5 习题五 机械波

合集下载

高二物理机械波练习题及答案

高二物理机械波练习题及答案

高二物理机械波练习题及答案一、选择题1.下列哪个不是机械波的特点?A.能量传播B.只有振动的物体才能产生C.能在真空中传播D.需要介质传播2.下列哪个不是横波的特点?A.振动方向与波的传播方向垂直B.声波是横波C.不能穿透真空D.具有波峰和波谷3.下列哪个不是纵波的特点?A.振动方向与波的传播方向平行B.声波是纵波C.能穿透真空D.没有波峰和波谷4.当有两个同频率、同振幅的正弦波相遇时,如果相位差为0,其合成波的振幅为原波的多少?A.2倍B.1/2倍C.1倍D.无穷大5.在气温一定的情况下,声音在海拔较高的地方的传播速度会发生什么变化?A.增大B.减小C.不变D.没有固定规律二、计算题1.一根绳子上有一横波,波长为2m,频率为50Hz。

当波通过一个固定点需要0.1s时,该固定点处的速度是多少?解:速度=频率*波长=50Hz*2m=100m/s。

2.一根铁棒长度为20cm,悬挂一端后,其自由振动的最低频率为20Hz。

求声速。

解:声速=频率*波长。

最低频率对应的波长是最长波长,即铁棒的长度,所以波长为20cm=0.2m。

声速=20Hz * 0.2m=4m/s。

三、简答题1.什么是机械波?机械波是一种通过物质中的振动传播的波动形式。

机械波传播的物质称为介质,可以是固体、液体或气体。

机械波的振动传播是通过介质中的分子、离子或分子团的相互作用而实现的。

2.什么是横波和纵波?横波是指波动方向垂直于波的传播方向的波。

波峰和波谷是横波的特点。

典型的横波有水波和光波。

纵波是指波动方向与波的传播方向平行的波。

纵波没有波峰和波谷这种振动形态,采用方向性箭头表示。

典型的纵波有声波和地震波。

3.什么是波的干涉?波的干涉是指两个或多个波在空间中相遇、叠加产生干涉现象的过程。

干涉可以是构成波峰叠加而增强的叫做构成干涉峰,叠加而减弱或完全抵消的叫做构成干涉谷。

四、答案1.选C。

机械波能在介质中传播,但不能在真空中传播。

2.选C。

(完整版)机械波习题及答案

(完整版)机械波习题及答案

(完整版)机械波习题及答案波的形式传播波的图象认识机械波及其形成条件,理解机械波的概念,实质及特点,以及与机械振动的关系;理解波的图像的含义,知道波的图像的横、纵坐标各表示的物理量.能在简谐波的图像中指出波长和质点振动的振幅,会画出某时刻波的图像一、机械波⑴机械振动在介质中的传播形成机械波.⑵机械波产生的条件:①波源,②介质.二、机械波的分类⑴)横波:质点振动方向与波的传播方向垂直的波叫横波.横波有波峰和波谷.⑵纵波:质点振动方向与波的传播方向在同一直线上的波叫纵波.纵波有疏部和密部.三、机械波的特点(1)机械波传播的是振动形式和能量,质点只在各自的平衡位置附近振动,并不随波迁移.⑵介质中各质点的振动周期和频率都与波源的振动周期和频率相同⑶离波源近的质点带动离波源远的质点依次振动⑷所有质点开始振动的方向与波源开始振动的方向相同。

四、波长、波速和频率的关系⑴波长:两个相邻的且在振动过程中对平衡位置的位移总是相等的质点间的距离叫波长.振动在一个周期里在介质中传播的距离等于一个波长,对于横波:相邻的两个波峰或相邻的两个波谷之间的距离等于一个波长.对于纵波:相邻的两个密部中央或相邻的两个疏部中央之间的距离等于一个波长.⑵波速:波的传播速率叫波速.机械波的传播速率只与介质有关,在同一种均匀介质中,波速是一个定值,与波源无关.⑶频率:波的频率始终等于波源的振动频率.⑷波长、波速和频率的关系:v=λf=λ/T五、波动图像波动图象是表示在波的传播方向上,介质中各个质点在同一时刻相对平衡位置的位移,当波源做简谐运动时,它在介质中形成简谐波,其波动图象为正弦或余弦曲线.六、由波的图象可获取的信息⑴该时刻各质点的位移.⑵质点振动的振幅A.⑶波长.⑷若知道波的传播方向,可判断各质点的运动方向.如图7-32-1所示,设波向右传播,则1、4质点沿-y方向运动;2、3质点沿+y方向运动.⑸若知道该时刻某质点的运动方向,可判断波的传播方向.如图7-32-1中若质点4向上运动,则可判定该波向左传播.⑹若知波速v的大小。

《大学物理》习题库试题及答案___05_机械波习题

《大学物理》习题库试题及答案___05_机械波习题

一、选择题:1.3147:一平面简谐波沿Ox 正方向传播,波动表达式为]2)42(2cos[10.0π+-π=x t y (SI),该波在t = 0.5 s 时刻的波形图是 [ b ]2.3407:横波以波速u 沿x 轴负方向传播。

t 时刻波形曲线如图。

则该时刻(A) A 点振动速度大于零 (B) B 点静止不动 (C) C 点向下运动 (D) D 点振动速度小于零[ d ]3.3411:若一平面简谐波的表达式为 )cos(Cx Bt A y -=,式中A 、B 、C 为正值常量,则:(A) 波速为C (B) 周期为1/B (C) 波长为 2π /C (D) 角频率为2π /B[ c ]u=λ/T C=ϖ/u4.3413:下列函数f (x 。

t)可表示弹性介质中的一维波动,式中A 、a 和b 是正的常量。

其中哪个函数表示沿x 轴负向传播-的行波?(A) )A(bt),tf-=cos(xaxax(bt),Atf+xcos(=(B) )(C) bttAaxxf sin(⋅),sin==(D) btt(⋅axxA),cosf cos[a]5.3479:在简谐波传播过程中,沿传播方向相距为λ21(λ 为波长)的两点的振动速度必定(A) 大小相同,而方向相反(B) 大小和方向均相同(C) 大小不同,方向相同(D) 大小不同,而方向相反[ a ]6.3483:一简谐横波沿Ox轴传播。

若Ox轴上P1和P2两点相距λ /8(其中λ为该波的波长),则在波的传播过程中,这两点振动速度的(A) 方向总是相同(B) 方向总是相反(C) 方向有时相同,有时相反(D) 大小总是不相等[ c ]7.3841:把一根十分长的绳子拉成水平,用手握其一端。

维持拉力恒定,使绳端在垂直于绳子的方向上作简谐振动,则(A) 振动频率越高,波长越长(B) 振动频率越低,波长越长(C) 振动频率越高,波速越大(D) 振动频率越低,波速越大[ B ] 8.3847:图为沿x 轴负方向传播的平面简谐波在t = 0时刻的波形。

机械振动_机械波课后习题

机械振动_机械波课后习题

习题5 •机械振动5.1选择题(1) 一物体作简谐振动,振动方程为x=Acos(,t ),则该物体在t=0时刻2的动能与t二T/8(T为振动周期)时刻的动能之比为:(A) 1: 4 ( B) 1:2 (C) 1:1 (D) 2:1(2) 弹簧振子在光滑水平面上作简谐振动时,弹性力在半个周期内所作的功为(A)kA2(B) kA2/2(C) kA2//4(D)0(3)谐振动过程中,动能和势能相等的位置的位移等于(A),4(C) 一3A2(B)冷(D) - 2A5.2填空题(1) 一质点在X轴上作简谐振动,振幅A = 4cm,周期T = 2s,其平衡位置取作坐标原点。

若t= 0时质点第一次通过x = —2cm处且向X轴负方向运动,则质点第二次通过x= —2cm处的时刻为___ So(2) —水平弹簧简谐振子的振动曲线如题 5.2(2图所示。

振子在位移为零,速度为—呱、加速度为零和弹性力为零的状态,对应于曲线上的______________ 点。

振子处在位移的绝对值为A、速度为零、加速度为--2A和弹性力为-KA的状态,则对应曲线上的_____________ 点。

题5.2(2)图(3) —质点沿x轴作简谐振动,振动范围的中心点为x轴的原点,已知周期为T,振幅为A。

(a) 若t=0时质点过x=0处且朝x轴正方向运动,则振动方程为x= __________________ 。

(b) 若t=0时质点过x=A/2处且朝x轴负方向运动,则振动方程为x= ________________ 。

5.3符合什么规律的运动才是谐振动?分别分析下列运动是不是谐振动:⑴拍皮球时球的运动;(2)如题5.3图所示,一小球在一个半径很大的光滑凹球面内滚动(设小球所经过的弧线很短).题5.3图题5.3图(b)5.4弹簧振子的振幅增大到原振幅的两倍时,其振动周期、振动能量、最大速度和最大加速度等物理量将如何变化?5.5单摆的周期受哪些因素影响?把某一单摆由赤道拿到北极去,它的周期是否变化?5.6简谐振动的速度和加速度在什么情况下是同号的?在什么情况下是异号的?加速度为正值时,振动质点的速率是否一定在增大?5.7质量为10 10:kg的小球与轻弹簧组成的系统,按x = 0.1cos(8t,空)(SI)的规律3作谐振动,求:(1) 振动的周期、振幅和初位相及速度与加速度的最大值;(2) 最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等?⑶t2 =5S与t1 =1s两个时刻的位相差;5.8 一个沿x轴作简谐振动的弹簧振子,振幅为A,周期为T,其振动方程用余弦函数表示•如果t =0时质点的状态分别是:(1) x o = -A ;(2) 过平衡位置向正向运动;A(3) 过x二一处向负向运动;2A(4) 过x A处向正向运动.V2试求出相应的初位相,并写出振动方程.5.9 —质量为10 10^kg的物体作谐振动,振幅为24cm,周期为4.0s,当t =0时位移为24cm .求:(1) t =0.5s时,物体所在的位置及此时所受力的大小和方向;(2) 由起始位置运动到x = 12cm处所需的最短时间;(3) 在x =12cm处物体的总能量.5.10有一轻弹簧,下面悬挂质量为1.0g的物体时,伸长为4.9cm .用这个弹簧和一个质量为8.0g的小球构成弹簧振子,将小球由平衡位置向下拉开 1.0cm后,给予向上的初速度V。

机械波习题

机械波习题

机械波习题引言机械波是由质点做周期性振动在介质中传播所形成的波动现象。

在物理学的学习中,我们经常会遇到与机械波相关的习题。

本文将介绍一些关于机械波的习题,帮助读者更好地理解和应用机械波的相关知识。

题目一:弦上的横波一根质量为m、长L的均匀弦,其线密度为$\\lambda$。

假设弦在一个固定端被固定,另一端被拉力F拉直,并与竖直方向成角度$\\theta$。

求解以下问题:1.当$\\theta$很小的时候,弦上的横波传播速度v与$\\theta$之间的关系。

2.当$\\theta$很小时,弦上的横波的频率f与拉力F之间的关系。

题目二:弹簧振子一个质量为m的弹簧与一个竖直放置的墙壁相连,墙壁不发生运动。

弹簧的劲度系数为k。

当弹簧处于自由状态时,其长度为l0。

现将质量为m的物体连接在弹簧的另一端,使其悬挂在墙壁前。

求解以下问题:1.物体受到作用力为零时,弹簧的长度为多少?2.物体不受外力作用时,弹簧的振动周期T与质量m之间的关系。

题目三:声波传播声波是一种机械波,是由介质质点作周期性振动引起的波动现象。

声波的传播速度与介质的性质有关。

现考虑在气温为T、气压为P的恒定条件下,声波在空气中的传播速度v与频率f之间的关系。

已知空气的摩尔质量为M,空气的摩尔热容为c,空气的比热容比为$\\gamma$。

求解以下问题:1.在给定的条件下,声波的传播速度v与频率f之间的关系是什么?2.气温T对于声波的传播速度v有何影响?结论通过解答以上习题,我们可以更好地理解和应用机械波的知识。

弦上横波的传播速度与拉力的正比关系,弦上横波的频率与拉力的平方根的反比关系,弹簧振子的弹簧长度与作用力为零的关系,以及弹簧振子的振动周期与质量的平方根的反比关系。

在声波传播中,声波的传播速度与频率成正比关系,而气温对于声波的传播速度有一定的影响。

通过对这些习题的解答,我们可以更好地理解和应用机械波的相关概念和公式。

以上是关于机械波的一些习题,希望能对读者有所帮助。

大学物理课后习题答案第五章

大学物理课后习题答案第五章

大学物理课后习题答案第五章-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第五章 机械波5.1 已知一波的波动方程为y = 5×10-2sin(10πt – 0.6x ) (m). (1)求波长、频率、波速及传播方向;(2)说明x = 0时波动方程的意义,并作图表示.[解答](1)与标准波动方程2cos()xy A t πωλ=-比较得:2π/λ = 0.6,因此波长为:λ = 10.47(m);圆频率为:ω = 10π,频率为:v =ω/2π = 5(Hz);波速为:u = λ/T = λv = 52.36(m·s -1). 且传播方向为x 轴正方向.(2)当x = 0时波动方程就成为该处质点的振动方程: y = 5×10-2sin10πt = 5×10-2cos(10πt – π/2), 振动曲线如图.5.2 一平面简谐波在媒质中以速度为u = 0.2m·s -1沿x 轴正向传播,已知波线上A 点(x A = 0.05m )的振动方程为0.03cos(4)2A y t ππ=-(m).试求:(1)简谐波的波动方程;(2)x = -0.05m 处质点P 处的振动方程.[解答](1)简谐波的波动方程为:cos[()]Ax x y A t uωϕ-=-+;即 0.050.03cos[4()]0.22x y t ππ-=--= 0.03cos[4π(t – 5x ) + π/2].(2)在x = -0.05m 处质点P 点的振动方程为:y = 0.03cos[4πt + π + π/2] = 0.03cos(4πt - π/2).5.3 已知平面波波源的振动表达式为20 6.010sin 2y t π-=⨯(m).求距波源5m处质点的振动方程和该质点与波源的位相差.设波速为2m·s -1.[解答]振动方程为:26.010sin ()2xy t u π-=⨯- 50.06sin()24t ππ=-,位相差为 Δφ = 5π/4(rad).5.4 有一沿x 轴正向传播的平面波,其波速为u = 1m·s -1,波长λ = 0.04m ,振幅A = 0.03m .若以坐标原点恰在平衡位置而向负方向运动时作为开始时刻,试求:(1)此平面波的波动方程;(2)与波源相距x = 0.01m 处质点的振动方程,该点初相是多少?[解答](1)设原点的振动方程为:y 0 = A cos(ωt + φ),其中A = 0.03m . 由于u = λ/T ,所以质点振动的周期为:T = λ/u = 0.04(s),圆频率为:ω = 2π/T = 50π.当t = 0时,y 0 = 0,因此cos φ = 0;由于质点速度小于零,所以φ = π/2.原点的振动方程为:y 0 = 0.03cos(50πt + π/2), 平面波的波动方程为:0.03cos[50()]2x y t u ππ=-+= 0.03cos[50π(t – x ) + π/2).(2)与波源相距x = 0.01m 处质点的振动方程为:y = 0.03cos50πt . 该点初相φ = 0.5.5 一列简谐波沿x 轴正向传播,在t 1 = 0s ,t 2 = 0.25s 时刻的波形如图所示.试求:(1)P 点的振动表达式; (2)波动方程; (3)画出O 点的振动曲线. [解答](1)设P 点的振动方程为 y P = A cos(ωt + φ),其中A = 0.2m .在Δt = 0.25s 内,波向右传播了Δx = 0.45/3 = 0.15(m), 所以波速为u = Δx/Δt = 0.6(m·s -1).波长为:λ = 4Δx = 0.6(m), 周期为:T = λ/u = 1(s), 圆频率为:ω = 2π/T = 2π.当t = 0时,y P = 0,因此cos φ = 0;由于波沿x 轴正向传播,所以P 点在此时向上运动,速度大于零,所以φ = -π/2.P 点的振动表达式为:y P = 0.2cos(2πt - π/2). (2)P 点的位置是x P = 0.3m ,所以波动方程为0.2cos[2()]2P x x y t u ππ-=--100.2cos(2)32t x πππ=-+. (3)在x = 0处的振动方程为y 0 = 0.2cos(2πt + π/2),曲线如图所示.5.6 如图所示为一列沿x 负向传播的平面谐波在t = T /4时的波形图,振幅A 、波长λ以及周期T 均已知.(1)写出该波的波动方程; (2)画出x = λ/2处质点的振动曲线; (3)图中波线上a 和b 两点的位相差φa – φb 为多少?[解答](1)设此波的波动方程为:图5.5cos[2()]t xy A T πϕλ=++,当t = T /4时的波形方程为:cos(2)2x y A ππϕλ=++sin(2)xA πϕλ=-+.在x = 0处y = 0,因此得sin φ = 0, 解得φ = 0或π.而在x = λ/2处y = -A ,所以φ = 0.因此波动方程为:cos 2()t xy A T πλ=+.(2)在x = λ/2处质点的振动方程为:cos(2)cos 2t t y A A T Tπππ=+=-, 曲线如图所示.(3)x a = λ/4处的质点的振动方程为 cos(2)2a t y A T ππ=+; x b = λ处的质点的振动方程为 cos(22)b t y A Tππ=+. 波线上a 和b 两点的位相差φa – φb = -3π/2.5.7 已知波的波动方程为y = A cosπ(4t – 2x )(SI ).(1)写出t = 4.2s 时各波峰位置的坐标表示式,并计算此时离原点最近的波峰的位置,该波峰何时通过原点( 2)画出t = 4.2s 时的波形曲线. [解答]波的波动方程可化为:y = A cos2π(2t – x ), 与标准方程cos[2()]t xy A T πϕλ=-+比较, 可知:周期为T = 0.5s ,波长λ = 1m .波速为u = λ/T = 2m·s -1.(1)当t = 4.2s 时的波形方程为y = A cos(2πx – 16.8π)= A cos(2πx – 0.8π). 令y = A ,则cos(2πx – 0.8π) = 1,因此 2πx – 0.8π = 2k π,(k = 0, ±1, ±2,…),各波峰的位置为x = k + 0.4,(k = 0, ±1, ±2,…).当k = 0时的波峰离原点最近,最近为:x = 0.4(m).通过原点时经过的时间为:Δt = Δx/u = (0 – x )/u = -0.2(s), 即:该波峰0.2s 之前通过了原点.(2)t = 0时刻的波形曲线如实线所示.经过t = 4s 时,也就是经过8个周期,波形曲线是重合的;再经Δt = 0.2s ,波形向右移动Δx = u Δt = 0.4m ,因此t = 4.2s 时的波形曲线如虚线所示.[注意]各波峰的位置也可以由cos(2πx – 16.8π) = 1解得,结果为x = k + 8.4,(k = 0, ±1, ±2,…),取同一整数k 值,波峰的位置不同.当k = -8时的波峰离原点最近,最近为x = 0.4m .5.8 一简谐波沿x 轴正向传播,波长λ = 4m ,周期T = 4s ,已知x = 0处的质点的振动曲线如图所示.(1)写出时x = 0处质点的振动方程; (2)写出波的表达式;(3)画出t = 1s 时刻的波形曲线.[解答]波速为u = λ/T = 1(m·s -1). (1)设x = 0处的质点的振动方程为y = A cos(ωt + φ),其中A = 1m ,ω = 2π/T = π/2.当t = 0时,y = 0.5,因此cos φ = 0.5,φ = ±π/3.在0时刻的曲线上作一切线,可知该时刻的速度小于零,因此φ = π/3.振动方程为:y = cos(πt /2 + π/3). (2)波的表达式为:cos[2()]t xy A T πϕλ=-+ cos[()]23t x ππ=-+. (3)t = 1s 时刻的波形方程为 5cos()26y x ππ=-,波形曲线如图所示.5.9 在波的传播路程上有A 和B 两点,都做简谐振动,B 点的位相比A 点落后π/6,已知A 和B 之间的距离为2.0cm ,振动周期为2.0s .求波速u 和波长λ.[解答] 设波动方程为:cos[2()]t xy A T πϕλ=-+,那么A 和B 两点的振动方程分别为:cos[2()]A A xt y A T πϕλ=-+,cos[2()]B B xt y A T πϕλ=-+.两点之间的位相差为:2(2)6B A x x πππλλ---=-,由于x B – x A = 0.02m ,所以波长为:λ = 0.24(m).波速为:u = λ/T = 0.12(m·s -1).5.10 一平面波在介质中以速度u = 20m·s -1沿x 轴负方向传播.已知在传播路径上的某点A 的振动方程为y = 3cos4πt .(1)如以A 点为坐标原点,写出波动方程; (2)如以距A 点5m 处的B 点为坐标原点,写出波动方程;(3)写出传播方向上B ,C ,D 点的振动方程.[解答](1)以A 点为坐标原点,波动方程为3cos 4()3cos(4)5x xy t t u πππ=+=+.(2)以B 点为坐标原点,波动方程为3cos 4()Ax x y t u π-=+3cos(4)5x t πππ=+-.(3)以A 点为坐标原点,则x B = -5m 、x C = -13m 、x D = 9m ,各点的振动方程为3cos 4()3cos(4)B B xy t t u πππ=+=-,33cos 4()3cos(4)5C C x y t t u πππ=+=-,93cos 4()3cos(4)5D D x y t t u πππ=+=+.[注意]以B 点为坐标原点,求出各点坐标,也能求出各点的振动方程.5.11 一弹性波在媒质中传播的速度u = 1×103m·s -1,振幅A = 1.0×10-4m ,频率ν= 103Hz .若该媒质的密度为800kg·m -3,求:(1)该波的平均能流密度;(2)1分钟内垂直通过面积S = 4×10-4m 2的总能量. [解答](1)质点的圆频率为:ω = 2πv = 6.283×103(rad·s -1),波的平均能量密度为:2212w A ρω== 158(J·m -3),平均能流密度为:I wu == 1.58×105(W·m -2).(2)1分钟内垂直通过面积S = 4×10-4m 2的总能量为:E = ItS = 3.79×103(J).5.12 一平面简谐声波在空气中传播,波速u = 340m·s -1,频率为500Hz .到达人耳时,振幅A = 1×10-4cm ,试求人耳接收到声波的平均能量密度和声强此时声强相当于多少分贝已知空气密度ρ = 1.29kg·m -3.[解答]质点的圆频率为:ω = 2πv = 3.142×103(rad·s -1),声波的平均能量密度为:2212w A ρω== 6.37×10-6(J·m -3),平均能流密度为:I wu == 2.16×10-3(W·m -2), 标准声强为:I 0 = 1×10-12(W·m -2),图5.10此声强的分贝数为:010lgIL I == 93.4(dB).5.13 设空气中声速为330m·s -1.一列火车以30m·s -1的速度行驶,机车上汽笛的频率为600Hz .一静止的观察者在机车的正前方和机车驶过其身后所听到的频率分别是多少?如果观察者以速度10m·s -1与这列火车相向运动,在上述两个位置,他听到的声音频率分别是多少?[解答]取声速的方向为正,多谱勒频率公式可统一表示为BB S Su u u u νν-=-,其中v S 表示声源的频率,u 表示声速,u B 表示观察者的速度,u S 表示声源的速度,v B 表示观察者接收的频率.(1)当观察者静止时,u B = 0,火车驶来时其速度方向与声速方向相同,u S = 30m·s -1,观察者听到的频率为33060033030B S S u u u νν==--= 660(Hz).火车驶去时其速度方向与声速方向相反,u S = -30m·s -1,观察者听到的频率为33060033030B S S u u u νν==-+= 550(Hz).(2)当观察者与火车靠近时,观察者的速度方向与声速相反,u B = -10m·s -1;火车速度方向与声速方向相同,u S = 30m·s -1,观察者听到的频率为3301060033030B B S S u u u u νν-+==--= 680(Hz).当观察者与火车远离时,观察者的速度方向与声速相同,u B = 10m·s -1;火车速度方向与声速方向相反,u S = -30m·s -1,观察者听到的频率为3301060033030B B S S u u u u νν--==-+= 533(Hz).[注意]这类题目涉及声速、声源的速度和观察者的速度,规定方向之后将公式统一起来,很容易判别速度方向,给计算带来了方便.5.14.一声源的频率为1080Hz ,相对地面以30m·s -1速率向右运动.在其右方有一反射面相对地面以65m·s -1的速率向左运动.设空气中声速为331m·s -1.求:(1)声源在空气中发出的声音的波长; (2)反射回的声音的频率和波长.[解答](1)声音在声源垂直方向的波长为:λ0 = uT 0 = u /ν0 = 331/1080 = 0.306(m);在声源前方的波长为:λ1 = λ0 - u s T 0 = uT 0 - u s T 0 = (u - u s )/ν0 = (331-30)/1080 = 0.2787(m);在声源后方的波长为:λ2 = λ0 + u s T 0 = uT 0 + u s T 0 = (u + u s )/ν0= (331+30)/1080 = 0.3343(m).(2)反射面接收到的频率为1033165108033130B S u u u u νν++==⨯--= 1421(Hz). 将反射面作为波源,其频率为ν1,反射声音的频率为`11331142133165B u u u νν==⨯--= 1768(Hz).反射声音的波长为`1111331651421B B uu u u λννν--=-===0.1872(m).或者 `1`13311768u λν=== 0.1872(m).[注意]如果用下式计算波长`111650.27871768B u λλν=-=-=0.2330(m),结果就是错误的.当反射面不动时,作为波源发出的波长为u /ν1 = 0.2330m ,而不是入射的波长λ1.5.15 S 1与S 2为两相干波源,相距1/4个波长,S 1比S 2的位相超前π/2.问S 1、S 2连线上在S 1外侧各点的合成波的振幅如何?在S 2外侧各点的振幅如何?[解答]如图所示,设S 1在其左侧产生的波的波动方程为 1cos[2()]t xy A T πϕλ=++, 那么S 2在S 1左侧产生的波的波动方程为2/4cos[2()]2t x y A T λππϕλ-=++-cos[2()]t xA T πϕπλ=++-,由于两波源在任意点x 产生振动反相,所以合振幅为零.S 1在S 2右侧产生的波的波动方程为1cos[2()]t xy A T πϕλ=-+,那么S 2在其右侧产生的波的波动方程为2/4cos[2()]2t x y A T λππϕλ-=-+-cos[2()]t xA T πϕλ=-+,由于两波源在任意点x 产生振动同相,所以合振幅为单一振动的两倍.5.16 两相干波源S 1与S 2相距5m ,其振幅相等,频率都是100Hz ,位相差为π;波在媒质中的传播速度为400m·s -1,试以S 1S 2连线为坐标轴x ,以S 1S 2连线中点为原点,求S 1S 2间因干涉而静止的各点的坐标.[解答]如图所示,设S 1在其右侧产生的波的波动方程为1 2121/2cos[2()]x l y A t u πνϕ+=-+ 5cos(2)24A t x πππνϕ=-+-,那么S 2在其左侧产生的波的波动方程为2/2cos[2()]x l y A t u πνϕπ-=+++cos(2)24A t x πππνϕ=++-.两个振动的相差为Δφ = πx + π,当Δφ = (2k + 1)π时,质点由于两波干涉而静止,静止点为x = 2k , k 为整数,但必须使x 的值在-l /2到l /2之间,即-2.5到2.5之间.当k = -1、0和1时,可得静止点的坐标为:x = -2、0和2(m).5.17 设入射波的表达式为1cos 2()t xy A T πλ=+,在x = 0处发生反射,反射点为一自由端,求:(1)反射波的表达式; (2)合成驻波的表达式.[解答](1)由于反射点为自由端,所以没有半波损失,反射波的波动方程为2cos 2()t xy A T πλ=-.(2)合成波为y = y 1 + y 2,将三角函数展开得222cos cos y A x t Tππλ=,这是驻波的方程.5.18 两波在一很长的弦线上传播,设其表达式为:1 6.0cos (0.028.0)2y x t π=-,2 6.0cos(0.028.0)2y x t π=+,用厘米、克、秒(cm,g,s )制单位,求:(1)各波的频率,波长、波速;(2)节点的位置;(3)在哪些位置上,振幅最大?[解答](1)两波可表示为:1 6.0cos 2()0.5200t x y π=-,2 6.0cos 2()0.5200t xy π=+,可知它们的周期都为:T = 0.5(s),频率为:v = 1/T = 2(Hz);波长为:λ = 200(cm);波速为:u = λ/T = 400(cm·s -1).(2)位相差Δφ = πx /50,当Δφ = (2k + 1)π时,可得节点的位置x = 50(2k + 1)(cm),(k = 0,1,2,…).(3)当Δφ = 2k π时,可得波腹的位置x = 100k (cm),(k = 0,1,2,…).。

华南理工-大学物理练习题-机械波,习题五

华南理工-大学物理练习题-机械波,习题五

姓名 班级 序号机械波1、一平面简谐波表达式为y =5cos (8t+3x +4π),式中各量采用国际单位制。

问: (1)它向什么方向传播?(2)它的频率、波长、波速各是多少?(3)质点的最大振动速度及最大加速度是多少? (4)x =2m 处,质点的初相位是多少?2.如图,一平面简谐波以波速u 沿x 轴正方向传播,O 为坐标原点.已知P 点的振动方程为cos y A t ω=,则 [ ](A )O 点的振动方程为 []cos (/)y A t l u ω=-; (B )波的表达式为 {}cos [(/)(/)]y A t l u x u ω=--; (C )波的表达式为 {}cos [(/)(/)]y A t l u x u ω=+-; (D )C 点的振动方程为 []cos (3/)y A t l u ω=-。

3.一平面简谐波以速度u 沿x 轴正方向传播,在t t '=时波形曲线如图所示.求坐标原点O 的振动方程和波动方程。

4.平面简谐波沿x 轴正方向传播,振幅为2cm ,频率为50Hz ,波速为 200 m/s .在0t =时,0x =处的质点正在平衡位置向y 轴正方向运动,求4m x =处媒质质点振动的表达式及该点在2s t =时的振动速度。

5.一平面简谐波沿Ox 轴的负方向传播,波长为λ ,P 处质点的振动规律如图所示.(1)求P 处质点的振动方程; (2)求此波的波动表达式;(3)若图中 λ21=d ,求坐标原点O 处质点的振动方程。

6、一平面简谐波在弹性介质中传播,在介质质元从最大位移运动到平衡位置处的过程中:( )。

A.它的动能转换成势能;B.它的势能转换成动能;C.它从相邻一段一段质元获得能量其能量逐渐增大;D.它把自己的能量传给相邻的一段质元,其能量逐渐减少。

7.一平面简谐波,频率为31.010Hz ⨯,波速为31.010m/s ⨯,振幅为m 100.14-⨯,在截面面积为424.010m -⨯的管内介质中传播,若介质的密度为238.010kg m -⨯⋅,则该波的能流密度__________________;该波在60 s 内垂直通过截面的总能量为_________________。

大物习题答案第5章 机械波

大物习题答案第5章 机械波

第5章 机械波5.1基本要求1.理解描述简谐波的各物理量的意义及相互间的关系.2.理解机械波产生的条件.掌握由已知质点的简谐振动方程得出平面简谐波的波函数的方法.理解波函数的物理意义.理解波的能量传播特征及能流、能流密度概念.3.了解惠更斯原理和波的叠加原理.理解波的相干条件,能应用相位差和波程差分析、确定相干波叠加后振幅加强和减弱的条件. 4.理解驻波及其形成。

5.了解机械波的多普勒效应及其产生的原因.5.2基本概念 1.机械波机械振动在弹性介质中的传播称为机械波,机械波产生的条件首先要有作机械振动的物体,即波源;其次要有能够传播这种机械振动的弹性介质。

它可以分为横波和纵波。

2.波线与波面 沿波的传播方向画一些带有箭头的线,叫波线。

介质中振动相位相同的各点所连成的面,叫波面或波阵面。

在某一时刻,最前方的波面叫波前。

3.波长λ 在波传播方向上,相位差为2π的两个邻点之间的距离称为波长,它是波的空间周期性的反映。

4.周期T 与频率ν 一定的振动相位向前传播一个波长的距离所需的时间称为波的周期,它反映了波的时间周期性,波的周期与传播介质各质点的振动周期相同。

周期的倒数称为频率,波的频率也就是波源的振动频率。

5.波速u 单位时间里振动状态(或波形)在介质中传播的距离。

它与波动的特性无关,仅取决于传播介质的性质。

6.平面简谐波的波动方程 在无吸收的均匀介质中沿x 轴传播的平面简谐波的波函数为()2cos y A tx ωϕπλ=+或s )co (x y A tu ωϕ⎡⎤=+⎢⎥⎣⎦其中,“-”表示波沿x 轴正方向传播;“+”表示波沿x 轴负方向传播。

波函数是x 和t 的函数。

给定x ,表示x 处质点的振动,即给出x 处质点任意时刻离开自己平衡位置的位移;给定t ,表示t 时刻的波形,即给出t 时刻质点离开自己平衡位置的位移。

7.波的能量 波动中的动能与势能之和,其特点是同体积元中的动能和势能相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题五
姓名
一、选择题
1.已知一平面简谐波的表达式为 )cos(bx at A y -=(a 、b 为正值常量),则 [ ]
(A )波的频率为a ; (B )波的传播速度为 b/a ; (C )波长为 π / b ; (D )波的周期为2π / a 。

2.如图,一平面简谐波以波速u 沿x 轴正方向传播,O 为坐标原点.已知P 点的振动方程为cos y A t ω=,则 [ ]
(A )O 点的振动方程为 cos ()l y A t u ω=-;
(B )波的表达式为 cos ()l x
y A t u u ω=--;
(C )波的表达式为 cos ()l x
y A t u u
ω=+-;
(D )C 点的振动方程为 3cos ()l
y A t u
ω=-。

3.一平面简谐波以速度u 沿x 轴正方向传播,在t t '=时波形曲线如图所示.则坐标原点O 的振动方程为[ ]
(A )]2)(cos[π
+'-=t t b u a y ; (B )]2)(2cos[π-'-π=t t b u a y ;
(C )]2
)(cos[π+'+π=t t b u a y ; (D )]2
)(cos[π
-'-π=t t b u a y 。

4.当一平面简谐机械波在弹性媒质中传播时,下述各结论哪个是正确的?[ ]
(A )媒质质元的振动动能增大时,其弹性势能减小,总机械能守恒; (B )媒质质元的振动动能和弹性势能都作周期性变化,但二者的相位不相同; (C )媒质质元的振动动能和弹性势能的相位在任一时刻都相同,但二者的数值不等;
(D )媒质质元在其平衡位置处弹性势能最大。

5.设声波在媒质中的传播速度为u ,声源的频率为S ν。

若声源S 不动,而接收器R 相对于媒质以速度R v 沿着S 、R 连线向着声源S 运动,则位于S 、R 连线中点的质点P 的振动频率为[ ]
x
O u 2l l
y
C P
(A )S ν; (B ) R
S u v u
ν+; (C )
S R
u
u v ν+; (D )
S R
u
u v ν-。

二、填空题
1.已知一平面简谐波的表达式为 )37.0125cos(25.0x t y -= (SI),则
1= 10m x 处质点的振动方程为________________________________; 1= 10m x 和2= 25m x 两点间的振动相位差为_____________。

2.如图所示,一平面简谐波沿Ox 轴正向传播,波速大小为u ,
若P 处质点的振动方程为cos()P y A t ωϕ=+,则
O 处质点的振动方程___________________________________;
该波的波动表达式_____________________________________。

3.图示为一平面简谐波在0t =时刻的波形图,则该波的
波动表达式__________________________________;
P 处质点的振动方程
为_________________________________。

4.一平面简谐波,频率为31.010Hz ⨯,波速为31.010m/s ⨯,振幅为41.010m ⨯,在截面面
积为424.010m -⨯的管内介质中传播,若介质的密度为238.010kg m -⨯⋅,则该波的能量密度__________________;该波在60 s 内垂直通过截面的总能量为_________________。

5.如图所示,两列相干波在P 点相遇。

一列波在B 点引起的振动是 310310cos2y t -=⨯π;另一列波在C 点引起的振动是3201310cos(2)2
y t -=⨯π+π;令0.45 m BP =,0.30 m CP =,两波的
传播速度= 0.20 m/s u 。

若不考虑传播途中振幅的减小,则P 点的合振
动的振动方程为 。

三、计算题 1.平面简谐波沿x 轴正方向传播,振幅为2cm ,频率为50Hz ,波速为 200 m/s .在0t =时,0x =处的质点正在平衡位置向y 轴正方向运动,求4m x =处媒质质点振动的表达式及该点在2s t =时的振动速度。

(m) -
2.一平面简谐波沿Ox 轴的负方向传播,波长为λ ,P 处质点的振动规律如图所示.
(1)求P 处质点的振动方程;
(2)求此波的波动表达式;
(3)若图中 /2d λ=,求坐标原点O 处质点的振动方程。

3.一平面简谐波沿Ox 轴正方向传播,波的表达式为 cos2()x
y A t νλ
=-π,而另一平面简
谐波沿Ox 轴负方向传播,波的表达式为 2cos2()x
y A t νλ
=+π
求:(1)/4x λ=处介质质点的合振动方程;(2)/4x λ=处介质质点的速度表达式。

t (s)
0-A
1y P (m)
O P d
4.设入射波的表达式为 )(
2cos 1T
t
x
A y +
π=λ
,在0x =处发生反射,反射点为一固定端。

设反射时无能量损失,求
(1)反射波的表达式;(2)合成的驻波的表达式;(3)波腹和波节的位置。

5.在大教室中,教师手拿振动的音叉站立不动,学生听到音叉振动声音的频率01020Hz ν=;若教师以速度0.5m/s v =匀速向黑板走去,则教师身后的学生将会听到拍音,试计算拍频(设声波在空气中的速度为340m/s V =)。

相关文档
最新文档