2014届高中数学步步高大一轮复习讲义常考题型强化练——不等式
步步高大一轮复习讲义

§2.9 函数的应用2014高考会这样考 1.综合考查函数的性质;2.考查一次函数、二次函数、分段函数及基本初等函数的建模问题;3.考查函数的最值.复习备考要这样做 1.讨论函数的性质一定要先考虑定义域;2.充分搜集、应用题目信息,正确建立函数模型;3.注重函数与不等式、数列、导数等知识的综合.1. 几类函数模型及其增长差异(1)几类函数模型函数模型 函数解析式一次函数模型 f (x )=ax +b (a 、b 为常数,a ≠0) 反比例函数模型f (x )=kx+b (k ,b 为常数且k ≠0)二次函数模型f (x )=ax 2+bx +c(a ,b ,c 为常数,a ≠0)指数函数模型f (x )=ba x +c(a ,b ,c 为常数,b ≠0,a >0且a ≠1)对数函数模型 f (x )=b log a x +c(a ,b ,c 为常数,b ≠0,a >0且a ≠1)幂函数模型f (x )=ax n +b (a ,b 为常数,a ≠0)函数性质 y =a x (a >1) y =log a x (a >1) y =x n (n >0)在(0,+∞)上的增减性 单调递增 单调递增 单调递增 增长速度 越来越快 越来越慢 相对平稳 图像的变化 随x 的增大逐渐表现为与y 轴平行随x 的增大逐渐表现为与x 轴平行随n 值变化而各有不同值的比较存在一个x 0,当x >x 0时,有log a x <x n<a x(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;(3)解模:求解数学模型,得出数学结论;(4)还原:将数学问题还原为实际问题的意义.以上过程用框图表示如下:[难点正本疑点清源]1.要注意实际问题的自变量的取值范围,合理确定函数的定义域.2.解决函数应用问题重点解决以下问题(1)阅读理解、整理数据:通过分析、画图、列表、归类等方法,快速弄清数据之间的关系,数据的单位等等;(2)建立函数模型:关键是正确选择自变量将问题的目标表示为这个变量的函数,建立函数的模型的过程主要是抓住某些量之间的相等关系列出函数式,注意不要忘记考察函数的定义域;(3)求解函数模型:主要是研究函数的单调性,求函数的值域、最大(小)值,计算函数的特殊值等,注意发挥函数图像的作用;(4)回答实际问题结果:将函数问题的结论还原成实际问题,结果明确表述出来.1.某物体一天中的温度T(单位:℃)是时间t(单位:h)的函数:T(t)=t3-3t+60,t=0表示中午12∶00,其后t取正值,则下午3时的温度为________.答案78℃解析T(3)=33-3×3+60=78(℃).2.某工厂生产某种产品固定成本为2 000万元,并且每生产一单位产品,成本增加10万元.又知总收入K是单位产品数Q的函数,K(Q)=40Q-120Q2,则总利润L(Q)的最大值是________万元.答案 2 500解析L(Q)=40Q-120Q2-10Q-2 000=-120Q2+30Q-2 000=-120(Q-300)2+2 500当Q=300时,L(Q)的最大值为2 500万元.3. (2011·湖北)放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M(单位:太贝克)与时间t(单位:年)满足函数关系:M(t)=M02-t30,其中M0为t=0时铯137的含量.已知t=30时,铯137含量的变化率...是-10ln 2(太贝克/年),则M(60)等于( ) A.5太贝克B.75ln 2太贝克C.150ln 2太贝克D.150太贝克答案D解析∵M′(t)=-130M02-t30·ln 2,∴M′(30)=-130×12M0ln 2=-10ln 2,∴M0=600.∴M(t)=600×2-t30,∴M(60)=600×2-2=150(太贝克).4.某企业第三年的产量比第一年的产量增长44%,若每年的平均增长率相同(设为x),则以下结论正确的是( ) A.x>22%B.x<22%C.x=22%D.x的大小由第一年的产量确定答案B解析设第一年的产量为a,则a(1+x)2=a(1+44%),∴x=20%.5.某公司租地建仓库,已知仓库每月占用费y1与仓库到车站的距离成反比,而每月车载货物的运费y2与仓库到车站的距离成正比.据测算,如果在距离车站10千米处建仓库,这两项费用y1,y2分别是2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站( ) A.5千米处B.4千米处C.3千米处D.2千米处答案 A解析 由题意得,y 1=k 1x,y 2=k 2x ,其中x >0,当x =10时,代入两项费用y 1,y 2分别是2万元和8万元,可得k 1=20,k 2=45,y 1+y 2=20x +45x ≥220x ·45x =8,当且仅当20x=45x ,即x =5时取等号,故选A.题型一 二次函数模型例1 某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y (万元)与年产量x (吨)之间的函数关系式可以近似地表示为y =x 25-48x +8 000,已知此生产线年产量最大为210吨.(1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;(2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?思维启迪:(1)根据函数模型,建立函数解析式.(2)求函数最值. 解 (1)每吨平均成本为y x(万元).则y x =x 5+8 000x -48≥2x 5·8 000x-48=32, 当且仅当x 5=8 000x,即x =200时取等号.∴年产量为200吨时,每吨平均成本最低,最低为32万元. (2)设可获得总利润为R (x )万元, 则R (x )=40x -y =40x -x 25+48x -8 000=-x 25+88x -8 000=-15(x -220)2+1 680 (0≤x ≤210).∵R (x )在[0,210]上是增函数,∴x =210时,R (x )有最大值为-15(210-220)2+1 680=1 660.∴年产量为210吨时,可获得最大利润1 660万元.探究提高二次函数是常用的函数模型,建立二次函数模型可以求出函数的值域或最值.解决实际中的优化问题时,一定要分析自变量的取值范围.利用配方法求最值时,一定要注意对称轴与给定区间的关系:若对称轴在给定的区间内,可在对称轴处取最值,在离对称轴较远的端点处取另一最值;若对称轴不在给定的区间内,最值都在区间的端点处取得.某产品的总成本y (万元)与产量x (台)之间的函数关系是y =3 000+20x -0.1x 2(0<x <240,x ∈N *),若每台产品的售价为25万元,则生产者不亏本时(销售收入不小于总成本)的最低产量是( )A .100台B .120台C .150台D .180台答案 C解析 设利润为f (x )万元,则f (x )=25x -(3 000+20x -0.1x 2)=0.1x 2+5x -3 000 (0<x <240,x ∈N *). 令f (x )≥0,得x ≥150,∴生产者不亏本时的最低产量是150台. 题型二 指数函数模型例2 诺贝尔奖发放方式为每年一发,把奖金总额平均分成6份,奖励给分别在6项(物理、化学、文学、经济学、生理学和医学、和平)为人类作出最有益贡献的人,每年发放奖金的总金额是基金在该年度所获利息的一半,另一半利息作基金总额,以便保证奖金数逐年增加.假设基金平均年利率为r =6.24%.资料显示:1999年诺贝尔奖金发放后基金总额约为19 800万美元.设f (x )表示第x (x ∈N *)年诺贝尔奖发放后的基金总额(1999年记为f (1),2000年记为f (2),…,依次类推).(1)用f (1)表示f (2)与f (3),并根据所求结果归纳出函数f (x )的表达式;(2)试根据f (x )的表达式判断网上一则新闻“2009年度诺贝尔奖各项奖金高达150万美元”是否为真,并说明理由.(参考数据:1.031 29=1.32)思维启迪:从所给信息中找出关键词,增长率问题可以建立指数函数模型. 解 (1)由题意知,f (2)=f (1)(1+6.24%)-12f (1)·6.24%=f (1)(1+3.12%),f (3)=f (2)(1+6.24%)-12f (2)·6.24%=f (2)(1+3.12%)=f (1)(1+3.12%)2, ∴f (x )=19 800(1+3.12%)x -1(x ∈N *).(2)2008年诺贝尔奖发放后基金总额为f (10)=19 800(1+3.12%)9=26 136,故2009年度诺贝尔奖各项奖金为16·12f (10)·6.24%≈136(万美元),与150万美元相比少了约14万美元,是假新闻.探究提高 此类增长率问题,在实际问题中常可以用指数函数模型y =N (1+p )x(其中N 是基础数,p 为增长率,x 为时间)和幂函数模型y =a (1+x )n(其中a 为基础数,x 为增长率,n 为时间)的形式.解题时,往往用到对数运算,要注意与已知表格中给定的值对应求解.已知某物体的温度θ(单位:摄氏度)随时间t (单位:分钟)的变化规律:θ=m ·2t+21-t(t ≥0,并且m >0).(1)如果m =2,求经过多少时间,物体的温度为5摄氏度; (2)若物体的温度总不低于2摄氏度,求m 的取值范围. 解 (1)若m =2,则θ=2·2t+21-t=2⎝⎛⎭⎪⎫2t +12t ,当θ=5时,2t +12t =52,令2t=x ≥1,则x +1x =52,即2x 2-5x +2=0,解得x =2或x =12(舍去),此时t =1.所以经过1分钟,物体的温度为5摄氏度.(2)物体的温度总不低于2摄氏度,即θ≥2恒成立, 亦m ·2t+22t ≥2恒成立,亦即m ≥2⎝ ⎛⎭⎪⎫12t -122t 恒成立.令12t =x ,则0<x ≤1,∴m ≥2(x -x 2), 由于x -x 2≤14,∴m ≥12.因此,当物体的温度总不低于2摄氏度时,m 的取值范围是⎣⎢⎡⎭⎪⎫12,+∞.题型三 分段函数模型例3 为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,新上了把二氧化碳处理转化为一种可利用的化工产品的项目,经测算,该项目月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y =⎩⎪⎨⎪⎧13x 3-80x 2+5 040x ,x ∈[120,144,12x 2-200x +80 000,x ∈[144,500],且每处理一吨二氧化碳得到可利用的化工产品价值为200元,若该项目不获利,国家将给予补偿.(1)当x ∈[200,300]时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则国家每月至少需要补贴多少元才能使该项目不亏损?(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?思维启迪:题目中月处理成本与月处理量的关系为分段函数关系,项目获利和月处理量的关系也是分段函数关系.解(1)当x∈[200,300]时,设该项目获利为S,则S =200x -⎝ ⎛⎭⎪⎫12x 2-200x +80 000 =-12x 2+400x -80 000=-12(x -400)2,所以当x ∈[200,300]时,S <0,因此该单位不会获利. 当x =300时,S 取得最大值-5 000,所以国家每月至少补贴5 000元才能使该项目不亏损. (2)由题意,可知二氧化碳的每吨处理成本为 y x =⎩⎪⎨⎪⎧13x 2-80x +5 040,x ∈[120,144.12x +80 000x -200,x ∈[144,500].①当x ∈[120,144)时,y x =13x 2-80x +5 040=13(x -120)2+240, 所以当x =120时,y x取得最小值240. ②当x ∈[144,500]时,y x =12x +80 000x -200≥212x ×80 000x-200=200, 当且仅当12x =80 000x ,即x =400时,yx取得最小值200.因为200<240,所以当每月的处理量为400吨时,才能使每吨的平均处理成本最低. 探究提高 本题的难点是函数模型是一个分段函数,由于月处理量在不同范围内,处理的成本对应的函数解析式也不同,故此类最值的求解必须先求出每个区间内的最值,然后将这些区间内的最值进行比较确定最值.(2011·北京)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎪⎨⎪⎧c x ,x <A ,cA ,x ≥A(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是( )A .75,25B .75,16C .60,25D .60,16答案D解析由函数解析式可以看出,组装第A件产品所需时间为cA=15,故组装第4件产品所需时间为c4=30,解得c=60,将c=60代入cA=15,得A=16.函数建模问题典例:(12分)在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3 600元后,逐步偿还转让费(不计息).在甲提供的资料中:①这种消费品的进价为每件14元;②该店月销量Q (百件)与销售价格P (元)的关系如图所示;③每月需各种开支2 000元.(1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;(2)企业乙只依靠该店,最早可望在几年后脱贫?审题视角 (1)认真阅读题干内容,理清数量关系.(2)分析图形提供的信息,从图形可看出函数是分段的.(3)建立函数模型,确定解决模型的方法. 规范解答解 设该店月利润余额为L ,则由题设得L =Q (P -14)×100-3 600-2 000,① 由销量图易得Q =⎩⎪⎨⎪⎧-2P +50 14≤P ≤20,-32P +40 20<P ≤26,[2分]代入①式得L =⎩⎪⎨⎪⎧-2P +50P -14×100-5 600 14≤P ≤20,⎝ ⎛⎭⎪⎫-32P +40P -14×100-5 600 20<P ≤26,[4分](1)当14≤P ≤20时,L max =450元,此时P =19.5元; 当20<P ≤26时,L max =1 2503元,此时P =613元.故当P =19.5元时,月利润余额最大,为450元.[8分] (2)设可在n 年后脱贫,依题意有12n ×450-50 000-58 000≥0,解得n ≥20. 即最早可望在20年后脱贫.[12分]解函数应用题的一般程序:第一步:审题——弄清题意,分清条件和结论,理顺数量 关系;第二步:建模——将文字语言转化成数学语言,用数学知识建立相应的数学模型;第三步:求模——求解数学模型,得到数学结论;第四步:还原——将用数学方法得到的结论还原为实际问题的意义.第五步:反思回顾——对于数学模型得到的数学结果,必须验证这个数学解对实际问题的合理性.温馨提醒(1)本题经过了三次建模:①根据月销量图建立Q与P的函数关系;②建立利润余额函数;③建立脱贫不等式.(2)本题的函数模型是分段的一次函数和二次函数,在实际问题中,由于在不同的背景下解决的问题发生了变化,因此在不同范围中,建立函数模型也不一样,所以现实生活中分段函数的应用非常广泛.(3)在构造分段函数时,分段不合理、不准确,是易出现的错误.方法与技巧1.认真分析题意,合理选择数学模型是解决应用问题的基础;2.实际问题中往往解决一些最值问题,我们可以利用二次函数的最值、函数的单调性、基本不等式等求得最值.失误与防范1.函数模型应用不当是常见的解题错误.所以,正确理解题意,选择适当的函数模型是正确解决这类问题的前提和基础.2.要特别关注实际问题的自变量的取值范围,合理确定函数的定义域.3.注意问题反馈.在解决函数模型后,必须验证这个数学结果对实际问题的合理性.A组专项基础训练(时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. 有一批材料可以围成200 m长的围墙,现用此材料在一边靠墙的地方围成一块矩形场地(如图),且内部用此材料隔成三个面积相等的矩形,则围成的矩形场地的最大面积为 ( )A .1 000 m 2B .2 000 m 2C .2 500 m 2D .3 000 m 2答案 C解析 设围成的场地宽为x m ,面积为y m 2, 则y =3x (200-4x )×13=-4x 2+200x (0<x <50). 当x =25时,y max =25×100=2 500. ∴围成的矩形场地的最大面积为2 500 m 2.2. (2011·湖北改编)里氏震级M 的计算公式:M =lg A -lg A 0,其中A 是测震仪记录的地震曲线的最大振幅,A 0是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1 000,此时标准地震的振幅为0.001,则此次地震的震级为________级;9级地震的最大振幅是5级地震最大振幅的________倍.( )A .6 1 000B .4 1 000C .6 10 000D .4 10 000答案 C解析 由M =lg A -lg A 0知,M =lg 1 000-lg 0.001=3-(-3)=6,∴此次地震的震级为6级.设9级地震的最大振幅为A 1,5级地震的最大振幅为A 2,则lg A 1A 2=lg A 1-lg A 2=(lg A 1-lg A 0)-(lg A 2-lg A 0)=9-5=4.∴A 1A 2=104=10 000,∴9级地震的最大振幅是5级地震最大振幅的10 000倍.3. 将甲桶中的a 升水缓慢注入空桶乙中,t 分钟后甲桶中剩余的水符合指数衰减曲线y =a e nt ,假设5分钟后甲桶和乙桶的水量相等,若再过m 分钟后甲桶中的水只有a8升,则m的值为( )A .8B .10C .12D .15答案 B解析 由已知条件可得a e 5n=a 2,e 5n =12.由a e nt =a 8,得e nt=18,所以t =15,m =15-5=10.4. 某汽车运输公司购买了一批豪华大客车投入营运,据市场分析每辆客车营运的总利润y (单位:10万元)与营运年数x (x ∈N *)为二次函数关系(如右图所示),则每辆客车营运多少年时,其营运的平均利润最大( ) A .3 B .4C .5D .6答案 C解析 由题图可得营运总利润y =-(x -6)2+11,则营运的年平均利润y x=-x -25x+12,∵x ∈N *,∴y x≤-2x ·25x+12=2,当且仅当x =25x,即x =5时取“=”.∴x =5时营运的平均利润最大. 二、填空题(每小题5分,共15分)5. 某种病毒经30分钟繁殖为原来的2倍,且知病毒的繁殖规律为y =e kt(其中k 为常数,t表示时间,单位:小时,y 表示病毒个数),则k =________,经过5小时,1个病毒能繁殖为________个. 答案 2ln 2 1 024解析 当t =0.5时,y =2,∴2=e 12k ,∴k =2ln 2,∴y =e2t ln 2,当t =5时,∴y =e10ln 2=210=1 024.6. 某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km 按起步价付费);超过3 km 但不超过8 km 时,超过部分按每千米2.15元收费;超过8 km 时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________ km. 答案 9解析 设出租车行驶x km 时,付费y 元, 则y =⎩⎪⎨⎪⎧9,0<x ≤38+2.15x -3+1,3<x ≤88+2.15×5+2.85x -8+1,x >8由y =22.6,解得x =9.7. 2008年我国人口总数为14亿,如果人口的自然年增长率控制在1.25%,则________年我国人口将超过20亿.(lg 2≈0.301 0,lg 3≈0.477 1,lg 7≈0.845 1) 答案 2037解析 由已知条件:14(1+1.25%)x -2 008>20,x - 2 008>lg107lg 8180=1-lg 74lg 3-3lg 2-1=28.7,则x >2 036.7,即x =2 037. 三、解答题(共22分)8. (10分)某种出口产品的关税税率为t ,市场价格x (单位:千元)与市场供应量p (单位:万件)之间近似满足关系式:p =2(1-kt )(x -b )2,其中k ,b 均为常数.当关税税率t =75%时,若市场价格为5千元,则市场供应量为1万件;若市场价格为7千元,则市场供应量约为2万件. (1)试确定k ,b 的值;(2)市场需求量q (单位:万件)与市场价格x 近似满足关系式:q =2-x,当p =q 时,市场价格称为市场平衡价格,当市场平衡价格不超过4千元时,试确定关税税率的最大值.解 (1)由已知⎩⎪⎨⎪⎧1=21-0.75k 5-b 22=21-0.75k7-b 2,⇒⎩⎪⎨⎪⎧1-0.75k 5-b 2=01-0.75k7-b2=1.解得b =5,k =1.(2)当p =q 时,2(1-t )(x -5)2=2-x, ∴(1-t )(x -5)2=-x ⇒t =1+x x -52=1+1x +25x-10而f (x )=x +25x在(0,4]上单调递减,∴当x =4时,f (x )有最小值414,故当x =4时,关税税率的最大值为500%.9.(12分)如图所示,在矩形ABCD 中,已知AB =a ,BC =b (a >b ).在AB 、AD 、CD 、CB 上分别截取AE 、AH 、CG 、CF 都等于x ,当x 为何值时,四边形EFGH 的面积最大?求出这个最大面积. 解 设四边形EFGH 的面积为S , 由题意得S △AEH =S △CFG =12x 2,S △BEF =S △DHG =12(a -x )·(b -x ).由此得S =ab -2⎣⎢⎡⎦⎥⎤12x 2+12a -xb -x=-2x 2+(a +b )x =-2⎝⎛⎭⎪⎫x -a +b 42+a +b28.函数的定义域为{x |0<x ≤b }, 因为a >b >0,所以0<b <a +b2.若a +b4≤b ,即a ≤3b ,x =a +b4时面积S 取得最大值a +b28;若a +b4>b ,即a >3b 时,函数S =-2⎝ ⎛⎭⎪⎫x -a +b 42+a +b 28在(0,b ]上是增函数,因此,当x =b 时,面积S 取得最大值ab -b 2. 综上可知,若a ≤3b ,当x =a +b4时,四边形EFGH 的面积取得最大值a +b28;若a >3b ,当x =b 时,四边形EFGH 的面积取得最大值ab -b 2.B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共20分)1. 某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L 1=5.06x -0.15x 2和L 2=2x ,其中x 为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得最大利润为( )A .45.606万元B .45.6万元C .45.56万元D .45.51万元答案 B解析 依题意可设甲销售x 辆,则乙销售(15-x )辆,总利润S =L 1+L 2,则总利润S =5.06x -0.15x 2+2(15-x )=-0.15x 2+3.06x +30=-0.15(x -10.2)2+0.15×10.22+30 (x ≥0).∴当x =10时,S max =45.6(万元).2. 某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x 、y 应为( ) A .x =15,y =12 B .x =12,y =15 C .x =14,y =10 D .x =10,y =14答案 A解析 由三角形相似得24-y 24-8=x 20,得x =54(24-y ),∴S =xy =-54(y -12)2+180,∴当y =12时,S 有最大值,此时x =15.3. 汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )答案 A解析 汽车加速行驶时,速度变化越来越快,而汽车匀速行驶时,速度保持不变,体现在s 与t 的函数图像上是一条直线,减速行驶时,速度变化越来越慢,但路程仍是增加的.二、填空题(每小题5分,共15分)4. 如图,书的一页的面积为600 cm 2,设计要求书面上方空出2 cm 的边,下、左、右方都空出1 cm 的边,为使中间文字部分的面积最大,这页书的长、宽应分别为____________. 答案 30 cm 、20 cm解析 设长为a cm ,宽为b cm ,则ab =600, 则中间文字部分的面积S =(a -2-1)(b -2) =606-(2a +3b )≤606-26×600=486, 当且仅当2a =3b ,即a =30,b =20时,S 最大=486.5. 某商人购货,进价已按原价a 扣去25%.他希望对货物订一新价,以便按新价让利20%销售后仍可获得售价25%的利润,则此商人经营这种货物的件数x 与按新价让利总额y 之间的函数关系式为______________. 答案 y =a4x (x ∈N *)解析 设新价为b ,依题意,有b (1-20%)-a (1-25%)=b (1-20%)·25%,化简得b = 54a .∴y =b ·20%·x =54a ·20%·x ,即y =a4x (x ∈N *). 6. 某医院为了提高服务质量,对挂号处的排队人数进行了调查,发现:当还未开始挂号时,有N 个人已经在排队等候挂号;开始挂号后排队的人数平均每分钟增加M 人.假定挂号的速度是每个窗口每分钟K 个人,当开放一个窗口时,40分钟后恰好不会出现排队现象;若同时开放两个窗口时,则15分钟后恰好不会出现排队现象.根据以上信息,若要求8分钟后不出现排队现象,则需要同时开放的窗口至少应有________个.答案 4解析 设要同时开放x 个窗口才能满足要求,则⎩⎪⎨⎪⎧ N +40M =40K , ①N +15M =15K ×2, ②N +8M ≤8Kx . ③由①②,得⎩⎪⎨⎪⎧ K =2.5M ,N =60M ,代入③,得60M +8M ≤8×2.5Mx ,解得x ≥3.4.故至少同时开放4个窗口才能满足要求.三、解答题7. (13分)(2011·湖北)提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/时)是车流密度x (单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/时.研究表明:当20≤x ≤200时,车流速度v 是车流密度x 的一次函数.(1)当0≤x ≤200时,求函数v (x )的表达式;(2)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/时)f (x )=x ·v (x )可以达到最大,并求出最大值.(精确到1辆/时)解 (1)由题意,当0≤x ≤20时,v (x )=60;当20≤x ≤200时,设v (x )=ax +b ,再由已知得⎩⎪⎨⎪⎧ 200a +b =0,20a +b =60, 解得⎩⎪⎨⎪⎧ a =-13,b =2003.故函数v (x )的表达式为v (x )=⎩⎪⎨⎪⎧ 60, 0≤x ≤20,13200-x , 20<x ≤200. (2)依题意并由(1)可得f (x )=⎩⎪⎨⎪⎧60x , 0≤x ≤20,13x 200-x , 20<x ≤200.当0≤x ≤20时,f (x )为增函数,故当x =20时,其最大值为60×20=1 200;当20<x ≤200时,f (x )=13x (200-x ) ≤13⎣⎢⎡⎦⎥⎤x +200-x 22=10 0003, 当且仅当x =200-x ,即x =100时,等号成立.所以当x =100时,f (x )在区间(20,200]上取得最大值10 0003. 综上,当x =100时,f (x )在区间[0,200]上取得最大值10 0003≈3 333, 即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3 333辆/时.(注:本资料素材和资料部分来自网络,仅供参考。
步步高2014届高三北师大版数学一轮课件 7.4基本不等式

每天的仓储费用为 1 元.为使平均到每件产品的生产准备费用与仓储
费用之和最小,每批应生产产品
(B )
A.60 件
B.80 件 C.100 件
D.120 件
解析 设每件产品的平均费用为 y 元,由题意得
y=80x0+8x≥2 80x0·8x=20. 当且仅当80x0=8x(x>0),即 x=80 时“=”成立,故选 B.
思维启迪
解析
探究提高
证明 ∵x>0,y>0,z>0,
∴ yx+ xz ≥ 2
xyz >0 , xy + yz ≥ 2
xz y
>0,xz+yz≥2 zxy>0,
∴yx+xzyx+yzxz+yz
≥8
yz· xz· xyz
xy=8.
当且仅当 x=y=z 时等号成立.
基础知识
题型分类
思想方法
练出高分 第十三页,编辑于星期日:十三点 三十二分。
【例 3】 某单位建造一间地面面 积为 12 m2 的背面靠墙的矩形小 房,由于地理位置的限制,房子 侧面的长度 x 不得超过 5 m.房 屋正面的造价为 400 元/m2,房 屋侧面的造价为 150 元/m2,屋 顶和地面的造价费用合计为 5 800 元,如果墙高为 3 m,且不 计房屋背面的费用.当侧面的长 度为多少时,总造价最低?
思维启迪
解析
当且仅当 x=1x6,即 x=4 时取等号. 故当侧面的长度为 4 米时,总造价 最低.
基础知识
题型分类
思想方法
练出高分 第二十五页,编辑于星期日:十三点 三十二分。
题型分类·深度剖析
变式训练 3 (2011·北京)某车间分批生产某种产品,每批的生产准备费 用为 800 元.若每批生产 x 件,则平均仓储时间为x8天,且每件产品
【浙江专用(理)】【步步高】2014届高三数学大一轮复习讲义【配套Word版文档】常考题型强化练——函数

常考题型强化练——函数一、选择题1. (2011·江西)若f (x )=1log 12(2x +1),则f (x )的定义域为 ( )A.⎝⎛⎭⎫-12,0B.⎝⎛⎭⎫-12,+∞ C.⎝⎛⎭⎫-12,0∪(0,+∞) D.⎝⎛⎭⎫-12,2 答案 C解析 由已知得⎩⎪⎨⎪⎧ 2x +1>0,log 12(2x +1)≠0,∴⎩⎪⎨⎪⎧x >-12,2x +1≠1,即x >-12且x ≠0,∴选C.2. (2012·广东)下列函数中,在区间(0,+∞)上为增函数的是 ( )A .y =ln(x +2)B .y =-x +1C .y =⎝⎛⎭⎫12xD .y =x +1x 答案 A解析 利用复合函数单调性的判断方法——同增异减求解.对于A 选项,可看成由函数y =ln u ,u =x +2复合而成,由于两函数都为增函数,单调 性相同,所以函数y =ln(x +2)在(-2,+∞)上为增函数. B 、C 均为减函数.对于D 选项,y =x +1x在(-∞,-1),(1,+∞)上为增函数.3. (2011·大纲全国)设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f (-52)等于 ( ) A .-12 B .-14 C.14 D.12答案 A解析 ∵f (x )是周期为2的奇函数, ∴f (-52)=f (-52+2)=f (-12)=-f (12)=-2×12×(1-12)=-12.4. (2012·天津)函数f (x )=2x +x 3-2在区间(0,1)内的零点个数是 ( )A .0B .1C .2D .3 答案 B解析 先判断函数的单调性,再确定零点. 因为f ′(x )=2x ln 2+3x 2>0,所以函数f (x )=2x +x 3-2在(0,1)上递增, 且f (0)=1+0-2=-1<0,f (1)=2+1-2=1>0, 所以有1个零点. 二、填空题5. (2011·山东)已知函数f (x )=log a x +x -b (a >0,且a ≠1).当2<a <3<b <4时,函数f (x )的零点x 0∈(n ,n +1),n ∈N *,则n =________. 答案 2解析 ∵2<a <3,∴f (x )=log a x +x -b 为定义域上的单调函数.f (2)=log a 2+2-b ,f (3) =log a 3+3-b .∵2<a <3<b ,∴lg 2<lg a <lg 3,∴lg 2lg 3<lg 2lg a <1.又∵b >3,∴-b <-3,∴2-b <-1, ∴log a 2+2-b <0,即f (2)<0.∵1<lg 3lg a <lg 3lg 2,3<b <4,∴-1<3-b <0,∴log a 3+3-b >0,∴f (3)>0,即f (2)·f (3)<0. 由x 0∈(n ,n +1),n ∈N *知,n =2.6. (2012·上海)已知函数f (x )=e |x -a |(a 为常数).若f (x )在区间[1,+∞)上是增函数,则a 的取值范围是________. 答案 (-∞,1]解析 先求出函数g (x )=|x -a |的单调区间,再结合复合函数单调性判断. g (x )=|x -a |的增区间为[a ,+∞), ∴f (x )=e |x -a |的增区间为[a ,+∞).∵f (x )在[1,+∞)上是增函数, ∴[1,+∞)⊆[a ,+∞),∴a ≤1.7. (2012·上海)已知y =f (x )+x 2是奇函数,且f (1)=1.若g (x )=f (x )+2,则g (-1)=________.答案 -1解析 先利用奇函数条件求出f (x )与f (-x )的关系. ∵y =f (x )+x 2是奇函数, ∴f (-x )+(-x )2=-[f (x )+x 2],∴f (x )+f (-x )+2x 2=0.∴f (1)+f (-1)+2=0. ∵f (1)=1,∴f (-1)=-3.∵g (x )=f (x )+2,∴g (-1)=f (-1)+2=-3+2=-1. 三、解答题8. (2011·上海)已知函数f (x )=a ·2x +b ·3x ,其中常数a ,b 满足ab ≠0.(1)若ab >0,判断函数f (x )的单调性; (2)若ab <0,求f (x +1)>f (x )时x 的取值范围. 解 (1)当a >0,b >0时,任意x 1,x 2∈R ,x 1<x 2, 则f (x 1)-f (x 2)=a (2x 1-2x 2)+b (3x 1-3x 2). ∵2x 1<2x 2,a >0⇒a (2x 1-2x 2)<0, 3x 1<3x 2,b >0⇒b (3x 1-3x 2)<0,∴f (x 1)-f (x 2)<0,函数f (x )在R 上是增函数. 当a <0,b <0时,同理,函数f (x )在R 上是减函数. (2)f (x +1)-f (x )=a ·2x +2b ·3x >0,当a <0,b >0时,⎝⎛⎭⎫32x >-a 2b ,则x >log 1.5⎝⎛⎭⎫-a 2b ; 当a >0,b <0时,⎝⎛⎭⎫32x <-a 2b,则x <log 1.5⎝⎛⎭⎫-a 2b . 9. (2011·福建)某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式y =ax -3+10(x -6)2,其中3<x <6,a 为常数.已知销售价格为5元/千克时,每日可售出该商品11千克. (1)求a 的值;(2)若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得 的利润最大.解 (1)因为x =5时,y =11,所以a2+10=11,所以a =2.(2)由(1)可知,该商品每日的销售量y =2x -3+10(x -6)2,所以商场每日销售该商品所获得的利润f (x )=(x -3)[2x -3+10(x -6)2]=2+10(x -3)(x -6)2,3<x <6.从而,f ′(x )=10[(x -6)2+2(x -3)(x -6)] =30(x -4)(x -6).于是,当x 变化时,f ′(x ),f (x )的变化情况如下表:所以,当x =4时,函数f (x )取得最大值,且最大值等于42.答 当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.B 组 专项能力提升一、选择题1. (2011·四川)函数y =⎝⎛⎭⎫12x+1的图象关于直线y =x 对称的图象大致是 ( )答案 A解析 函数y =⎝⎛⎭⎫12x+1的图象如图所示,关于y =x 对称的图象大致为A 选项对应图象.2. (2011·山东)已知f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,则函数y =f (x )的图象在区间[0,6]上与x 轴的交点的个数为 ( ) A .6 B .7 C .8 D .9 答案 B解析 ∵f (x )是最小正周期为2的周期函数,且0≤x <2时,f (x )=x 3-x =x (x -1)(x +1), ∴当0≤x <2时,f (x )=0有两个根,即x 1=0,x 2=1.由周期函数的性质知,当2≤x <4时,f (x )=0有两个根,即x 3=2,x 4=3;当4≤x <6时, f (x )=0有两个根,即x 5=4,x 6=5.x 7=6也是f (x )=0的根. 故函数f (x )的图象在区间[0,6]上与x 轴交点的个数为7.3. (2012·福建)函数f (x )在[a ,b ]上有定义,若对任意x 1,x 2∈[a ,b ],有f ⎝⎛⎭⎫x 1+x 22≤12[f (x 1)+f (x 2)],则称f (x )在[a ,b ]上具有性质P .设f (x )在[1,3]上具有性质P ,现给出如下命题: ①f (x )在[1,3]上的图象是连续不断的; ②f (x 2)在[1,3]上具有性质P ;③若f (x )在x =2处取得最大值1,则f (x )=1,x ∈[1,3]; ④对任意x 1,x 2,x 3,x 4∈[1,3],有f ⎝⎛⎭⎫x 1+x 2+x 3+x 44≤14[f (x 1)+f (x 2)+f (x 3)+f (x 4)].其中真命题的序号是 ( ) A .①② B .①③ C .②④ D .③④ 答案 D解析 通过构造某些特殊函数,排除不合适的选项,利用反证法证明③正确,再两次应 用定义式证明④正确.令f (x )=⎩⎪⎨⎪⎧1,x =1,0,1<x <3,1,x =3,可知对∀x 1,x 2∈[1,3],都有f ⎝⎛⎭⎫x 1+x 22≤12[f (x 1)+f (x 2)],但f (x )在[1,3]上的图象不连续,故①不正确; 令f (x )=-x ,则f (x )在[1,3]上具有性质P , 但f (x 2)=-x 2在[1,3]上不具有性质P , 因为-⎝⎛⎭⎫x 1+x 222=-x 21+x 22+2x 1x 24≥-2(x 21+x 22)4=12(-x 21-x 22)=12[f (x 21)+f (x 22)],故②不正确; 对于选项③,假设存在x 0∈[1,3],使得f (x 0)≠1, 因为f (x )max =f (2)=1,x ∈[1,3],所以f (x 0)<1. 又当1≤x 0≤3时,有1≤4-x 0≤3, 由f (x )在[1,3]上具有性质P ,得 f (2)=f ⎝⎛⎭⎫x 0+4-x 02≤12[f (x 0)+f (4-x 0)],由于f (x 0)<1,f (4-x 0)≤1,故上式矛盾. 即对∀x ∈[1,3],有f (x )=1,故选项③正确. 对∀x 1,x 2,x 3,x 4∈[1,3], f ⎝⎛⎭⎫x 1+x 2+x 3+x 44=f ⎝ ⎛⎭⎪⎪⎫x 1+x 22+x 3+x 422 ≤12⎣⎡⎦⎤f ⎝⎛⎭⎫x 1+x 22+f ⎝⎛⎭⎫x 3+x 42 ≤12⎩⎨⎧⎭⎬⎫12[f (x 1)+f (x 2)]+12[f (x 3)+f (x 4)] =14[f (x 1)+f (x 2)+f (x 3)+f (x 4)],即选项④正确. 二、填空题4. (2012·江苏)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫32,则a +3b 的值为________. 答案 -10解析 由f (x )的周期为2,得f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫-12是关键.因为f (x )的周期为2, 所以f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫32-2=f ⎝⎛⎭⎫-12, 即f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫-12.又因为f ⎝⎛⎭⎫-12=-12a +1,f ⎝⎛⎭⎫12=b2+212+1=b +43,所以-12a +1=b +43.整理,得a =-23(b +1).①又因为f (-1)=f (1),所以-a +1=b +22,即b =-2a .②将②代入①,得a =2,b =-4. 所以a +3b =2+3×(-4)=-10.5. (2012·浙江)设a ∈R ,若x >0时均有[(a -1)x -1](x 2-ax -1)≥0,则a =________.答案 32解析 对a 进行分类讨论,通过构造函数,利用数形结合解决.(1)当a =1时,不等式可化为:x >0时均有x 2-x -1≤0,由二次函数的图象知,显然不 成立,∴a ≠1. (2)当a <1时,∵x >0,∴(a -1)x -1<0,不等式可化为: x >0时均有x 2-ax -1≤0,∵二次函数y =x 2-ax -1的图象开口向上,∴不等式x 2-ax -1≤0在x ∈(0,+∞)上不能均成立, ∴a <1不成立.(3)当a >1时,令f (x )=(a -1)x -1,g (x )=x 2-ax -1,两函数的图象均过定点(0,-1), ∵a >1,∴f (x )在x ∈(0,+∞)上单调递增, 且与x 轴交点为⎝⎛⎭⎫1a -1,0,即当x ∈⎝⎛⎭⎫0,1a -1时,f (x )<0,当x ∈⎝⎛⎭⎫1a -1,+∞时,f (x )>0.又∵二次函数g (x )=x 2-ax -1的对称轴为x =a2>0,则只需g (x )=x 2-ax -1与x 轴的右交点与点⎝⎛⎭⎫1a -1,0重合,如图所示,则命题成立,即⎝⎛⎭⎫1a -1,0在g (x )图象上,所以有⎝⎛⎭⎫1a -12-a a -1-1=0,整理得2a 2-3a =0,解得a =32,a =0(舍去).综上可知a =32.6. (2012·北京)已知f (x )=m (x -2m )(x +m +3),g (x )=2x -2,若同时满足条件:①∀x ∈R ,f (x )<0或g (x )<0;②∃x ∈(-∞,-4),f (x )g (x )<0.则m 的取值范围是________. 答案 -4<m <-2解析 将①转化为g (x )<0的解集的补集是f (x )<0解集的子集求解; ②转化为f (x )>0的解集与(-∞,-4)的交集非空. 若g (x )=2x -2<0,则x <1. 又∵∀x ∈R ,g (x )<0或f (x )<0, ∴[1,+∞)是f (x )<0的解集的子集. 又由f (x )=m (x -2m )(x +m +3)<0知, m 不可能大于或等于0,因此m <0. 当m <0时,f (x )<0,即(x -2m )(x +m +3)>0. 当2m =-m -3,即m =-1时, f (x )<0的解集为{x |x ≠-2},满足条件. 当2m >-m -3,即-1<m <0时, f (x )<0的解集为{x |x >2m 或x <-m -3}. 依题意2m <1,即m <12,∴-1<m <0.当2m <-m -3,即m <-1时, f (x )<0的解集为{x |x <2m 或x >-m -3}. 依题意-m -3<1,即m >-4,∴-4<m <-1. 因此满足①的m 的取值范围是-4<m <0. ②中,∵当x ∈(-∞,-4)时,g (x )=2x -2<0, ∴问题转化为∃x ∈(-∞,-4),f (x )>0, 即f (x )>0的解集与(-∞,-4)的交集非空. 又m <0,则(x -2m )(x +m +3)<0.由①的解法知,当-1<m <0时,2m >-m -3,即-m-3<-4,∴m>1,此时无解.当m=-1时,f(x)=-(x+2)2恒小于或等于0,此时无解.当m<-1时,2m<-m-3,即2m<-4,∴m<-2.综合①②可知满足条件的m的取值范围是-4<m<-2.三、解答题7.(2012·福建)已知函数f(x)=e x+ax2-e x,a∈R.(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求函数f(x)的单调区间;(2)试确定a的取值范围,使得曲线y=f(x)上存在唯一的点P,曲线在该点处的切线与曲线只有一个公共点P.解(1)由于f′(x)=e x+2ax-e,曲线y=f(x)在点(1,f(1))处的切线斜率k=2a=0,所以a=0,即f(x)=e x-e x.此时f′(x)=e x-e.由f′(x)=0得x=1.当x∈(-∞,1)时,有f′(x)<0;当x∈(1,+∞)时,有f′(x)>0.所以f(x)的单调递减区间为(-∞,1),单调递增区间为(1,+∞).(2)设点P(x0,f(x0)),曲线y=f(x)在点P处的切线方程为y=f′(x0)(x-x0)+f(x0),令g(x)=f(x)-f′(x0)(x-x0)-f(x0),故曲线y=f(x)在点P处的切线与曲线只有一个公共点P等价于函数g(x)有唯一零点.因为g(x0)=0,且g′(x)=f′(x)-f′(x0)=e x-e x0+2a(x-x0).①若a≥0,当x>x0时,g′(x)>0,则当x>x0时,g(x)>g(x0)=0;当x<x0时,g′(x)<0,则当x<x0时,g(x)>g(x0)=0.故g(x)只有唯一零点x=x0.由P的任意性知,a≥0不合题意.②若a<0,令h(x)=e x-e x0+2a(x-x0),则h(x0)=0,h′(x)=e x+2a.令h′(x)=0,得x=ln(-2a),记x*=ln(-2a),则当x∈(-∞,x*)时,h′(x)<0,从而h(x)在(-∞,x*)内单调递减;当x∈(x*,+∞)时,h′(x)>0,从而h(x)在(x*,+∞)内单调递增.a .若x 0=x *,当x ∈(-∞,x *)时, g ′(x )=h (x )>h (x *)=0;当x ∈(x *,+∞)时,g ′(x )=h (x )>h (x *)=0.所以g (x )在R 上单调递增.所以函数g (x )在R 上有且只有一个零点x =x *. b .若x 0>x *,由于h (x )在(x *,+∞)内单调递增, 且h (x 0)=0,则当x ∈(x *,x 0)时有g ′(x )=h (x )<h (x 0)=0, g (x )>g (x 0)=0;任取x 1∈(x *,x 0)有g (x 1)>0. 又当x ∈(-∞,x 1)时,易知g (x )=e x +ax 2-(e +f ′(x 0))x -f (x 0)+x 0f ′(x 0)<e x 1+ax 2-(e +f ′(x 0))x -f (x 0)+ x 0f ′(x 0) =ax 2+bx +c ,其中b =-(e +f ′(x 0)),c =e x 1-f (x 0)+x 0f ′(x 0).由于a <0,则必存在x 2<x 1,使得ax 22+bx 2+c <0.所以g (x 2)<0,故g (x )在(x 2,x 1)内存在零点, 即g (x )在R 上至少有两个零点. c .若x 0<x *,仿b 并利用e x>x 36,可证函数g (x )在R 上至少有两个零点.综上所述,当a <0时,曲线y =f (x )上存在唯一的点P (ln(-2a ),f (ln(-2a ))), 曲线在该点处的切线与曲线只有一个公共点P .。
【步步高】2014届高考数学一轮复习 3.2 一元二次不等式(一)备考练习 苏教版

§3.2 一元二次不等式(一)一、基础过关1.不等式-6x 2-x +2≤0的解集是____________.2.不等式x 2-2x -2x 2+x +1<2的解集为____________. 3.一元二次方程ax 2+bx +c =0的根为2,-1,则当a <0时,不等式ax 2+bx +c ≥0的解集为________.4.函数y =lg(x 2-4)+x 2+6x 的定义域是________.5.若不等式x 2+mx +1>0的解集为R ,则m 的取值范围是__________.6.不等式-1<x 2+2x -1≤2的解集是____________.7.解下列不等式:(1)x 4+3x 2-10<0;(2)x 2-3|x |+2≤0.8.已知关于x 的不等式ax 2+bx +c >0的解集为{x |α<x <β},其中0<α<β,a <0,求cx 2+bx +a >0的解集.二、能力提升9.在R 上定义运算“⊙”:a ⊙b =ab +2a +b ,则满足x ⊙(x -2)<0的实数x 的取值范围为________.10.已知x =1是不等式k 2x 2-6kx +8≥0的解,则k 的取值范围是______________.11.设函数f (x )=⎩⎪⎨⎪⎧x 2-4x +6,x ≥0,x +6, x <0,则不等式f (x )>f (1)的解集是______________. 12.解关于x 的一元二次不等式:ax 2+(a -1)x -1>0.三、探究与拓展13.若不等式组⎩⎪⎨⎪⎧ x 2-x -2>0,2x 2+2k +5x +5k <0的整数解只有-2,求k 的取值范围.答案1.⎩⎨⎧⎭⎬⎫x |x ≤-23或x ≥12 2.{x |x ≠-2} 3.{x |-1≤x ≤2} 4.(-∞,-6]∪(2,+∞) 5.-2<m <2 6.{x |-3≤x <-2或0<x ≤1}7.解 (1)x 4+3x 2-10<0⇔(x 2+5)(x 2-2)<0⇔x 2<2⇔-2<x < 2.∴原不等式的解集为{x |-2<x <2}.(2)x 2-3|x |+2≤0⇔|x |2-3|x |+2≤0⇔(|x |-1)(|x |-2)≤0⇔1≤|x |≤2.当x ≥0时,1≤x ≤2;当x <0时,-2≤x ≤-1.∴原不等式的解集为{x |-2≤x ≤-1或1≤x ≤2}.8.解 ∵α、β为方程ax 2+bx +c =0的两根,∴α+β=-b a ,αβ=c a .∵a <0,∴cx 2+bx +a >0同解变形为c a x 2+b a x +1<0.由根与系数的关系将α、β代入,得αβx 2-(α+β)x +1<0.即αβ⎝⎛⎭⎫x -1α⎝⎛⎭⎫x -1β<0,由0<α<β,可知1α>1β.所以不等式cx 2+bx +a >0的解集为⎩⎨⎧⎭⎫x |1β<x <1α.9.(-2,1) 10.k ≤2或k ≥4 11.(-3,1)∪(3,+∞)12.解 ax 2+(a -1)x -1>0⇔(ax -1)(x +1)>0.当a >0时,(ax -1)(x +1)>0⇔⎝⎛⎭⎫x -1a (x +1)>0⇔x <-1或x >1a ;当-1<a <0时,(ax -1)(x +1)>0⇔⎝⎛⎭⎫x -1a (x +1)<0⇔1a <x <-1;当a =-1时,(ax -1)(x +1)>0⇔-(x +1)2>0⇔(x +1)2<0⇔x ∈∅;当a <-1时,(ax -1)(x +1)>0⇔⎝⎛⎭⎫x -1a (x +1)<0⇔-1<x <1a .综上所述,当a >0时,不等式的解集为{x |x <-1或x >1a };当-1<a <0时,不等式的解集为{x |1a <x <-1};当a =-1时,不等式的解集为∅;当a <-1时,不等式的解集为⎩⎨⎧⎭⎫x |-1<x <1a .13.解 ∵x 2-x -2>0, ∴x >2或x <-1.又2x 2+(2k +5)x +5k <0, ∴(2x +5)(x +k )<0.①(1)当k >52时,-k <-52,由①有-k <x <-52<-2,此时-2∉⎝⎛⎭⎫-k ,-52;(2)当k =52时,①的解集为空集;(3)当k <52时,-52<-k ,由①得-52<x <-k ,∴⎩⎪⎨⎪⎧ x <-1,-52<x <-k ,或⎩⎪⎨⎪⎧x >2,-52<x <-k .∵原不等式组只有整数解-2, ∴⎩⎪⎨⎪⎧k <52-k >-2,-k ≤3, ∴-3≤k <2.。
2014届步步高大一轮复习讲义7.3

§7.3二元一次不等式(组)与简单的线性规划问题2014高考会这样考 1.考查二元一次不等式组表示的区域面积和目标函数最值(或取值范围);2.考查约束条件、目标函数中的参变量的取值范围;3.利用线性规划方法设计解决实际问题的最优方案.复习备考要这样做 1.掌握确定平面区域的方法(线定界、点定域);2.理解目标函数的几何意义,掌握解决线性规划问题的方法(图解法),注意线性规划问题与其他知识的综合.1.二元一次不等式表示的平面区域(1)一般地,二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.我们把直线画成虚线以表示区域不包括边界直线.当我们在坐标系中画不等式Ax+By+C≥0所表示的平面区域时,此区域应包括边界直线,则把边界直线画成实线.(2)由于对直线Ax+By+C=0同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C所得到实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x0,y0),由Ax0+By0+C的符号即可判断Ax+By+C>0表示直线Ax+By+C=0哪一侧的平面区域.2.3.应用利用线性规划求最值,一般用图解法求解,其步骤是:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值.[难点正本疑点清源]1.确定二元一次不等式表示平面区域的方法与技巧确定二元一次不等式表示的平面区域时,经常采用“直线定界,特殊点定域”的方法.2.求二元一次函数z =ax +by (ab ≠0)的最值,将函数z =ax +by 转化为直线的斜截式:y =-a b x +z b ,通过求直线的截距z b 的最值间接求出z 的最值.要注意:当b >0时,截距zb取最大值时,z 也取最大值;截距z b 取最小值时,z 也取最小值;当b <0时,截距zb取最大值时,z 取最小值;截距zb 取最小值时,z 取最大值.1.若点(1,3)和(-4,-2)在直线2x +y +m =0的两侧,则m 的取值范围是__________. 答案 -5<m <10解析 由题意可得(2×1+3+m )[2×(-4)-2+m ]<0, 即(m +5)(m -10)<0,∴-5<m <10.2.如图所示的平面区域(阴影部分)满足不等式____________.答案 x +y -1>0解析平面区域的边界线方程为x 1+y1=1,即x +y -1=0.所以平面区域满足不等式是 x +y -1>0.3.完成一项装修工程需要木工和瓦工共同完成.请木工需付工资每人50元,请瓦工需付工资每人40元,现有工人工资预算2 000元,设木工x 人,瓦工y 人,则请工人的约束条件是________________. 答案 ⎩⎪⎨⎪⎧50x +40y ≤2 000x ∈N*y ∈N *4.(2012·课标全国)设x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥-1,x +y ≤3,x ≥0,y ≥0,则z =x -2y 的取值范围为________. 答案 [-3,3]解析 作出不等式组的可行域,如图阴影部分所示,作直线x -2y =0,并向左上,右下平移,当直线过点A 时,z =x -2y 取最大值;当直线过点B 时,z =x -2y 取最小值. 由⎩⎪⎨⎪⎧ x -y +1=0,x +y -3=0得B (1,2),由⎩⎪⎨⎪⎧y =0,x +y -3=0得A (3,0). ∴z max =3-2×0=3,z min =1-2×2=-3, ∴z ∈[-3,3].5.(2012·四川)某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1千克、B原料2千克;生产乙产品1桶需耗A 原料2千克,B 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( )A .1 800 元B .2 400 元C .2 800 元D .3 100 元答案 C解析 设生产甲产品x 桶,乙产品y 桶,每天利润为z 元,则 ⎩⎪⎨⎪⎧x +2y ≤12,2x +y ≤12,x ≥0,y ≥0,z =300x +400y .作出可行域,如图阴影部分所示.作直线300x +400y =0,向右上平移,过点A 时, z =300x +400y 取最大值, 由⎩⎪⎨⎪⎧x +2y =12,2x +y =12得⎩⎪⎨⎪⎧x =4,y =4, ∴A (4,4),∴z max =300×4+400×4= 2 800.题型一 二元一次不等式(组)表示的平面区域 例1 若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是( )A.73B.37C.43D.34思维启迪:画出平面区域,显然点⎝⎛⎭⎫0,43在已知的平面区域内,直线系过定点⎝⎛⎭⎫0,43,结合图形寻找直线平分平面区域面积的条件即可.答案 A解析 不等式组表示的平面区域如图所示.由于直线y =kx +43过定点⎝⎛⎭⎫0,43.因此只有直线过AB 中点时,直线y =kx +43能平分平面区域.因为A (1,1),B (0,4),所以AB 中点D ⎝⎛⎭⎫12,52. 当y =kx +43过点⎝⎛⎭⎫12,52时,52=k 2+43, 所以k =73.探究提高 不等式组表示的平面区域是各个不等式所表示的平面区域点集的交集,画出图形后,面积关系可结合平面知识探求.已知关于x ,y 的不等式组⎩⎪⎨⎪⎧0≤x ≤2,x +y -2≥0,kx -y +2≥0所表示的平面区域的面积为4,则k 的值为( )A .1B .-3C .1或-3D .0答案 A解析 其中平面区域kx -y +2≥0是含有坐标原点的半平面.直线kx -y +2=0又过定点(0,2),这样就可以根据平面区域的面积为4,确定一个封闭的区域,作出平面区域即可求解.平面区域如图所示,根据平面区域面积为4,得A (2,4),代入直线方程,得k =1.题型二 求线性目标函数的最值例2 已知x ,y 满足条件⎩⎪⎨⎪⎧7x -5y -23≤0x +7y -11≤04x +y +10≥0,求4x -3y 的最大值和最小值.思维启迪:目标函数z =4x -3y 是直线形式,可通过平行移动,求最值.解 不等式组⎩⎪⎨⎪⎧7x -5y -23≤0x +7y -11≤04x +y +10≥0表示的区域如图所示.可观察出4x -3y 在A 点取到最大值,在B 点取到最小值. 解方程组 ⎩⎪⎨⎪⎧7x -5y -23=04x +y +10=0,得⎩⎪⎨⎪⎧x =-1y =-6, 则A (-1,-6).解方程组⎩⎪⎨⎪⎧ x +7y -11=04x +y +10=0,得⎩⎪⎨⎪⎧x =-3y =2. 则B (-3,2),因此4x -3y 的最大值和最小值分别为14,-18.探究提高 (1)线性目标函数的最大(小)值一般在可行域的顶点处取得,也可能在边界处取得.(2)求线性目标函数的最优解,要注意分析线性目标函数所表示的几何意义,明确和直线的纵截距的关系.(2011·广东)已知平面直角坐标系xOy 上的区域D 由不等式组⎩⎨⎧ 0≤x ≤2,y ≤2,x ≤2y给定.若M (x ,y )为D 上的动点,点A 的坐标为(2,1),则z =OM →·OA→的最大值为( )A .3B .4C .3 2D .4 2答案 B解析 由线性约束条件⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y画出可行域如图阴影部分所示,目标函数z =OM →·OA →=2x +y ,将其化为y =-2x +z ,结合图形可知,目标函数的图像过点(2,2)时,z 最大,将点(2,2)代入z =2x +y 得z 的最大值为4.题型三 线性规划的简单应用例3 某公司计划在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元.甲、乙电视台的广告收费标准分别为500元/分钟和200元/分钟.假定甲、乙两个电视台为该公司所做的每分钟广告,能给公司带来的收益分别为0.3万元和0.2万元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?思维启迪:根据线性规划解决实际问题,要先用字母表示变量,找出各量的关系列出约束条件,设出目标函数,转化为线性规划问题.解 设公司在甲电视台和乙电视台做广告的时间分别为x 分钟和y 分钟,总收益为z 元,由题意得⎩⎪⎨⎪⎧x +y ≤300,500x +200y ≤90 000,x ≥0,y ≥0.目标函数为z =3 000x +2 000y .二元一次不等式组等价于⎩⎪⎨⎪⎧x +y ≤300,5x +2y ≤900,x ≥0,y ≥0.作出二元一次不等式组所表示的平面区域,即可行域,如图:作直线l :3 000x +2 000y =0, 即3x +2y =0.平移直线l ,从图中可知,当直线l 过M 点时,目标函数取得最大值.联立⎩⎪⎨⎪⎧x +y =300,5x +2y =900.解得x =100,y =200. ∴点M 的坐标为(100,200),∴z max =3 000x +2 000y =700 000(元).即该公司在甲电视台做100分钟广告,在乙电视台做200分钟广告,公司的收益最大,最大收益是70万元.探究提高 解线性规划应用问题的一般步骤:(1)分析题意,设出未知量;(2)列出线性约束条件和目标函数;(3)作出可行域并利用数形结合求解;(4)作答.(1)(2012·江西)某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54为使一年的种植总利润(总利润=总销售收入-总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为( )A .50,0B .30,20C .20,30D .0,50答案 B解析 设种植黄瓜x 亩,韭菜y 亩,则由题意可知⎩⎪⎨⎪⎧x +y ≤50,1.2x +0.9y ≤54,x ,y ∈N +,求目标函数z =x+0.9y 的最大值,根据题意画可行域如图阴影所示.当目标函数线l 向右平移,移至点A (30,20)处时,目标函数取得最大值,即当黄瓜种植30亩,韭菜种植20亩时,种植总利润最大. (2)如果点P 在平面区域⎩⎪⎨⎪⎧2x -y +2≥0,x +y -2≤0,2y -1≥0上,点Q 在曲线x 2+(y +2)2=1上,那么|PQ |的最小值为( )A.32B.45-1C .22-1D.2-1答案 A解析 如图,当P 取点⎝⎛⎭⎫0,12,Q 取点(0,-1)时,|PQ |的最小值为32.利用线性规划思想求解非线性目标函数的最值典例:(12分)变量x 、y 满足⎩⎪⎨⎪⎧x -4y +3≤03x +5y -25≤0x ≥1,(1)设z =yx ,求z 的最小值;(2)设z =x 2+y 2,求z 的取值范围;(3)设z =x 2+y 2+6x -4y +13,求z 的取值范围.审题视角 (x ,y )是可行域内的点.(1)z =y -0x -0可以理解为点(x ,y )与点(0,0)连线的斜率.(2)x 2+y 2可以理解为点(x ,y )与点(0,0)连线距离的平方.(3)x 2+y 2+6x -4y +13=(x +3)2+(y -2)2可以理解为点(x ,y )与(-3,2)的距离的平方.结合图形确定最值. 规范解答 解由约束条件⎩⎪⎨⎪⎧x -4y +3≤03x +5y -25≤0x ≥1,作出(x ,y )的可行域如图所示.由⎩⎪⎨⎪⎧ x =13x +5y -25=0, 解得A ⎝⎛⎭⎫1,225. 由⎩⎪⎨⎪⎧x =1x -4y +3=0,解得C (1,1). 由⎩⎪⎨⎪⎧x -4y +3=03x +5y -25=0,解得B (5,2).[4分] (1)∵z =y x =y -0x -0.∴z 的值即是可行域中的点与原点O 连线的斜率.观察图形可知z min =k OB =25.[6分](2)z =x 2+y 2的几何意义是可行域上的点到原点O 的距离的平方.结合图形可知,可行域上的点到原点的距离中,d min =|OC |=2,d max =|OB |=29.∴2≤z ≤29.[9分](3)z =x 2+y 2+6x -4y +13=(x +3)2+(y -2)2的几何意义是可行域上的点到点(-3,2)的距离的平方.结合图形可知,可行域上的点到(-3,2)的距离中,d min =1-(-3)=4,d max =(-3-5)2+(2-2)2=8. ∴16≤z ≤64.[12分]温馨提醒 (1)本题是线性规划的综合应用,考查的是非线性目标函数的最值的求法. (2)解决这类问题的关键是利用数形结合的思想方法,给目标函数赋于一定的几何意义. (3)本题错误率较高.出错原因是,很多学生无从入手,缺乏数形结合的应用意识,不知道从其几何意义入手解题.方法与技巧1.平面区域的画法:线定界、点定域(注意实虚线).2.求最值:求二元一次函数z =ax +by (ab ≠0)的最值,将函数z =ax +by 转化为直线的斜截式:y =-a b x +z b ,通过求直线的截距zb 的最值间接求出z 的最值.最优解在顶点或边界取得.3.解线性规划应用题,可先找出各变量之间的关系,最好列成表格,然后用字母表示变量,列出线性约束条件;写出要研究的函数,转化成线性规划问题.失误与防范1.画出平面区域.避免失误的重要方法就是首先使二元一次不等式标准化.2.在通过求直线的截距z b 的最值间接求出z 的最值时,要注意:当b >0时,截距zb 取最大值时,z 也取最大值;截距z b 取最小值时,z 也取最小值;当b <0时,截距zb取最大值时,z 取最小值;截距zb取最小值时,z 取最大值.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1.设A ={(x ,y )|x ,y,1-x -y 是三角形的三边长},则A 所表示的平面区域(不含边界的阴影部分)是()答案 A解析 由已知得⎩⎪⎨⎪⎧x +y >1-x -y ,x +(1-x -y )>y ,y +(1-x -y )>x ,即⎩⎪⎨⎪⎧x +y >12,y <12,x <12.2.(2011·湖北)直线2x +y -10=0与不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x -y ≥-2,4x +3y ≤20表示的平面区域的公共点有( )A .0个B .1个C .2个D .无数个答案 B解析 在坐标平面内画出直线2x +y -10=0与不等式组表示的平面区域,易知直线与此区域的公共点有1个.3.(2012·山东)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≥2,2x +y ≤4,4x -y ≥-1,则目标函数z =3x -y 的取值范围是( )A.⎣⎡⎦⎤-32,6 B.⎣⎡⎦⎤-32,-1C.[]-1,6D.⎣⎡⎦⎤-6,32 答案 A解析 作出不等式组表示的可行域,如图阴影部分所示,作直线3x -y =0,并向左上、右下平移.由图可得,当直线过点A 时,z =3x -y 取最大值;当直线过点B 时,z =3x -y 取最小值. 由⎩⎪⎨⎪⎧x +2y -2=0,2x +y -4=0解得A (2,0); 由⎩⎪⎨⎪⎧4x -y +1=0,2x +y -4=0解得B ⎝⎛⎭⎫12,3. ∴z max =3×2-0=6,z min =3×12-3=-32.∴z =3x -y 的取值范围是⎣⎡⎦⎤-32,6. 4.某加工厂用某原料由甲车间加工出A 产品,由乙车间加工出B 产品,甲车间加工一箱原料需耗费工时10小时可加工出7千克A 产品,每千克A 产品获利40元,乙车间加工一箱原料需耗费工时6小时可加工出4千克B 产品,每千克B 产品获利50元.甲、乙两车间每天共能完成至多70箱原料的加工,每天甲、乙两车间耗费工时总和不得超过480小时,甲、乙两车间每天总获利最大的生产计划为( )A .甲车间加工原料10箱,乙车间加工原料60箱B .甲车间加工原料15箱,乙车间加工原料55箱C .甲车间加工原料18箱,乙车间加工原料50箱D .甲车间加工原料40箱,乙车间加工原料30箱 答案 B解析 设甲车间加工原料x 箱,乙车间加工原料y 箱, 则⎩⎪⎨⎪⎧x +y ≤7010x +6y ≤480x ,y ∈N目标函数z =280x +200y ,结合图像可得:当x =15,y =55时,z 最大. 二、填空题(每小题5分,共15分)5.(2011·陕西)如图,点(x ,y )在四边形ABCD 内部和边界上运动,那么2x -y 的最小值为 ________.答案 1解析 令b =2x -y ,则y =2x -b ,如图所示,作斜率为2的平行线 y =2x -b ,当经过点A 时,直线在y 轴上的截距最大,为-b ,此时b =2x -y 取得最小值,为b =2×1-1=1.6.(2011·课标全国)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧3≤2x +y ≤9,6≤x -y ≤9,则z =x+2y 的最小值为________. 答案 -6解析 作出不等式表示的可行域如图(阴影部分).易知直线z =x +2y 过点B 时,z 有最小值.由⎩⎪⎨⎪⎧ x -y =9,2x +y =3得⎩⎪⎨⎪⎧x =4,y =-5. 所以z min =4+2×(-5)=-6.7.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨、B 原料2吨;生产每吨乙产品要用A 原料1吨、B 原料3吨.销售每吨甲产品可获得利润5万元、每吨乙产品可获得利润3万元,该企业在一个生产周期内消耗A 原料不超过13吨、B 原料不超过18吨,那么该企业可获得的最大利润是________万元. 答案 27解析 设生产甲产品x 吨、乙产品y 吨, 则获得的利润为z =5x +3y .由题意得⎩⎪⎨⎪⎧x ≥0,y ≥0,3x +y ≤13,2x +3y ≤18,可行域如图阴影所示.由图可知当x 、y 在A 点取值时,z 取得最大值,此时x =3,y =4,z =5×3+3×4= 27(万元). 三、解答题(共22分)8.(10分)画出2x -3<y ≤3表示的区域,并求出所有正整数解.解 先将所给不等式转化为⎩⎪⎨⎪⎧y >2x -3,y ≤3.而求正整数解则意味着x ,y 还有限制条件, 即求⎩⎪⎨⎪⎧y >2x -3y ≤3x ,y >0的整数解.所给不等式等价于⎩⎪⎨⎪⎧y >2x -3y ≤3.依照二元一次不等式表示平面区域可得如图(1). 对于2x -3<y ≤3的正整数解,再画出⎩⎪⎨⎪⎧y >2x -3,y ≤3,x ,y >0表示的平面区域.如图(2)所示:可知,在该区域内有整数解为(1,1)、(1,2)、(1,3)、(2,2)、(2,3)共五组.9.(12分)制订投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目,根据预测,甲、乙项目可能的最大盈利率分别为100%和50%,可能的最大亏损率分别为30%和10%.若投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元,问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?解 设投资人分别用x 万元、y 万元投资甲、乙两个项目,由题意知⎩⎪⎨⎪⎧x +y ≤10,0.3x +0.1y ≤1.8,x ≥0,y ≥0,目标函数z =x +0.5y.上述不等式组表示的平面区域如图所示,阴影部分(含边界)即为可行域.将z =x +0.5y 变形为y =-2x +2z ,这是斜率为-2、随z 变化的一组平行线,当直线y =-2x +2z 经过可行域内的点M 时,直线y =-2x +2z 在y 轴上的截距2z 最大,z 也最大.这里M 点是直线x +y =10和0.3x +0.1y =1.8的交点.解方程组⎩⎪⎨⎪⎧x +y =10,0.3x +0.1y =1.8, 得x =4,y =6,此时z =4+0.5×6=7(万元).∵7>0,∴当x =4,y =6时,z 取得最大值,所以投资人用4万元投资甲项目、6万元投资乙项目,才能在确保亏损不超过1.8万元的前提下,使可能的盈利最大.B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1.(2012·福建)若函数y =2x 图象上存在点(x ,y )满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m ,则实数m 的最大值为( )A.12 B .1C.32D .2答案 B解析 在同一直角坐标系中作出函数y =2x的图像及⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0所表示的平面区域,如图阴影部分所示.由图可知,当m ≤1时,函数y =2x 的图像上存在点(x ,y )满足约束条件, 故m 的最大值为1.2.(2012·课标全国)已知正三角形ABC 的顶点A (1,1),B (1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z =-x +y 的取值范围是( )A .(1-3,2)B .(0,2)C .(3-1,2)D .(0,1+3)答案 A解析 如图,根据题意得C (1+3,2).作直线-x +y =0,并向左上或右下平移,过点B (1,3)和C (1+3,2)时,z =-x +y 取范围的边界值,即-(1+3)+2<z <-1+3,∴z =-x +y 的取值范围是(1-3,2). 3.设不等式组⎩⎪⎨⎪⎧x ≥1,x -2y +3≥0,y ≥x所表示的平面区域是Ω1,平面区域Ω2与Ω1关于直线3x-4y -9=0对称.对于Ω1中的任意点A 与Ω2中的任意点B ,|AB |的最小值等于( )A.285 B .4 C.125 D .2 答案 B解析 不等式组 ⎩⎪⎨⎪⎧x ≥1x -2y +3≥0y ≥x,所表示的平面区域如图所示,解方程组⎩⎪⎨⎪⎧ x =1y =x ,得⎩⎪⎨⎪⎧x =1y =1. 点A (1,1)到直线3x -4y -9=0的距离为d =|3-4-9|5=2,则|AB |的最小值为4.二、填空题(每小题5分,共15分)4.已知z =2x -y ,式中变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≥1,x ≤2,则z 的最大值为________.答案 5解析 在坐标平面内画出题中的不等式表示的平面区域及直线2x -y =0,平移该直线,当平移到经过该平面区域内的点 (2,-1)时,相应直线在x 轴上的截距最大,此时z =2x -y 取得最大值,最大值是z =2×2-(-1)=5. 5.已知变量x ,y 满足条件⎩⎪⎨⎪⎧x +2y -3≤0,x +3y -3≥0,y -1≤0,若目标函数z =ax+y (其中a >0)仅在点(3,0)处取得最大值,则a 的取值范围是__________.答案 ⎝⎛⎭⎫12,+∞ 解析 画出x 、y 满足条件的可行域如图所示,要使目标函 数z =ax +y 仅在点(3,0)处取得最大值,则直线y =-ax +z的斜率应小于直线x +2y -3=0的斜率,即-a <-12,∴a >12.6.(2011·湖北改编)已知向量a =(x +z,3),b =(2,y -z ),且a ⊥b . 若x ,y 满足不等式|x |+|y |≤1,则z 的取值范围为__________. 答案 [-3,3]解析 ∵a =(x +z,3),b =(2,y -z ),且a ⊥b ,∴a ·b =2(x +z )+3(y -z )=0, 即2x +3y -z =0.又|x |+|y |≤1表示的区域为图中阴影部分,∴当2x +3y -z =0过点B (0,-1)时,z min =-3,当2x +3y -z =0过点A (0,1)时,z min =3.∴z ∈[-3,3]. 三、解答题7.(13分)某营养师要为某个儿童预订午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C ;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物,42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?解 设需要预订满足要求的午餐和晚餐分别为x 个单位和y 个单位,所花的费用为z 元, 则依题意得:z =2.5x +4y ,且x ,y 满足⎩⎪⎨⎪⎧x ≥0,y ≥0,12x +8y ≥64,6x +6y ≥42,6x +10y ≥54,即⎩⎪⎨⎪⎧x ≥0,y ≥0,3x +2y ≥16,x +y ≥7,3x +5y ≥27.画出可行域如图所示.让目标函数表示的直线2.5x +4y =z 在可行域上平移, 2.5x +4y 在(4,3)处取得最小值,由此可知z =22.因此,应当为该儿童预订4个单位的午餐和3个单位的晚餐,就可满足要求.。
【步步高】2014届高三数学大一轮复习讲义--函数图象与性质的综合应用

专题一 函数图象与性质的综合应用1.函数的三要素是对应关系、定义域、值域;其中函数的核心是对应关系. 2.函数的性质主要包括:单调性、周期性、对称性、最值等.3.求函数值域的方法有配方法、换元法、不等式法、函数单调性法、图象法等. 4.作图一般有两种方法:描点法作图、图象变换法作图. 5.图象的三种变换:平移变换、伸缩变换和对称变换.1. (2011·安徽)设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x 2-x ,则f (1)等于( )A .-3B .-1C .1D .3 答案 A解析 ∵f (x )是奇函数,当x ≤0时,f (x )=2x 2-x , ∴f (1)=-f (-1)=-[2×(-1)2-(-1)]=-3.2. 函数f (x )=|log 3x |在区间[a ,b ]上的值域为[0,1],则b -a 的最小值为 ( )A.13B.23 C .1 D .2 答案 B解析 令f (x )=0,解得x =1;令f (x )=1,解得x =13或3.因为函数f (x )在(0,1)上为减函数,在(1,+∞)上为增函数.故b -a 的最小值为1-13=23.3. (2011·辽宁)设函数f (x )=⎩⎪⎨⎪⎧21-x , x ≤11-log 2x , x >1,则满足f (x )≤2的x 的取值范围是( )A .[-1,2]B .[0,2]C .[1,+∞)D .[0,+∞) 答案 D解析 当x ≤1时,由21-x ≤2,知x ≥0,即0≤x ≤1.当x >1时,由1-log 2x ≤2,知x ≥12,即x >1,所以满足f (x )≤2的x 的取值范围是[0,+∞).4. (2011·湖北)已知定义在R 上的奇函数f (x )和偶函数g (x )满足f (x )+g (x )=a x -a -x +2(a >0,且a ≠1).若g (2)=a ,则f (2)等于 ( ) A .2 B.154 C.174 D .a 2答案 B解析 ∵f (x )是奇函数,g (x )是偶函数, ∴由f (x )+g (x )=a x -a -x +2,① 得-f (x )+g (x )=a -x -a x +2,②①+②,得g (x )=2,①-②,得f (x )=a x -a -x . 又g (2)=a ,∴a =2,∴f (x )=2x -2-x , ∴f (2)=22-2-2=154.5. 已知y =f (x )的图象如图,则y =f (1-x )的图象为下列四图中的 ( )答案 A解析 将y =f (1-x )变形为y =f [-(x -1)]①作y =f (-x )图象,将y =f (x )关于y 轴对称即可; ②将f (-x )的图象沿x 轴正方向平移1个单位, 得y =f [-(x -1)]=f (1-x )的图象.题型一 函数求值问题例1 (2012·苏州模拟)设f (x )=⎩⎪⎨⎪⎧log 3(x 2+t ),x <0,2×(t +1)x ,x ≥0 且f (1)=6,则f (f (-2))的值为________.思维启迪:首先根据f (1)=6求出t 的取值,从而确定函数解析式,然后由里到外逐层求解f (f (-2))的值,并利用指数与对数的运算规律求出函数值. 答案 12解析 ∵1>0,∴f (1)=2×(t +1)=6, 即t +1=3,解得t =2.故f (x )=⎩⎪⎨⎪⎧log 3(x 2+2),x <0,2×3x , x ≥0,所以f (-2)=log 3[(-2)2+2]=log 36>0. f (f (-2))=f (log 36)=2×3log 36=2×6=12.探究提高 本题的难点有两个,一是准确理解分段函数的定义,自变量在不同取值范围 内对应着不同的函数解析式;二是对数与指数的综合运算问题.解决此类问题的关键是 要根据分段函数的定义,求解函数值时要先判断自变量的取值区间,然后再代入相应的 函数解析式求值,在求值过程中灵活运用对数恒等式进行化简求值.(2012·广东六校联考)已知f (x )=⎩⎪⎨⎪⎧-cos (πx ), x >0,f (x +1)+1, x ≤0,则f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43的值等于 ( )A .-2B .1C .2D .3 答案 D解析 f ⎝⎛⎭⎫43=12,f ⎝⎛⎭⎫-43=f ⎝⎛⎭⎫-13+1=f ⎝⎛⎭⎫23+2=52,f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43=3. 题型二 函数性质的应用例2 设奇函数f (x )在(0,+∞)上为单调递增函数,且f (2)=0,则不等式f (-x )-f (x )x≥0的解集为 ( ) A .[-2,0]∪[2,+∞) B .(-∞,-2]∪(0,2] C .(-∞,-2]∪[2,+∞) D .[-2,0)∪(0,2] 思维启迪:转化成f (m )<f (n )的形式,利用单调性求解. 答案 D解析 因为f (x )为奇函数,所以f (-x )=-f (x ),不等式可化为-f (x )-f (x )x ≥0,即-f (x )x ≥0.当x >0时,则有f (x )≤0=f (2),由f (x )在(0,+∞)上单调递增可得x ≤2;当x <0时,则有f (x )≥0=-f (2)=f (-2),由函数f (x )为奇函数可得f (x )在(-∞,0)上单调递增,所以x ≥-2.所以不等式的解集为[-2,0)∪(0,2].探究提高 解决抽象函数问题的关键是灵活利用抽象函数的性质,利用函数的单调性去 掉函数符号是解决问题的关键,由函数为奇函数可知,不等式的解集关于原点对称,所 以只需求解x >0时的解集即可.设函数f (x )=⎩⎪⎨⎪⎧log 12x ,x >0,log 2(-x ),x <0,若f (m )<f (-m ),则实数m 的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1) 答案 C解析 f (-x )=⎩⎪⎨⎪⎧ log 12(-x ),-x >0log 2x ,-x <0=⎩⎪⎨⎪⎧log 12(-x ),x <0,log 2x ,x >0.当m >0时,f (m )<f (-m )⇒log 12m <log 2m ⇒m >1;当m <0时,f (m )<f (-m )⇒log 2(-m )<log 12(-m )⇒-1<m <0.所以,m 的取值范围是(-1,0)∪(1,+∞). 题型三 函数图象及应用例3 已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10,若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc的取值范围是_____________.思维启迪:可以先画出函数f (x )的图象,通过图象的特征观察a 、b 、c 的关系. 答案 (10,12)解析 画出函数f (x )的图象,再画出直线y =d (0<d <1),如图所示,直观上知0<a <1,1<b <10,10<c <12,再由|lg a |=|lg b |,得-lg a =lg b ,从而得ab =1,则10<abc <12.探究提高 通过图形可以发现a ,b ,c 所在的区间,再把绝对值符号去掉,就能发现ab =1,这样利用数形结合就可把问题化难为易了.已知不等式x 2-log a x <0,当x ∈⎝⎛⎭⎫0,12时恒成立,求实数a 的取值范围. 解由x 2-log a x <0, 得x 2<log a x .设f (x )=x 2,g (x )=log a x .由题意知,当x ∈⎝⎛⎭⎫0,12时,函数f (x )的图象在函数g (x )的图象的下方, 如图,可知⎩⎪⎨⎪⎧ 0<a <1,f ⎝⎛⎭⎫12≤g ⎝⎛⎭⎫12,即⎩⎪⎨⎪⎧0<a <1,⎝⎛⎭⎫122≤log a 12, 解得116≤a <1.∴实数a 的取值范围是⎣⎡⎭⎫116,1. 题型四 函数的值域与不等式恒成立问题例4 (2012·天津滨海新区五所重点学校联考)定义在R 上的增函数y =f (x )对任意x ,y ∈R都有f (x +y )=f (x )+f (y ). (1)求f (0);(2)求证:f (x )为奇函数;(3)若f (k ·3x )+f (3x -9x -2)<0对任意x ∈R 恒成立,求实数k 的取值范围.思维启迪:(1)赋值法是解决抽象函数问题的常用方法,第(1)(2)两问可用赋值法解决. (2)将恒成立问题转化成函数最值问题. (1)解 令x =y =0,得f (0+0)=f (0)+f (0), 即f (0)=0.(2)证明 令y =-x ,得f (x -x )=f (x )+f (-x ), 又f (0)=0,则有0=f (x )+f (-x ), 即f (-x )=-f (x )对任意x ∈R 成立, 所以f (x )是奇函数.(3)解 方法一 因为f (x )在R 上是增函数, 又由(2)知f (x )是奇函数.f (k ·3x )<-f (3x -9x -2)=f (-3x +9x +2), 所以k ·3x <-3x +9x +2,32x -(1+k )·3x +2>0对任意x ∈R 成立.令t =3x >0,问题等价于t 2-(1+k )t +2>0对任意t >0恒成立. 令f (t )=t 2-(1+k )t +2,其对称轴为x =1+k2,当1+k2<0即k <-1时,f (0)=2>0,符合题意; 当1+k2≥0即k ≥-1时,对任意t >0,f (t )>0恒成立⇔⎩⎪⎨⎪⎧1+k 2≥0,Δ=(1+k )2-4×2<0,解得-1≤k <-1+2 2.综上所述,当k <-1+22时,f (k ·3x )+f (3x -9x -2)<0对任意x ∈R 恒成立.方法二 由k ·3x <-3x +9x +2,得k <3x +23x -1.u =3x +23x -1≥22-1,3x =2时,取“=”,即u 的最小值为22-1,要使对x ∈R ,不等式k <3x +23x -1恒成立,只要使k <22-1.探究提高 对于恒成立问题,若能转化为a >f (x ) (或a <f (x ))恒成立,则a 必须大于f (x )的最大值(或小于f (x )的最小值).因此恒成立问题可以转化为我们较为熟悉的求最值的问题进行求解.若不能分离参数,可以将参数看成常数直接求解.定义在R 上的奇函数f (x ),当x ∈[0,+∞)时,f (x )是增函数,对于任意的θ∈⎣⎡⎦⎤0,π2,均有f (cos 2θ-3)+f (4m -2m cos θ)>0,试求实数m 的取值范围. 解 因为f (x )是定义在R 上的奇函数,当x ∈[0,+∞)时,f (x )是增函数,则f (x )在(-∞,0]上也是增函数,所以f (x )在R 上是增函数,且f (0)=0, ∵f (cos 2θ-3)+f (4m -2m cos θ)>0, ∴f (cos 2θ-3)>f (2m cos θ-4m ), 于是cos 2θ-3>2m cos θ-4m ,① 即cos 2θ-m cos θ+2m -2>0. 得m >cos 2θ-2cos θ-2,设h (θ)=cos 2θ-2cos θ-2,则h (θ)=4-⎣⎡⎦⎤(2-cos θ)+22-cos θ≤4-22,即h (θ)max =4-22,只须m >4-2 2.故实数m 的取值范围是(4-22,+∞). 2.高考中的函数零点问题典例:(2011·山东)已知函数f (x )=log a x +x -b (a >0,且a ≠1).当2<a <3<b <4时,函数f (x )的零点x 0∈(n ,n +1),n ∈N *,则n =________.考点分析 本题考查对数函数、函数单调性、函数零点等知识,体现了函数知识的综合.求解策略 解答本题可先确定函数f (x )在(0,+∞)上的单调性,然后根据a ,b 满足的条件及对数的运算性质探究出f (x )零点所在的区间,从而对照x 0∈(n ,n +1),n ∈N *确定出n 的值. 答案 2解析 ∵2<a <3,∴f (x )=log a x +x -b 为定义域上的单调递增函数.f (2)=log a 2+2-b , f (3)=log a 3+3-b .∵2<a <3<b ,∴0<lg 2<lg a <lg 3,∴lg 2lg 3<lg 2lg a <1.又∵b >3,∴-b <-3,∴2-b <-1, ∴log a 2+2-b <0,即f (2)<0.∵1<lg 3lg a <lg 3lg 2,3<b <4,∴-1<3-b <0,∴log a 3+3-b >0,∴f (3)>0,即f (2)·f (3)<0. 由x 0∈(n ,n +1),n ∈N *知,n =2.解后反思 (1)本题考查函数零点,与函数的单调性相结合;(2)解决函数的有关问题,要综合利用函数的图象,函数的单调性、对称性、周期性、值域等.方法与技巧1. 利用复合函数求函数值是一类重要问题,解题关键是利用已知的函数值,通过解析式的变化特点进行代入求值,有时也可以利用周期性来解题.2. 抽象函数奇偶性的判断关键在于构造f (-x ),使之与f (x )产生等量关系,即比较f (-x )与±f (x )是否相等,此时赋值比较多的是-1、1、0等.3. 作图、识图和用图是函数图象中的基本问题.作图的基本途径:求出函数的定义域;尽量求出值域;变换(化简、平移、对称、伸缩等)出图象的形状;描点作图.识图就是从 图形中发现或捕捉所需信息,从而使问题得到解决.用图就是根据需要,作出函数的图 形,使问题求解得到依据,使函数、方程、不等式中的许多问题化归为函数图象问题. 失误与防范1. 函数求值问题一定要关注自变量的取值范围,尤其是分段函数,以防代错解析式. 2. 对于由抽象函数不等式向具体不等式转化的过程中,一定要注意单调区间,需将自变量转化到同一个单调区间上去.3. 识图要抓住性质特征,关键点;作图要规范,一般从基本图形通过平移、对称等变换来作图.(时间:60分钟) A 组 专项基础训练一、选择题(每小题5分,共20分)1. (2011·重庆)下列区间中,函数f (x )=|ln(2-x )|在其上为增函数的是 ( )A .(-∞,1]B .[-1,43]C .[0,32) D .[1,2)答案 D解析 方法一 当2-x ≥1,即x ≤1时,f (x )=|ln(2-x )|=ln(2-x ),此时函数f (x )在(- ∞,1]上单调递减.当0<2-x ≤1,即1≤x <2时,f (x )=|ln(2-x )|=-ln(2-x ),此时函 数f (x )在[1,2)上单调递增,故选D. 方法二 f (x )=|ln(2-x )|的图象如图所示.由图象可得,函数f (x )在区间[1,2)上为增函数,故选D.2. (2011·北京)如果log 12x <log 12y <0,那么 ( )A .y <x <1B .x <y <1C .1<x <yD .1<y <x 答案 D解析 不等式转化为⎩⎨⎧log 12x <log 12y ,log 12y <0⇒1<y <x .3. (2012·浙江改编)设函数f (x )是定义在R 上的周期为2的偶函数,当x ∈[0,1]时,f (x )=x +1,则f ⎝⎛⎭⎫32等于 ( ) A.32 B .-14 C.14 D.12 答案 A解析 当x ∈[-1,0]时,-x ∈[0,1], ∵f (x )为偶函数,∴f (x )=f (-x )=-x +1. ∴f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫32-2=f ⎝⎛⎭⎫-12=-⎝⎛⎭⎫-12+1=32. 4. (2012·江西)如图所示,|OA |=2(单位:m),|OB |=1(单位:m),OA 与OB 的夹角为π6,以A 为圆心,AB 为半径作圆弧BDC 与线段OA 延长线交于点C .甲、乙两质点同时从点O 出发,甲先以速率1(单位:m/s)沿线段OB 行至点B ,再以速率3(单位:m/s)沿圆弧BDC 行至点C 后停止;乙以速率2(单位:m/s)沿线段OA 行至点A 后停止.设t 时刻甲、乙所到达的两点连线与它们经过的路径所围成图形的面积为S (t )(S (0)=0),则函数y =S (t )的图象大致是( )答案 A解析 对t 进行分段,确定函数y =S (t )的解析式.由题意知,当0<t ≤1时,甲从O 向B 移动,乙从O 向A 移动,则t 时刻,|OB |=t ,|OA | =2t ,此时S (t )=12·|OB |·|OA |sin π6=12t 2,此段图象为抛物线;当t >1时,设圆弧半径为r ,甲从B 沿圆弧移动到C 后停止,乙在A 点不动,则此时S (t )=12×1×2·sin π6+12·r ·3(t -1)=3r 2t +1-3r2,此段图象为直线,当甲移动至C 点后,甲、乙均不再移动,面积不再增加,选项B 中开始一段函数图象不对,选项C 中后两段图象不对,选项D 中前两段 函数图象不对,故选A. 二、填空题(每小题5分,共15分)5. 设a >0,a ≠1,函数f (x )=log a (x 2-2x +3)有最小值,则不等式log a (x -1)>0的解集为______. 答案 (2,+∞)解析 ∵x 2-2x +3>0,即(x -1)2+2>0的解集为R , ∴函数f (x )=log a (x 2-2x +3)的定义域为R . 又∵函数y =x 2-2x +3有最小值2,无最大值. 据题意有a >1.∴log a (x -1)>0=log a 1等价于⎩⎪⎨⎪⎧x -1>0,x -1>1,解得x >2,即不等式log a (x -1)>0的解集为(2,+∞). 6. 设函数g (x )=x 2-2(x ∈R ),f (x )=⎩⎪⎨⎪⎧g (x )+x +4,x <g (x ),g (x )-x ,x ≥g (x ),则f (x )的值域是__________. 答案 [-94,0]∪(2,+∞)解析 由x <g (x )得x <x 2-2,∴x <-1或x >2;由x ≥g (x )得x ≥x 2-2,∴-1≤x ≤2.∴f (x )=⎩⎪⎨⎪⎧x 2+x +2,x <-1或x >2,x 2-x -2,-1≤x ≤2.即f (x )=⎩⎨⎧(x +12)2+74,x <-1或x >2,(x -12)2-94,-1≤x ≤2.当x <-1时,f (x )>2;当x >2时,f (x )>8.∴当x ∈(-∞,-1)∪(2,+∞)时,函数的值域为(2,+∞). 当-1≤x ≤2时,-94≤y ≤0.∴当x ∈[-1,2]时,函数的值域为[-94,0].综上可知,f (x )的值域为[-94,0]∪(2,+∞).7. 已知函数f (x )=⎩⎪⎨⎪⎧a x -5 (x >6),⎝⎛⎭⎫4-a 2x +4 (x ≤6),在R 上是单调递增函数,则实数a 的取值范围为________.答案 [7,8)解析 由题意知,实数a 应满足⎩⎪⎨⎪⎧a >14-a 2>0⎝⎛⎭⎫4-a 2×6+4≤a 6-5,即⎩⎪⎨⎪⎧a >1a <8a ≥7,解得7≤a <8. 三、解答题(共25分)8. (12分)若直线y =2a 与函数y =|a x -1| (a >0且a ≠1)的图象有两个交点,求a 的取值范围.解 ①当a >1时,画出函数y =|a x -1|的草图:若y =2a 与y =|a x -1|的图象有两个交点, 则有0<2a <1,∴0<a <12(舍去).②当0<a <1时,画出函数y =|a x -1|的草图:若y =2a 与y =|a x -1|的图象有两个交点,则有0<2a <1,∴0<a <12. 综上所述,a 的取值范围是⎝⎛⎭⎫0,12. 9. (13分)已知a >0,且a ≠1,f (log a x )=a a 2-1⎝⎛⎭⎫x -1x . (1)求f (x );(2)判断f (x )的单调性;(3)求f (x 2-3x +2)<0的解集.解 (1)令t =log a x (t ∈R ),则x =a t ,且f (t )=a a 2-1⎝⎛⎭⎫a t -1a t .∴f (x )=a a 2-1(a x -a -x ) (x ∈R ). (2)当a >1时,a x -a -x 为增函数, 又a a 2-1>0,∴f (x )为增函数; 当0<a <1时,a x -a -x 为减函数, 又aa 2-1<0,∴f (x )为增函数. ∴函数f (x )在R 上为增函数.(3)∵f (0)=a a 2-1(a 0-a 0)=0,∴f (x 2-3x +2)<0=f (0). 由(2)知:x 2-3x +2<0,∴1<x <2.∴不等式的解集为{x |1<x <2}.B 组 专项能力提升一、选择题(每小题5分,共15分)1. 已知函数f (x )=||lg x ,若0<a <b ,且f (a )=f (b ),则a +2b 的取值范围是 ( )A .(22,+∞) B.[ 22,+∞)C .(3,+∞) D.[ 3,+∞)答案 C解析 由已知条件0<a <1<b 和f (a )=f (b )得,-lg a =lg b ,则lg a +lg b =0,ab =1,因此a +2b =a +2a ,由对勾函数知y =x +2x在(0,1)单调递减,得a +2b >3,即a +2b 的取值范围是(3,+∞).2.设函数f (x )是定义在R 上周期为3的奇函数,若f (1)<1,f (2)=2a -1a +1,则 ( )A .a <12且a ≠-1 B .-1<a <0 C .a <-1或a >0 D .-1<a <2答案 C解析 ∵函数f (x )为奇函数,∴f (1)=-f (-1)<1,∴f (-1)>-1.又∵函数f (x )的周期为3,∴f (-1)=f (2)=2a -1a +1>-1,∴3a a +1>0, 解得a >0或a <-1.3. 设f (x )是定义在R 上的偶函数,对任意的x ∈R ,都有f (x -2)=f (x +2),且当x ∈[-2,0]时,f (x )=⎝⎛⎭⎫12x -1,若在区间(-2,6]内关于x 的方程f (x )-log a (x +2)=0 (a >1)恰有3个不同的实数根,则a 的取值范围是 ( )A .(1,2)B .(2,+∞)C .(1,34)D .(34,2)答案 D解析由f (x -2)=f (x +2),知f (x )是以4为周期的周期函数,于是可得f (x )在(-2,6]上的大致图象如图中实线所示,令g (x )=log a (x +2) (a >1),则g (x )的大致图象如图所示,结合图象可知,要使得方程f (x )-log a (x+2)=0 (a >1)在区间(-2,6]内恰有3个不同的实数根,则只需⎩⎪⎨⎪⎧ g (2)<3g (6)>3,即⎩⎨⎧log a 4<3log a 8>3,解得34<a <2. 二、填空题(每小题4分,共12分)4. 函数f (x )=log 0.5(3x 2-ax +5)在(-1,+∞)上是减函数,则实数a 的取值范围是__________.答案 [-8,-6]解析 设g (x )=3x 2-ax +5,由已知⎩⎪⎨⎪⎧a 6≤-1,g (-1)≥0,解得-8≤a ≤-6.5. 已知f (x )=a sin x +b 3x +4 (a ,b ∈R ),且f [lg(log 210)]=5,则f [lg(lg 2)]=________.答案 3解析 lg(log 210)=-lg(lg 2),f (-x )=a sin(-x )+b 3-x +4=-(a sin x +b 3x )+4.又f [lg(log 210)]=5,∴f [lg(lg 2)]=4-5+4=3.6. 已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2+2x ,若f (2-a 2)>f (a ),则实数a的取值范围是__________.答案 (-2,1)解析∵f (x )是奇函数,∴当x <0时,f (x )=-x 2+2x ,作出f (x )的大致图象如图中实线所示,结合图象可知f (x )是R 上的增函数,由f (2-a 2)>f (a ),得2-a 2>a ,即-2<a <1.三、解答题(13分)7. 设函数f (x )=3ax 2-2(a +c )x +c (a >0,a ,c ∈R ).(1)设a >c >0.若f (x )>c 2-2c +a 对x ∈[1,+∞)恒成立,求c 的取值范围;(2)函数f (x )在区间(0,1)内是否有零点,有几个零点?为什么?解 (1)因为二次函数f (x )=3ax 2-2(a +c )x +c 的图象的对称轴为x =a +c 3a,由条件a >c >0, 得2a >a +c ,故a +c 3a <2a 3a =23<1,即二次函数f (x )的对称轴在区间[1,+∞)的左边,且抛 物线开口向上,故f (x )在[1,+∞)内是增函数.若f (x )>c 2-2c +a 对x ∈[1,+∞)恒成立,则f (x )min =f (1)>c 2-2c +a ,即a -c >c 2-2c +a , 得c 2-c <0,所以0<c <1.(2)①若f (0)·f (1)=c ·(a -c )<0,则c <0,或a <c ,二次函数f (x )在(0,1)内只有一个零点.②若f (0)=c >0,f (1)=a -c >0,则a >c >0.因为二次函数f (x )=3ax 2-2(a +c )x +c 的图象的对称轴是x =a +c 3a. 而f ⎝⎛⎭⎫a +c 3a =-a 2+c 2-ac 3a <0,所以函数f (x )在区间⎝ ⎛⎭⎪⎫0,a +c 3a 和⎝ ⎛⎭⎪⎫a +c 3a ,1内各有一个零点,故函数f (x )在区间(0,1) 内有两个零点.。
2014届步步高大一轮复习讲义13.2

§13.2合情推理与演绎推理2014高考会这样考 1.从近几年的高考来看,高考对本部分的考查多以选择或填空题的形式出现,主要考查利用归纳推理、类比推理去寻求更为一般的、新的结论,试题的难度以低、中档为主;2.演绎推理主要与立体几何、解析几何、函数与导数等知识结合在一起命制综合题.复习备考要这样做 1.联系具体实例,体会几种推理的概念和特点,并结合这些方法解决一些应用问题;2.培养归纳、类比、演绎的推理思维模式,培养分析、解决问题的能力.1.合情推理主要包括归纳推理和类比推理.合情推理的过程(1)归纳推理:根据一类事物中部分事物具有某种属性,推断该类事物中每一个事物都有这种属性,我们将这种推理方式称为归纳推理(简称归纳).简言之,归纳推理是由部分到整体、由个别到一般的推理.归纳推理的基本模式:a、b、c∈M且a、b、c具有某属性,结论:任意d∈M,d也具有某属性.(2)类比推理:由于两类不同对象具有某些类似的特征,在此基础上,根据一类对象的其他特征,推断另一类对象也具有类似的其他特征,我们把这种推理过程称为类比推理(简称类比),简言之,类比推理是由特殊到特殊的推理.类比推理的基本模式:A:具有属性a,b,c,d;B:具有属性a′,b′,c′;结论:B具有属性d′.(a,b,c,d与a′,b′,c′,d′相似或相同)2.演绎推理:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.(1)“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断.(2)“三段论”可以表示为①大前提:M是P;②小前提:S 是M ; ③结论:S 是P .用集合说明:即若集合M 的所有元素都具有性质P ,S 是M 的一个子集,那么S 中所有元素也都具有性质P . [难点正本 疑点清源]1.在解决问题过程中,合情推理具有猜测和发现结论,探索和提供思路的作用.合情推理的结论可能为真,也可能为假,结论的正确性有待于进一步的证明.2.应用三段论解决问题时,应首先明确什么是大前提,什么是小前提,如果大前提与推理形式是正确的,结论必定是正确的.如果大前提错误,尽管推理形式是正确的,所得结论也是错误的.3.演绎推理是由一般到特殊的推理,它常用来证明和推理数学问题,注意推理过程的严密性,书写格式的规范性.1.(2012·陕西)观察下列不等式:1+122<32, 1+122+132<53, 1+122+132+142<74, ……照此规律,第五个...不等式为________. 答案 1+122+132+142+152+162<116解析 观察每行不等式的特点,每行不等式左端最后一个分数的分母的开方与右端值的分母相等,且每行右端分数的分子构成等差数列.∴第五个不等式为1+122+132+142+152+162<116.2.(2011·山东)设函数f (x )=xx +2(x >0),观察:f 1(x )=f (x )=xx +2,f 2(x )=f (f 1(x ))=x3x +4,f 3(x )=f (f 2(x ))=x7x +8,f 4(x )=f (f 3(x ))=x15x +16,……根据以上事实,由归纳推理可得:当n ∈N *且n ≥2时,f n (x )=f (f n -1(x ))=________.答案x(2n-1)x +2n解析 依题意,先求函数结果的分母中x 项系数所组成数列的通项公式,由1,3,7,15,…,可推知该数列的通项公式为a n =2n -1.又函数结果的分母中常数项依次为2,4,8,16,…,故其通项公式为b n =2n .所以当n ≥2时,f n (x )=f (f n -1(x ))=x (2n -1)x +2n .3.给出下列三个类比结论:①(ab )n =a n b n 与(a +b )n 类比,则有(a +b )n =a n +b n ;②log a (xy )=log a x +log a y 与sin(α+β)类比,则有sin(α+β)=sin αsin β; ③(a +b )2=a 2+2ab +b 2与(a +b )2类比,则有(a +b )2=a 2+2a ·b +b 2. 其中结论正确的个数是( )A .0B .1C .2D .3答案 B4.“因为指数函数y =a x 是增函数(大前提),而y =⎝⎛⎭⎫13x 是指数函数(小前提),所以函数y =⎝⎛⎭⎫13x 是增函数(结论)”,上面推理的错误在于 ( )A .大前提错误导致结论错B .小前提错误导致结论错C .推理形式错误导致结论错D .大前提和小前提错误导致结论错 答案 A5.(2012·江西)观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10等于( )A .28B .76C .123D .199答案 C解析 从给出的式子特点观察可推知,等式右端的值,从第三项开始,后一个式子的右端值等于它前面两个式子右端值的和,照此规律,则a 10+b 10=123.题型一 归纳推理例1 已知函数f (x )=x 21+x 2,(1)分别求f (2)+f ⎝⎛⎭⎫12,f (3)+f ⎝⎛⎫13,f (4)+f ⎝⎛⎭⎫14的值; (2)归纳猜想一般性结论,并给出证明; (3)求值:f (1)+f (2)+f (3)+…+f (2 012)+f ⎝⎛⎭⎫12+f ⎝⎛⎭⎫13+…+f ⎝⎛⎭⎫12 012. 思维启迪:所求函数值的和应该具有规律性、经观察可发现f (x )+f ⎝⎛⎭⎫1x =1. 解 (1)∵f (x )=x 21+x 2,∴f (2)+f ⎝⎛⎭⎫12=221+22+⎝⎛⎭⎫1221+⎝⎛⎭⎫122=221+22+122+1=1, 同理可得f (3)+f ⎝⎛⎭⎫13=1,f (4)+f ⎝⎛⎭⎫14=1. (2)由(1)猜想f (x )+f ⎝⎛⎭⎫1x =1,证明:f (x )+f ⎝⎛⎭⎫1x =x21+x 2+⎝⎛⎭⎫1x 21+⎝⎛⎭⎫1x 2 =x 21+x 2+1x 2+1=1. (3)由(2)可得,原式=f (1)+⎣⎡⎦⎤f (2)+f ⎝⎛⎭⎫12+⎣⎡⎦⎤f (3)+f ⎝⎛⎭⎫13+…+⎣⎡⎦⎤f (2 012)+f ⎝⎛⎭⎫12 012 =f (1)+2 011=12+2 011=4 0232.探究提高 本题实质是根据前几项,归纳猜想一般规律,归纳推理是由部分到整体、由特殊到一般的推理,由归纳推理所得的结论不一定正确,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法.已知经过计算和验证有下列正确的不等式:3+17<210,7.5+12.5<210,8+2+12-2<210,根据以上不等式的规律,请写出一个对正实数m ,n 都成立的条件不等式________.答案 若m >0,n >0,则当m +n =20时,有m +n <210解析 观察所给不等式可以发现:不等式左边两个根式的被开方数的和等于20,不等式的右边都是210,因此对正实数m ,n 都成立的条件不等式是若m >0,n >0,则当m +n =20时,有m +n <210. 题型二 类比推理例2 在Rt △ABC 中,AB ⊥AC ,AD ⊥BC 于D ,求证:1AD 2=1AB 2+1AC 2,那么在四面体A -BCD 中,类比上述结论,你能得到怎样的猜想?并说明理由.思维启迪:①平面中的三角形与空间中的三棱锥是类比对象;②三角形各边的边长与三棱锥的各面的面积是类比对象;③三角形边上的高与三棱锥面上的高是类比对象;④三角形的面积与三棱锥的体积是类比对象;⑤三角形的面积公式中的“二分之一”与三棱锥的体积公式中的“三分之一”是类比对象. 解图①如图①所示,由射影定理知AD2=BD·DC,AB2=BD·BC,AC2=BC·DC,∴1AD2=1BD·DC=BC2 BD·BC·DC·BC=BC2AB2·AC2.又BC2=AB2+AC2,∴1AD2=AB2+AC2AB2·AC2=1AB2+1AC2.∴1AD2=1AB2+1AC2.类比AB⊥AC,AD⊥BC猜想:四面体A—BCD中,AB、AC、AD两两垂直,AE⊥平面BCD,则1AE2=1AB2+1AC2+1AD2.图②如图②,连接BE并延长交CD于F,连接AF.∵AB⊥AC,AB⊥AD,AC∩AD=A,∴AB⊥平面ACD.而AF平面ACD,∴AB⊥AF,在Rt△ABF中,AE⊥BF,∴1AE2=1AB2+1AF2.在Rt△ACD中,AF⊥CD,∴1AF2=1AC2+1AD2.∴1AE2=1AB2+1AC2+1AD2,故猜想正确.探究提高(1)类比推理是由特殊到特殊的推理,其一般步骤为①找出两类事物之间的相似性或一致性;②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).(2)类比推理的关键是找到合适的类比对象.平面几何中的一些定理、公式、结论等,可以类比到立体几何中,得到类似的结论.已知命题:若数列{a n }为等差数列,且a m =a ,a n =b (m ≠n ,m 、n ∈N *),则a m +n =bn -amn -m ;现已知等比数列{b n } (b ≠0,n ∈N *),b m =a ,b n =b (m ≠n ,m 、n ∈N *),若类比上述结论,则可得到b m +n =__________. 答案 n -m b na m解析 等差数列中的bn 和am 可以类比等比数列中的b n 和a m ,等差数列中的bn -am 可以类比等比数列中的b na m ,等差数列中的bn -am n -m 可以类比等比数列中的n -mb n a m ,故b m +n =n -m b na m.题型三 演绎推理例3 数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2n·S n (n ∈N *),证明: (1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列;(2)S n +1=4a n .思维启迪:在推理论证过程中,一些稍复杂的证明题常常要由几个三段论才能完成.大前提通常省略不写,或者写在结论后面的括号内,小前提有时也可以省略,而采取某种简明的推理模式.证明 (1)∵a n +1=S n +1-S n ,a n +1=n +2n S n,∴(n +2)S n =n (S n +1-S n ),即nS n +1=2(n +1)S n . ∴S n +1n +1=2·S n n ,又S 11=1≠0,(小前提)故⎩⎨⎧⎭⎬⎫S n n 是以1为首项,2为公比的等比数列.(结论) (大前提是等比数列的定义,这里省略了)(2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2),∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1=4a n (n ≥2)(小前提)又a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1,(小前提) ∴对于任意的正整数n ,都有S n +1=4a n .(结论)(第(2)问的大前提是第(1)问的结论以及题中的已知条件)探究提高 演绎推理的一般模式为三段论,应用三段论解决问题时,首先应该明确什么是大前提,小前提,然后再找结论.已知函数f (x )=-aa x +a(a >0且a ≠1).(1)证明:函数y =f (x )的图像关于点⎝⎛⎭⎫12,-12对称; (2)求f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)的值.(1)证明 函数f (x )的定义域为全体实数,任取一点(x ,y ),它关于点⎝⎛⎭⎫12,-12对称的点的坐标为(1-x ,-1-y ).由已知得y =-aa x +a,则-1-y =-1+a a x +a =-a xa x +a ,f (1-x )=-a a 1-x +a =-a a a x+a =-a ·a xa +a ·a x=-a xa x +a ,∴-1-y =f (1-x ),即函数y =f (x )的图像关于点⎝⎛⎭⎫12,-12对称. (2)解 由(1)有-1-f (x )=f (1-x ), 即f (x )+f (1-x )=-1.∴f (-2)+f (3)=-1,f (-1)+f (2)=-1, f (0)+f (1)=-1.则f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)=-3.归纳不准确致误典例:(5分)如图所示,坐标纸上的每个单元格的边长为1,由下往上的六个点:1,2,3,4,5,6的横、纵坐标分别对应数列{a n }(n ∈N *)的前12项,如下表所示.按如此规律下去,则a 2 009+a 2 010+a 2 011等于( )A .1 003B .1 005C .1 006D .2 010易错分析 本题中的“按如此规律下去”就是要求由题目给出的6个点的坐标和数列的对应关系,归纳出该数列的一般关系.可能出现的错误有两种:一是归纳时找不准“前几项”的规律,胡乱猜测;二是弄错奇偶项的关系.本题中各个点的纵坐标对应数列的偶数项,并且逐一递增,即a 2n =n (n ∈N *),各个点的横坐标对应数列的奇数项,正负交替后逐一递增,并且满足a4n-3+a4n-1=0(n∈N*),如果弄错这些关系就会得到错误的结果,如认为当n为偶数时a n=n,就会得到a2 009+a2 010+a2 011=2 010的错误结论,而选D.解析a1=1,a2=1,a3=-1,a4=2,a5=2,a6=3,a7=-2,a8=4,…,这个数列的规律是奇数项为1,-1,2,-2,3,…,偶数项为1,2,3,…,故a2 009+a2 011=0,a2 010=1 005,故a2 009+a2 010+a2 011=1 005.答案 B温馨提醒由归纳推理得到的结论具有猜测的性质,结论是否真实,还需经过逻辑证明和实践检验.因此,它不能作为数学证明的工具.方法与技巧1.合情推理主要包括归纳推理和类比推理.数学研究中,在得到一个新结论前,合情推理能帮助猜测和发现结论,在证明一个数学结论之前,合情推理常常能为证明提供思路与方向.2.演绎推理是从一般的原理出发,推出某个特殊情况下的结论的推理方法,是由一般到特殊的推理,常用的一般模式是三段论.数学问题的证明主要通过演绎推理来进行.3.合情推理仅是“合乎情理”的推理,它得到的结论不一定正确.而演绎推理得到的结论一定正确(前提和推理形式都正确的前提下).失误与防范1.合情推理是从已知的结论推测未知的结论,发现与猜想的结论都要经过进一步严格证明.2.演绎推理是由一般到特殊的证明,它常用来证明和推理数学问题,注意推理过程的严密性,书写格式的规范性.3.合情推理中运用猜想时不能凭空想象,要有猜想或拓展依据.A组专项基础训练(时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1.正弦函数是奇函数,f(x)=sin(x2+1)是正弦函数,因此f(x)=sin(x2+1)是奇函数,以上推理()A.结论正确B.大前提不正确C.小前提不正确D.全不正确答案 C解析 f (x )=sin(x 2+1)不是正弦函数是复合函数,所以小前提不正确.2.由710>58,911>810,1325>921,…,若a >b >0,m >0,则b +m a +m 与b a 之间的大小关系为( )A .相等B .前者大C .后者大D .不确定答案 B3.由代数式的乘法法则类比推导向量的数量积的运算法则: ①“mn =nm ”类比得到“a ·b =b ·a ”;②“(m +n )t =mt +nt ”类比得到“(a +b )·c =a ·c +b ·c ”; ③“(m ·n )t =m (n ·t )”类比得到“(a ·b )·c =a ·(b ·c )”;④“t ≠0,mt =xt ⇒m =x ”类比得到“p ≠0,a ·p =x ·p ⇒a =x ”; ⑤“|m ·n |=|m |·|n |”类比得到“|a ·b |=|a |·|b |”; ⑥“ac bc =a b ”类比得到“a ·c b ·c =ab ”.以上式子中,类比得到的结论正确的个数是( )A .1B .2C .3D .4答案 B解析 ①②正确;③④⑤⑥错误.4.(2011·江西)观察下列各式:72=49,73=343,74=2 401,…,则72 011的末两位数字为( )A .01B .43C .07D .49答案 B解析 因为71=7,72=49,73=343,74=2 401,75=16 807,76=117 649,…,所以这些数的末两位数字呈周期性出现,且周期T =4.又因为2 011=4×502+3,所以72 011的末两位数字与73的末两位数字相同,故选B. 二、填空题(每小题5分,共15分)5.在Rt △ABC 中,若∠C =90°,AC =b ,BC =a ,则△ABC 外接圆半径r =a 2+b 22.运用类比方法,若三棱锥的三条侧棱两两互相垂直且长度分别为a ,b ,c ,则其外接球的半径R =________.答案 a 2+b 2+c 22解析 (构造法)通过类比可得R =a 2+b 2+c 22.证明:作一个在同一个顶点处棱长分别为a ,b ,c 的长方体,则这个长方体的体对角线的长度是a 2+b 2+c 2,故这个长方体的外接球的半径是a 2+b 2+c 22,这也是所求的三棱锥的外接球的半径.6.在平面内有n (n ∈N *,n ≥3)条直线,其中任何两条不平行,任何三条不过同一点,若这n 条直线把平面分成f (n )个平面区域,则f (5)的值是________,f (n )的表达式是________.答案 16 f (n )=n 2+n +22解析 由题意,n 条直线将平面分成n (n +1)2+1个平面区域,故f (5)=16,f (n )=n 2+n +22.7.仔细观察下面○和●的排列规律:○●○○●○○○●○○○○●○○○○○●○○○○○○ ●……若依此规律继续下去,得到一系列的○和●,那么在前120个○和●中,●的个数是________. 答案 14解析 进行分组○●|○○●|○○○●|○○○○●|○○○○○●|○○○○○○●|……,则前n 组两种圈的总数是f (n )=2+3+4+…+(n +1)=n (n +3)2,易知f (14)=119,f (15)=135,故n =14. 三、解答题(共22分)8.(10分)已知函数y =f (x ),满足:对任意a ,b ∈R ,a ≠b ,都有af (a )+bf (b )>af (b )+bf (a ),试证明:f (x )为R 上的单调增函数. 证明 设x 1,x 2∈R ,取x 1<x 2,则由题意得x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1), ∴x 1[f (x 1)-f (x 2)]+x 2[f (x 2)-f (x 1)]>0, [f (x 2)-f (x 1)](x 2-x 1)>0,∵x 1<x 2,∴f (x 2)-f (x 1)>0,f (x 2)>f (x 1).所以y =f (x )为R 上的单调增函数.9.(12分)f (x )=13x +3,先分别求f (0)+f (1),f (-1)+f (2),f (-2)+f (3),然后归纳猜想一般性结论,并给出证明.解 f (0)+f (1)=130+3+131+3=11+3+13(1+3)=33(1+3)+13(1+3)=33,同理可得:f (-1)+f (2)=33,f (-2)+f (3)=33.由此猜想f (x )+f (1-x )=33.证明:f (x )+f (1-x )=13x +3+131-x +3=13x +3+3x3+3·3x=13x +3+3x3(3+3x )=3+3x3(3+3x)=33.B组专项能力提升(时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1.定义一种运算“*”:对于自然数n满足以下运算性质:(1)1*1=1,(2)(n+1)*1=n*1+1,则n*1等于()A.n B.n+1 C.n-1 D.n2答案 A解析由(n+1)*1=n*1+1,得n*1=(n-1)*1+1=(n-2)*1+2=…=1*1+(n-1).又∵1*1=1,∴n*1=n2.为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为a0a1a2,a i∈{0,1}(i=0,1,2),传输信息为h0a0a1a2h1,其中h0=a0a1,h1=h0a2,运算规则为00=0,01=1,10=1,11=0.例如原信息为111,则传输信息为01111,信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是() A.11010 B.01100 C.10111 D.00011答案 C解析对于选项C,传输信息是10111,对应的原信息是011,由题目中运算规则知h0=01=1,而h1=h0+a2=1+1=0,故传输信息应是10110.3.已知函数f(x)=sin x+e x+x2 010,令f1(x)=f′(x),f2(x)=f1′(x),f3(x)=f2′(x),…,f n+1(x)=f n′(x),则f2 011(x)等于() A.sin x+e x B.cos x+e xC.-sin x+e x D.-cos x+e x答案 D解析f1(x)=f′(x)=cos x+e x+2 010x2 009,f2(x)=f′1(x)=-sin x+e x+2 010×2 009x2 008,f3(x)=f′2(x)=-cos x+e x+2 010×2 009×2 008x2 007,f4(x)=f′3(x)=sin x+e x+2 010×2 009×2 008×2 007x2 006,由此可以看出,该函数前2项的和成周期性变化,周期T=4;而f2 011(x)=f′2 010(x),此时其最后一项的导数将变为0.故求f2 011(x)的值,只需研究该函数前2项和的变化规律即可,于是,f2 011(x)=f(3+4×502)(x)=-cos x+e x.二、填空题(每小题5分,共15分) 4.给出下列命题:命题1:点(1,1)是直线y =x 与双曲线y =1x 的一个交点;命题2:点(2,4)是直线y =2x 与双曲线y =8x 的一个交点;命题3:点(3,9)是直线y =3x 与双曲线y =27x 的一个交点;…请观察上面命题,猜想出命题n (n 是正整数)为______________________________.答案 点(n ,n 2)是直线y =nx 与双曲线y =n 3x 的一个交点解析 观察题中给出的命题易知,命题n 中交点坐标为(n ,n 2),直线方程为y =nx ,双曲线方程为y =n 3x .故猜想命题n :点(n ,n 2)是直线y =nx 与双曲线y =n 3x 的一个交点.5.(2012·湖北)回文数是指从左到右读与从右到左读都一样的正整数.如22,121,3 443,94 249等.显然2位回文数有9个,11,22,33,…,99.3位回文数有90个:101,111,121,…,191,202,…,999.则 (1)4位回文数有________个;(2)2n +1(n ∈N +)位回文数有________个. 答案 90 9×10n 解析 (1)4位回文数有 1001,1111,1221,…,1991,10个 2001,2112,2222,…,2992,10个 ……9009,9119,9229,…,9999,10个 共90个. (2)5位回文数有⎭⎪⎬⎪⎫10001,10101,10201,…,10901,10个11011,11111,11211,…,11911,10个12021,12121,12321,…,12921,10个……19091,19191,19291,…,19991,10个100个.……⎭⎪⎬⎪⎫90009,90109,90209,…,9090991019,91119,91219,…,9191992029,92129,92229,…,92929……99099,99199,99299,…,99999.100个5位回文数共9×102个,又3位回文数有9×101个 2n +1位回文数共9×10n 个.6.(2012·福建)数列{a n }的通项公式a n =n cos n π2+1,前n 项和为S n ,则S 2 012=________. 答案 3 018解析 当n =4k +1(k ∈N )时,a n =(4k +1)·cos 4k +12π+1=1, 当n =4k +2(k ∈N )时,a n =(4k +2)·cos 4k +22π+1 =-(4k +2)+1=-4k -1,当n =4k +3(k ∈N )时,a n =(4k +3)·cos 4k +32π+1=1, 当n =4k +4(k ∈N )时,a n =(4k +4)·cos 4k +42π+1=(4k +4)+1=4k +5,∴a 4k +1+a 4k +2+a 4k +3+a 4k +4=1-4k -1+1+4k +5=6. ∴S 2 012=a 1+a 2+a 3+a 4+a 5+…+a 2 012=(a 1+a 2+a 3+a 4)+(a 5+a 6+a 7+a 8)+…+(a 2 009+a 2 010+a 2 011+a 2 012)=6×503=3 018. 三、解答题7.(13分)已知数列{a n }是各项均不为0的等差数列,公差为d ,S n 为其前n 项和,且满足a 2n =S 2n -1,n ∈N *.数列{b n }满足b n =1a n a n +1,T n 为数列{b n }的前n 项和. (1)求a 1、d 和T n ;(2)若对任意的n ∈N *,不等式λT n <n +8·(-1)n 恒成立,求实数λ的取值范围. 解 (1)在a 2n =S 2n -1中,分别令n =1,n =2,得⎩⎪⎨⎪⎧ a 21=S 1,a 22=S 3,即⎩⎪⎨⎪⎧a 21=a 1,(a 1+d )2=3a 1+3d , 解得a 1=1,d =2,∴a n =2n -1.∵b n =1a n a n +1=1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1,∴T n =12(1-13+13-15+…+12n -1-12n +1)=n 2n +1.(2)①当n 为偶数时,要使不等式λT n <n +8·(-1)n 恒成立,即需不等式λ<(n +8)(2n +1)n=2n +8n +17恒成立.∵2n +8n ≥8,等号在n =2时取得,∴此时λ需满足λ<25.②当n 为奇数时,要使不等式λT n <n +8·(-1)n 恒成立,即需不等式λ<(n -8)(2n +1)n =2n -8n-15恒成立.∵2n -8n是随n 的增大而增大,∴n =1时2n -8n 取得最小值-6,∴此时λ需满足λ<-21. 综合①②可得λ<-21, ∴λ的取值范围是{λ|λ<-21}.。
【苏教版】【步步高】2014届高三数学(理)大一轮复习练习7.4基本不等式

7.4 基本不等式一、填空题1.已知x ,y ∈R +,且满足x 3+y4=1,则xy 的最大值为________.解析 ∵x >0,y >0且1=x 3+y 4≥2xy 12,∴xy ≤3.当且仅当x 3=y4时取等号.答案 32.已知p =a +1a -2,q =⎝ ⎛⎭⎪⎫12x 2-2,其中a >2,x ∈R ,则p ,q 的大小关系为________.解析 p =a +1a -2=a -2+1a -2+2≥2a -1a -2+2=4. 当a -2=1a -2,即a =3时取等号,q =⎝ ⎛⎭⎪⎫12x 2-2≤4,∴p ≥q . 答案 p ≥q3.若x ,y 是正数,则⎝ ⎛⎭⎪⎫x +12y 2+⎝ ⎛⎭⎪⎫y +12x 2的最小值是________.解析 由⎝ ⎛⎭⎪⎫x +12y 2+⎝ ⎛⎭⎪⎫y +12x 2≥x 2+14x 2+y 2+14y 2+2≥2x 2·14x 2+2y 2·14y 2+2=4.当且仅当x =y =22时取等号. 答案 44.已知0<a <b ,且a +b =1,则下列不等式:①log 2a >0; ②2a -b<12; ③2a b +b a <12;④log 2a +log 2b <-2,其中正确的是________. 解析 由0<a <b ,且a +b =1,得0<a <12<b <1,所以log 2a <0.易得a -b>-1,所以2a -b>12,由a b +b a >2,得2a b +ba>4,由1=a +b >2ab (a ≠b ),得ab <14,所以log 2a +log 2b =log 2ab <-2,仅④正确.答案 ④5.在等式“1=1+9”两个括号内各填入一个正整数,使它们的和最小,则填入的两个数是________.解析 设括号内填入的两个正整数为x ,y ,则有1x +9y=1,于是x +y =(x +y )⎝ ⎛⎭⎪⎫1x +9y=10+y x +9xy ≥10+2y x ·9xy=16,当且仅当y 2=9x 2, 即x =4,y =12时等号成立.此时x +y 取最小值16.故应填4和12. 答案 4和126.已知正项等比数列{a n }满足:a 7=a 6+2a 5,若存在两项a m ,a n 使得a m a n =4a 1,则1m +4n的最小值为________.解析 由a 7=a 6+2a 5,得a 5q 2=a 5q +2a 5,又a 5≠0,q >0,所以q 2=q +2, 解为q =2.于是由a m a n =4a 1,得m +n =6,所以1m +4n =16(m +n )⎝ ⎛⎭⎪⎫1m +4n =16⎝ ⎛⎭⎪⎫5+n m +4m n ≥16(5+4)=32,当且仅当n =2m ,即m =2,n =4时等号成立,故⎝ ⎛⎭⎪⎫1m +4n min =32.答案327.函数y =log a (x -1)+1(a >0,且a ≠1)的图象恒过定点A ,若点A 在一次函数y =mx +n 的图象上,其中mn >0,则1m +2n的最小值为________.解析 y =mx +n 过定点(2,1),所以2m +n =1, 所以1m +2n =(2m +n )⎝ ⎛⎭⎪⎫1m +2n =4+4m n +n m ≥4+24mn·nm=8.答案 88.若不等式|2a -1|≤⎪⎪⎪⎪⎪⎪x +1x 对一切非零实数x 恒成立,则实数a 的取值范围是________.解析 因为⎪⎪⎪⎪⎪⎪x +1x ≥2,所以|2a -1|≤2,解得-12≤a ≤32.答案 ⎣⎢⎡⎦⎥⎤-12,329.已知0<x <34,则函数y =5x (3-4x )的最大值为________.解析 因为0<x <34,所以34-x >0,所以y =5x (3-4x )=20x ⎝ ⎛⎭⎪⎫34-x ≤20⎝ ⎛⎭⎪⎫x +34-x 22=4516,当且仅当x =34-x , 即x =38时等号成立.答案451610.已知二次函数f (x )=ax 2+2x +c (x ∈R )的值域为[0,+∞),则a +1c +c +1a的最小值为________.解析 由题可得a >0,c >0,且Δ=22-4ac =0即ac =1.所以a +c ≥2ac =2,当且仅当a =c =1时取等号.所以a +1c +c +1a =ac ×⎝ ⎛⎭⎪⎫a +1c +c +1a =a 2+c 2+a +c =(a +c )2+(a +c )-2,当且仅当a =c =1时,⎝⎛⎭⎪⎫a +1c +c +1a min =22+2-2=4. 答案 411.若不等式4x 2+9y 2≥2k xy 对一切正数x ,y 恒成立,则整数k 的最大值为________.解析 由4x 2+9x 2≥2k xy (x >0,y >0),得2k ≤4xy+9yx.因为4xy+9yx≥24xy·9yx=12,所以2k ≤12,所以k ≤3,即k max =3. 答案 312.如果函数f (x )在区间D 上是凸函数,在D 内任意x 1,x 2,…,x n ,都有f x 1+f x 2+…+f x n n ≤f ⎝⎛⎭⎪⎫x 1+x 2+…+x n n . 若y =sin x 在(0,π)是凸函数,可以推出在△ABC 中,sin A +sin B +sin C 的最大值为________. 解析f A +f B +f C3≤f ⎝⎛⎭⎪⎫A +B +C 3=f ⎝ ⎛⎭⎪⎫π3, 所以13(sin A +sin B +sin C )≤32,所以sin A +sin B +sin C ≤332,即最大值为332. 答案33213.不等式a 2+3b 2≥λb (a +b )对任意a ,b ∈R 恒成立,则实数λ的最大值为________.解析 因为要求λ的最大值,所以只需要考察b (a +b )>0的情况,假设b (a +b )>0,所以由a 2+3b 2≥λb (a +b ),得λ≤a 2+3b 2ab +b 2=⎝ ⎛⎭⎪⎫a b 2+3ab+1,不妨令a b =t >0,不妨令h (t )=t 2+3t +1=t +2-t ++4t +1=(t +1)+4t +1-2≥2t +4t +1-2=2, 当t =1时取等号.故λ的最大值为2. 答案 2 二、解答题14.对于任意x ∈R ,不等式2x 2-a x 2+1+3>0恒成立,求实数a 的取值范围. 解析 原不等式可化为a <2x 2+3x 2+1=x 2++1x 2+1=2x 2+1+1x 2+1恒成立. 问题转化为求f (x )=2x 2+1+1x 2+1的最小值. 令u =x 2+1≥1而函数f (u )=2u +1u在[1,+∞)上单调递增,所以f (u )≥f (1)=2+1=3,所以f (x )min =3,故a <3.15.扬州某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边成角为60°(如图),考虑到防洪堤坚固性及石块用料等因素,设计其横断面要求面积为93平方米,且高不低于3米.记防洪堤横断面的腰长为x (米),外周长(梯形的上底线段BC 与两腰长的和)为y (米).(1)求y 关于x 的函数关系式,并指出其定义域;(2)要使防洪堤横断面的外周长不超过10.5米,则其腰长x 应在什么范围内? (3)当防洪堤的腰长x 为多少米时,堤的上面与两侧面的水泥用料最省(即断面的外周长最小)?求此时外周长的值.解析 (1)93=12(AD +BC )h ,其中AD =BC +2·x 2=BC +x ,h =32x ,所以93=12·(2BC +x )·32x ,得BC =18x -x2.由⎩⎪⎨⎪⎧h =32x ≥3,BC =18x -x2>0,得2≤x <6.所以y =BC +2x =18x+3x2(2≤x <6). (2)由y =18x+3x2≤10.5,得3≤x ≤4. 因为.所以腰长x 的范围是[3,4].(3)y =18x+3x 2≥218x·3x 2=63,当且仅当18x =3x2,即x =23∈[2,6)时等号成立.故外周长的最小值为63米,此时腰长为23米.16.有一隧道既是交通拥挤地段,又是事故多发地段.为了保证安全,交通部门规定,隧道内的车距d (m)正比于车速v (k m/h)的平方与车身长l (m)的积,且车距不得小于一个车身长l (假设所有车身长均为l ).而当车速为60(k m/h)时,车距为1.44个车身长. (1)求通过隧道的最低车速;(2)在交通繁忙时,应规定怎样的车速,可以使隧道在单位时段内通过的汽车数量Q 最多?解析 (1)依题意,设d =kv 2l ,其中k 是待定系数. 因为当v =60时,d =1.44l , 所以1.44l =k ×602l .所以k =0.000 4,则d =0.000 4v 2l . 因为d ≥l ,所以0.000 4v 2l ≥l , 所以v ≥50.所以最低车速为50 k m/h.(2)因为两车间距为d ,则两辆车头间的距离为(l +d )m , 一小时内通过汽车的数量为Q =1 000v l +0.000 4v 2l ,即Q =1 000l ⎝ ⎛⎭⎪⎫1v +0.000 4v . 因为1v +0.000 4v ≥21v×0.000 4v =0.04,所以Q ≤25 000l.当1v =0.000 4v ,即v =50时,Q 取得最大值为25 000l.所以当v =50 k m/h 时,单位时段内通过的汽车数量最多.17.心理学家研究某位学生的学习情况发现:若这位学生刚学完的知识存留量为1,则x 天后的存留量y 1=4x +4;若在t (t >0)天时进行第一次复习,则此时存留量比未复习情况下增加一倍(复习的时间忽略不计),其后存留量y 2随时间变化的曲线恰好为直线的一部分,其斜率为a t +2(a <0),存留量随时间变化的曲线如图所示.当进行第一次复习后的存留量与不复习的存留量相差最大时,则称此时刻为“二次复习最佳时机点”.(1)若a =-1,t =5,求“二次复习最佳时机点”; (2)若出现了“二次复习最佳时机点”,求a 的取值范围. 解析 设第一次复习后的存留量与不复习的存留量之差为y . 由题意,得y 2=a t +2(x -t )+8t +4(t >0). 所以y =y 2-y 1=a t +2(x -t )+8t +4-4x +4(t >4). (1)当a =-1,t =5时,y =-1+2(x -5)+85+4-4x +4=-x +81-4x +4+1≤-2481+1=59,当且仅当x =14时取等号,所以“二次复习最佳时机点”为第14天. (2)y =a t +2(x -t )+8t +4-4x +4=--ax +t +2-4x +4+8t +4-a t +t +2≤-2-4at +2+8-at +4, 当且仅当-ax +t +2=4x +4,即x =2-a(t +4)-4时取等号, 由题意,得2-a(t +4)-4>t ,所以-4<a <0,所以a 的取值范围是(-4,0). 18.如图,△ABC 为一个等腰三角形形状的空地,腰CA 的长为3(百米),底AB 的长为4(百米).现决定在空地内筑一条笔直的小路EF (宽度不计),将该空地分成一个四边形和一个三角形,设分成的四边形和三角形的周长相等,面积分别为S 1和S 2.(1)若小路一端E 为AC 的中心,求此时小路的长度; (2)求S 1S 2的最小值.解析 (1)因为E 为AC 的中点, 所以AE =CE =32.因为32+3<32+4,所以点F 不在BC 上.若点F 在AB 上,则AE +AF =3-AE +4-AF +3. 所以AE +AF =5. 所以AF =72<4.在△ABC 中,cos A =23.在△AEF 中,EF 2=AE 2+AF 2-2AE ·AF cos A =94+494-2×32×72×23=152,所以EF =302. 即小路一端E 为AC 的中点时小路的长度为302(百米). (2)若小道的端点E 、F 都在两腰上,如图,设CE =x ,CF =y ,则x +y =5.S 1S 2=S △CAB -S △CEF S △CEF =S △CAB S △CEF -1 =12CA ·CB sin C 12CE ·CF sin C -1 =9xy -1≥9⎝ ⎛⎭⎪⎫x +y 22-1=1125(当x =y =52时取等号). 若小道的端点E 、F 分别在一腰(不妨设腰AC )上和底上, 设AE =x ,AF =y ,则x +y =5. S 1S 2=S △ABC -S △AEF S △AEF =S △ABC S △AEF-1=12xy-1≥12⎝ ⎛⎭⎪⎫x +y 22-1=2325(当x =y =52时取等号).故最小值是1125..。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
故供应站位置位于区间[x2,x3]上任意一点时,均能使函数 d(x)取 得最小值,且最小值为 3x3-x2-2x1.
练出高分
1 2 3
A组
4
专项基础训练
5 6 7 8 9
9.(12 分)某市政府为了打造宜居城市,计划在 公园内新建一个如下图所示的矩形 ABCD 的 休闲区,内部是矩形景观区 A1B1C1D1,景观 区四周是人行道,已知景观区的面积为 8 000 平方米,人行道的 宽为 5 米(如下图所示). (1)设景观区的宽 B1C1 的长度为 x(米), 求休闲区 ABCD 所占面积 S 关于 x 的函数; (2)规划要求景观区的宽 B1C1 的长度不能超过 50 米, 如何设计景 观区的长和宽,才能使休闲区 ABCD 所占面积最小?
只需(x+2y)min>m2+2m 恒成立, 即 8>m2+2m,解得-4<m<2.
练出高分
1 2 3
A组
4
专项基础训练
5 6 7 8 9
1 6.已知点 P(x,y)在曲线 y=x上运动,作 PM 垂直于 x 轴于 M, 则△OPM(O 为坐标原点)的周长的最小值为_________.
解 析
练出高分
解 析
练出高分
1 2 3
A组
4
专项基础训练
5 6 7 8 9
2.某种生产设备购买时费用为 10 万元,每年的设备管理费共计 9 千元,这种生产设备的维修费各年为第一年 2 千元,第二年 4 千元, 第三年 6 千元, 而且以后以每年 2 千元的增量逐年递增, 则这种生产设备最多使用多少年报废最合算 (即使用多少年的 年平均费用最少) ( C ) A.8 B. 9 C.10 D.11
练出高分
1 2 3
A组
4
专项基础训练
5 6 7 8 9
解 析
解 设供应站坐标为 x, 各工作台上的所有工人到供应站的距 离之和为 d(x). (1)由题设,知 x1≤x≤x3, 所以 d(x)=x-x1+|x-x2|+x3-x=|x-x2|-x1+x3, 故当 x=x2 时,d(x)取最小值,此时供应站的位置为 x=x2. (2)由题设,知 x1≤x≤x3,所以 d(x)=2(x-x1)+|x-x2|+3(x3-x) -2x+3x3+x2-2x1,x1≤x<x2, = 3x3-x2-2x1,x2≤x≤x3.
练出高分
1 2 3
A组
4
专项基础训练
5 6 7 8 9
8 000 解 (1)因为 AB=10+ x ,BC=10+x, 8 000 80 000 所以 S=10+ x (10+x)=8 100+ x +10x(x>0).
解 析
所以休闲区 ABCD 所占面积 S 关于 x 的函数是 80 000 S=8 100+ +10x(x>0). x 80 000 (2)S=8 100+ +10x(0<x≤50), x
5 6 7 8 9
4.一元二次不等式 ax2+bx+c>0 的解集为(α,β)(α>0),则不等式 cx2 +bx+a>0 的解集为 1 1 1 1 A.α,β B.-α,-β
1 1 C.β,α
( 1 1 D.-β,-α
)
解 析
练出高分
1 2 3
A组
4
专项基础训练
5 6 7 8 9
8.(10 分)在一条直线型的工艺流水线上有 3 个工作台,将工艺流 水线用如下图所示的数轴表示,各工作台的坐标分别为 x1,x2, x3,每个工作台上有若干名工人.现要在 x1 与 x3 之间修建一个 零件供应站,使得各工作台上的所有工人到供应站的距离之和 最短. (1)若每个工作台上只有一名工人,试确定供应站的位置; (2)设工作台从左到右的人数依次为 2,1,3,试确定供应站的位 置,并求所有工人到供应站的距离之和的最小值.
数学
北(理)
常考题型强化练——不等式
第七章 不等式
练出高分
1 2 3
A组
4
专项基础训练
5 6 7 8 9
练出高分
1 2 3
A组
4
专项基础训练
5 6 7 8 9
1.“|x|<2”是“x2-x-6<0”的什么条件 A.充分而不必要 C.充要 B.必要而不充分 D.既不充分也不必要
(
)
解 析
练出高分
练出高分
1 2 3
A组
4
专项基础训练
5 6 7 8 9
4.一元二次不等式 ax2+bx+c>0 的解集为(α,β)(α>0),则不等式 cx2 +bx+a>0 的解集为 1 1 1 1 A.α,β B.-α,-β
1 1 C.β,α
( C ) 1 1 D.-β,-α
解 析
目标函数 z=450x+350y.作出约束条件所表示的平面区域, 然后平移目标函数对应的直线 450x+350y=0 知,当直线 经过直线 x+y=12 与 2x+y=19 的交点(7,5)时,目标函数 取得最大值,即 z=450×7+350×5=4 900.
练出高分
1 2 3
A组
4
专项基础训练
解 析
练出高分
1 2 3
A组
4
专项基础训练
5 6 7 8 9
3.(2011· 四川)某运输公司有 12 名驾驶员和 19 名工人,有 8 辆载重 量为 10 吨的甲型卡车和 7 辆载重量为 6 吨的乙型卡车.某天需 送往 A 地至少 72 吨的货物, 派用的每辆车需满载且只能送一次. 派 用的每辆甲型卡车需配 2 名工人,运送一次可得利润 450 元;派用 的每辆乙型卡车需配 1 名工人,运送一次可得利润 350 元,该公司 合理计划当天派用两类卡车的车辆数,可得最大利润 z 为( ) A.4 650 元 B.4 700 元 C.4 900 元 D.5 000 元 设该公司合理计划当天派用甲、乙型卡车的车辆数分 解 析
1 2 3
A组
4
专项基础训练
5 6 7 8 9
1 6.已知点 P(x,y)在曲线 y=x上运动,作 PM 垂直于 x 轴于 M, 2+ 2 . 则△OPM(O 为坐标原点)的周长的最小值为_________
解 析
三角形 OPM 的周长为
1 1 x + 2≥2× |x|× + x |x| 1 2 2× x × 2 x 1 =2+ 2(当且仅当|x|= ,即|x|=1 时取等号). |x|
练出高分
1 2 3
A组
4
专项基础训练
5 6 7 8 9
2.某种生产设备购买时费用为 10 万元,每年的设备管理费共计 9 千元,这种生产设备的维修费各年为第一年 2 千元,第二年 4 千元, 第三年 6 千元, 而且以后以每年 2 千元的增量逐年递增, 则这种生产设备最多使用多少年报废最合算 (即使用多少年的 年平均费用最少) ( ) A.8 B. 9 C.10 D.11
设使用 x 年的年平均费用为 y 万元. 0.2x2+0.2x 10+0.9x+ 2 由已知,得 y= , x 10 x 即 y=1+ x +10(x∈N*). 10 x 10 x 由基本不等式知 y≥1+2 当且仅当 x =10, 即 x=10 x· 10=3, 时取等号.因此使用 10 年报废最合算,年平均费用为 3 万元.
解 析
练出高分
1 2 3
A组
4
专项基础训练
5 6 7 8 9
3.(2011· 四川)某运输公司有 12 名驾驶员和 19 名工人,有 8 辆载重 量为 10 吨的甲型卡车和 7 辆载重量为 6 吨的乙型卡车.某天需 送往 A 地至少 72 吨的货物, 派用的每辆车需满载且只能送一次. 派 用的每辆甲型卡车需配 2 名工人,运送一次可得利润 450 元;派用 的每辆乙型卡车需配 1 名工人,运送一次可得利润 350 元,该公司 合理计划当天派用两类卡车的车辆数,可得最大利润 z 为( ) A.4 650 元 B.4 700 元 C.4 900 元 D.5 000 元
解 析
毛利润为(P-20)Q,
即 f(P)=(P-20)(8 300-170P-P2),
f′(P)=-3P2-300P+11 700=-3(P+130)(P-30).
令 f′(P)=0,得 P=30,
又 P∈[20,+∞),故 f(P)极大值=f(P)max,
故当 P=30 时,毛利润最大,
∴f(P)max=f(30)=23 000(元).
x+y≤12, 2x+y≤19, 别为 x,y,则根据条件得 x,y 满足的约束条件为10x+6y≥72, x≤8,y≤7, * * x∈N ,y∈N ,
练出高分
1 2 3
A组
4
专项基础训练
5 6 7 8 9
3.(2011· 四川)某运输公司有 12 名驾驶员和 19 名工人,有 8 辆载重 量为 10 吨的甲型卡车和 7 辆载重量为 6 吨的乙型卡车.某天需 送往 A 地至少 72 吨的货物, 派用的每辆车需满载且只能送一次. 派 用的每辆甲型卡车需配 2 名工人,运送一次可得利润 450 元;派用 的每辆乙型卡车需配 1 名工人,运送一次可得利润 350 元,该公司 合理计划当天派用两类卡车的车辆数,可得最大利润 z 为( C ) A.4 650 元 B.4 700 元 C.4 900 元 D.5 000 元
1 2 3
A组
4
专项基础训练
5 6 7 8 9
1.“|x|<2”是“x2-x-6<0”的什么条件 A.充分而不必要 C.充要 B.必要而不充分 D.既不充分也不必要