九年级数学上册(人教版)课件:书22.1.1 二次函数
合集下载
人教版九年级数学上册第22.1.1节《二次函数》课本+练习

人教版九年级数学上册第22.1.1节《二次函数》课本+微课视频+练习
电子课本
▼▼▼▼
微课视频
微课视频1:
更的多精彩视频,同学们可以选择观看哦!
名师视频2:
名师课堂视频3:
同步练习
22.1.1 二次函数
知识点:1.二次函数的定义:一般地,形如的函数,叫做二次函数,其中是,分别是函数表达式的,,。
2.当时,这个函数还是二次函数吗?为什么?或能为0吗?
一、选择题:
3.已知函数m是常数.
(1)若这个函数是一次函数,求的值;
(2)若这个函数是二次函数,求的值。
4.汽车在行驶中,由于惯性作用刹车后还要向前滑行一段路程才能停止,我们称这段路程为“刹车距离”。
已知某种汽车的刹车距离y(m)与车速x(km/h)之间有如下关系:当司机小张以80 km/h的速度行驶时,发现前方
大约60m处有一障碍物阻塞了道路,于是小张紧急刹车,问汽车是否撞到障碍物?
1
参考答案
22.1.1 二次函数
知识点:
,自变量,二次项系数,一次项系数,常数项.
一.选择题 1.B 2.D 3. B 4. D 5. D 6. A。
人教版九年级上册数学课件 第二十二章 二次函数 第1课时 二次函数y=ax2+k的图象和性质 (2)

y= 3x-3, 析式为 y= 3 x-3.联立直线 DC 与抛物线的解析式可得y=13x2-3, 解得
x1=0, y1=-3,
yx22==63,3,
所以 M1(3
3 ,6);
②如图,若点 M2 在点 B 下方,设 M2C 交 x 轴于点 E,易得∠OEC=45 °-15°=30°,易得 OE=3 3 .
15.(10分)(云南中考)已知k是常数,抛物线y=x2+(k2+k-6)x+3k的对称 轴是y轴,并且与x轴有两个交点.
(1)求k的值; (2)若点P在抛物线y=x2+(k2+k-6)x+3k上,且P到y轴的距离是2,求点P 的坐标. 解:(1)∵抛物线y=x2+(k2+k-6)x+3k的对称轴是y轴,∴k2+k-6=0, 解得k1=-3,k2=2,又∵抛物线y=x2+(k2+k-6)x+3k与x轴有两个交点, ∴3k<0,∴k=-3 (2)∵点P在抛物线y=x2-9上,且P到y轴的距离是2,∴点P的横坐标为2或 -2,当x=2时,y=-5,当x=-2时,y=-5.∴P(2,-5)或P(-2,-5)
(1)求m的值; (2)求函数y=ax2+b(a≠0)的解析式; (3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐 标;若不存在,请说明理由.
解:(1)将(0,-3)代入y=x+m,可得m=-3
(2)将 y=0 代入 y=x-3 得 x=3,所以点 B 的坐标为(3,0).
将(0,-3),(3,0)代入
人教版
第二十二章 二次函数
22.1 二次函数的图象和性质
22.1.3 二次函数y=a(x-h)2+k的图象和性质 第1课时 二次函数y=ax2+k的图象和性质
1.(3分)抛物线y=x2+1的图象大致是( C )
人教版数学九年级上册22 二次函数(第一课时)课件

4
【典例】下列各式中,y 是 x 的二次函数的是( )
A.y=x12
B.y=2x+1
C.y=x2+x-2
D.y2=x2+3x
分析:y=x12中,x12为分式,不是二次函数,故 A 不符题意;y=2x+1 中,x 的
次数为 1,是一次函数,故 B 不符题意;y=x2+x-2 符合二次函数的定义,是二次
函数解析式是 y=3x+2 或 y=33+215
5x+5+23
5或 y=33-215
5x+5-23
5 .
(2) 若 函 数 y = (m2 - m - 2)xm2 - 5m - 4 + (m + 1)x + m 为 二 次 函 数 , 则
m2-5m-4=2, m2-m-2≠0.
解得 m=6.故当 m=6 时,函数 y=(m2-m-2)xm2-5m-4+(m
• (1)求直线AB的解析式; • (2)若设点P的横坐标为x,矩形PKDH的面积为S,求S关于x的函数解析
式.
17
解:(1)如图所示,∵OE=CD=80 m,OC=ED=100 m,AE=60 m,BC=70 m, ∴OA=20 m,OB=30 m,即 A(0,20)、B(30,0).设直线 AB 的解析式为 y=kx+b(k≠0),
►如果我们不曾相遇,你的梦里就不会有我的出现,我们都在不断地 和陌生人擦肩;如果人生不曾相遇,我的生命里就不会有你的片段,我 们都在细数着自己的日子。 ►当离别的脚步声越来越清晰,我们注定分散两地,继续彼此未完的 人生,如果我说放不下,短短一个月的光景,你是否愿意相信,我的 真诚,我的执着,只源于内心深处那一份沉沉的不舍。
►为你理想的人,否则,爱的只是你在他身上找到的你的影子。 ►有时候,我们愿意原谅一个人,并不是我们真的愿意原谅他,而是我们 不愿意失去他。不想失去他,惟有假装原谅他。不管你爱过多少人,不管 你爱得多么痛苦或快乐。最后,你不是学会了怎样恋爱,而是学会了,怎 样去爱自己。
九年级数学人教版第二十二章二次函数22.1.1二次函数定义(同步课本知识图文结合例题详解)

九年级数学第22章二次函数
问题3: 某工厂一种产品现在的年产量是20件,计划今后两
年增加产量.如果每年都比上一年的产量增加x倍,那么两
年后这种产品的产量y将随计划所定的x的值而确定,y与x
之间的关系应怎样表示?
这种产品的原产量是20件,一年后的产量是_2_0_(_1_+_x_)件,
再经过一年后的产量是_____2_0_(_1_+_x_)_(_1件+x,) 即两年后的
2
是二次函数关系.
九年级数学第22章二次函数
4.某工厂计划为一批长方体形状的产品涂上油漆,长方体的长 和宽相等,高比长多0.5m. (1)长方体的长和宽用x(m)表示,长方体需要涂漆的表面积 S(m2)如何表示? (2)如果涂漆每平米所需要的费用是5元,涂漆每个长方体所需 要费用用y(元)表示,那么y的表达式是什么? 解析:(1)S=2x2+x(x+0.5)×4=6x2+2x (2)y=5S=5×(6x2+2x)
2.如果函数y=(k-3)xk2 3k 2 +kx+1是二次函数,则k的值
一定是__0____.
九年级数学第22章二次函数
3.用总长为60m的篱笆围成矩形场地,场地面积S(m²)与矩 形一边长a(m)之间的关系是什么?是函数关系吗?是哪一 种函数? 解析:S=a( 60 -a)=a(30-a)=30a-a²=-a²+30a.
函 数
关系Leabharlann 一次函数y=kx+b(k≠0)
正比例函数 y=kx(k≠0)
反比例函数
y= k (k≠0)
x
二次函数
九年级数学第22章二次函数
问题1:
正方体六个面是全等的正方形,设正方体棱长为 x ,表 面积为 y ,则 y 关于x 的关系式为_y_=6_x2____.
人教版九年级上册数学课件二次函数优秀ppt课件

课后巩固
9.已知函数y=(m2-m)x2+(m-1)x+2-2m. (1)若这个函数是二次函数,求m的取值范围. (2)若这个函数是一次函数,求m的值. (3)这个函数可能是正比例函数吗?为什么?
解:(1)函数y=(m2-m)x2+(m-1)x+2-2m, 若这个函数是二次函数,则m2-m≠0, 解得:m≠0且m≠1;
22.1 二次函数的图象和性质
1 …核…心……目…标..… 2 …课…前……预…习..… 3 …课…堂……导…学..… 4 …课…后……巩…固..… 5 …能…力……培…优..…
核心目标
理解二次函数的概念, 会根据实际问题列出二次函数 关系式.
课前预习
1.阅读教材,并填空: (1)形如y=ax2+bx+c(a、b、c是常数,a≠0)的 函数叫做_____二__次__函__数________________; (2)二次函数y=ax2+bx+c中,自变量x的取值范 围是_____任__意__实__数_______________.
一次项系数为____-__4____,常数项为___-__1_____.
人教版九年级上册数数学学课件课二件次2函2.数1.优1二秀次pp函t 课数件(共18张PPT)
人教版九年级上册数数学学课件课二件次2函2.数1.优1二秀次pp函t 课数件(共18张PPT)
课堂导学
知识点2:列二次函数关系式 【例2】如下图,李大爷要借助院墙围成一个矩形菜
课后巩固
10.一经销商按市场价收购某种海鲜1 000千克放养 在池塘内(假设放养期内每个海鲜的重量基本保持 不变),当天市场价为每千克30元,据市场行情推 测,此后该海鲜的市场价每天每千克可上涨1元, 但是平均每天有10千克海鲜死去.假设死去的海 鲜均于当天以每千克20元的价格全部售出.
人教版九年级上册22.二次函数的图像与性质课件(共129张)

二次函数的图象都是抛物线。
一般地,二次函数 y = ax2 + bx + c(a≠0)的图象叫做抛物线y = ax2 + bx + c
思考:这个二次函数图象有什么特征?
(1)形状是开口向上的抛物线
9
6
(2)图象关于y轴对称
3
(3)有最低点,没有最高点
-3
3
y轴是抛物线y = x 2 的对称轴,抛物线y = x 2 与它的对称 轴的交点(0,0)叫做抛物线y = x2 的顶点,它是抛物线y = x 2 的最低点.
联系(1)等式一边都是ax2+bx+c且 a ≠0 (2)方程ax2+bx+c=0可以看成是 函数y= ax2+bx+c中y=0时得到的. 区分:前者是函数.后者是方程.等式另一 边前者是y,后者是0
知识运用
例1:下列函数中,哪些是二次函数?
(1)y=3x-1 (不是 )
(2)y=3x2 ( 是 )
画形如y=ax2的函数图像: 1、函数y=x2的图像;视察y=x2的表达式,选择适当x值,并计算 相应的y值,完成下表:
x … -3 -2 -1 0 1 2 3 … y=x2 … 9 4 1 0 1 4 9 …
描点,连线 y 10
y=x2
8
6
4
2
?
-4 -3 -2 -1 0 1 2 3 4 x -2
…二次函数的图像和性质…
• y=ax2的函数图像 • y=ax2 +k 的函数图像 • y=a(x-h)2的函数图像 • y=a(x-h)2 +k 的函数图像 • y=ax2+bx+c 的函数图像
…二次函数的图像和性质…
• y=ax2的函数图像 • y=ax2 +k 的函数图像 • y=a(x-h)2的函数图像 • y=a(x-h)2 +k 的函数图像 • y=ax2+bx+c 的函数图像
一般地,二次函数 y = ax2 + bx + c(a≠0)的图象叫做抛物线y = ax2 + bx + c
思考:这个二次函数图象有什么特征?
(1)形状是开口向上的抛物线
9
6
(2)图象关于y轴对称
3
(3)有最低点,没有最高点
-3
3
y轴是抛物线y = x 2 的对称轴,抛物线y = x 2 与它的对称 轴的交点(0,0)叫做抛物线y = x2 的顶点,它是抛物线y = x 2 的最低点.
联系(1)等式一边都是ax2+bx+c且 a ≠0 (2)方程ax2+bx+c=0可以看成是 函数y= ax2+bx+c中y=0时得到的. 区分:前者是函数.后者是方程.等式另一 边前者是y,后者是0
知识运用
例1:下列函数中,哪些是二次函数?
(1)y=3x-1 (不是 )
(2)y=3x2 ( 是 )
画形如y=ax2的函数图像: 1、函数y=x2的图像;视察y=x2的表达式,选择适当x值,并计算 相应的y值,完成下表:
x … -3 -2 -1 0 1 2 3 … y=x2 … 9 4 1 0 1 4 9 …
描点,连线 y 10
y=x2
8
6
4
2
?
-4 -3 -2 -1 0 1 2 3 4 x -2
…二次函数的图像和性质…
• y=ax2的函数图像 • y=ax2 +k 的函数图像 • y=a(x-h)2的函数图像 • y=a(x-h)2 +k 的函数图像 • y=ax2+bx+c 的函数图像
…二次函数的图像和性质…
• y=ax2的函数图像 • y=ax2 +k 的函数图像 • y=a(x-h)2的函数图像 • y=a(x-h)2 +k 的函数图像 • y=ax2+bx+c 的函数图像
22.1.1 二次函数的图像及性质1 课件 人教版数学九年级上册

注意: (1)等号左边是变量y,右边是关于自变 量x的整式
(2)a,b,c为常数,且 a≠0.
(3 )等式的右边最高次数为 2 ,可以没有
一次项和常数项,但不能没有二次项。
(4)x的取值范围是 任意实数 。
二次函数的一般形式: y=ax2+bx+c , (其中a、b、c是常数 a≠0)
二次函数的特殊形式:
(5)y= _x1_²-x
(否) (6)v= 3 r ²
(7) y=x²+x³+25 (否) (8)y=2²+2x
(是) (否)
(9)y=mx²+nx+p (m,n,p为常数)
例1、下列函数中,哪些是二次函数?若是,分别
指出二次项系数,一次项系数,常数项.
(1) y=3(x-1)²+1
(2)
y=x+
的关系,对于x的每一个值, y都有一个对应值,即y是x的
函数.
观察
函数①②③有什么共同点?
y=6x2①
d
1 2
n2
3 2
n②
y 20 x2 40x 20③
y是x的函数吗?y是x的一次函数?反比例函数?
在上面的问题中,函数都是用自变量的二次式 表示的,
定义:一般地,形如y=ax²+bx+c(a,b,c是 常数,a≠ 0)的函数叫做x的二次函数。
观察y=x2的表达式,选择适当x值,并计算 相应的y值,完成下表:
x … -3 -2 -1 0 1 2 3 … y=x2 … 9 4 1 0 1 4 9 …
描点,连线 y 10 8 6 4 2
y=x2
-4 -3 -2 -1 0 1 2 3 4 x -2
二次函数 y=x2的图象 形如物体抛 射时所经过 的路线,我们 把它叫做抛 物线
(2)a,b,c为常数,且 a≠0.
(3 )等式的右边最高次数为 2 ,可以没有
一次项和常数项,但不能没有二次项。
(4)x的取值范围是 任意实数 。
二次函数的一般形式: y=ax2+bx+c , (其中a、b、c是常数 a≠0)
二次函数的特殊形式:
(5)y= _x1_²-x
(否) (6)v= 3 r ²
(7) y=x²+x³+25 (否) (8)y=2²+2x
(是) (否)
(9)y=mx²+nx+p (m,n,p为常数)
例1、下列函数中,哪些是二次函数?若是,分别
指出二次项系数,一次项系数,常数项.
(1) y=3(x-1)²+1
(2)
y=x+
的关系,对于x的每一个值, y都有一个对应值,即y是x的
函数.
观察
函数①②③有什么共同点?
y=6x2①
d
1 2
n2
3 2
n②
y 20 x2 40x 20③
y是x的函数吗?y是x的一次函数?反比例函数?
在上面的问题中,函数都是用自变量的二次式 表示的,
定义:一般地,形如y=ax²+bx+c(a,b,c是 常数,a≠ 0)的函数叫做x的二次函数。
观察y=x2的表达式,选择适当x值,并计算 相应的y值,完成下表:
x … -3 -2 -1 0 1 2 3 … y=x2 … 9 4 1 0 1 4 9 …
描点,连线 y 10 8 6 4 2
y=x2
-4 -3 -2 -1 0 1 2 3 4 x -2
二次函数 y=x2的图象 形如物体抛 射时所经过 的路线,我们 把它叫做抛 物线
二次函数(1)PPT课件(人教版)

九年级上册人教版数学
第二十二章 二次函数
22.1 二次函数的图象和性质
22.1.1 二次函数
1.一般地,形如 y=ax2+bx+c(a,b,c 是常数,a≠0)的函数,叫做 __二__次__函__数_,其中 x 是自变量,a,b,c 分别是函数解析式的_二__次__项___系数、 一__次__项___系数和常数项.
14.边长为4 m的正方形中间挖去一个边长为x(m)(x<4)的小正方形,剩 余的四方框的面积为y(m2),则y与x之间的函数关系式为y_=__1_6_-__x_2_(_0_<__x_<_,4) 它是_二__次____函数.
15.若y=(m-1)xm2+2m-1+3. (1)m取什么值时,此函数是二次函数? (2)m取什么值时,此函数是一次函数?
解 : 降 低 x 元 后 , 所 销 售 的 件 数 是 (500 + 100x) , 则 y = (13.5 - 2.5 - x)(500+100x),即y=-100x2+600x+5500(0<x≤11)
18.如图,在△ABC中,∠B=90°,AB=12 mm,BC=24 mm,动点P 从点A开始沿边AB向B以2 mm/s的速度移动(不与点B重合),动点Q从点B开 始沿边BC向C以4 mm/s的速度移动(不与点C重合).如果P,Q分别从A,B 同时出发,设运动的时间为x s,四边形APQC的面积为y mm2.
C.y=12(x-1)(x+4)不是二次函数 D.在 y=1- 2x2 中,一次项系数为 1
3.若y=(a+3)x2-3x+2是二次函数,则a的取值范围是__a_≠_-__3___. 4.对于二次函数y=1-3x+2x2,其二次项系数、一次项系数及常数 项的和是__0__. 5.已知两个变量x,y之间的关系式为y=(a-2)x2+(b+2)x-3. (1)当___a≠__2____时,x,y之间是二次函数关系; (2)当___a_=__2_且__b_≠_-__2_____时,x,y之间是一次函数关系.
第二十二章 二次函数
22.1 二次函数的图象和性质
22.1.1 二次函数
1.一般地,形如 y=ax2+bx+c(a,b,c 是常数,a≠0)的函数,叫做 __二__次__函__数_,其中 x 是自变量,a,b,c 分别是函数解析式的_二__次__项___系数、 一__次__项___系数和常数项.
14.边长为4 m的正方形中间挖去一个边长为x(m)(x<4)的小正方形,剩 余的四方框的面积为y(m2),则y与x之间的函数关系式为y_=__1_6_-__x_2_(_0_<__x_<_,4) 它是_二__次____函数.
15.若y=(m-1)xm2+2m-1+3. (1)m取什么值时,此函数是二次函数? (2)m取什么值时,此函数是一次函数?
解 : 降 低 x 元 后 , 所 销 售 的 件 数 是 (500 + 100x) , 则 y = (13.5 - 2.5 - x)(500+100x),即y=-100x2+600x+5500(0<x≤11)
18.如图,在△ABC中,∠B=90°,AB=12 mm,BC=24 mm,动点P 从点A开始沿边AB向B以2 mm/s的速度移动(不与点B重合),动点Q从点B开 始沿边BC向C以4 mm/s的速度移动(不与点C重合).如果P,Q分别从A,B 同时出发,设运动的时间为x s,四边形APQC的面积为y mm2.
C.y=12(x-1)(x+4)不是二次函数 D.在 y=1- 2x2 中,一次项系数为 1
3.若y=(a+3)x2-3x+2是二次函数,则a的取值范围是__a_≠_-__3___. 4.对于二次函数y=1-3x+2x2,其二次项系数、一次项系数及常数 项的和是__0__. 5.已知两个变量x,y之间的关系式为y=(a-2)x2+(b+2)x-3. (1)当___a≠__2____时,x,y之间是二次函数关系; (2)当___a_=__2_且__b_≠_-__2_____时,x,y之间是一次函数关系.