(12小题,每题5分,共60分)
1. 下列角中终边与 330° 相同的角是( )
A. -30°
B. 30°
C. 630°
D. - 630°
2. 将-300o 化为弧度为( )
A .-43
π; B .-74π; C .-76π; D .-53π; 3. 下列选项中叙述正确的是( )
A .三角形的内角是第一象限角或第二象限角
B .锐角是第一象限的角
C .第二象限的角比第一象限的角大
D .终边不同的角同一三角函数值不相等
4. 函数y =
||x x sin sin +x x cos cos ||+||x x tan tan 的值域是 ( ) A. {1} B. {1,3} C. {- 1} D. {- 1,3}
5. 在[0,2π]上满足sin x ≥12
的x 的取值范围是 ( ) A.[0,π6 ] B.[π6 ,2π3 ] C.[π6 ,5π6 ] D.[5π6
,π] 6.下列函数中为偶函数的是( )
A .sin ||y x =
B .2sin y x =
C .sin y x =-
D .sin 1y x =+
点位于第三象限,那么角θ所在象限是( )
7.如果A.第一象限 B.第三象限 C.第二象限 D.第四象限
8.如果α在第三象限,则2
α必定在( ) A .第一或第二象限 B .第一或第三象限 C .第三或第四象限 D .第二或第四象限
9. 若角α的终边落在直线y =2x 上,则sin α的值为( ) A. 15±
B. 5±
C. 5±
D. 12± 10.函数y=cos 2x –3cosx+2的最小值是( ) A .0 B .2 C .
4
1 D .6 11. 下列不等式中,正确的是( )
A.sin 57 π>sin 47 π
B.tan 158 π>tan(-π7
) C.sin(-π5 )>sin(-π6 ) D.cos(-35 π)>cos(-94
π) 12.设f (x )=a sin(πx +α)+b cos(πx +β)+4,其中a 、b 、α、β均为非零实数, 若f (1988)=3,则f (2002)的值为 ( )
A.1
B.5
C.3
D.不确定
第II 卷 非选择题
二.填空题(4小题,每题5分,共20分)
13. 已知角α的终边经过点P(3,3),则与α终边相同的角的集合是___________________
14. sin y x =-的单调递增区间是_______________________
15.比较大小: 1sin ___________1cos
16. 若(cos )cos3f x x =,那么(sin30)f ︒的值为________________.
三.解答题:(17-21题每题12分,22题10分)
17. (1)已知角α的终边经过点P (4,- 3),求2sin α + cos α的值;
(2)已知角α的终边经过点P (4a ,- 3a )(a ≠0),求 2sin α + cos α的值;
18.已知角α终边上一点P (-4,3),求)2
9sin()211cos()sin()2cos(απαπαπαπ+---+的值 19. 求函数y = lg (sin x ) +216x -的定义域.
20. 已知扇形OAB 的圆心角为120°,半径长为6.
(1)求弧AB 的长; (2)求弧AB 所在弓形的面积.
21.已知cos(75°+α)=13
,其中α为第三象限角,求cos(105°-α)+sin(α-105°)的值.
22. 已知0≤x ≤2
π,求函数y = cos 2x - 2a cos x 的最大值M (a )与最小值m (a ).
答案:
1-5ADBDC 6-10ACDCA 11-12 BC
二.填空题(4小题,每题5分,共20分)
13. Z}k ,36030/{∈•+=οοk αα 14. ]22
3,22[ππππ
k k ++ 15. 1sin >1cos
16. 若(cos )cos3f x x =,那么(sin30)f ︒的值为1-
(sin30)f ︒=()
1180cos 603cos 60cos -==⨯=οοοf
三.解答题:(17-21题每题12分,22题10分)
17.【解】(1)∵22y x r +== 5,
∴ sin α =5
3-=r y ,cos α =54=r x , ∴ 2sin α+ cos α=525456-=+-
. (2)∵a y x r 522=+=,
∴当α>0时,∴r = 5a ,sin α=
5353-=-a a ,cos α=5
4 ∴ 2sin α+ cos α=52-; 当a <0时,∴r = -5a ,sin α=
5353=--a a ,cos α= -5
4, ∴ 2sin α+ cos α=52. 18.已知角α终边上一点P (-4,3),求)2
9sin()211cos()sin()2cos(απαπαπαπ+---+的值 解析:∵角α终边上一点P (-4,3)4
3tan -==x y α ∴cos()sin()2119cos()sin()22
π
απαππαα+---+sin sin sin cos αααα
-⋅=-⋅tan α=34=- 19. 【解析】由已知得
∴x ∈[- 4,- π)∪(0,π).
20.
3
9-12393362
11263
22121463
263
212022πππαππαπα==⨯⨯==••===*==∴===∆弓形的面积扇形的长度弧,S S r AB r l AB r OAB οΘ 21.【解析】cos(105º - α)+ sin(α- 105º) = - cos(75º + α)- sin(α + 75º).
∵ 180º<α<270º,∴ 255º<α + 75º<345º.
又 cos(α + 75º)=31,∴ sin(α + 75º)= -232. ∴原式 =3
12223231-=+-. 22.【解】y = cos 2x - 2a cos x = (cos x -a )2 - a 2,
令 cos x = t ,
∵ 0≤x ≤2
π, ∴t ∈[0,1]. ∴原函数可化为f (t ) = (t - a )2 - a 2,t ∈[0,1].
①当a <0 时,M (a ) = f (1) = 1 – 2a ,m (a ) = f (0) = 0.
②当 0≤a <
21时,M (a ) = f (1) = 1 – 2a ,m (a ) = f (a ) = –a 2. ③当2
1≤a ≤1 时,M (a ) = f (0) = 0,m (a ) = f (a ) = –a 2. ④当a >1 时,M (a ) = f (0) = 0,m (a ) = f (1) = 1–2a .
sin x >0 2k π<x <2k π + π,
16 - x 2≥0, -4≤x ≤4. ∴。

相关文档
最新文档