2021届步步高数学大一轮复习讲义(文科)第三章 高考专题突破一 第1课时 导数与不等式

合集下载

2021届步步高数学大一轮复习讲义(文科)第三章 高考专题突破一 第2课时 导数与方程

2021届步步高数学大一轮复习讲义(文科)第三章 高考专题突破一 第2课时 导数与方程

第2课时 导数与方程求函数零点个数例1 设函数f (x )=12x 2-m ln x ,g (x )=x 2-(m +1)x ,当m ≥1时,讨论f (x )与g (x )图象的交点个数. 解 令F (x )=f (x )-g (x )=-12x 2+(m +1)x -m ln x ,x >0,问题等价于求函数F (x )的零点个数. F ′(x )=-(x -1)(x -m )x,当m =1时,F ′(x )≤0,函数F (x )为减函数, 注意到F (1)=32>0,F (4)=-ln 4<0,所以F (x )有唯一零点.当m >1时,若0<x <1或x >m ,则F ′(x )<0; 若1<x <m ,则F ′(x )>0,所以函数F (x )在(0,1)和(m ,+∞)上单调递减,在(1,m )上单调递增, 注意到F (x )的极小值F (1)=m +12>0,F (2m +2)=-m ln(2m +2)<0, 所以F (x )有唯一零点.综上,函数F (x )有唯一零点,即两函数图象总有一个交点.将本例条件“m ≥1”改为“m ≥0”,讨论f (x )与g (x )图象的交点个数.解 由例题解法知m ≥1时,两函数图象有一个交点; 当m =0时,F (x )=-12x 2+x ,x >0有唯一零点;当0<m <1时,0<x <m 或x >1时,F ′(x )<0;m <x <1时,F ′(x )>0,所以函数F (x )在(0,m )和(1,+∞)上单调递减,在(m,1)上单调递增,易得ln m <0, 所以F (x )的极小值F (m )=m2(m +2-2ln m )>0,而F (2m +2)=-m ln(2m +2)<0, 所以F (x )有唯一零点.综上,函数F (x )有唯一零点,即两函数图象有一个交点.思维升华 (1)可以通过构造函数,将两函数图象的交点问题转化为函数零点问题.(2)研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,并借助函数的大致图象判断方程根的情况.跟踪训练1 设函数f (x )=ln x +m x ,m ∈R ,讨论函数g (x )=f ′(x )-x3的零点的个数.解 由题设g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x ≥0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增;当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减.∴x =1是φ(x )的唯一极值点,且是极大值点,因此x =1也是φ(x )的最大值点, ∴φ(x )的最大值为φ(1)=23.又φ(0)=0,结合y =φ(x )的图象(如图),可知 ①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.根据函数零点情况求参数范围例2 已知函数f (x )=x ln x ,g (x )=-x 2+ax -3(a 为实数),若方程g (x )=2f (x )在区间⎣⎡⎦⎤1e ,e 上有两个不等实根,求实数a 的取值范围. 解 由g (x )=2f (x ),可得2x ln x =-x 2+ax -3,a =x +2ln x +3x ,设h (x )=x +2ln x +3x(x >0),所以h ′(x )=1+2x -3x 2=(x +3)(x -1)x 2.所以x 在⎣⎡⎦⎤1e ,e 上变化时,h ′(x ),h (x )的变化情况如下表:x⎝⎛⎭⎫1e ,11(1,e)又h ⎝⎛⎭⎫1e =1e +3e -2,h (1)=4,h (e)=3e +e +2. 且h (e)-h ⎝⎛⎭⎫1e =4-2e +2e <0. 所以在⎣⎡⎦⎤1e ,e 上,h (x )min =h (1)=4, h (x )max =h ⎝⎛⎭⎫1e =1e +3e -2,若方程在⎣⎡⎦⎤1e ,e 上有两个不等实根,则4<a ≤e +2+3e , 所以实数a 的取值范围为⎝⎛⎦⎤4,e +2+3e . 思维升华 方程根或函数零点的个数可转化为函数图象的交点个数,确定参数范围时要根据函数的性质画出大致图象,充分利用导数工具和数形结合思想.跟踪训练2 已知函数g (x )=14x 2-32x +ln x -b 在[1,4]上有两个不同的零点,求实数b 的取值范围.解 g (x )=14x 2-32x +ln x -b (x >0),则g ′(x )=(x -2)(x -1)2x.在[1,4]上,当x 变化时,g ′(x ),g (x )的变化情况如下:g (x )极小值=g (2)=ln 2-b -2, 又g (4)=2ln 2-b -2,g (1)=-54-b .若方程g (x )=0在[1,4]上恰有两个不相等的实数根,则⎩⎪⎨⎪⎧g (1)≥0,g (2)<0,g (4)≥0,解得ln 2-2<b ≤-54.故实数b 的取值范围是⎝⎛⎦⎤ln 2-2,-54.1.已知函数f (x )=a +x ln x (a ∈R ). (1)求f (x )的单调区间; (2)判断f (x )的零点个数.解 (1)函数f (x )的定义域是(0,+∞), f ′(x )=(x )′ln x +x ·1x =x (ln x +2)2x,令f ′(x )>0,解得x >e -2,令f ′(x )<0,解得0<x <e -2, 所以f (x )的单调减区间为(0,e -2),单调增区间为(e -2,+∞). (2)由(1)得f (x )min =f (e -2)=a -2e ,若a >2e ,则f (x )min >0,f (x )无零点;若a =2e ,则f (x )min =0,f (x )有一个零点;若a <2e,则f (x )min <0,f (x )在(0,e -2]上单调递减,在[e -2,+∞)上单调递增, 当a ≤0时,在(0,e -2]上有f (x )=a +x ln x <a ≤0,∴f (x )在区间(0,e -2]上无零点,在[e -2,+∞)上有f (e -2a )=a (1-2e -a )≥0,f (x )在区间[e -2,+∞)上有一个零点;当0<a <2e时,有0<4e a -<e -2,424e ,e a af a a -⎛⎫=- ⎪⎝⎭易证当x >0时,e x >x 2成立,∴4e a f -⎛⎫ ⎪⎝⎭>a -4a ⎝⎛⎭⎫2a 2=0,又f (e -2)<0,f (1)=a >0,∴f (x )在(0,e -2]上有一个零点,在(e -2,+∞)上有一个零点. 综上,当a >2e 时,f (x )无零点,当a ≤0或a =2e 时,f (x )有一个零点,当0<a <2e 时,f (x )有2个零点.2.已知函数f (x )=13x 3-12x 2-2x +c 有三个零点,求实数c 的取值范围.解 f ′(x )=x 2-x -2=(x +1)(x -2), 由f ′(x )>0可得x >2或x <-1, 由f ′(x )<0可得-1<x <2,所以函数f (x )在(-∞,-1),(2,+∞)上是增函数, 在(-1,2)上是减函数,所以函数f (x )的极大值为f (-1)=76+c ,极小值为f (2)=c -103.而函数f (x )恰有三个零点,故必有⎩⎨⎧76+c >0,c -103<0,解得-76<c <103,所以使函数f (x )恰有三个零点的实数c 的取值范围是⎝⎛⎭⎫-76,103. 3.已知函数f (x )=12x 2-a ln x ,a ∈R .(1)讨论函数f (x )的单调性;(2)若a >0,函数f (x )在区间(1,e)上恰有两个零点,求a 的取值范围. 解 (1)f (x )=12x 2-a ln x 的定义域为(0,+∞),f ′(x )=x -a x =x 2-ax.①a ≤0时,f ′(x )>0,所以f (x )在(0,+∞)上单调递增; ②a >0时,由f ′(x )>0,得x >a , f ′(x )<0,得0<x <a .即f (x )在(0,a )上单调递减, 在(a ,+∞)上单调递增.综上,当a ≤0时,f (x )在(0,+∞)上单调递增; 当a >0时,f (x )在(0,a )上单调递减, 在(a ,+∞)上单调递增.(2)当a >0时,由(1)知f (x )在(0,a )上单调递减, 在(a ,+∞)上单调递增, ①若a ≤1,即0<a ≤1时,f (x )在(1,e)上单调递增, f (1)=12,f (x )在区间(1,e)上无零点.②若1<a <e ,即1<a <e 2时,f (x )在(1,a )上单调递减,在(a ,e)上单调递增, f (x )min =f (a )=12a (1-ln a ).∵f (x )在区间(1,e)上恰有两个零点,∴⎩⎪⎨⎪⎧f (1)=12>0,f (a )=12a (1-ln a )<0,f (e )=12e 2-a >0,∴e<a <12e 2.③若a ≥e ,即a ≥e 2时,f (x )在(1,e)上单调递减,f (1)=12>0,f (e)=12e 2-a <0,f (x )在区间(1,e)上有一个零点.综上,f (x )在区间(1,e)上恰有两个零点时,a 的取值范围是⎝⎛⎭⎫e ,12e 2.4.已知函数f (x )=(2-a )(x -1)-2ln x (a ∈R ). (1)当a =1时,求f (x )的单调区间;(2)若函数f (x )在⎝⎛⎭⎫0,13上无零点,求a 的取值范围. 解 (1)当a =1时,f (x )=x -1-2ln x ,x >0, 则f ′(x )=1-2x =x -2x,由f ′(x )>0,得x >2,由f ′(x )<0,得0<x <2.故f (x )的单调递减区间为(0,2),单调递增区间为(2,+∞).(2)因为当x →0时,f (x )→+∞,所以f (x )<0在区间⎝⎛⎭⎫0,13上不可能恒成立, 故要使函数f (x )在⎝⎛⎭⎫0,13上无零点, 只要对任意的x ∈⎝⎛⎭⎫0,13,f (x )>0恒成立, 即对x ∈⎝⎛⎭⎫0,13,a >2-2ln xx -1恒成立. 令h (x )=2-2ln xx -1,x ∈⎝⎛⎦⎤0,13, 则h ′(x )=2ln x +2x-2(x -1)2,再令m (x )=2ln x +2x-2,x ∈⎝⎛⎦⎤0,13, 则m ′(x )=-2(1-x )x 2<0,故m (x )在⎝⎛⎦⎤0,13上为减函数. 于是m (x )≥m ⎝⎛⎭⎫13=4-2ln 3≥0. 从而h ′(x )≥0,于是h (x )在⎝⎛⎦⎤0,13上为增函数, 所以对x ∈⎝⎛⎭⎫0,13有h (x )<h ⎝⎛⎭⎫13=2-3ln 3, 所以a 的取值范围为[2-3ln 3,+∞).5.(2020·贵州遵义第一次统考)已知f (x )=ln x ,g (x )=-13x 3+ax -34.(1)讨论函数g (x )的单调性;(2)记max{m ,n }表示m ,n 中的最大值,若F (x )=max{f (x ),g (x )}(x >0),且函数y =F (x )恰有三个零点,求实数a 的取值范围. 解 (1)g (x )=-13x 3+ax -34的定义域为R ,g ′(x )=-x 2+a .①当a ≤0时,g ′(x )≤0,所以g (x )的单调递减区间为(-∞,+∞); ②当a >0时,令g ′(x )>0,得x ∈(-a ,a ), 令g ′(x )<0,得x ∈(-∞,-a )∪(a ,+∞),综上得,当a ≤0时,g (x )的单调递减区间为(-∞,+∞);当a >0时,g (x )的单调递减区间为(-∞,-a )和(a ,+∞),单调递增区间为(-a ,a ). (2)F (x )=max{f (x ),g (x )}(x >0), f (x )=ln x 的唯一一个零点是x =1, ∴g ′(x )=-x 2+a (x >0),由(1)可得,①当a ≤0时,g (x )的单调递减区间为(-∞,+∞), 此时y =F (x )至多有两个零点,不符合题意. ②当a >0时,令G (x )=g (x )+34, 则G (x )=-13x 3+ax 的图象关于点(0,0)对称,即g (x )的图象关于⎝⎛⎭⎫0,-34中心对称, 注意到ln x 在(1,+∞)上恒正, F (x )要有3个零点,则g (x )必须在(0,1)上取到2个零点,如图,∴极大值g (a )>0,且g (1)<0,则有⎩⎨⎧g (1)<0,g (a )>0⇒⎩⎨⎧-13+a -34<0,-13(a )3+a ·a -34>0⇒34<a <34+13, 综上,实数a 的取值范围是⎝⎛⎭⎫34,34+13.。

2020届【步步高】高考文科数学一轮总复习讲义

2020届【步步高】高考文科数学一轮总复习讲义
【步步高】高三文科数学总复习讲义
1.集合与元素
(1)集合中元素的三个特征:确定性、互异性、无序性.
(2)元素与集合的关系是属于或不属于两种,用符号∈或∉表示.
(3)集合的表示法:列举法、描述法、图示法.
(4)常见数集的记法
集合 自然数集 正整数集 整数集
符号
N
N*(或 N+)
Z
有理数集 Q
实数集 R
答案 (1)C (2)0 或98
解析 (1)∵2-3 x∈Z,∴2-x 的取值有-3,-1,1,3,
又∵x∈Z,∴x 值分别为 5,3,1,-1,
故集合 A 中的元素个数为 4.
(2)若 a=0,则 A=23,符合题意; 若 a≠0,则由题意得 Δ=9-8a=0,解得 a=98.
综上,a 的值为 0 或98. 思维升华 (1)用描述法表示集合,首先要搞清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是数
2.集合间的基本关系 关系
子集
自然语言
集合 A 中所有元素都在集合 B 中(即 若 x∈A,则 x∈B)
符号语言 A⊆B(或 B⊇A)
Venn 图
真子集 集合相等
集合 A 是集合 B 的子集,且集合 B 中至少有一个元素不在集合 A 中
集合 A,B 中的元素相同或集合 A,B 互为子集
A B(或 B A) A=B
A.{-1,1,5}
B.{-1,5}
C.{1,5}
D.{-1}
答案 A
解析 ∵A={-1,5},B={-1,1},
∴A∪B={-1,1,5}.
3.已知集合 A={x|x2-x-2≤0},集合 B 为整数集,则 A∩B 等于( )
A.{-1,0,1,2}

《步步高》2021届高考数学大一轮复习(人教A版)专题训练:专题一函数图象与性质的综合应用

《步步高》2021届高考数学大一轮复习(人教A版)专题训练:专题一函数图象与性质的综合应用

题型四
函数的值域与不等式恒成立问题
思维启迪 解析
探究提高
题型分类·深度剖析
题型四
函数的值域与不等式恒成立问题
思维启迪 解析
探究提高
题型分类·深度剖析
题型四
函数的值域与不等式恒成立问题
思维启迪 解析
探究提高
题型分类·深度剖析
题型四
函数的值域与不等式恒成立问题
思维启迪 解析
探究提高
题型分类·深度剖析
6
7
8
9
A
练出高分
A组 专项基础训练
1
2
3
4
5
6
7
8
9
解析
练出高分
A组 专项基础训练
1
2
3
4
5
6
7
8
9
解析
(2,+∞)
练出高分
A组 专项基础训练
1
2
3
4
5
6
7
8
9
解析
练出高分
A组 专项基础训练
1
2
3
4
5
6
7
8
9
解析
练出高分
A组 专项基础训练
1
2
3
4
5
6
7
8
9
解析
练出高分
A组 专项基础训练
题型分类·深度剖析
高考圈题
2.高考中的函数零点问题
考点分析
求解策略
解析
解后反思
题型分类·深度剖析
高考圈题
2.高考中的函数零点问题
考点分析
求解策略
解析
解后反思
题型分类·深度剖析

2021届步步高数学大一轮复习讲义(文科)第三章 高考专题突破一 第1课时 导数与不等式

2021届步步高数学大一轮复习讲义(文科)第三章 高考专题突破一 第1课时 导数与不等式

高考专题突破一 高考中的导数应用问题第1课时 导数与不等式证明不等式命题点1 构造函数法例1 (2020·皖南八校联考)已知函数f (x )=(2x -1)ln x -x .(1)求函数f (x )的零点个数;(2)求证:f (x )+2x >0.(1)解 f (x )的定义域为(0,+∞),f ′(x )=2ln x +2x -1x -1=2ln x +1-1x, f ′(1)=0,∴当0<x <1时,f ′(x )<0;当x >1时,f ′(x )>0,∴f (x )的单调递增区间为(1,+∞),单调递减区间为(0,1),∵f (1)=-1<0,f ⎝⎛⎭⎫1e 2=⎝⎛⎭⎫2e 2-1ln 1e 2-1e 2 =-2⎝⎛⎭⎫2e 2-1-1e 2=2-5e 2>0, ∴f (x )在⎝⎛⎭⎫1e 2,1内有1个零点,∵f (e)=(2e -1)ln e -e =e -1>0,∴f (x )在(1,e)内有1个零点,∴f (x )有两个零点.(2)证明 令g (x )=f (x )+2x =(2x -1)ln x +x ,则g (x )的定义域为(0,+∞),g ′(x )=2ln x +2x -1x +1=2ln x -1x+3, 令h (x )=2ln x -1x+3, 则h ′(x )=2x +1x 2>0, ∴h (x )在(0,+∞)上是增函数,h (1)=2>0,h ⎝⎛⎭⎫12=1-ln 4<0,∴∃x 0∈⎝⎛⎭⎫12,1,使h (x 0)=0,即g ′(x 0)=2ln x 0-1x 0+3=0, ∴ln x 0=12x 0-32, ∴当x ∈(0,x 0)时,g ′(x )<0;当x ∈(x 0,+∞)时,g ′(x )>0,∴g (x )的单调递减区间为(0,x 0),单调递增区间为(x 0,+∞),∴g (x )min =g (x 0)=(2x 0-1)ln x 0+x 0=(2x 0-1)⎝⎛⎭⎫12x 0-32+x 0=52-2x 0-12x 0, 令m (x )=52-2x -12x,x ∈⎣⎡⎦⎤12,1, 则m ′(x )=-2+12x 2=1-4x 22x 2=(1+2x )(1-2x )2x 2≤0在⎣⎡⎦⎤12,1上恒成立, ∴m (x )在⎣⎡⎦⎤12,1上是减函数,∴x ∈⎝⎛⎭⎫12,1时,m (x )>m (1)=52-2-12=0, ∴g (x )min >0,∴f (x )+2x >0.命题点2 分拆函数法例2 已知函数f (x )=eln x -ax (a ∈R ).(1)讨论f (x )的单调性;(2)当a =e 时,证明:xf (x )-e x +2e x ≤0.(1)解 f ′(x )=e x-a (x >0). ①若a ≤0,则f ′(x )>0,f (x )在(0,+∞)上单调递增;②若a >0,则当0<x <e a 时,f ′(x )>0,当x >e a时,f ′(x )<0, 故f (x )在⎝⎛⎭⎫0,e a 上单调递增,在⎝⎛⎭⎫e a ,+∞上单调递减. (2)证明 因为x >0,所以只需证f (x )≤e x x-2e , 当a =e 时,由(1)知,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减.所以f (x )max =f (1)=-e ,记g (x )=e x x -2e(x >0),则g ′(x )=(x -1)e x x 2, 所以当0<x <1时,g ′(x )<0,g (x )单调递减,当x >1时,g ′(x )>0,g (x )单调递增, 所以g (x )min =g (1)=-e ,综上,当x >0时,f (x )≤g (x ),即f (x )≤e x x-2e ,即xf (x )-e x +2e x ≤0. 思维升华 (1)利用导数证明不等式的基本思路是依据函数的单调性,求得函数的最值,然后由f (x )≤f (x )max 或f (x )≥f (x )min 证得不等式.(2)证明f (x )>g (x ),可以构造函数h (x )=f (x )-g (x ),然后利用h (x )的最值证明不等式.(3)若直接求导比较复杂或无从下手时,可将待证式进行变形分拆,构造两个函数,从而找到可以传递的中间量,达到证明的目的.跟踪训练1 (1)设函数f (x )=ln x -x +1.①讨论f (x )的单调性;②证明:当x ∈(1,+∞)时,1<x -1ln x<x . ①解 由题设知,f (x )的定义域为(0,+∞),f ′(x )=1x-1,令f ′(x )=0,解得x =1. 当0<x <1时,f ′(x )>0,f (x )单调递增;当x >1时,f ′(x )<0,f (x )单调递减.②证明 由①知,f (x )在x =1处取得极大值也为最大值,最大值为f (1)=0.所以当x ≠1时,ln x <x -1.故当x ∈(1,+∞)时,ln x <x -1,ln 1x <1x-1, 即1<x -1ln x<x . (2)已知函数f (x )=ln x +x ,g (x )=x ·e x -1,求证:f (x )≤g (x ).证明 令F (x )=f (x )-g (x )=ln x +x -x e x +1(x >0),则F ′(x )=1x +1-e x -x e x =1+x x-(x +1)e x =(x +1)⎝⎛⎭⎫1x -e x .令G (x )=1x-e x ,可知G (x )在(0,+∞)上为减函数, 且G ⎝⎛⎭⎫12=2-e>0,G (1)=1-e<0,∴存在x 0∈⎝⎛⎭⎫12,1,使得G (x 0)=0,即1x 0-0e x =0. 当x ∈(0,x 0)时,G (x )>0,∴F ′(x )>0,F (x )为增函数;当x ∈(x 0,+∞)时,G (x )<0,∴F ′(x )<0,F (x )为减函数.∴F (x )≤F (x 0)=ln x 0+x 0-x 00e x +1,又∵1x 0-0e x =0,∴1x 0=0e x ,即ln x 0=-x 0, ∴F (x 0)=0,即F (x )≤0,∴f (x )≤g (x ).例3 (12分)(2019·全国Ⅰ)已知函数f (x )=2sin x -x cos x -x ,f ′(x )为f (x )的导数.(1)证明:f ′(x )在区间(0,π)上存在唯一零点;(2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围.规范解答(1)证明 f ′(x )=cos x +x sin x -1,[1分]令g (x )=cos x +x sin x -1,则g ′(x )=x cos x ,∵当x ∈⎝⎛⎭⎫0,π2时,g ′(x )>0;当x ∈⎝⎛⎭⎫π2,π时,g ′(x )<0, ∴g (x )在⎝⎛⎭⎫0,π2上单调递增,在⎝⎛⎭⎫π2,π上单调递减, 又g (0)=1-1=0,g ⎝⎛⎭⎫π2=π2-1>0,g (π)=-1-1=-2,即当x ∈⎝⎛⎭⎫0,π2时,g (x )>0,此时g (x )无零点, 即f ′(x )无零点.[3分]∵g ⎝⎛⎭⎫π2·g (π)<0,g (x )在⎝⎛⎭⎫π2,π上单调递减, ∴∃x 0∈⎝⎛⎭⎫π2,π,使得g (x 0)=0,∴x =x 0为g (x ),即f ′(x )在⎝⎛⎭⎫π2,π上的唯一零点.综上所述,f ′(x )在区间(0,π)上存在唯一零点.[5分](2)解 若x ∈[0,π]时,f (x )≥ax ,即f (x )-ax ≥0恒成立,令h (x )=f (x )-ax =2sin x -x cos x -(a +1)x ,则h ′(x )=cos x +x sin x -1-a ,令d (x )=h ′(x ),则d ′(x )=x cos x =g ′(x ),由(1)可知,h ′(x )在⎝⎛⎭⎫0,π2上单调递增;在⎝⎛⎭⎫π2,π上单调递减, 且h ′(0)=-a ,h ′⎝⎛⎭⎫π2=π-22-a ,h ′(π)=-2-a ,∴h ′(x )min =h ′(π)=-2-a ,h ′(x )max =h ′⎝⎛⎭⎫π2=π-22-a .[7分] ①当a ≤-2时,h ′(x )min =h ′(π)=-2-a ≥0,即h ′(x )≥0在[0,π]上恒成立,∴h (x )在[0,π]上单调递增,∴在[0,π]上h (x )≥h (0)=0,即f (x )-ax ≥0,此时f (x )≥ax 恒成立.[8分]②当-2<a ≤0时,h ′(0)≥0,h ′⎝⎛⎭⎫π2>0,h ′(π)<0,∴∃x 1∈⎝⎛⎭⎫π2,π,使得h ′(x 1)=0,∴h (x )在[0,x 1)上单调递增,在(x 1,π]上单调递减,又h (0)=0,h (π)=2sin π-πcos π-(a +1)π=-a π≥0,∴h (x )≥0在[0,π]上恒成立,即f (x )≥ax 恒成立.[9分]③当0<a <π-22时,h ′(0)<0,h ′⎝⎛⎭⎫π2=π-22-a >0, ∴∃x 2∈⎝⎛⎭⎫0,π2,使得h ′(x 2)=0, ∴h (x )在[0,x 2)上单调递减,在⎝⎛⎭⎫x 2,π2上单调递增, ∴x ∈(0,x 2)时,h (x )<h (0)=0,可知f (x )≥ax 不恒成立.[10分]④当a ≥π-22时,h ′(x )max =h ′⎝⎛⎭⎫π2=π-22-a ≤0, ∴h (x )在⎝⎛⎭⎫0,π2上单调递减,∴h (x )<h (0)=0,可知f (x )≥ax 不恒成立.[11分]综上所述,a 的取值范围为(-∞,0].[12分]第一步:求导函数f ′(x );第二步:二次求导:设g (x )=f ′(x ),再求g ′(x );第三步:讨论g (x )的性质:根据g ′(x )的符号讨论f ′(x )的单调性和零点;第四步:构造函数h (x )=f (x )-ax ,根据h ′(x )的符号确定h ′(x )的最值;第五步:讨论h (x )=f (x )-ax 的最值,确定f (x )≥ax 成立时a 的取值范围.跟踪训练2 已知函数f (x )=ax +ln x ,x ∈[1,e],若f (x )≤0恒成立,求实数a 的取值范围. 解 ∵f (x )≤0,即ax +ln x ≤0对x ∈[1,e]恒成立,∴a ≤⎝⎛⎭⎫-ln x x min ,x ∈[1,e]. 令g (x )=-ln x x ,x ∈[1,e],则g ′(x )=ln x -1x 2, ∵x ∈[1,e],∴g ′(x )≤0,∴g (x )在[1,e]上单调递减,∴g (x )min =g (e)=-1e ,∴a ≤-1e. ∴实数a 的取值范围是⎝⎛⎦⎤-∞,-1e .近几年高考中的导数问题常以e x ,ln x 组合的函数为基础来命制,将基本初等函数与导数相结合,研究函数的性质,下面介绍解决这类问题的几种策略.一、函数零点设而不求例1 证明:e x -ln x >2.证明 设f (x )=e x -ln x (x >0),则f ′(x )=e x -1x. 令h (x )=f ′(x ),则h ′(x )=e x +1x 2>0, ∴f ′(x )在(0,+∞)上是增函数,又f ′⎝⎛⎭⎫12=e -2<0,f ′(1)=e -1>0,∴在⎝⎛⎭⎫12,1上存在x 0使f ′(x 0)=0,即x 0=-ln x 0.∴在(0,x 0)上f (x )单调递减,在(x 0,+∞)上f (x )单调递增,∴f (x )在x =x 0处有极小值,也是最小值.∴f (x 0)=0e x -ln x 0=1x 0+x 0>2, 故f (x )>2,即e x -ln x >2.二、分离ln x 与e x例2 已知函数f (x )=ax 2-x ln x .(1)若函数f (x )在(0,+∞)上单调递增,求实数a 的取值范围;(2)若a =e ,证明:当x >0时,f (x )<x e x +1e. (1)解 由题意知,f ′(x )=2ax -ln x -1.因为函数f (x )在(0,+∞)上单调递增,所以当x >0时,f ′(x )≥0,即2a ≥ln x +1x恒成立. 令g (x )=ln x +1x (x >0),则g ′(x )=-ln x x 2, 易知g (x )在(0,1)上单调递增,在(1,+∞)上单调递减,则g (x )max =g (1)=1,所以2a ≥1,即a ≥12. 故实数a 的取值范围是⎣⎡⎭⎫12,+∞.(2)证明 若a =e ,要证f (x )<x e x +1e, 只需证e x -ln x <e x +1e x ,即e x -e x <ln x +1e x. 令h (x )=ln x +1e x (x >0),则h ′(x )=e x -1e x 2, 易知h (x )在⎝⎛⎭⎫0,1e 上单调递减,在⎝⎛⎭⎫1e ,+∞上单调递增,则h (x )min =h ⎝⎛⎭⎫1e =0, 所以ln x +1e x≥0. 再令φ(x )=e x -e x ,则φ′(x )=e -e x ,易知φ(x )在(0,1)上单调递增,在(1,+∞)上单调递减,则φ(x )max =φ(1)=0,所以e x -e x ≤0.因为h (x )与φ(x )不同时为0,所以e x -e x <ln x +1e x, 故原不等式成立.三、借助e x ≥x +1和ln x ≤x -1进行放缩例3 已知函数f (x )=e x -a .(1)若函数f (x )的图象与直线l :y =x -1相切,求a 的值;(2)若f (x )-ln x >0恒成立,求整数a 的最大值.解 (1)f ′(x )=e x ,因为函数f (x )的图象与直线y =x -1相切,所以令f ′(x )=1, 即e x =1,得x =0,即f (0)=-1,解得a =2.(2)先证明e x≥x+1,设F(x)=e x-x-1,则F′(x)=e x-1,令F′(x)=0,则x=0,当x∈(0,+∞)时,F′(x)>0,当x∈(-∞,0)时,F′(x)<0,所以F(x)在(0,+∞)上单调递增,在(-∞,0)上单调递减,所以F(x)min=F(0)=0,即F(x)≥0恒成立,即e x≥x+1,即e x-2≥x-1,当且仅当x=0时等号成立,同理可得ln x≤x-1,当且仅当x=1时等号成立,所以e x-2>ln x,当a≤2时,ln x<e x-2≤e x-a,即当a≤2时,f (x)-ln x>0恒成立.当a≥3时,存在x=1,使e x-a<ln x,即e x-a>ln x不恒成立.综上,整数a的最大值为2.1.已知f (x )=e x -ax 2,若f (x )≥x +(1-x )·e x 在[0,+∞)恒成立,求实数a 的取值范围. 解 f (x )≥x +(1-x )e x ,即e x -ax 2≥x +e x -x e x ,即e x -ax -1≥0,x ≥0.令h (x )=e x -ax -1(x ≥0),则h ′(x )=e x -a (x ≥0),当a ≤1时,由x ≥0知h ′(x )≥0,∴在[0,+∞)上h (x )≥h (0)=0,原不等式恒成立.当a >1时,令h ′(x )>0,得x >ln a ;令h ′(x )<0,得0≤x <ln a .∴h (x )在[0,ln a )上单调递减,又∵h (0)=0,∴h (x )≥0不恒成立,∴a >1不合题意.综上,实数a 的取值范围为(-∞,1].2.(2017·全国Ⅲ)已知函数f (x )=ln x +ax 2+(2a +1)x .(1)讨论f (x )的单调性;(2)当a <0时,证明:f (x )≤-34a-2. (1)解 f (x )的定义域为(0,+∞),f ′(x )=1x +2ax +2a +1=(x +1)(2ax +1)x.若a ≥0,则当x ∈(0,+∞)时,f ′(x )>0,故f (x )在(0,+∞)上单调递增.若a <0,则当x ∈⎝⎛⎭⎫0,-12a 时,f ′(x )>0; 当x ∈⎝⎛⎭⎫-12a ,+∞时,f ′(x )<0. 故f (x )在⎝⎛⎭⎫0,-12a 上单调递增,在⎝⎛⎭⎫-12a ,+∞上单调递减. (2)证明 由(1)知,当a <0时,f (x )在x =-12a处取得最大值,最大值为f ⎝⎛⎭⎫-12a =ln ⎝⎛⎭⎫-12a -1-14a, 所以f (x )≤-34a -2等价于ln ⎝⎛⎭⎫-12a -1-14a ≤-34a-2, 即ln ⎝⎛⎭⎫-12a +12a+1≤0. 设g (x )=ln x -x +1,则g ′(x )=1x-1. 当x ∈(0,1)时,g ′(x )>0;当x ∈(1,+∞)时,g ′(x )<0.所以g (x )在(0,1)上单调递增,在(1,+∞)上单调递减.故当x =1时,g (x )取得最大值,最大值为g (1)=0.所以当x >0时,g (x )≤0.从而当a <0时,ln ⎝⎛⎭⎫-12a +12a+1≤0, 即f (x )≤-34a-2. 3.(2019·陕西宝鸡模拟)已知函数f (x )=(ax -1)e x (a ∈R ).(1)讨论f (x )的单调性;(2)当m >n >0时,证明:m e n +n <n e m +m .(1)解 由题意可得f (x )的定义域为R ,且f ′(x )=(ax +a -1)e x .①当a =0时,f ′(x )=-e x <0,此时f (x )在区间(-∞,+∞)上单调递减.②当a >0时,由f ′(x )>0,得x >-a -1a; 由f ′(x )<0,得x <-a -1a. 此时f (x )在区间⎝ ⎛⎭⎪⎫-∞,-a -1a 上单调递减,在区间⎝ ⎛⎭⎪⎫-a -1a ,+∞上单调递增. ③当a <0时,由f ′(x )>0,得x <-a -1a ;由f ′(x )<0,得x >-a -1a. 此时f (x )在区间⎝ ⎛⎭⎪⎫-a -1a ,+∞上单调递减,在区间⎝ ⎛⎭⎪⎫-∞,-a -1a 上单调递增. (2)证明 当m >n >0时,要证m e n +n <n e m +m ,只要证m (e n -1)<n (e m -1),即证e m -1m >e n -1n.(*) 设g (x )=e x -1x ,x >0,则g ′(x )=(x -1)e x +1x 2. 设h (x )=(x -1)e x +1,x ≥0,由(1)知当a =1时,y =(x -1)e x 在(0,+∞)上单调递增,所以h (x )在(0,+∞)上单调递增,所以当x >0时,h (x )>h (0)=0.即g ′(x )>0,所以g (x )在(0,+∞)上单调递增,所以当m >n >0时,g (m )>g (n ),即(*)式成立.故当m >n >0时,m e n +n <n e m +m .4.已知函数f (x )=m x+ln x ,g (x )=x 3+x 2-x . (1)若m =3,求f (x )的极值;(2)若对于任意的s ,t ∈⎣⎡⎦⎤12,2,都有f (s )≥110g (t ),求实数m 的取值范围. 解 (1)f (x )的定义域为(0,+∞),当m =3时,f (x )=3x+ln x . ∵f ′(x )=-3x 2+1x =x -3x 2,f ′(3)=0, ∴当x >3时,f ′(x )>0,f (x )是增函数,当0<x <3时,f ′(x )<0,f (x )是减函数.∴f (x )有极小值f (3)=1+ln 3,没有极大值.(2)g (x )=x 3+x 2-x ,g ′(x )=3x 2+2x -1.当x ∈⎣⎡⎦⎤12,2时,g ′(x )>0,∴g (x )在⎣⎡⎦⎤12,2上是单调递增函数,g (x )max =g (2)=10.对于任意的s ,t ∈⎣⎡⎦⎤12,2,f (s )≥110g (t )恒成立,即对任意x ∈⎣⎡⎦⎤12,2,f (x )=m x+ln x ≥1恒成立,即m ≥x -x ln x 恒成立.令h (x )=x -x ln x ,则h ′(x )=1-ln x -1=-ln x .∴当x >1时,h ′(x )<0,当0<x <1时,h ′(x )>0,∴h (x )在(0,1]上是增函数,在[1,+∞)上是减函数,∴当x ∈⎣⎡⎦⎤12,2时,h (x )的最大值为h (1)=1,∴m ≥1,即m 的取值范围是[1,+∞).5.(2020·四川资阳、眉山、遂宁、广安、乐山、内江六市联考)已知函数f (x )=e x -12(x -a )2+4.(1)当a =1时,求f (x )在x =0处的切线方程;(2)若x ≥0,不等式f (x )≥0恒成立,求a 的取值范围.解 (1)当a =1时,f (x )=e x -12(x -1)2+4=e x -12x 2+x -12+4,f ′(x )=e x -x +1, 则f (0)=92,f ′(0)=2, 所以所求切线方程为4x -2y +9=0.(2)由f (x )=e x -12(x -a )2+4得f ′(x )=e x -x +a , 令h (x )=e x -x +a ,则h ′(x )=e x -1≥0.所以h (x )在[0,+∞)上单调递增,且h (0)=1+a .①当a ≥-1时,f ′(x )≥0,函数f (x )单调递增,由于f (x )≥0恒成立,则有f (0)=5-12a 2≥0,即-10≤a ≤10,所以-1≤a ≤10满足条件. ②当a <-1时,则存在x 0∈(0,+∞),使得h (x 0)=0, 当0<x <x 0时,h (x )<0,则f ′(x )<0,f (x )单调递减;当x >x 0时,h (x )>0,则f ′(x )>0,f (x )单调递增.所以f (x )min =f (x 0)=0e x -12(x 0-a )2+4≥0, 又x 0满足h (x 0)=0e x -x 0+a =0,即x 0-a =0e x , 所以0021e e 2x x -+4≥0,则002e 2e x x --8≤0, 即00(e 4)(e 2)x x -+≤0,得0<x 0≤ln 4.又a =x 0-0e x ,令u (x )=x -e x ,则u ′(x )=1-e x , 可知,当0<x ≤ln 4时,u ′(x )<0,则u (x )单调递减, 所以u (x )=x -e x ≥ln 4-4,此时ln 4-4≤a <-1满足条件.综上所述,a 的取值范围是[ln 4-4,10].。

高中数学步步高大一轮复习讲义文科专题一PPT课件

高中数学步步高大一轮复习讲义文科专题一PPT课件

故 f(x)的单调递增区间为(-∞,
-1),(0,+∞),单调递减区
间为(-1,0).
第4页/共56页
高考题型突破
题型一
利用导数研究函数的单调性
【例 1】 设函数 f(x)=x(ex-1) 思维启迪 解析 思维升华
(2)f(x)=x(ex-1-ax),
-ax2.
令 g(x)=ex-1-ax,
(1)若 a=12,求 f(x)的单调区间; g′(x)=ex-a.
思维启迪 解析 思维升华
(2)解 2xln x≥-x2+ax-3, 则 设ha(≤x)2=ln2lxn+x+x+x+3x,3x(x>0), 则h′(x)=x+3x2x-1, ①当x∈(0,1)时,h′(x)<0,h(x)
单调递减, ②当x∈(1,+∞)时,
h′(x)>0,h(x)单调递增, 所以h(x)min=h(1)=4,对一切
-ax2. (1)若 a=12,求 f(x)的单调区间;
(2)若当 x≥0 时,f(x)≥0,求 a
求出 f′(x),分析函数的单 调性,得出结论.
的取值范围.
第3页/共56页
高考题型突破
题型一
利用导数研究函数的单调性
【例 1】 设函数 f(x)=x(ex-1)
-ax2. (1)若 a=12,求 f(x)的单调区间;
(2)若当 x≥0 时,f(x)≥0,求 a
若 a≤1,则当 x∈(0,+∞)时, g′(x)>0,g(x)为增函数,
的取值范围.
而 g(0)=0,
从而当 x≥0 时,g(x)≥0,
即 f(x)≥0.
若 a>1,则当 x∈(0,ln a)时, g′(x)<0,g(x)为减函数,

高中数学步步高大一轮复习讲义(文科)-64省公开课获奖课件市赛课比赛一等奖课件

高中数学步步高大一轮复习讲义(文科)-64省公开课获奖课件市赛课比赛一等奖课件

练出高分
题型分类·深度剖析
题型一
分组转化求和
思维启迪 解析 思维升华
【例 1】 已知数列{an}是 3+2 解 由已知得,数列{an}的通项公式
-1,6+22-1,9+23-1,12+24 为 an=3n+2n-1=3n-1+2n,
-1,…,写出数列{an}的通项 ∴Sn=a1+a2+…+an
=(2+5+…+3n-1)+(2+22+…
题型分类
思想方法
练出高分
题型分类·深度剖析
题型三
裂项相消法求和
思维启迪 解析 思维升华
【例 3】 在数列{an}中,a1=1,
当 n≥2 时,其前 n 项和 Sn 满足 S2n=anSn-12.
(1)求 Sn 的表达式; (2)设 bn=2nS+n 1,求{bn}的前
n 项和 Tn.
第(1)问利用 an=Sn-Sn-1 (n≥2) 后,再同除 Sn-1·Sn 转化为S1n的 等差数列即可求 Sn.
题型分类·深度剖析
题型一
分组转化求和
思维启迪 解析 思维升华
【例 1】 已知数列{an}是 3+2
-1,6+22-1,9+23-1,12+24 先写出通项,然后对 分组后利用等差数列、等比数列
公式并求其前 n 项和 Sn.
的求和公式求解.
基础知识
题型分类
思想方法
∴S1n=1+2(n-1)=2n-1, ∴Sn=2n1-1. (2)∵bn=2nS+n 1=2n-112n+1
=122n1-1-2n1+1,
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
题型三
裂项相消法求和
思维启迪 解析 思维升华

[数学]步步高大一轮复习讲义数学文科a版【答案解析】版-精品文档

[数学]步步高大一轮复习讲义数学文科a版【答案解析】版-精品文档

§1.1 集合的概念及其基本运算要点梳理1.(1)确定性 互异性 无序性 (2)属于 不属于 ∈ ∉ (3)列举法 描述法 图示法 区间法 (5)有限集 无限集 空集2.(1)A B B A ⊆ ⊆ ⊆ 2n 2n -1 2n -23.(1){x |x ∈A ,且x ∈B } {x |x ∈U ,且x ∉A } 基础自测 1.{2,4} 2.{x |0<x <1} 3.(2,3)4.⎩⎨⎧⎭⎬⎫0,1,-12 5.B题型分类·深度剖析例1 解 (1)当a +2=1,即a =-1时,(a +1)2=0,a 2+3a +3=1与a +2相同,∴不符合题意.当(a +1)2=1,即a =0或a =-2时,①a =0符合要求. ②a =-2时,a 2+3a +3=1与(a +1)2相同,不符合题意. 当a 2+3a +3=1,即a =-2或a =-1.①当a =-2时,a 2+3a +3=(a +1)2=1,不符合题意. ②当a =-1时,a 2+3a +3=a +2=1,不符合题意. 综上所述,a =0,∴2 013a =1.(2) ∵当x =0时,x =x 2-x =x 3-3x =0,∴它不一定能表示一个有三个元素的集合.要使它表示一个有三个元素的集合,则应有⎩⎪⎨⎪⎧x ≠x 2-x ,x 2-x ≠x 3-3x ,x ≠x 3-3x .∴x ≠0且x ≠2且x ≠-1且x ≠-2时,{x ,x 2-x ,x 3-3x }能表示一个有三个元素的集合. 变式训练 1 0或98例2 解 A 中不等式的解集应分三种情况讨论:①若a =0,则A =R ;②若a <0,则A =⎩⎨⎧⎭⎬⎫x |4a ≤x <-1a ;③若a >0,则A =⎩⎨⎧⎭⎬⎫x |-1a <x ≤4a .(1)当a =0时,若A ⊆B ,此种情况不存在.当a <0时,若A ⊆B ,如图:,则⎩⎨⎧4a >-12-1a ≤2,∴⎩⎪⎨⎪⎧a >0或a <-8a >0或a ≤-12,又a <0,∴a <-8.当a >0时,若A ⊆B ,如图:,则⎩⎨⎧-1a ≥-124a ≤2,∴⎩⎪⎨⎪⎧a ≥2或a <0a ≥2或a <0.又∵a >0,∴a ≥2.综上知,当A ⊆B 时,a <-8或a ≥2. (2)当a =0时,显然B ⊆A ;当a <0时,若B ⊆A ,如图:,则⎩⎨⎧4a ≤-12-1a >2,∴⎩⎪⎨⎪⎧-8≤a <0-12<a <0.又∵a <0,∴-12<a <0.当a >0时,若B ⊆A ,如图:,则⎩⎨⎧-1a ≤-124a ≥2,∴⎩⎪⎨⎪⎧0<a ≤20<a ≤2.又∵a >0,∴0<a ≤2.综上知,当B ⊆A 时,-12<a ≤2.(3)当且仅当A 、B 两个集合互相包含时,A =B ,由(1)、(2)知,a =2.变式训练 2 4 例3 1或2变式训练3 解 (1)∵A ={x |12≤x ≤3},当a =-4时,B ={x |-2<x <2},∴A ∩B ={x |12≤x <2},A ∪B ={x |-2<x ≤3}.(2)∁R A ={x |x <12或x >3},当(∁R A )∩B =B 时,B ⊆∁R A ,即A ∩B =∅.①当B =∅,即a ≥0时,满足B ⊆∁R A ;②当B ≠∅,即a <0时, B ={x |--a <x <-a },要使B ⊆∁R A ,需-a ≤12,解得-14≤a <0.综上可得,实数a 的取值范围是a ≥-14.例4 A变式训练 4 6 {0,1,2,3}课时规范训练 A 组1.C2.C3.A4.-1或25.{(0,1),(-1,2)}6.187.解 由已知得A ={x |-1≤x ≤3},B ={x |m -2≤x ≤m +2}.(1)∵A ∩B =[0,3],∴⎩⎪⎨⎪⎧m -2=0,m +2≥3.∴m =2.(2)∁R B ={x |x <m -2或x >m +2},∵A ⊆∁R B ,∴m -2>3或m +2<-1,即m >5或m <-3. 8.解 ∵M ={y |y =x 2,x ∈R }={y |y ≥0},N ={y |y =3sin x ,x ∈R }={y |-3≤y ≤3},∴M -N ={y |y >3},N -M ={y |-3≤y <0},∴M *N =(M -N )∪(N -M )={y |y >3}∪{y |-3≤y <0}={y |y >3或-3≤y <0}. B 组1.C2.B3.A4.A5.a ≤06.-37.(-∞,-3)8.解 由x -5x +1≤0,∴-1<x ≤5,∴A ={x |-1<x ≤5}.(1)当m =3时,B ={x |-1<x <3},则∁R B ={x |x ≤-1或x ≥3},∴A ∩(∁R B )={x |3≤x ≤5}. (2)∵A ={x |-1<x ≤5},A ∩B ={x |-1<x <4},∴有42-2×4-m =0,解得m =8. 此时B ={x |-2<x <4},符合题意,故实数m 的值为8.§1.2 命题及其关系、充分条件与必要条件要点梳理1.判断真假 判断为真 判断为假2.(1)若q ,则p 若綈p ,则綈q 若綈q ,则綈p ,(2)逆命题 否命题 逆否命题 (3)①相同 ②没有3.(1)充分条件 必要条件 (2)充要条件基础自测 1.3 2.②③ 3.充分不必要 4.C 5.D 题型分类·深度剖析 例1 ②④ 变式训练1 ①③例2 解 (1)在△ABC 中,∠A =∠B ⇒sin A =sin B ,反之,若sin A =sin B ,∵A 与B 不可能互补(∵三角形三个内角和为180°),∴只有A =B .故p 是q 的充要条件.(2)易知,綈p :x +y =8,綈q :x =2且y =6,显然綈q ⇒綈p ,但綈p 綈q ,即綈q 是綈p 的充分不必要条件,根据原命题和逆否命题的等价性知,p 是q 的充分不必要条件.(3)显然x ∈A ∪B 不一定有x ∈B ,但x ∈B 一定有x ∈A ∪B ,∴p 是q 的必要不充分条件.(4)条件p :x =1且y =2,条件q :x =1或y =2,∴p ⇒q 但q p ,故p 是q 的充分不必要条件. 变式训练2 ①④例3 证明 充分性:当a =0时,方程为2x +1=0,其根为x =-12,方程有一个负根,符合题意.当a <0时,Δ=4-4a >0,方程ax 2+2x +1=0有两个不相等的实根,且1a <0,方程有一正一负根,符合题意.当0<a ≤1时,Δ=4-4a ≥0,方程ax 2+2x +1=0有实根,且⎩⎨⎧-2a<01a >0,故方程有两个负根,符合题意.综上知:当a ≤1时,方程ax 2+2x +1=0至少有一个负根. 必要性:若方程ax 2+2x +1=0至少有一个负根. 当a =0时,方程为2x +1=0符合题意.当a ≠0时,方程ax 2+2x +1=0应有一正一负根或两个负根.则1a<0或⎩⎨⎧Δ=4-4a ≥0-2a <01a>0,解得a <0或0<a ≤1.综上知:若方程ax 2+2x +1=0至少有一负根,则a ≤1.故关于x 的方程ax 2+2x +1=0至少有一个负根的充要条件是a ≤1.变式训练3 证明 充分性:当q =-1时,a 1=S 1=p +q =p -1.当n ≥2时,a n =S n -S n -1=p n -1(p -1),当n =1时也成立,于是a n +1a n =p n(p -1)p n -1(p -1)=p (n ∈N *)即数列{a n }为等比数列.必要性:当n =1时,a 1=S 1=p +q ,当n ≥2时,a n =S n -S n -1=p n -1(p -1). ∵p ≠0,p ≠1,∴a n +1a n=p n (p -1)p n -1(p -1)=p .∵{a n }为等比数列,∴a 2a 1=a n +1a n =p ,又S 2=a 1+a 2=p 2+q ,∴a 2=p 2-p =p (p -1),∴p (p -1)p +q =p ,即p -1=p +q .∴q =-1.综上所述,q =-1是数列{a n }为等比数列的充要条件.课时规范训练 A 组1.D2.B3.A4.充分不必要5.①③④6.[3,8)7.解 由题意p :-2≤x -3≤2,∴1≤x ≤5,∴綈p :x <1或x >5,q :m -1≤x ≤m +1,∴綈q :x <m -1或x >m +1.又∵綈p 是綈q 的充分而不必要条件,∴⎩⎪⎨⎪⎧m -1≥1,m +1≤5.∴2≤m ≤4.8.解 设A ={x |p }={x |x 2-4ax +3a 2<0,a <0}={x |3a <x <a ,a <0},B ={x |q }={x |x 2-x -6≤0或x 2+2x -8>0}={x |x 2-x -6≤0}∪{x |x 2+2x -8>0} ={x |-2≤x ≤3}∪{x |x <-4或x >2}={x |x <-4或x ≥-2}.∵綈p 是綈q 的必要不充分条件,∴綈q ⇒綈p ,且綈pD ⇒/綈q ,则{x |綈q x |綈p },而{x |綈q }=∁R B ={x |-4≤x <-2},{x |綈p }=∁R A ={x |x ≤3a 或x ≥a ,a <0}, ∴{x |-4≤x <-x |x ≤3a 或x ≥a ,a <0},则⎩⎨⎧ 3a ≥-2,a <0或⎩⎨⎧a ≤-4,a <0.综上,可得-23≤a <0或a ≤-4.B 组1.A2.C3.B4.⎝⎛⎭⎫34,1∪(1,+∞) 5.[1,2) 6.①③②④ 7.3或48.解 (1)当a =12时,A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x -2x -52<0=⎩⎨⎧⎭⎬⎫x |2<x <52,B =⎩⎨⎧⎭⎬⎫x |x -94x -12<0=⎩⎨⎧⎭⎬⎫x |12<x <94, ∴∁U B =⎩⎨⎧⎭⎬⎫x |x ≤12或x ≥94,∴(∁U B )∩A =⎩⎨⎧⎭⎬⎫x |94≤x <52.(2)∵a 2+2>a ,∴B ={x |a <x <a 2+2}.①当3a +1>2,即a >13时,A ={x |2<x <3a +1}.∵p 是q 的充分条件,∴A ⊆B .∴⎩⎨⎧a ≤23a +1≤a 2+2,即13<a ≤3-52. ②当3a +1=2,即a =13时,A =∅,不符合题意;③当3a +1<2,即a <13时,A ={x |3a +1<x <2},由A ⊆B 得⎩⎪⎨⎪⎧a ≤3a +1a 2+2≥2,∴-12≤a <13.综上所述,实数a 的取值范围是⎣⎡⎭⎫-12,13∪⎝ ⎛⎦⎥⎤13,3-52.§1.3 简单的逻辑联结词、全称量词与存在量词要点梳理1.(1)或 且 非 (2)真 假 假 真 假 假 真 真 假 真 假 真 真 2.(3)∀ ∃ (4)①含有全称量词 ②含有存在量词 基础自测1.所有的三角形都不是等边三角形 2.[-4,0] 3.①② 4.A 5.C 题型分类·深度剖析 例1 q 1,q 4变式训练1 解 (1)p ∨q :1是素数或是方程x 2+2x -3=0的根.真命题.p ∧q :1既是素数又是方程x 2+2x -3=0的根.假命题. 綈p :1不是素数.真命题.(2)p ∨q :平行四边形的对角线相等或互相垂直.假命题. p ∧q :平行四边形的对角相等且互相垂直.假命题. 綈p :有些平行四边形的对角线不相等.真命题.(3)p ∨q :方程x 2+x -1=0的两实根的符号相同或绝对值相等.假命题. p ∧q :方程x 2+x -1=0的两实根的符号相同且绝对值相等.假命题. 綈p :方程x 2+x -1=0的两实根的符号不相同.真命题.例2 解 (1)綈p :∃x 0∈R ,x 20-x 0+14<0,假命题.(2)綈q :至少存在一个正方形不是矩形,假 命题.(3)綈r :∀x ∈R ,x 2+2x +2>0,真命题.(4)綈s :∀x ∈R ,x 3+1≠0,假命题. 变式训练2 解 (1)綈p :∃x >0,使x 2-x >0,为真命题.(2)綈q :∀x ∈R,2x +x 2>1,为假命题. 例3 解 ①若p 正确,则由0<⎝⎛⎭⎫12|x -1|≤1,得a >1.②若q 正确,则ax 2+(a -2)x +98>0解集为R .当a =0时,-2x +98>0不合题意,舍去;当a ≠0时,则⎩⎪⎨⎪⎧a >0(a -2)2-4a ×98<0,解得12<a <8. ③∵p 和q 中有且仅有一个正确,∴⎩⎪⎨⎪⎧a >1a ≤12或a ≥8或⎩⎪⎨⎪⎧a ≤112<a <8,∴a ≥8或12<a ≤1.变式训练3 解 ∵函数y =a x 在R 上单调递增,∴p :a >1,不等式ax 2-ax +1>0对∀x ∈R 恒成立,∴a >0且a 2-4a <0,解得0<a <4,∴q :0<a <4.∵“p ∧q ”为假,“p ∨q ”为真,∴p 、q 中必有一真一假.①当p 真,q 假时,⎩⎪⎨⎪⎧ a >1a ≥4,得a ≥4;②当p 假,q 真时,⎩⎪⎨⎪⎧0<a ≤10<a <4,得0<a ≤1.故a 的取值范围为(0,1]∪[4,+∞).课时规范训练 A 组1.C 2.A 3.C 4.-22≤a ≤22 5.a >1 6.綈p 、綈q7.解 由命题p 为真知,0<c <1,由命题q 为真知,2≤x +1x ≤52,要使此式恒成立,需1c <2,即c >12,若p 或q 为真命题,p 且q 为假命题,则p 、q 中必有一真一假,当p 真q 假时,c 的取值范围是0<c ≤12;当p 假q 真时,c 的取值范围是c ≥1. 综上可知,c 的取值范围是⎩⎨⎧⎭⎬⎫c |0<c ≤12或c ≥1.8.解 设g (x )=x 2+2ax +4,由于关于x 的不等式x 2+2ax +4>0对一切x ∈R 恒成立,∴函数g (x )的图象开口向上且与x 轴没有交点,故Δ=4a 2-16<0,∴-2<a <2.又∵函数f (x )=(3-2a )x 是增函数,∴3-2a >1,∴a <1. 又由于p 或q 为真,p 且q 为假,可知p 和q 一真一假.(1)若p 真q 假,则⎩⎪⎨⎪⎧-2<a <2,a ≥1,,∴1≤a <2;(2)若p 假q 真,则⎩⎪⎨⎪⎧a ≤-2或a ≥2,a <1,,∴a ≤-2.综上可知,所求实数a 的取值范围为1≤a <2,或a ≤-2. B 组1.C 2.D 3.D 4.⎣⎡⎦⎤0,12 5.(-∞,1] 6.(-∞,-2]∪[-1,3) 7.①③ 8.解 由2x 2+ax -a 2=0得(2x -a )(x +a )=0, ∴x =a2或x =-a ,∴当命题p 为真命题时⎪⎪⎪⎪a 2≤1或|-a |≤1,∴|a |≤2.又“只有一个实数x 0满足x 20+2ax 0+2a ≤0”,即抛物线y =x 2+2ax +2a 与x 轴只有一个交点,∴Δ=4a 2-8a =0,∴a =0或a =2,∴当命题q 为真命题时,a =0或a =2. ∴命题“p 或q ”为真命题时,|a |≤2,∵命题“p 或q ”为假命题,∴a >2或a <-2. 即a 的取值范围为{a |a >2或a <-2}.§2.1 函数及其表示要点梳理1.(1)数集 任意 唯一确定 y =f (x ),x ∈A (2)定义域 值域 (3)定义域 值域 对应关系 (4)定义域 对应关系2.解析法 图象法 列表法3.都有唯一 一个映射4.函数 非空数集 基础自测1.⎩⎨⎧⎭⎬⎫-2,-12,1,522.①②3.-1 104.23或-1题型分类·深度剖析 例1 (2)(3)变式训练1 解 (1)y =1的定义域为R ,y =x 0的定义域为{x |x ∈R 且x ≠0},∴它们不是同一函数.(2)y =x -2·x +2的定义域为{x |x ≥2},y =x 2-4的定义域为{x |x ≥2或x ≤-2},∴它们不是同一函数.(3)y =x ,y =3t 3=t ,它们的定义域和对应关系都相同,∴它们是同一函数. (4)y =|x |的定义域为R ,y =(x )2的定义域为{x |x ≥0},∴它们不是同一函数.例2 (2) 变式训练2 (1)D (2)A 例3 C 变式训练3 B 例4 0 变式训练4 D 课时规范训练 A 组1.D2.D3.A4.65.16.-347.解 当x ∈[0,30]时,设y =k 1x +b 1,由已知得⎩⎪⎨⎪⎧b 1=030k 1+b 1=2,解得⎩⎪⎨⎪⎧k 1=115b 1=0,∴y =115x .当x ∈(30,40)时,y =2;当x ∈[40,60]时,设y =k 2x +b 2, 由已知得⎩⎪⎨⎪⎧40k 2+b 2=260k 2+b 2=4,解得⎩⎪⎨⎪⎧k 2=110b 2=-2,∴y =110x -2.综上,f (x )=⎩⎨⎧115x , x ∈[0,30]2, x ∈(30,40)110x -2, x ∈[40,60].8.解 当f (x )≤0时,由x 2+2x -3≤0,可得-3≤x ≤1,此时,g (x )=0;当f (x )>0时,由x 2+2x -3>0可得x <-3或x >1,此时g (x )=f (x )=(x +1)2-4.∴g (x )=⎩⎪⎨⎪⎧0 (-3≤x ≤1)(x +1)2-4 (x <-3或x >1),其图象如图所示:B 组1.C2.D3.D4.②④5.(1)a (a 为正整数) (2)166.-27.[-4,2]8.解 (1)∵x =716时,4x =74,∴f 1(x )=⎣⎡⎦⎤74=1,g (x )=74-⎣⎡⎦⎤74=34,∴f 2(x )=f 1[g (x )]=f 1⎝⎛⎭⎫34=[3]=3. (2)∵f 1(x )=[4x ]=1,g (x )=4x -1,∴f 2(x )=f 1(4x -1)=[16x -4]=3,∴⎩⎪⎨⎪⎧1≤4x <2,3≤16x -4<4.∴716≤x <12.§2.2 函数的定义域、值域及函数的解析式要点梳理1.(1)使函数有意义的自变量的取值范围 (3)③R ④R ⑤⎩⎨⎧⎭⎬⎫x |x ∈R 且x ≠k π+π2,k ∈Z⑥{x |x ∈R 且x ≠0}2.(1)函数值 函数值的集合 (2)①R ②⎣⎡⎭⎫4ac -b 24a ,+∞ ⎝⎛⎦⎤-∞,4ac -b 24a ③{y |y ∈R 且y ≠0} ④(0,+∞) ⑤R ⑥[-1,1] ⑦R 基础自测1.[-1,2)∪(2,+∞)2.{x |-3<x <2}3.(0,+∞)4.x 2+1x 2-1(x ≠0)题型分类·深度剖析 例1 (1)⎝⎛⎭⎫-13,1 (2)(-1,1) 变式训练1 (1)A (2)⎣⎡⎦⎤0,34 例2 解 ∵f (2x )的定义域是[-1,1],∴12≤2x ≤2,即y =f (x )的定义域是⎣⎡⎦⎤12,2,由12≤log 2x ≤2⇒2≤x ≤4.∴f (log 2x )的定义域是[2,4].变式训练2 解 ∵f (x )的定义域为[0,4],(1)有0≤x 2≤4,∴-2≤x ≤2,故f (x 2)的定义域为[-2,2];(2)有⎩⎪⎨⎪⎧0≤x +1≤4,0≤x -1≤4,∴1≤x ≤3.故f (x +1)+f (x -1)的定义域为[1,3].例3 解 (1)(配方法) y =x 2+2x =(x +1)2-1,y =(x +1)2-1在[0,3]上为增函数,∴0≤y ≤15,即函数y =x 2+2x (x ∈[0,3])的值域为[0,15].(2)(分离常数法) y =x -3x +1=x +1-4x +1=1-4x +1,∵4x +1≠0,∴1-4x +1≠1,即函数的值域是{y |y ∈R ,y ≠1}.(3)方法一 (换元法) 令1-2x =t ,则t ≥0且x =1-t 22,于是y =1-t 22-t =-12(t +1)2+1,由于t ≥0,∴y ≤12,故函数的值域是⎩⎨⎧⎭⎬⎫y |y ≤12.方法二 (单调性法) 容易判断函数y =f (x )为增函数,而其定义域应满足1-2x ≥0,即x ≤12,∴y ≤f ⎝⎛⎭⎫12=12,即函数的值域是⎩⎨⎧⎭⎬⎫y |y ≤12. (4)(基本不等式法) 函数定义域为{x |x ∈R ,x >0,且x ≠1},当x >1时,log 3x >0, 于是y =log 3x +1log 3x-1≥2log 3x ·1log 3x-1=1;当0<x <1时,log 3x <0,于是y =log 3x +1log 3x -1=-⎣⎢⎡⎦⎥⎤(-log 3x )+⎝ ⎛⎭⎪⎫1-log 3x -1 ≤-2-1=-3.故函数的值域是(-∞,-3]∪[1,+∞).变式训练3 解 (1)方法一 (配方法) ∵y =1-1x 2-x +1,又x 2-x +1=⎝⎛⎭⎫x -122+34≥34, ∴0<1x 2-x +1≤43,∴-13≤y <1,∴函数的值域为⎣⎡⎭⎫-13,1. 方法二 (判别式法) 由y =x 2-xx 2-x +1,x ∈R ,得(y -1)x 2+(1-y )x +y =0.∵y =1时,x ∈∅,∴y ≠1,又∵x ∈R ,∴Δ=(1-y )2-4y (y -1)≥0,解得-13≤y ≤1.综上得-13≤y <1,∴函数的值域为⎣⎡⎭⎫-13,1. (2)方法一 (换元法):设13-4x =t ,则t ≥0,x =13-t 24,于是f (x )=g (t )=2·13-t 24-1-t =-12t 2-t +112=-12(t +1)2+6,显然函数g (t )在[0,+∞)上是单调递减函数,∴g (t )≤g (0)=112,因此原函数的值域是⎝⎛⎦⎤-∞,112. 方法二 (单调性法):函数定义域是⎩⎨⎧⎭⎬⎫x |x ≤134,当自变量x 增大时,2x -1增大,13-4x 减小,∴2x -1-13-4x 增大,因此函数f (x )=2x -1-13-4x 在其定义域上是一个单调递增函数,∴当x =134时,函数取得最大值f ⎝⎛⎭⎫134=112,故原函数的值域是⎝⎛⎦⎤-∞,112. 例4 解 (1)令x +1x =t ,则t 2=x 2+1x 2+2≥4,∴t ≥2或t ≤-2且x 2+1x2=t 2-2,∴f (t )=t 2-2,即f (x )=x 2-2 (x ≥2或x ≤-2).(2)令2x +1=t ,由于x >0,∴t >1且x =2t -1,∴f (t )=lg 2t -1,即f (x )=lg 2x -1 (x >1).(3)设f (x )=kx +b ,∴3f (x +1)-2f (x -1)=3[k (x +1)+b ]-2[k (x -1)+b ]=kx +5k +b =2x +17.∴⎩⎪⎨⎪⎧ k =25k +b =17,即⎩⎪⎨⎪⎧k =2b =7.∴f (x )=2x +7. (4)∵2f (x )+f ⎝⎛⎭⎫1x =3x ,∴2f ⎝⎛⎭⎫1x +f (x )=3x .∴f (x )=2x -1x(x ≠0). 变式训练4 解 (1)令t =x +1,∴t ≥1,x =(t -1)2.则f (t )=(t -1)2+2(t -1)=t 2-1,∴f (x )=x 2-1 (x ≥1).(2)设f (x )=ax 2+bx +c ,又f (0)=c =3,∴f (x )=ax 2+bx +3,∴f (x +2)-f (x )=a (x +2)2+b (x +2)+3-(ax 2+bx +3)=4ax +4a +2b =4x +2.∴⎩⎪⎨⎪⎧ 4a =44a +2b =2,∴⎩⎪⎨⎪⎧a =1b =-1,∴f (x )=x 2-x +3. 课时规范训练 A 组1.C2.B3.C4.C5.(-∞,3]6.⎣⎡⎦⎤2,103 7.[-2,7] 8.解 (1)设f (x )=ax 2+bx +c (a ≠0),又f (0)=0,∴c =0,即f (x )=ax 2+bx ,又f (x +1)=f (x )+x +1.∴a (x +1)2+b (x +1)=ax 2+bx +x +1.∴(2a +b )x +a +b =(b +1)x +1,∴⎩⎪⎨⎪⎧2a +b =b +1a +b =1,解得⎩⎨⎧a =12b =12,∴f (x )=12x 2+12x .(2)由(1)知y =f (x 2-2)=12(x 2-2)2+12(x 2-2)=12(x 4-3x 2+2)=12⎝⎛⎭⎫x 2-322-18, 当x 2=32时,y 取最小值-18,∴函数y =f (x 2-2)的值域为⎣⎡⎭⎫-18,+∞. B 组1.B2.C3.A4.(-1,-910)∪(-910,2] 5.22 6.2837.解 ∵f (x )=12(x -1)2+a -12.∴其对称轴为x =1,即[1,b ]为f (x )的单调递增区间.∴f (x )min =f (1)=a -12=1① f (x )max =f (b )=12b 2-b +a =b②又b >1,由①②解得⎩⎪⎨⎪⎧a =32,b =3.∴a 、b 的值分别为32、3.8.解 (1)∵函数的值域为[0,+∞),∴Δ=16a 2-4(2a +6)=0,∴2a 2-a -3=0,∴a =-1或a =32.(2)∵对一切x ∈R 函数值均为非负,∴Δ=16a 2-4(2a +6)=8(2a 2-a -3)≤0.∴-1≤a ≤32.∴a +3>0,∴g (a )=2-a |a +3|=-a 2-3a +2=-⎝⎛⎭⎫a +322+174 ⎝⎛⎭⎫a ∈⎣⎡⎦⎤-1,32. ∵二次函数g (a )在⎣⎡⎦⎤-1,32上单调递减,∴g ⎝⎛⎭⎫32≤g (a )≤g (-1),即-194≤g (a )≤4. ∴g (a )的值域为⎣⎡⎦⎤-194,4.§2.3 函数的单调性与最值要点梳理1.(1)f (x 1)<f (x 2) f (x 1)>f (x 2) 上升的 下降的 (2)增函数 减函数 区间D2.(1)f (x )≤M (2)f (x 0)=M (3)f (x )≥M (4)f (x 0)=M 基础自测 1.[1,4] 8 2.43,1 3.(-3,0) 4.A 5.C题型分类·深度剖析例1 (1)解 由2f (1)=f (-1),可得22-2a =2+a ,得a =23. (2)证明 任取x 1,x 2∈[0,+∞),且x 1<x 2,f (x 1)-f (x 2)=x 21+1-ax 1-x 22+1+ax 2=x 21+1-x 22+1-a (x 1-x 2)=x 21-x 22x 21+1+x 22+1-a (x 1-x 2)=(x 1-x 2)⎝ ⎛⎭⎪⎪⎫x 1+x 2x 21+1+x 22+1-a . ∵0≤x 1<x 21+1,0<x 2<x 22+1,∴0<x 1+x 2x 21+1+x 22+1<1.又∵a ≥1,∴f (x 1)-f (x 2)>0,∴f (x )在[0,+∞)上单调递减.(3)解 任取1≤x 1<x 2,f (x 1)-f (x 2)=(x 1-x 2)⎝ ⎛⎭⎪⎪⎫x 1+x 2x 21+1+x 22+1-a , ∵f (x )单调递增,∴f (x 1)-f (x 2)<0,又x 1-x 2<0,那么必须x 1+x 2x 21+1+x 22+1-a >0恒成立.∵1≤x 1<x 2⇒2x 21≥x 21+1,2x 22>x 22+1,∴2x 1≥x 21+1,2x 2>x 22+1.相加得2(x 1+x 2)>x 21+1+x 22+1⇒x 1+x 2x 21+1x 22+1>22,∴0<a ≤22. 变式训练1 (1)证明 任设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2).∵(x 1+2)(x 2+2)>0,x 1-x 2<0,∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)内单调递增. (2)解 任设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ). ∵a >0,x 2-x 1>0,∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0恒成立,∴a ≤1. 综上所述知0<a ≤1.例2 解 令u =x 2-3x +2,则原函数可以看作y =12log u 与u =x 2-3x +2的复合函数.令u =x 2-3x +2>0,则x <1或x >2,∴函数y =212log (32)x x -+的定义域为(-∞,1)∪(2,+∞).又u =x 2-3x +2的对称轴x =32,且开口向上.∴u =x 2-3x +2在(-∞,1)上是单调减函数,在(2,+∞)上是单调增函数. 而y =12log u 在(0,+∞)上是单调减函数,∴y =212log (32)x x -+的单调减区间为(2,+∞),单调增区间为(-∞,1).变式训练2 解 令u =x 2+x -6,y =x 2+x -6可以看作有y =u 与u =x 2+x -6的复合函数.由u =x 2+x -6≥0,得x ≤-3或x ≥2.∵u =x 2+x -6在(-∞,-3]上是减函数,在[2,+∞)上是增函数,而y =u 在(0,+∞)上是增函数,∴y =x 2+x -6的单调减区间为(-∞,-3],单调增区间为[2,+∞).例3 (1)证明 方法一 ∵函数f (x )对于任意x ,y ∈R 总有f (x )+f (y )=f (x +y ),∴令x =y =0,得f (0)=0,再令y =-x ,得f (-x )=-f (x ),在R 上任取x 1>x 2,则x 1-x 2>0, f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f (x 1-x 2).又∵x >0时,f (x )<0,而x 1-x 2>0,∴f (x 1-x 2)<0,即f (x 1)<f (x 2),因此f (x )在R 上是减函数. 方法二 设x 1>x 2,则f (x 1)-f (x 2)=f (x 1-x 2+x 2)-f (x 2)=f (x 1-x 2)+f (x 2)-f (x 2)=f (x 1-x 2). 又∵x >0时,f (x )<0,而x 1-x 2>0,∴f (x 1-x 2)<0,即f (x 1)<f (x 2),∴f (x )在R 上为减函数. (2)解 ∵f (x )在R 上是减函数,∴f (x )在[-3,3]上也是减函数, ∴f (x )在[-3,3]上的最大值和最小值分别为f (-3)与f (3).而f (3)=3f (1)=-2,f (-3)=-f (3)=2,∴f (x )在[-3,3]上的最大值为2,最小值为-2. 变式训练3 解 (1)∵当x >0,y >0时,f ⎝⎛⎭⎫x y =f (x )-f (y ),∴令x =y >0,则f (1)=f (x )-f (x )=0.(2)设x 1,x 2∈(0,+∞),且x 1<x 2,则f (x 2)-f (x 1)=f ⎝⎛⎭⎫x 2x 1,∵x 2>x 1>0.∴x 2x 1>1,∴f ⎝⎛⎭⎫x 2x 1>0,∴f (x 2)>f (x 1),即f (x )在(0,+∞)上是增函数. (3)由(2)知f (x )在[1,16]上是增函数.∴f (x )min =f (1)=0,f (x )max =f (16),∵f (4)=2,由f ⎝⎛⎭⎫x y =f (x )-f (y ), 知f ⎝⎛⎭⎫164=f (16)-f (4),∴f (16)=2f (4)=4,∴f (x )在[1,16]上的值域为[2,4]. 课时规范训练 A 组1.B2.D3.A4.[3,+∞)5.①③6.(1,+∞)7.(1)证明 设x 2>x 1>0,设x 2-x 1>0,x 1x 2>0,∵f (x 2)-f (x 1)=⎝⎛⎭⎫1a -1x 2-⎝⎛⎭⎫1a -1x 1=1x 1-1x 2=x 2-x 1x 1x 2>0,∴f (x 2)>f (x 1),∴f (x )在(0,+∞)上是单调递增的.(2)解 ∵f (x )在⎣⎡⎦⎤12,2上的值域是⎣⎡⎦⎤12,2,又f (x )在⎣⎡⎦⎤12,2上单调递增, ∴f ⎝⎛⎭⎫12=12,f (2)=2.∴易得a =25. 8.解 设-1<x 1<x 2<1,则f (x 1)-f (x 2)=ax 1x 21-1-ax 2x 22-1=a (x 2-x 1)(x 1x 2+1)(x 21-1)(x 22-1). ∵-1<x 1<x 2<1,∴x 2-x 1>0,x 21-1<0,x 22-1<0.-1<x 1x 2<1,∴x 1x 2+1>0,∴(x 2-x 1)(x 2x 1+1)(x 21-1)(x 22-1)>0. 因此,当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),此时函数在(-1,1)上为减函数;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),此时函数在(-1,1)上为增函数.B 组1.B2.B3.C4.(-∞,0)∪(1,3]5.a >0且b ≤06.[1,+∞)7.①③④8.解 (1)任取x 1,x 2∈[-1,1],且x 1<x 2,则-x 2∈[-1,1],∵f (x )为奇函数,∴f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f (x 1)+f (-x 2)x 1+(-x 2)·(x 1-x 2),由已知得f (x 1)+f (-x 2)x 1+(-x 2)>0,x 1-x 2<0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).∴f (x )在[-1,1]上单调递增.(2)∵f (x )在[-1,1]上单调递增,∴⎩⎪⎨⎪⎧x +12<1x -1,-1≤x +12≤1,-1≤1x -1≤1.∴-32≤x <-1.(3)∵f (1)=1,f (x )在[-1,1]上单调递增.∴在[-1,1]上,f (x )≤1.问题转化为m 2-2am +1≥1,即m 2-2am ≥0,对a ∈[-1,1]成立,下面来求m 的取值范围. 设g (a )=-2m ·a +m 2≥0.①若m =0,则g (a )=0≥0,对a ∈[-1,1]恒成立.②若m ≠0,则g (a )为a 的一次函数,若g (a )≥0,对a ∈[-1,1]恒成立,必须g (-1)≥0,且g (1)≥0, ∴m ≤-2,或m ≥2,∴m 的取值范围是m =0或m ≥2或m ≤-2.§2.4 函数的奇偶性与周期性要点梳理1.f (-x )=f (x ) f (-x )=-f (x ) 2.(1)相同 相反 (2)①奇函数 ②偶函数 ③奇函数 3.(1)f (x ) (2)存在一个最小 基础自测1.132.②③3.-9 4.(-1,0)∪(1,+∞) 5.C 题型分类·深度剖析例1 解 (1)由⎩⎪⎨⎪⎧9-x 2≥0x 2-9≥0,得x =±3,∴f (x )的定义域为{-3,3}.又f (3)+f (-3)=0,f (3)-f (-3)=0,即f (x )=±f (-x ).∴f (x )既是奇函数,又是偶函数. (2)由⎩⎪⎨⎪⎧1-x 1+x ≥01+x ≠0,得-1<x ≤1.∵f (x )的定义域(-1,1]不关于原点对称,∴f (x )既不是奇函数,也不是偶函数.(3)由⎩⎪⎨⎪⎧4-x 2≥0|x +3|-3≠0,得-2≤x ≤2且x ≠0,∴f (x )的定义域为[-2,0)∪(0,2],关于原点对称.∴f (x )=4-x 2(x +3)-3=4-x 2x,∴f (x )=-f (-x ),∴f (x )是奇函数. 变式训练1 解 (1)由1-x1+x>0⇒-1<x <1,定义域关于原点对称.又f (-x )=lg 1+x 1-x =lg ⎝ ⎛⎭⎪⎫1-x 1+x -1=-lg 1-x1+x =-f (x ),故原函数是奇函数. (2)由2+x2-x≥0且2-x ≠0⇒-2≤x <2,定义域关于原点不对称,故原函数是非奇非偶函数. (3)函数定义域为(-∞,0)∪(0,+∞),关于原点对称,又当x >0时,f (x )=x 2+x ,则当x <0时,-x >0,故f (-x )=x 2-x =f (x );当x <0时,f (x )=x 2-x ,则当x >0时,-x <0,故f (-x )=x 2+x =f (x ),故原函数是偶函数.(4)由⎩⎪⎨⎪⎧1-x 2>0,|x 2-2|-2≠0得定义域为(-1,0)∪(0,1),关于原点对称,∴f (x )=lg (1-x 2)-(x 2-2)-2=-lg (1-x 2)x 2. ∵f (-x )=-lg[1-(-x )2](-x )2=-lg (1-x 2)x 2=f (x ),∴f (x )为偶函数.例2 解 (1)令x =y =0⇒f (0)=0,令y =-x ,则f (x )+f (-x )=0⇒f (-x )=-f (x )⇒f (x )在(-1,1)上是奇函数.(2)设0<x 1<x 2<1,则f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f ⎝⎛⎭⎪⎫x 1-x 21-x 1x 2,而x 1-x 2<0,0<x 1x 2<1⇒x 1-x 21-x 1x 2<0⇒f ⎝ ⎛⎭⎪⎫x 1-x 21-x 1x 2>0,即当0<x 1<x 2<1时,f (x 1)>f (x 2),∴f (x )在(0,1)上单调递减.(3)由于f ⎝⎛⎭⎫12-f ⎝⎛⎭⎫15=f ⎝⎛⎭⎫12+f ⎝⎛⎭⎫-15=f ⎝ ⎛⎭⎪⎫12-151-12×5=f ⎝⎛⎭⎫13, 同理,f ⎝⎛⎭⎫13-f ⎝⎛⎭⎫111=f ⎝⎛⎭⎫14,f ⎝⎛⎭⎫14-f ⎝⎛⎭⎫119=f ⎝⎛⎭⎫15,∴f ⎝⎛⎭⎫12-f ⎝⎛⎭⎫111-f ⎝⎛⎭⎫119=2f ⎝⎛⎭⎫15=2×12=1. 变式训练2 解 ∵y =f (x )为奇函数,且在(0,+∞)上为增函数, ∴y =f (x )在(-∞,0)上也是增函数,且由f (1)=0得f (-1)=0.若f [x (x -12)]<0=f (1),则⎩⎨⎧x (x -12)>0x (x -12)<1即0<x (x -12)<1,解得12<x <1+174或1-174<x <0.若f [x (x -12)]<0=f (-1),则⎩⎨⎧x (x -12)<0x (x -12)<-1,由x (x -12)<-1,解得x ∈∅.∴原不等式的解集是{x |12<x <1+174或1-174<x <0}.例3 (1)证明 ∵f (x +2)=-f (x ),∴f (x +4)=-f (x +2)=f (x ).∴f (x )是周期为4的周期函数.(2)解 ∵x ∈[2,4],∴-x ∈[-4,-2],∴4-x ∈[0,2],∴f (4-x )=2(4-x )-(4-x )2=-x 2+6x -8,又f (4-x )=f (-x )=-f (x ), ∴-f (x )=-x 2+6x -8,即f (x )=x 2-6x +8,x ∈[2,4].(3)解 ∵f (0)=0,f (2)=0,f (1)=1,f (3)=-1.又f (x )是周期为4的周期函数,∴f (0)+f (1)+f (2)+f (3)=f (4)+f (5)+f (6)+f (7)=…=f (2 008)+f (2 009)+f (2 010)+f (2 011)=0,∴f (0)+f (1)+f (2)+…+f (2 011)=0. 变式训练3 2.5 课时规范训练 A 组1.B2.A3.B4.A5.-16.-1 7.-38.解 (1)当a =0时,f (x )=x 2,f (-x )=f (x ) ,函数是偶函数.当a ≠0时,f (x )=x 2+ax (x ≠0,常数a ∈R ),取x =±1,得f (-1)+f (1)=2≠0;f (-1)-f (1)=-2a ≠0,∴f (-1)≠-f (1),f (-1)≠f (1). ∴函数f (x )既不是奇函数也不是偶函数.(2)若f (1)=2,即1+a =2,解得a =1,这时f (x )=x 2+1x ,任取x 1,x 2∈[2,+∞),且x 1<x 2,则f (x 1)-f (x 2)=(x 21+1x 1)-⎝⎛⎭⎫x 22+1x 2=(x 1+x 2)(x 1-x 2)+x 2-x 1x 1x 2=(x 1-x 2)⎝⎛⎭⎫x 1+x 2-1x 1x 2. 由于x 1≥2,x 2≥2,且x 1<x 2,∴x 1-x 2<0,x 1+x 2>1x 1x 2,∴f (x 1)<f (x 2), 故f (x )在[2,+∞)上是单调递增函数. B 组1.A2.C3.B4.(1)(2)(3) 5.0 6.②③⑤7.(1)证明 由函数f (x )的图象关于直线x =1对称,有f (x +1)=f (1-x ),即有f (-x )=f (x +2).又函数f (x )是定义在R 上的奇函数,故有f (-x )=-f (x ).故f (x +2)=-f (x ). 从而f (x +4)=-f (x +2)=f (x ),即f (x )是周期为4的周期函数. (2)解 由函数f (x )是定义在R 上的奇函数,有f (0)=0. x ∈[-1,0)时,-x ∈(0,1],f (x )=-f (-x )=--x ,故x ∈[-1,0]时,f (x )=--x .x ∈[-5,-4]时,x +4∈[-1,0],f (x )=f (x +4)=--x -4.从而,x ∈[-5,-4]时,函数f (x )=--x -4.8.解 (1)∵对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2),∴令x 1=x 2=1,得f (1)=2f (1),∴f (1)=0.(2)令x 1=x 2=-1,有f (1)=f (-1)+f (-1),∴f (-1)=12f (1)=0.令x 1=-1,x 2=x 有f (-x )=f (-1)+f (x ),∴f (-x )=f (x ),∴f (x )为偶函数.(3)依题设有f (4×4)=f (4)+f (4)=2,由(2)知,f (x )是偶函数,∴f (x -1)<2⇔f (|x -1|)<f (16). 又f (x )在(0,+∞)上是增函数.∴0<|x -1|<16,解之得-15<x <17且x ≠1. ∴x 的取值范围是{x |-15<x <17且x ≠1}.§2.5 二次函数要点梳理 1.(2)①ax 2+bx +c (a ≠0) ②a (x -m )2+n (a ≠0) ③a (x -x 1)(x -x 2) (a ≠0) 基础自测 1.2 2.[1,2] 3.6 4.(-∞,-2] 5.B 题型分类·深度剖析例1 解 方法一 设f (x )=ax 2+bx +c (a ≠0),依题意有⎩⎨⎧4a +2b +c =-1,a -b +c =-1,4ac -b24a =8,解之,得⎩⎪⎨⎪⎧a =-4,b =4,c =7,,∴所求二次函数为y =-4x 2+4x +7.方法二 设f (x )=a (x -m )2+n ,a ≠0,∵f (2)=f (-1),,∴抛物线对称轴为x =2+(-1)2=12.∴m =12,又根据题意函数有最大值为n =8,∴y =f (x )=a ⎝⎛⎭⎫x -122+8. ∵f (2)=-1,∴a ⎝⎛⎭⎫2-122+8=-1,解之,得a =-4.∴f (x )=-4⎝⎛⎭⎫x -122+8=-4x 2+4x +7. 方法三 依题意知:f (x )+1=0的两根为x 1=2,x 2=-1,故可设f (x )+1=a (x -2)(x +1),a ≠0.即f (x )=ax 2-ax -2a -1.又函数有最大值y max =8,即4a (-2a -1)-a24a=8,解之,得a =-4或a =0(舍去).∴函数解析式为f (x )=-4x 2+4x +7.变式训练1 解 (1)设顶点为P (3,4)且过点A (2,2)的抛物线的方程为y =a (x -3)2+4,将(2,2)代入可得a =-2,∴y=-2(x -3)2+4,即x >2时,f (x )=-2x 2+12x -14.当x <-2时,即-x >2,又f (x )为偶函数,f (x )=f (-x )=-2×(-x )2-12x -14, 即f (x )=-2x 2-12x -14.∴函数f (x )在(-∞,-2)上的解析式为f (x )=-2x 2-12x -14.(2)函数f (x )的图象如图:(3)由图象可知,函数f (x )的值域为(-∞,4].例2 解 (1)当a =-2时,f (x )=x 2-4x +3=(x -2)2-1,由于x ∈[-4,6],∴f (x )在[-4,2]上单调递减,在[2,6]上单调递增,∴f (x )的最小值是f (2)=-1,又f (-4)=35,f (6)=15,故f (x )的最大值是35.(2)由于函数f (x )的图象开口向上,对称轴是x =-a ,∴要使f (x )在[-4,6]上是单调函数,应有-a ≤-4或-a ≥6,即a ≤-6或a ≥4.(3)当a =1时,f (x )=x 2+2x +3,∴f (|x |)=x 2+2|x |+3,此时定义域为x ∈[-6,6],且f (x )=⎩⎪⎨⎪⎧x 2+2x +3,x ∈(0,6]x 2-2x +3,x ∈[-6,0],∴f (|x |)的单调递增区间是(0,6],单调递减区间是[-6,0].变式训练2 解 f (x )=-4⎝⎛⎭⎫x -a 22-4a ,对称轴为x =a2,顶点为⎝⎛⎭⎫a 2,-4a . ①当a2≥1,即a ≥2时,f (x )在区间[0,1]上递增.∴y max =f (1)=-4-a 2.令-4-a 2=-5,∴a =±1<2(舍去).②当0<a 2<1,即0<a <2时,y max =f ⎝⎛⎭⎫a 2=-4a ,令-4a =-5,∴a =54∈(0,2). ③当a2≤0,即a ≤0时,f (x )在区间[0,1]上递减,此时f (x )max =f (0)=-4a -a 2.令-4a -a 2=-5,即a 2+4a -5=0,∴a =-5或a =1(舍去).综上所述,a =54或a =-5.例3 解 (1)由f (0)=1得,c =1.∴f (x )=ax 2+bx +1.又f (x +1)-f (x )=2x ,∴a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x ,即2ax +a +b =2x ,∴⎩⎪⎨⎪⎧ 2a =2,a +b =0,∴⎩⎪⎨⎪⎧a =1b =-1.因此,f (x )=x 2-x +1.(2)f (x )>2x +m 等价于x 2-x +1>2x +m ,即x 2-3x +1-m >0,要使此不等式在[-1,1]上恒成立,只需使函数g (x )=x 2-3x +1-m 在[-1,1]上的最小值大于0即可.∵g (x )=x 2-3x +1-m 在[-1,1]上单调递减,∴g (x )min =g (1)=-m -1,由-m -1>0得,m <-1. 因此满足条件的实数m 的取值范围是(-∞,-1). 变式训练3 解 (1)∵f (x )=x 2+mx +n ,∴f (-1+x )=(-1+x )2+m (-1+x )+n =x 2-2x +1+mx +n -m =x 2+(m -2)x +n -m +1, f (-1-x )=(-1-x )2+m (-1-x )+n =x 2+2x +1-mx -m +n =x 2+(2-m )x +n -m +1. 又f (-1+x )=f (-1-x ),∴m -2=2-m ,即m =2.又f (x )的图象过点(1,3), ∴3=12+m +n ,即m +n =2,∴n =0,∴f (x )=x 2+2x ,又y =g (x )与y =f (x )的图象关于原点对称,∴-g (x )=(-x )2+2×(-x ),∴g (x )=-x 2+2x . (2)∵F (x )=g (x )-λf (x )=-(1+λ)x 2+(2-2λ)x ,当λ+1≠0时,F (x )的对称轴为x =2-2λ2(1+λ)=1-λλ+1,又∵F (x )在(-1,1]上是增函数.∴⎩⎪⎨⎪⎧ 1+λ<01-λ1+λ≤-1或⎩⎪⎨⎪⎧1+λ>01-λ1+λ≥1,∴λ<-1或-1<λ≤0.当λ+1=0,即λ=-1时,F (x )=4x 显然在(-1,1]上是增函数. 综上所述,λ的取值范围为(-∞,0]. 课时规范训练 A 组1.D2.A3.B4.y =12(x -2)2-1 5.0≤m ≤146.0或-17.解 f (x )=(x -a )2+a -a 2,当a <-1时,f (x )在[-1,1]上为增函数,∴⎩⎪⎨⎪⎧ f (-1)=1+3a =-2,f (1)=1-a =2⇒a =-1(舍去);当-1≤a ≤0时,⎩⎪⎨⎪⎧f (a )=a -a 2=-2,f (1)=1-a =2⇒a =-1; 当0<a ≤1时,⎩⎪⎨⎪⎧f (a )=a -a 2=-2,f (-1)=1+3a =2⇒a 不存在;当a >1时,f (x )在[-1,1]上为减函数,∴⎩⎪⎨⎪⎧f (-1)=1+3a =2,f (1)=1-a =-2⇒a 不存在.综上可得a =-1.8.解 (1)∵f (x )满足f (1+x )=f (1-x ),∴f (x )的图象关于直线x =1对称. 而二次函数f (x )的对称轴为x =-b2a ,∴-b2a=1.① 又f (x )=x 有等根,即ax 2+(b -1)x =0有等根,∴Δ=(b -1)2=0.②由①②得b =1,a =-12.∴f (x )=-12x 2+x .(2)∵f (x )=-12x 2+x =-12(x -1)2+12≤12,如果存在满足要求的m ,n ,则必需3n ≤12,∴n ≤16.从而m <n ≤16<1,而x ≤1,f (x )单调递增,∴⎩⎨⎧f (m )=-12m 2+m =3mf (n )=-12n 2+n =3n ,可解得m =-4,n =0满足要求.∴存在m =-4,n =0满足要求. B 组1.D2.B3.C4.⎝⎛⎭⎫2,525.0<a ≤146.⎣⎡⎦⎤1,31277.[1,+∞)8.证明 (1)由于f (x )=x 2+(2t -1)x +1-2t .∴f (x )=1⇔(x +2t )(x -1)=0,(*)∴x =1是方程(*)的根,即f (1)=1,因此x =1是f (x )=1的实根,即f (x )必有实根. (2)当12<t <34时,f (-1)=3-4t >0,f (0)=1-2t =2⎝⎛⎭⎫12-t <0. f ⎝⎛⎭⎫12=14+12(2t -1)+1-2t =34-t >0,又函数f (x )的图象连续不间断.因此f (x )=0在区间(-1,0)及⎝⎛⎭⎫0,12上各有一个实根.§2.6 指数与指数函数要点梳理1.(1)a 的n 次方根 根式 根指数 被开方数 (2)①n a ②n a - n a ± na ③a④a ⎩⎪⎨⎪⎧a (a ≥0)-a (a <0)2.(1)②1 ③1a p ④n a m ⑤1a m n 1na m ⑥0 没有意义 (2)①a r +s ②a rs ③a r b r3.(1)R (2)(0,+∞) (3)(0,1) (4)y >1 0<y <1 (5)0<y <1 y >1 (6)增函数 (7)减函数 基础自测1.(1)x 23 (2)(a +b )34 (3)m 52 2.7 3.(-2,-1)∪(1,2) 4.3 5.B题型分类·深度剖析例1 解 (1)原式=23278-⎛⎫- ⎪⎝⎭+121500-⎛⎫ ⎪⎝⎭-105-2+1=23827⎛⎫- ⎪⎝⎭+12500-10(5+2)+1=49+105-105-20+1=-1679. (2)原式=5-2-1-(5-2)2=(5-2)-1-(5-2)=-1.(3)原式=1122323311233ba b a b ab a -⎛⎫ ⎪⎝⎭=3111111226333a b +-++--=ab -1. 变式训练1 解 (1)原式=1323⎛⎫⎪⎝⎭×1+()1342×142+(132×123)6-1323⎛⎫⎪⎝⎭=2+4×27=110. (2)令13a =m ,13b =n ,则原式=m 4-8mn 3m 2+2mn +4n 2÷⎝⎛⎭⎫1-2n m ·m =m (m 3-8n 3)m 2+2mn +4n 2·m 2m -2n=m 3(m -2n )(m 2+2mn +4n 2)(m 2+2mn +4n 2)(m -2n )=m 3=a . 例2 (1)D (2)0<a <1、b <0 (3)1 变式训练2 (1)A(2)解 函数y =|3x -1|的图象是由函数y =3x 的图象向下平移一个单位后,再把位于x 轴下方的图象沿x 轴翻折到x 轴 上方得到的,函数图象如图所示.当k <0时,直线y =k 与函数y =|3x -1|的图象无交点,即方 程无解;当k =0或k ≥1时,直线y =k 与函数y =|3x -1|的 图象有唯一的交点,∴方程有一解;当0<k <1时,直线y =k 与函数y =|3x -1|的图象有两个不同交点,∴方程有两解. 例3 解 令t =a x (a >0且a ≠1),则原函数化为y =(t +1)2-2 (t >0). ①当0<a <1时,x ∈[-1,1],t =a x ∈⎣⎡⎦⎤a ,1a ,此时f (t )在⎣⎡⎦⎤a ,1a 上为增函数. ∴f (t )max =f ⎝⎛⎭⎫1a =⎝⎛⎭⎫1a +12-2=14,∴⎝⎛⎭⎫1a +12=16,∴a =-15或a =13. 又∵a >0,∴a =13.②当a >1时,x ∈[-1,1],t =a x ∈⎣⎡⎦⎤1a ,a ,此时f (t )在⎣⎡⎦⎤1a ,a 上是增函数. ∴f (t )max =f (a )=(a +1)2-2=14,解得a =3(a =-5舍去). 综上得a =13或3.变式训练3 解 (1)当x <0时,f (x )=0,无解;当x ≥0时,f (x )=2x -12x ,由2x -12x =32,得2·22x -3·2x -2=0,看成关于2x 的一元二次方程,解得2x =2或-12,∵2x >0,∴x =1.(2)当t ∈[1,2]时,2t ⎝⎛⎭⎫22t -122t +m ⎝⎛⎭⎫2t -12t ≥0,即m (22t -1)≥-(24t -1),∵22t -1>0, ∴m ≥-(22t +1),∵t ∈[1,2],∴-(22t +1)∈[-17,-5], 故m 的取值范围是[-5,+∞). 课时规范训练 A 组1.B2.D3.D4.m <n5.16.12或327.-2。

高中数学步步高大一轮复习讲义文科压轴题目突破练解析几何

高中数学步步高大一轮复习讲义文科压轴题目突破练解析几何
A组 专项基础训练
1
2
3
4
5
6
7
8
9 10
Evaluation only. eated with Aspose.Slides for .NET 3.5 Client Profile 5.2.0
Copyright 2004-2011 Aspose Pty Ltd.
练出高分
A组 专项基础训练
1
2
3
4
5
则椭圆 E 的离心率为
( A)
A.
5 3
B.23 EvaluCa.tio32n only.D.13
eated解w析ith由A题sp意os可e知.S,lid∠eFs1fPoFr2 .是N直ET角3,.5且Client Profile 5.2.0 tan∠PCFo1Fp2=yr2ig,h∴t ||2PPFF0120||=4-22,0又1|1PFA1|s+p|oPFse2| Pty Ltd.
解析 设C点opPy(xr0i,ghy0t).20依0题4意 -2得01,1焦A点spFo(2s,e0),Pty Ltd.
x0+2=5, y20=8x0,
于是有 x0=3,y20=24;
a2+b2=4, a92-2b42=1, 由此解得 a2=1,b2=3, 因此该双曲线的渐近线方程是 y=±bax=± 3x.
0 的距离等于 1,则半径 r 的取值范围是
(A )
A.(4,6)
B.[4,6)
C.(4,6]
D.[4,6]
解 析 因 为 圆 心 (3E,va-lu5)a到tio直n线on4lxy-. 3y - 2 = 0 的 距 离 为 eated|4×w3it-hC34oA×2+pspy-3ro2i5gs-eh.t2S|2l=i0d50e,4s -f2o0r1.N1EATsp3o.5seClPietyntLtPdr.ofile 5.2.0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解 f′(x)=xe-a(x>0). ①若a≤0,则f′(x)>0,f(x)在(0,+∞)上单调递增; ②若 a>0,则当 0<x<ae时,f′(x)>0,当 x>ae时,f′(x)<0, 故 f(x)在0,ae上单调递增,在ae,+∞上单调递减.
(2)当a=e时,证明:xf(x)-ex+2ex≤0.
∴ln x0=21x0-32, ∴当x∈(0,x0)时,g′(x)<0; 当x∈(x0,+∞)时,g′(x)>0, ∴g(x)的单调递减区间为(0,x0),单调递增区间为(x0,+∞), ∴g(x)min=g(x0)=(2x0-1)ln x0+x0 =(2x0-1)21x0-32+x0 =52-2x0-21x0, 令 m(x)=25-2x-21x,x∈12,1
证明 因为x>0, 所以只需证 f(x)≤exx-2e, 当a=e时,由(1)知,f(x)在(0,1)上单调递增,在(1,+∞)上单调递减.
所以f (x)max=f (1)=-e, 记 g(x)=exx-2e(x>0),则 g′(x)=x-x21ex,
所以当0<x<1时,g′(x)<0,g(x)单调递减,当x>1时,g′(x)>0,g(x)单调递增,
证明 令g(x)=f(x)+2x=(2x-1)ln x+x,
则g(x)的定义域为(0,+∞),
g′(x)=2ln x+2x-x 1+1=2ln x-1x+3, 令 h(x)=2ln x-1x+3, 则 h′(x)=2x+x12>0, ∴h(x)在(0,+∞)上是增函数,h(1)=2>0,h21=1-ln 4<0, ∴∃x0∈12,1,使 h(x0)=0, 即 g′(x0)=2ln x0-x10+3=0,
∴存在 x0∈12,1,使得 G(x0)=0,即x10- ex0 =0.
当x∈(0,x0)时,G(x)>0, ∴F′(x)>0,F(x)为增函数; 当x∈(x0,+∞)时,G(x)<0, ∴F′(x)<0,F(x)为减函数.
∴F(x)≤F(x0)=ln x0+x0-x0 ex0 +1, 又∵x10- ex0=0,∴x10= ex0,即 ln x0=-x0,
所以g(x)min=g(1)=-e, 综上,当x>0时,f(x)≤g(x), 即 f(x)≤exx-2e,即 xf(x)-ex+2ex≤0.
思维升华
SI WEI SHENG HUA
(1)利用导数证明不等式的基本思路是依据函数的单调性,求得函数的最值, 然后由f (x)≤f (x)max或f (x)≥f (x)min证得不等式. (2)证明f (x)>g(x),可以构造函数h(x)=f (x)-g(x),然后利用h(x)的最值证明不 等式. (3)若直接求导比较复杂或无从下手时,可将待证式进行变形分拆,构造两个 函数,从而找到可以传递的中间量,达到证明的目的.
∴F(x0)=0,即F(x)≤0,∴f(x)≤g(x).
题型二 答题模板 不等式恒成立问题
例3 (12分)(2019·全国Ⅰ)已知函数f (x)=2sin x-xcos x-x,f′(x)为f (x)的 导数. (1)证明:f′(x)在区间(0,π)上存在唯一零点; (2)若x∈[0,π]时,f(x)≥ax,求a的取值范围.
大一轮复习讲义
高考专题突破一 高考中的导数应用问题
第1课时 导数与不等式
题型一 多维探究 证明不等式
命题点1 构造函数法 例1 (2020·皖南八校联考)已知函数f(x)=(2x-1)ln x-x. (1)求函数f(x)的零点个数;
解 f(x)的定义域为(0,+∞), f′(x)=2ln x+2x-x 1-1=2ln x+1-1x, f′(1)=0, ∴当0<x<1时,f′(x)<0;当x>1时,f′(x)>0, ∴f (x)的单调递增区间为(1,+∞),单调递减区间为(0,1),
跟踪训练1 (1)设函数f(x)=ln x-x+1. ①讨论f (x)的单调性;
解 由题设知,f(x)的定义域为(0,+∞), f′(x)=1x-1,令 f′(x)=0,解得 x=1. 当0<x<1时,f′(x)>0,f(x)单调递增;当x>1时,f′(x)<0,f(x)单调递减.
②证明:当 x∈(1,+∞)时,1<xl-n x1<x.
证明 由①知,f(x)在x=1处取得极大值也为最大值,最大值为f(1)=0.
所以当x≠1时,ln x<x-1.
故当 x∈(1,+∞)时,ln x<x-1,ln 1x<1x-1,

x-1 1< ln x <x.
(2)已知函数f(x)=ln x+x,g(x)=x·ex-1,求证:f(x)≤g(x).
证明 令F(x)=f(x)-g(x)=ln x+x-xex+1(x>0), 则 F′(x)=1x+1-ex-xex=1+x x-(x+1)ex=(x+1)1x-ex. 令 G(x)=1x-ex,可知 G(x)在(0,+∞)上为减函数,
规范解答 (1)证明 f′(x)=cos x+xsin x-1, 令g(x)=cos x+xsin x-1,则g′(x)=xcos x,
∵当 x∈0,π2时,g′(x)>0;当 x∈π2,π时,g′(x)<0, ∴g(x)在0,π2上单调递增,在π2,π上单调递减, 又 g(0)=1-1=0,gπ2=π2-1>0, g(π)=-1-1=-2, 即当 x∈0,π2时,g(x)>0,此时 g(x)无零点, 即f′(x)无零点.
∵f (1)=-1<0,f e12=e22-1ln e12-e12=-2e22-1-e12=2-e52>0, ∴f(x)在e12,1内有 1 个零点, ∵f(e)=(2e-1)ln e-e=e-1>0, ∴f (x)在(1,e)内有1个零点, ∴f (x)有两个零点.
(2)求证:f(x)+2x>0.
则 m′(x)=-2+21x2=1-2x42x2=1+2x2x21-2x≤0 在21,1上恒成立, ∴m(x)在21,1上是减函数,
∴x∈12,1时,m(x)>m(1)=25-2-21=0, ∴g(x)min>0已知函数f(x)=eln x-ax(a∈R). (1)讨论f(x)的单调性;
相关文档
最新文档