人教版八年级下册 第二十章 数据的分析解题方法 知识点总结
人教版八年级下册 第20章 数据的分析 整章复习讲义

第20章数据的分析整章复习知识点1 算术平均数1.一组数据2,3,6,8,11的平均数是.2.西安市某一周的日最高气温(单位:℃)分别为35,33,36,33,32,32,37,这周的日最高气温的平均数是℃.3.2015年至2019年某城市居民的汽车拥有量依次为11,13,15,19,x(单位:万辆),若这五个数的平均数为16,则x的值为.4.已知1,2,3,4,x1,x2,x3的平均数是8,那么x1+x2+x3的值为.知识点2 加权平均数1.某学习小组共有学生5人,在一次数学测验中,有2人得85分,2人得90分,1人得70分,该学习小组的平均分为分.2.某水果店销售11元,18元,24元三种价格的水果,根据水果店一个月这三种水果销售量的统计图(如图),可计算出该店当月销售出水果的平均价格是元.3.某招聘考试分笔试和面试两种,其中笔试按60%、面试按40%计算加权平均数作为总成绩.小明笔试成绩为90分,面试成绩为85分,那么小明的总成绩为分.4.某市号召居民节约用水,为了解居民用水情况,随机抽查了20户家庭某月的用水量,结果如下表:则这20户家庭的该月平均用水量为吨.5.一种什锦糖由价格12,16,20(单位:元/千克)的三个品种的糖果混合而成,三种糖果的比例为5∶2∶3,则什锦糖的价格应为元/千克.知识点3中位数与众数1.某8种食品所含的热量值分别为120,134,120,119, 126,120,118,124,则这组数据的众数为.2.五名学生一分钟跳绳的次数分别为189,195,163,184,201,该组数据的中位数是.3.已知一组数据4,x,5,y,7,9的平均数为6,众数为5,则这组数据的中位数是.4.一组数据1,3,2,7,x,2,3的平均数是3,则该组数据的众数为.5.广州市某中学组织数学速算比赛,5个班级代表队的正确答题数如图,则这5个正确答题数所组成的一组数据的中位数是.6.2018年国家将扩大公共场所免费上网范围,某小区响应号召调查小区居民上网费用情况,随机抽查了20户家庭的月上网费用,结果如下表:.知识点4方差的计算及应用1.某排球队6名场上队员的身高(单位:cm)是180,184, 188,190,192,194.现用一名身高为186 cm的队员换下场上身高为192 cm的队员,与换人前相比,场上队员的身高()A.平均数变小,方差变小B.平均数变小,方差变大C.平均数变大,方差变小D.平均数变大,方差变大2.从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是s2甲=1.5,s2乙=2.6,s2丙=3.5,s2丁=3.68,你认为派谁去参赛更合适()A.甲B.乙C.丙D.丁3.样本数据1,2,3,4,5,则这个样本的方差是.4.甲、乙两名运动员进行了5次百米赛跑测试,两人的平均成绩都是13.3秒,而s2甲=3.7,s2乙=6.25,则两人中成绩较稳定的是.5.市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):(2)分别计算甲、乙六次测试成绩的方差;(3)根据(1),(2)计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.6.为了从甲、乙两名学生中选拔一人参加今年六月份的全县中学生数学竞赛,每个月对他们的学习水平进行一次测验,如图是两人赛前5次测验成绩的折线统计图.(1)分别求出甲、乙两名学生5次测验成绩的平均数及方差;(2)如果你是他们的辅导教师,应选派哪一名学生参加这次数学竞赛.请结合所学统计知识说明理由.知识点5数据的分析综合题1.学校准备从甲、乙两位选手中选择一位选手代表学校参加所在地区的汉字听写大赛,学校对两位选手从表达能力、阅读理解、综合素质和汉字听写四个方面做了测试,他们各自的成绩(百分制)如下表:从他们的这一成绩看,应选派谁?(2)如果表达能力、阅读理解、综合素质和汉字听写分别赋予它们2,1,3和4的权,请分别计算两名选手的平均成绩,从他们的这一成绩看,应选派谁?2.甲、乙两人在5次打靶测试中命中的环数如下:甲:88789乙:597109(1)填写下表:(2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么?(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差(填“变大”“变小”或“不变”).3.某校要从八年级一班和二班中各选取10名女同学组成礼仪队,选取的两班女生的身高如下:(单位:厘米)一班:168167170165168166171168167170二班:165167169170165168170171168167(1)补充完成下面的统计分析表:(2)请选一个合适的统计量作为选择标准,说明哪一个班能被选取.4.某校八年级学生开展踢毽子比赛活动,每班派5名同学参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀,如下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个).统计发现两班总分相等,此时有同学建议,可以通过考查数据中的其他信息作为参考,请你解答下列问题:(1)计算两班的优秀率;(2)求两班比赛数据的中位数;(3)两班比赛数据的方差哪一个小?(4)根椐以上三条信息,你认为应该把冠军奖状发给哪一个班?简述理由.第二十章数据的分析◆知识点1算术平均数1.62.343.224.46◆知识点2加权平均数1.842.15.33.884.5.55.15.2◆知识点3中位数与众数1.1202.1893.5.54.35.156.100元,105元 ◆知识点4 方差的计算及应用 1.A 2.A 3.2 4.甲5.解:(1)甲的平均成绩是(10+8+9+8+10+9)÷6=9, 乙的平均成绩是(10+7+10+10+9+8)÷6=9.(2)甲的方差=16×[(10-9)2+(8-9)2+(9-9)2+(8-9)2+(10-9)2+(9-9)2]=23. 乙的方差=16×[(10-9)2+(7-9)2+(10-9)2+(10-9)2+(9-9)2+(8-9)2]=43. (3)推荐甲参加省比赛更合适,理由如下:两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适.6.解:(1)根据折线图的数据可得x 甲=15×(65+80+80+85+90)=80, x 乙=1×(70+90+85+75+80)=80,s 甲2=15×(152+0+0+52+102)=70,s 乙2=15×(102+102+52+52+0)=50.(2)分析可得甲、乙两人成绩的平均数相等,但乙的成绩方差小,故比较稳定,选乙参加. ◆知识点5 数据的分析综合题 1.解:(1)x 乙=(73+80+82+83)÷4=79.5,∵80.25>79.5,∴应选派甲.(2)x 甲=(85×2+78×1+85×3+73×4)÷(2+1+3+4)=79.5, x 乙=(73×2+80×1+82×3+83×4)÷(2+1+3+4)=80.4,∵79.5<80.4,∴应选派乙.2.解:(1)甲:8 乙:8 9(2)因为他们的平均数相等,而甲的成绩的方差小,发挥比较稳定,所以选择甲参加射击比赛. (3)变小3.解:(1)一班:3.2 二班:168 (2)选择方差做标准,∵一班方差<二班方差,∴一班能被选取.4.解:(1)甲班的优秀率是35×100%=60%;乙班的优秀率是25×100%=40%.(2)甲班5名学生比赛成绩的中位数为100个; 乙班5名学生成绩的中位数为97个.(3)x 甲=15×500=100(个),x 乙=15×500=100(个);s 甲2=15×[(100-100)2+(98-100)2+(110-100)2+(89-100)2+(103-100)2]=46.8,s 乙2=15×[(89-100)2+(100-100)2+(95-100)2+(119-100)2+(97-100)2]=103.2.(4)因为甲班5人比赛成绩的优秀率比乙班高、中位数比乙班大、方差比乙班小,应该把冠军奖状发给甲班.11/ 11。
人教版八年级数学下册第二十章数据的分析小结(教案)

-方差、标准差的计算与应用:这两个指标是描述数据离散程度的关键,要使学生理解其在实际中的应用。
-方差:重点讲解方差计算公式,强调每个数据值与平均数差的平方在方差计算中的重要性。
-标准差:介绍标准差是方差的平方根,使学生理解标准差在数据标准化描述中的作用。
1.培养学生运用数据分析解决问题的能力,增强数据处理和数学建模的核心素养。
2.提高学生运用平均数、中位数、众数等描述数据集中趋势的能力,理解并运用方差、标准差描述数据离散程度。
3.培养学生制作频数分布表、绘制频数分布直方图的能力,提升几何直观和数据分析素养。
4.引导学生在实际问题中发现数学规律,培养逻辑思维和问题解决能力,增强数学应用意识。
五、教学反思
在今天的教学中,我尝试通过生活中的实例导入新课,希望以此激发学生对数据分析的兴趣。在讲解平均数、中位数、众数等基本概念时,我注意引导学生理解这些指标在描述数据集中趋势时的作用。同时,通过具体案例的分析,让学生感受到数据分析在实际中的应用价值。
在新课讲授过程中,我发现学生在理解方差、标准差等概念时存在一定难度。为了突破这个难点,我采用了举例和比较的方法,帮助他们理解这些指标在描述数据离散程度方面的意义。在实践活动中,学生们分组讨论并进行了实验操作,这有助于巩固他们对数据分析方法的理解。
3.重点难点解析:在讲授过程中,我会特别强调平均数、中位数、众数的计算方法和应用场景。对于难点部分,如方差的计算,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与数据分析相关的实际问题,如“如何选择合适的统计指标来描述班级同学的体育成绩”。
2019人教版数学八年级下册第二十章 数据的分析《数据的分析》知识点归纳与经典例题

八年级数学《数据的分析》知识点归纳与经典例题1.理解统计学的几个基本概念总体、个体、样本、样本容量是统计学中特有的规定,准确把握教材,明确所考查的对象是解决有关总体、个体、样本、样本容量问题的关键。
2.平均数当给出的一组数据,都在某一常数a 上下波动时,一般选用简化平均数公式'x x a =+,其中a 是取接近于这组数据平均数中比较“整”的数;•当所给一组数据中有重复多次出现的数据,常选用加权平均数公式。
3.众数与中位数平均数、众数、中位数都是用来描述数据集中趋势的量。
平均数的大小与每一个数据都有关,任何一个数的波动都会引起平均数的波动,当一组数据中有个数据太高或太低,用平均数来描述整体趋势则不合适,用中位数或众数则较合适。
中位数与数据排列有关,个别数据的波动对中位数没影响;当一组数据中不少数据多次重复出现时,可用众数来描述。
4.极差用一组数据中的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,极差=最大值-最小值。
5.方差与标准差用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,计算公式是s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2];方差和标准差都是反映一组数据的波动大小的一个量,其值越大,波动越大,也越不稳定或不整齐。
【能力训练】一、填空题:1.甲、乙、丙三台包装机同时分装质量为400克的茶叶.从它们各自分装的茶叶中分别随机抽取了10盒,测得它们的实际质量的方差如下表所示:2.甲、乙、丙三台机床生产直径为60mm 的螺丝,为了检验产品质量,从三台机床生产的螺丝中各抽查了20个测量其直径,进行数据处理后,发现这三组数据的平均数都是60mm,它们的方差依次为S 2甲=0.162,S 2乙=0.058,S 2丙=0.149.根据以上提供的信息,你认为生产螺丝质量最好的是__ __机床。
人教版八年级数学下册第二十章数据的分析【知识梳理素材】

第二十章数据的分析【知识梳理】第20章数据的分析20.1 数据的集中趋势算术平均数(1)平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.加权平均数平均数的计算方法中位数将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.中位数仅与数据的排列位置有关,某些数据的移动对中位数没有影响,中位数可能出现在所给数据中也可能不在所给的数据中出现,当一组数据中的个别数据变动较大时,可用中位数描述其趋势.众数一组数据中出现次数最多的数据叫做众数.求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.众数不易受数据中极端值的影响.众数也是数据的一种代表数,反映了一组数据的集中程度,众数可作为描述一组数据集中趋势的量..20.2 数据的波动程度极差概念:一组数据中的最大数据与最小数据的差叫做这组数据的极差。
即极差=最大值-最小值.意义:能够反映数据的变化范围,是最简单的一种度量数据波动情况的量,极差越大,波动越大。
极差的优势在于计算简单,但它受极端值的影响较大.方差概念:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.计算方差的方法:(1)基本公式:(2)简化计算公式(Ⅰ):此公式的记忆方法是:方差等于原数据平方的平均数减去平均数的平方。
(3)简化计算公式(Ⅱ):意义:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.20.3 课题学习体质健康测试中的数据分析统计量的选择(1)一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定.但这并不是绝对的,有时多数数据相对集中,整体波动水平较小,但个别数据的偏离仍可能极大地影响极差、方差或标准差的值.从而导致这些量度数值较大,因此在实际应用中应根据具体问题情景进行具体分析,选用适当的量度刻画数据的波动情况,一般来说,只有在两组数据的平均数相等或比较接近时,才用极差、方差或标准差来比较两组数据的波动大小.(2)平均数、众数、中位数和极差、方差在描述数据时的区别:平均数:表示数据的总体水平中位数:表示数据的中等水平众数:表示数据的普遍情况方差、标准差:表示数据的离散程度,方差更能反映情况。
八年级数学下册第二十章数据的分析知识点归纳新版新人教版

第二十章数据的分析知识点,数据的代表:平均数、众数、中位数、极差、方差知识点详解:1.解统计学的几个根本概念总体、个体、样本、样本容量是统计学中特有的规定,准确把握教材,明确所考杏的对象是解决有关总体、个体、样木、样本容堂问题的关键。
2. 平均数a上下波动时,一般选用简化平均数公式[=;+々,其中a是取接近于这组数据平均数中比拟'整”的数:当所给一组数据中有成夏屡次出现的数据,常选用加权平均数公式。
3. 众数与中位数平均数、众数、中位数都是用来描述数据集中趋势的堂。
平均数的大小与每一个数据都有关,任何一个数的波动都会引起平均数的波动.当一组数据中有个数据太高或太低. 用平均数来描述整体趋势那么不适宜,用中位数或众数那么较适宜•中位数与数据排列有关,个别数据的波动对中位数没影响:当一组数据中不少数据屡次垂复出现时,可用众数来描述。
4 .极差用一•组数据中的最大值;成去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,极差=最大值一最小值。
5. 方差与标准差用“光平均.再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,计算公式是1s s=n [(xi-x)2+(X2-x)>...t(Xn-x)2].方差是反映一组数据的波动大小的一个拉・其值越大,波动越大,也越不稳定或不整齐。
一、选择题1. 一组数据3, 5. 7, m, n的平均数是6,那么m, n的平均数是()A.6B.7C. 7.5D. 152. 小华的数学平时成绩为92分,期中成绩为90分,期末成绒为96分,假设按3: 3: 4的比例计算总评成绩,那么小华的数学总评成绩应为()A. 92B. 93C. 963. 关于•组数据的平均数、中位数、众数.以下说法中正确的选项是()A.平均数,定是这组数中的某个数B.中位数一定是这组数中的某个数C.众数一定是这组数中的某个数D.以上说法都不对4. 某小组在一次测试中的成绩为x 86, 92, 84, 92, 85, 85, 86, 94, 92, 83,那么这个小组本次测试成绩的中位数是()A. 85B. 86C. 925. 某人上山的平均速度为35,沿原路下山的平均速度为5km/h,上山用lh,那么此人上下山的平均速度为(〉A. 4 km/hB. 3. 75 km/hC. 3.5 km/hD. 4.5 km/h6. 在校冬季运动会上,有15名选手参加了200成绩各不相同,某选手要想知道自己是否进入决界,只需要了解自己的成绩以及全部成绩的()A.平均数B.中位数C.众数D.以上都可以二、填空题,(每题6分,共42分〉7. 将9个数据从小到大排列后,第 __________ 个数是这组数据的中位数8. 如果一组数据4. 6, x. 7的平均数是5.那么x = _________________ ・9. 己知一组数据:5, 3. 6. 5, 8. 6, 4, lh那么它的众数是__________________ .中位数是________ .10. 一组数据12, 16, 11, 17. 13, x的中位数是14,那么、= _______________________ .H.那么这组数据的平均数是________ ,中位数是 _________ ,众数是 _________ ・12. 某小组10个人在一次数学小测试中,有3个人的平均成绩为96,其余7个人的平均成绩为86,那么这个小组的本次测试的平均成绩为_____________________ .13. 为了了解某立交桥段在四月份过往车辆承载情况,连续id录了6天的车流量(单位:千WH): 3. 2, 3.4, 3, 2. 8. 3.4, 7,那么这个月该桥过往车辆的总数大约为_____________________辆.第二十章数据的分析知识点*选用恰当的数据分析数据知识点详解,-:5个根本统计量(平均数、众数、中位数、极差、方差)的数学内涵:平均数:把一组数据的总和除以这组数据的个数所得的商。
人教版八年级下册第二十章数据的分析经典题型总结(77张ppt)

使用寿命 600≤x 1 000≤x 1 400≤x 1 800≤x 2 200≤x x/h <1 000 <1 400 <1 800 <2 200 <2 600
灯泡只数
5
10
12
17
6
解:据上表得各小组的组中值,于是
x = 800 5+1200 10+1600 12+2000 17+2400 6 50
数据的分析经典题型总结
一.利用加权平均数解答实际问题
一次演讲比赛中,评委将从演讲内容,演讲能力,演讲效 果三个方面为选手打分,各项成绩均按百分制,然后再按演讲 内容占50%,演讲能力占40%,演讲效果占10%的比例,计算 选手的综合成绩(百分制).进入决赛的前两名选手的单项成 绩如下表所示:
选手 演讲内容 演讲能力 演讲效果
解:x 0.8 0.9 1.2 1.3 0.8 0.9 1.11.0 1.2 0.8 1 10
1×20000×70%=14000(千克). 答:这塘鱼的产量是14000千克.
某班学生期中测试数学成绩各分数段人数统计表如下:
分数段 40≤x<60 60≤x<80 80≤x<100 100≤x≤120
A
85
95
95
请确定两人的名次. B
95
85
95
选手 演讲内容 演讲能力 演讲效果
A
85
95
95
B
95
权
50%
85 40%
95 10%
解:选手A的最后得分是
8550% 95 40% 9510% 42.5 38 9.5 90, 50% 40% 10%
八年级数学下册第二十章数据的分析重点知识归纳(带答案)

八年级数学下册第二十章数据的分析重点知识归纳单选题1、数据10,3,a,7,5的平均数是6,则a等于().A.3B.4C.5D.6答案:C分析:利用平均数的计算公式进行计算即可.=6,解得:a=5;解:由题意得:10+3+a+7+55故选C.小提示:本题考查平均数.熟练掌握平均数的计算方法:数据总和÷数据个数是解题的关键.2、某篮球队10名队员的年龄结构如表,已知该队队员年龄的中位数为21.5,则众数与方差分别为()答案:D分析:先根据数据的总个数及中位数得出x=3、y=2,再利用众数和方差的定义求解可得.∵共有10个数据,∴x+y=5,又该队队员年龄的中位数为21.5,即2.15=21+22,2∴x=3、y=2,=22,则这组数据的众数为21,平均数为19+20+21×3+22×2+24×2+2610×[(19﹣22)2+(20﹣22)2+3×(21﹣22)2+2×(22﹣22)2+2×(24﹣22)2+(26﹣22)2]=4,所以方差为110故选D.小提示:本题主要考查中位数、众数、方差,熟练掌握方差的计算公式、根据中位数的定义得出x、y的值是解题的关键.3、一组数据40,37,x,64的平均数是53,则x的值是()A.67B.69C.71D.72答案:C分析:根据求平均数公式即得出关于x的等式,解出x即可.根据题意可知40+37+x+644=53,解得:x=71.故选C.小提示:本题考查已知一组数据的平均数,求未知数据的值.掌握求平均数的公式是解题关键.4、甲、乙两名运动员的10次射击成绩(单位:环)如图所示,甲、乙两名运动员射击成绩的平均数依次记为x甲,x乙,射击成绩的方差依次记为s甲2,s乙2,则下列关系中完全正确的是()A.x甲=x乙,s甲2>s乙2B.x甲=x乙,s甲2<s乙2C.x甲>x乙,s甲2>s乙2D.x甲<x乙,s甲2<s乙2答案:A分析:分别计算平均数和方差后比较即可得到答案.解:(1)x甲=110(8×4+9×2+10×4)=9;x 乙=110(8×3+9×4+10×3)=9;s甲2=110[4×(8﹣9)2+2×(9﹣9)2+4×(10﹣9)2]=0.8;s乙2=110[3×(8﹣9)2+4×(9﹣9)2+3×(10﹣9)2]=0.7;∴x甲=x乙,s甲2>s乙2,故选:A.小提示:本题考查了方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5、五名同学捐款数分别是5,3,6,5,10(单位:元),捐10元的同学后来又追加了10元.追加后的5个数据与之前的5个数据相比,集中趋势相同的是()A.只有平均数B.只有中位数C.只有众数D.中位数和众数答案:D分析:分别计算前后数据的平均数、中位数、众数,比较即可得出答案.(5+3+6+5+10)=5.8;解:追加前的平均数为:15从小到大排列为3,5,5,6,10,则中位数为5;5出现次数最多,众数为5;追加后的平均数为:1(5+3+6+5+20)=7.8;5从小到大排列为3,5,5,6,20,则中位数为5;5出现次数最多,众数为5;综上,中位数和众数都没有改变,故选:D.小提示:本题为统计题,考查了平均数、众数与中位数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是一组数据中出现次数最多的数据,注意众数可以不只一个.6、小红在班上做节水意识调查,收集了班上7位同学家里上个月的用水量(单位:吨)如下:5,5,6,7,8,9,10.她发现,若去掉其中两个数据后,这组数据的中位数、众数保持不变,则去掉的两个数可能是()A.5,10B.5,9C.6,8D.7,8答案:C分析:先求出已知数组的中位数和众数,再根据中位数和众数的定义逐项判断即可.数列5,5,6,7,8,9,10的众数是5,中位数是7,去掉两个数后中位数和众数保持不变,据此逐项判断:A项,去掉5之后,数列的众数不再是5,故A项错误;B项,去掉5之后,数列的众数不再是5,故B项错误;C项,去掉6和8之后,新数列的中位数和众数依旧保持不变,故C项正确;D项,去掉7和8之后,新数列的中位数为6,发生变化,故D项错误,故选:C.小提示:本题考查了中位数和众数的知识,掌握中位数和众数的定义是解答本题的关键.7、某市在一次空气污染指数抽查中,收集到10天的数据如下:61,75,70,56,81,91,92,91,75,81,该组数据的中位数是()A.78B.81C.91D.77.3答案:A分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.解:将这组数据重新排列为:56、61、70、75、75、81、81、91、91、92,=78,则其中位数为75+812故选:A.小提示:本题考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.8、在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x;去掉一个最低分,平均分为y;同时去掉一个最高分和一个最低分,平均分为z,则()A.y>z>x B.x>z>y C.y>x>z D.z>y>x答案:A分析:根据题意,可以判断x、y、z的大小关系,从而可以解答本题.由题意可得,去掉一个最低分,平均分为y最大,去掉一个最高分,平均分为x最小,其次就是同时去掉一个最高分和一个最低分,平均分为z即y>z>x,故选:A.小提示:此题主要考查了平均数的大小判断,分别确定各种情况的平均值是解答此题的关键.9、在音乐比赛中,常采用“打分类制”,经常采用这样的办法来得到一名选手的最后成绩:将所有评委的打分组成一组数据,去掉一个最高分和一个最低分,得到一组新的数据,再计算平均分.假设评委不少于10人,则比较两组数据,一定不会发生变化的是()A.平均数B.中位数C.众数D.方差答案:B分析:去掉一个最高分和最低分后不会对数据的中间的数产生影响,即中位数.统计每位选手得分时,会去掉一个最高分和一个最低分,这样做不会对数据中间的数产生影响,即中位数故选B.小提示:本题考查了统计量的选择,解题的关键在于理解这些统计量的意义.10、某班级共有41人,在一次体质测试中,有1人未参加集体测试,老师对集体测试的成绩按40人进行了统计,得到测试成绩分数的平均数是88,中位数是85.缺席集体测试的同学后面进行了补测,成绩为88分,关于该班级41人的体质测试成绩,下列说法正确的是()A.平均数不变,中位数变大B.平均数不变,中位数无法确定C.平均数变大,中位数变大D.平均数不变,中位数变小答案:B分析:平均数是指在一组数据中所有数据之和再除以数据的个数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,依此计算即可求解.解:∵缺席集体测试的同学的成绩和其他40人的平均数相同,都是88分,∴该班41人的测试成绩的平均分为88分不变,中位数是从小到大第21个人的成绩,原来是第20个和第21个人成绩的平均数,中位数可能不变,可能变大,故中位数无法确定.故选:B.小提示:本题考查中位数,算术平均数等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.填空题11、如图为某校男子足球队的年龄分布条形图,这些队员年龄的平均数为____,中位数为____.答案:15.5 15分析:根据条形分布图的数据求得平均数,将数据从小到大排列,按照中位数的定义即可找到中位数.解:这些队员年龄的平均数=13×2+14×6+15×8+16×3+17×2+18×1=15.52+6+8+3++1这些队员年龄的中位数:共20人,第10和11两位数的平均数是中位数,∴中位数为15小提示:本题考查了条形统计图,平均数,中位数,读懂统计图是解题的关键.12、东门某商场试销一种新款衬衫,一周内销售情况如下表所示:________.(填“平均数”或“中位数”或“众数”)答案:众数分析:根据众数的概念进行求解即可;解:对商场经理来说,知道哪一种型号的销售量最多,是最有意义的;∴对商场经理来说最有意义的是众数;所以答案是:众数.小提示:本题主要考查众数的概念,掌握众数的概念是解题的关键.13、如图,在边长为4的等边△ABC中,D,E分别为AB,BC的中点,EF⊥AC于点F,G为EF的中点,连接DG ,则DG 的长为__________.答案:√192分析:连接DE ,根据题意可得ΔDEG 是直角三角形,然后根据勾股定理即可求解DG 的长.解:连接DE ,∵D 、E 分别是AB 、BC 的中点,∴DE ∥AC ,DE=12AC .∵ΔABC 是等边三角形,且BC=4,∴∠DEB=60°,DE=2.∵EF ⊥AC ,∠C=60°,EC=2,∴∠FEC=30°,EF=√3.∴∠DEG=180°-60°-30°=90°.∵G 是EF 的中点,∴EG=√32.在RtΔDEG 中,DG=√DE 2+EG 2=√22+(√32)2=√192. 故答案为√192. 小提示:本题主要考查了等边三角形的性质,勾股定理以及三角形中位线性质定理,记住和熟练运用性质是解题的关键.14、如图是根据甲、乙两人5次射击的成绩(环数)制作的折线统计图.你认为谁的成绩较为稳?________(填“甲”或“乙”)答案:甲分析:先分别求出甲乙的平均数,再求出甲乙的方差,由方差越小成绩越稳定做出判断即可.=(7+6+9+6+7)÷5=7(环),解:x̅甲x̅=(5+9+6+7+8)÷5=7(环),乙=[(7﹣7)2+(6﹣7)2+(9﹣7)2+(6﹣7)2+(7﹣7)2]÷5=1.2,s2甲s2=[(5﹣7)2+(9﹣7)2+(6﹣7)2+(7﹣7)2+(8﹣7)2]÷5=2,乙∵1.2<2,∴甲的成绩较为稳定,所以答案是:甲.小提示:本题考查平均数、方差、折线统计图,会求一组数据的平均数、方差,会根据方差判断一组数据的稳定性是解答的关键.15、在一组数据1, 0, 4, 5, 8中插入一个数据x,使该组数据中位数为3,则插入数据x的值为________.答案:2分析:根据中位数的定义得到数据-1,0,4,5,8中插入一个数据x,共有6个数,最中间的数只能为x和4,然后根据计算它们的中位数为3求出x.解:∵数据-1,0,4,5,8中插入一个数据x,∴数据共有6个数,而4为中间的一个数,∵该组数据的中位数是3,∴x+4=3,2解得x=2.所以答案是:2.小提示:本题考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.解答题16、绵阳某公司销售统计了每个销售员在某月的销售额,绘制了如下折线统计图和扇形统计图:设销售员的月销售额为x(单位:万元).销售部规定:当x<16时,为“不称职”,当16≤x<20时为“基本称职”,当20≤x<25时为“称职”,当x≥25时为“优秀”.根据以上信息,解答下列问题:(1)补全折线统计图和扇形统计图;(2)求所有“称职”和“优秀”的销售员销售额的中位数和众数;(3)为了调动销售员的积极性,销售部决定制定一个月销售额奖励标准,凡月销售额达到或超过这个标准的销售员将获得奖励.如果要使得所有“称职”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为多少万元(结果去整数)?并简述其理由.答案:(1)补全统计图如图见解析;(2)“称职”的销售员月销售额的中位数为:22万,众数:21万;“优秀”的销售员月销售额的中位数为:26万,众数:25万和26万;(3)月销售额奖励标准应定为22万元.分析:(1)根据称职的人数及其所占百分比求得总人数,据此求得不称职、基本称职和优秀的百分比,再求出优秀的总人数,从而得出销售 26 万元的人数,据此即可补全图形.(2)根据中位数和众数的定义求解可得;(3)根据中位数的意义求得称职和优秀的中位数即可得出符合要求的数据.(1)依题可得:“不称职”人数为:2+2=4(人),“基本称职”人数为:2+3+3+2=10(人),“称职”人数为:4+5+4+3+4=20(人),∴总人数为:20÷50%=40(人),∴不称职”百分比:a=4÷40=10%,“基本称职”百分比:b=10÷40=25%,“优秀”百分比:d=1-10%-25%-50%=15%,∴“优秀”人数为:40×15%=6(人),∴得26分的人数为:6-2-1-1=2(人),补全统计图如图所示:(2)由折线统计图可知:“称职”20万4人,21万5人,22万4人,23万3人,24万4人,“优秀”25万2人,26万2人,27万1人,28万1人;“称职”的销售员月销售额的中位数为:22万,众数:21万;“优秀”的销售员月销售额的中位数为:26万,众数:25万和26万;(3)由(2)知月销售额奖励标准应定为22万.∵“称职”和“优秀”的销售员月销售额的中位数为:22万,∴要使得所有“称职”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为22万元.小提示:考查频数分布直方图、扇形统计图、中位数、众数等知识,解题的关键是灵活运用所学知识解决问题.17、甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如图所示的尚不完整的统计图表(其中图①中“10分”所在扇形圆心角为90°).甲校成绩统计表人数11 0 8(1)在图1中,求“7分”所在扇形的圆心角度数:并将2的统计图补充完整;(2)经计算,乙校的平均分是8.3分,中位数是8分,请求出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好;(3)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?答案:(1)144°,图见解析(2)甲的平均数为8.3分,中位数为7分;乙的平均数为8.3分,中位数为8分;乙校成绩较好;(3)甲校分析:(1)求出“7分”占的百分比,乘以360即可得到结果,根据“7分”的人数除以占的百分比求出总人数,确定出“8分”的人数,补全条形统计图即可;(2)分别求出甲乙两校的平均分、中位数,比较即可得到结果;(3)利用两校满分人数,比较即可得到结果.(1)解:根据题意得:“7分”所在扇形的圆心角等于360°×(1−25%−20%−15%)=144°;8÷40%=20(人),则得“8分”的人数为20×15%=3(人),补全条形统计图,如图所示:(2)×(7×11+8×0+9×1+10×8)=8.3(分),中位数为7分;解:甲校:平均分为120乙校:平均分为:1×(7×8+8×3+9×4+10×5)=8.3(分),中位数为8分,20平均数相同,乙校中位数较大,故乙校成绩较好;(3)解:因为甲校有8人满分,而乙校有5人满分,应该选择甲校.小提示:本题考查了条形统计图,扇形统计图,以及中位数,平均数,弄清题意是解本题的关键.18、2021年,全世界自然灾害形势严峻,洪水、地震等不仅给人们的财产带来巨大损失,更是威胁着人们的生命安全.保护生态环境即是保护民生,功在当代,利在千秋;做好综合环境治理,协调人与自然的关系,以求人和自然和谐相处迫在眉急.近日,某校组织了一场关于防自然灾害的知识讲座,并在讲座后进行了满分为100分的“防自然灾害知识测评”,为了了解学生的测评情况,该校在七、八年级中分别抽取了50名学生的分数进行整理分析,已知分数x均为整数,且分为A,B,C,D,E五个等级,分别是A:90≤x≤100;B:80≤x<90;C:70≤x<80;D:60≤x<70;E:0≤x<60.并给出了部分信息:【一】八年级D等级的学生人数占八年级抽取人数的20% ;七年级C等级中最低的10个分数分别为:70,70,72,73,73,73,74,74,75,75;【二】两个年级学生防自然灾害知识测评分数统计图:【三】两个年级学生防自然灾害知识测评分数样本数据的平均数、中位数、众数如下:= =(2)根据以上数据,你认为在此次测评中,哪一个年级的学生对防自然灾害知识掌握较好?请说明理由(说明一条即可).(3)若分数不低于90分表示该生对防自然灾害知识测评等级为优秀,且该校七年级有1000人,八年级有1200人,请估计该校七、八年级所有学生中,对防自然灾害知识测评等级为优秀的学生共有多少人?答案:(1)74,32,补全条形统计图见解析(2)八年级的学生对防自然灾害知识掌握较好,理由见解析(3)估计该校七、八年级所有学生中,对防自然灾害知识测评等级为优秀的学生共有400人分析:(1)根据题意和统计图中的数据、表格中的数据可以分别得到a、m的值,根据八年级D等级的学生人数占七年级抽取人数的20%求出八年级D等级的学生人数,再求出E等级的学生人数,即可补全条形统计图;(2)根据表格中的数据,由中位数和众数的大小判断即可;(3)分别求出该校七、八年级不低于90分的人数,再相加即可求解.(1)解:根据题意,由七年级学生防自然灾害知识测评分统计图可知,(1−16%−16%−4%)÷2=32%,∴m=32,七年级学生中,测评成绩A级有50×16%=8人,B级有50×16%=8人,C级有50×32%=16人,D级有50×32%=16人,E级有50×4%=2人,测评成绩按从小到大排列,其中第25、26位为C级中74、74两个成绩,可知七年级测评成绩中位数为a=74+74=74,2所以答案是:74,32;八年级D等级的学生人数为:50×20%=10人,E等级的学生人数为:50﹣10﹣12﹣16﹣10=2人,故补全条形统计图如图:(2)解:八年级的学生对防自然灾害知识掌握较好.理由如下:虽然七、八年级测评成绩的平均数相同,但是八年级测评成绩的中位数和众数较高,因此八年级的测评成绩较好;=400(人)(3)解:1000×16%+1200×1050答:估计该校七、八年级所有学生中,对防自然灾害知识测评等级为优秀的学生共有400人.小提示:本题考查用样本估计总体、统计图、中位数、众数等知识,解答本题的关键是明确题意,灵活运用所学知识解答问题.。
数学人教版八年级下册第20章数据的分析小结

第20章数据的分析章末小结本节说明:本课是全章的回顾与复习,是在学习完本章内容后,回顾数据的收集、整理、描述、分析的过程,整理数据分析相关的概念及其关系,建立统计知识之间的联系,综合运用统计知识解决实际问题,再次感悟样本估计总体的思想.学习目标:1.会计算平均数、中位数、众数和方差;2.进一步理解平均数、中位数、众数和方差的统计意义,能根据问题的实际需要选择合适的量表示数据的集中趋势和波动程度;3.经历数据处理的基本过程,体会用样本估计总体的思想;4.实际感受本章在中考中所占的分量,展示近几年中考题.学习重点:分析数据的集中趋势和波动程度,体会样本估计总体的思想.学习难点:完整而准确地做好不同类型的中考题.学习过程:复习回顾,系统提升若n个数x,x,…x的个数分别是练习回顾,系统提升1.某市在开展节约用水活动中,对某小区200户居民家庭用水情况进行统计分析,其中3月份比2月份节约用水情况如下表所示:请问:(1) 抽取的200户家庭节水量的平均数是______,中位数是______,众数是_______.(2) 根据以上数据,估计某市100万户居民家庭3月份比2月份的节水量是_________.老课堂练习,直面中考1. (2014开封一模)某班级第一小组7名同学积极捐出自己的零花钱支持地震灾区,他们捐款的数额分别是(单位:元)50,20,50,30,25,50,55,这组数据的众数和中位数分别是()A、50元,20元B、50元,40元C、50元,50元D、50元,30元2、(2014开封二模)已知样本数据0,1,6,2,1下列说法不正确的是()A、中位数是6B、平均数是 2C、众数是1D、极差是63、(2013河南中考)在一次体育测试中,小芳所在小组8人的成绩分别是:40,47,48,48,49,49,49,50,则这8人体育成绩的中位数是()A、47B、48C、48.5D、494、(2012河南中考)某校九年级8位同学一分钟跳绳的次数排序后如下:150,164,168,168,172,176,183,185,则由这组数据得到的结论中错误的是()A、中位数为170B、众数为168C、极差为35D、平均数为1705、(2011河南中考)某农科所对甲、乙两种小麦各选用10块面积相同的试验田进行种植试验,它们的平均亩产量分别是610千克,608千克,亩产量的方差分别是29.6,27,则关于两种小麦推广种植的合理决策是()A、甲的平均亩产量较高,应推广甲B、甲乙的平均亩产量相差不多,均可推广C、甲的平均亩产量较高,且亩产量比较稳定应推广甲D、甲乙的平均亩产量相差不多,但乙的亩产量较稳定,应推广乙6、(2014开封一模)7、(2014开封二模)8、(2013河南中考)9、(2012河南中考)10、(2011河南中考)反思小结,完善认知一种思想:样本估计总体的统计思想两个公式:加权平均数和方差的计算公式四个概念:加权平均数、中位数、众数、方差多种方法……课外作业,升华思维必做题:教材第136~137页复习题20第4、 5、6、7题.选做题:教材第137页复习题20第9题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年最新研究数据分析的解题策略
一、平均数:
1、加权平均数:
若n 个数n x x x x ...,,,321的权分别是n a a a a ,...,,,321,则有 n
a x a x a x a x x n n ++++=...222211叫这n 个数的加权平均数。
2、当权为1时,就是我们小学学的算术平均数: 若n 个数n x x x x ...,,,321的权1...321=====n a a a a ,则有n
x x x x x n ++++=...221叫这n 个数的算术平均数。
注:实际上小学学的就是加权平均数,只不过权都是1.
3、权的表现形式:
百分数、频数、频率、个数、人数、比例等都代表权。
4、一个小组的组中值=2
最小值最大值+(两端点数的平均数);小组中的极差=最大值-最小值。
5、若数据n x x x x 、、
、、...321的平均数是x ,则新数据b ax b ax b ax b ax ++++4321...、、、、的平均数是b x a +。
6、权可反映数据的相对“重要程度”,要突出某个数据,只需赋予较大的权,权的差异对结果产生直接影响。
7、比赛打分情况:求平均数,需要去掉最高分和最低分,再求平均数,才是平均分。
8、常用样本平均数估计总体平均数。
主要是:利用已知的数据求出平均数,再根据题要求,按月、总数等类似于权一
样的数据,就可以得出整体平均数,即可继续依题意解题。
9、平均数和加权平均数:
①都反映一组数据的集中趋势的“特征数”
②因权不同,加权平均数更能反映数据真实性。
10、平均数描述的是一组数据平均水平,受极端值影响很大,数据中任何一个数据变动都会影响平均数的变动。
二、中位数:
1、求法:
①将n 个数由小到大(由大到小)排序,相同数排在一起,不可算作一个数据。
②当n 为奇数时,第21+n
个为中位数,当n 为偶数时,第
2n 个和第⎪⎭
⎫ ⎝⎛+12n 个数的平均数为中位数。
2、中位数描述数据集中趋势,代表数据值大小的“中点”,不易受极端值影响,但不可利用所有数据信息。
三、众数:
反应一组数据中出现次数最多的数据。
注意:
①共同点:三者都反映数据的集中趋势的特征数。
平均数反映整体数集中,中位数反映中间数,众数反映最多数。
②一组数据中,判断好坏,一般看平均分高低,当平均分相同时,看中位数,中位数相同时,看众数。
四、数据的波动程度:
1、方差:
若有n 个数n x x x x ,...,,,321,各个数据与它们的平均数x 的差的平方是()()()()2
32221,...,,,x x x x x x x x n ----,它们的平均数就是方差:n S 1
2=[()()()()2
3222
1...x x x x x x x x n -++-+-+-] ①求方差步骤:先求平均数,再求差,然后求平方,最后再求平均数即可,简记:方差等于差方的平均数。
②▲切记权不可平方。
③一般小题中,可演算求差,直接写答案,以防繁琐。
④▲若出现相同数据,则数出个数作为权,并乘以差方数,这样可以简化过程。
2、方差越大,波动越大,方差越小,波动越小,越稳定。
图像波动越大方差越大,波动越小方差越小,越稳定。
3、一组数据中每个数都相等,方差为0
4、方差是用来描述数据波动情况的特征数;▲平均数与数据的差越小,差的平方就小,方差就小,反之亦然。
5、在两组数据平均数相等或比较接近时,才用方差来比较两组数据的波动大小。
(▲因其他情况方差越小不一定稳定)
6、标准差:2s ,
7、原来方差为2S ,每个数据都乘以或除以a ,平均数也乘以或除以a ,则方差变为22s a 或2
a s
8、原数据每个数据都加或减去数a ,平均数也相应的加或减去数a ,但方差不会改变。