八年级数学下册第一章三角形的证明回顾与思考测试含解析新版北师大版

合集下载

北师大新版八年级下册《第1章 三角形的证明》1含解析答案

北师大新版八年级下册《第1章 三角形的证明》1含解析答案

北师大新版八年级下册《第1章三角形的证明》一、选择题(共8小题)1.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.20 B.12 C.14 D.132.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开.若测得AM的长为1.2km,则M,C两点间的距离为()A.0.5km B.0.6km C.0.9km D.1.2km3.如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB的长为()A.2 B.C.D.4.将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为()A.3cm B.6cm C.cm D.cm5.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,若点A关于CD所在直线的对称点E恰好为AB的中点,则∠B的度数是()A.60°B.45°C.30°D.75°6.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A.2.5 B.C.D.27.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN =2,则OM=()A.3 B.4 C.5 D.68.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB交BC于点D,E为AB上一点,连接DE,则下列说法错误的是()A.∠CAD=30°B.AD=BD C.BD=2CD D.CD=ED二、填空题(共7小题)9.在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AC=10,则AB=.10.如图,Rt△ABC中,∠ACB=90°,D为斜边AB的中点,AB=10cm,则CD的长为cm.11.如图,在Rt△ABC中,∠ABC=90°,AC=10cm,点D为AC的中点,则BD=cm.12.如图,在△ABC中,BD⊥AC于D,点E为AB的中点,AD=6,DE=5,则线段BD的长等于.13.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是.14.已知直角三角形的两条直角边长为6,8,那么斜边上的中线长是.15.著名画家达芬奇不仅画艺超群,同时还是一个数学家、发明家.他曾经设计过一种圆规如图所示,有两个互相垂直的滑槽(滑槽宽度忽略不计),一根没有弹性的木棒的两端A、B能在滑槽内自由滑动,将笔插入位于木棒中点P处的小孔中,随着木棒的滑动就可以画出一个圆来.若AB=20cm,则画出的圆的半径为cm.三、解答题(共1小题)16.如图,在△ABC中,点D在AB上,且CD=CB,点E为BD的中点,点F为AC的中点,连结EF交CD于点M,连接AM.(1)求证:EF=AC.(2)若∠BAC=45°,求线段AM、DM、BC之间的数量关系.北师大新版八年级下册《第1章三角形的证明》参考答案与试题解析一、选择题(共8小题)1.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.20 B.12 C.14 D.13【分析】根据等腰三角形三线合一的性质可得AD⊥BC,CD=BD,再根据直角三角形斜边上的中线等于斜边的一半可得DE=CE=AC,然后根据三角形的周长公式列式计算即可得解.【解答】解:∵AB=AC,AD平分∠BAC,BC=8,∴AD⊥BC,CD=BD=BC=4,∵点E为AC的中点,∴DE=CE=AC=5,∴△CDE的周长=CD+DE+CE=4+5+5=14.故选:C.2.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开.若测得AM的长为1.2km,则M,C两点间的距离为()A.0.5km B.0.6km C.0.9km D.1.2km【分析】根据直角三角形斜边上的中线等于斜边的一半,可得MC=AM=1.2km.【解答】解:∵在Rt△ABC中,∠ACB=90°,M为AB的中点,∴MC=AB=AM=1.2km.故选:D.3.如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB的长为()A.2 B.C.D.【分析】在Rt△ACD中求出AD,在Rt△CDB中求出BD,继而可得出AB.【解答】解:在Rt△ACD中,∠A=45°,CD=1,则AD=CD=1,在Rt△CDB中,∠B=30°,CD=1,则BD=,故AB=AD+BD=+1.故选:D.4.将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为()A.3cm B.6cm C.cm D.cm【分析】过另一个顶点C作垂线CD如图,可得直角三角形,根据直角三角形中30°角所对的边等于斜边的一半,可求出有45°角的三角板的直角边,再由等腰直角三角形求出最大边.【解答】解:过点C作CD⊥AD,∴CD=3,在直角三角形ADC中,∵∠CAD=30°,∴AC=2CD=2×3=6,又∵三角板是有45°角的三角板,∴AB=AC=6,∴BC2=AB2+AC2=62+62=72,∴BC=6,故选:D.5.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,若点A关于CD所在直线的对称点E恰好为AB的中点,则∠B的度数是()A.60°B.45°C.30°D.75°【分析】根据轴对称的性质可知∠CED=∠A,根据直角三角形斜边上的中线的性质、等腰三角形的性质可得∠ECA=∠A,∠B=∠BCE,根据等边三角形的判定和性质可得∠CED =60°,再根据三角形外角的性质可得∠B的度数,从而求得答案.【解答】解:∵在Rt△ABC中,∠ACB=90°,CD为AB边上的高,点A关于CD所在直线的对称点E恰好为AB的中点,∴∠CED=∠A,CE=BE=AE,∴∠ECA=∠A,∠B=∠BCE,∴△ACE是等边三角形,∴∠CED=60°,∴∠B=∠CED=30°.故选:C.6.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A.2.5 B.C.D.2【分析】连接AC、CF,根据正方形性质求出AC、CF,∠ACD=∠GCF=45°,再求出∠ACF =90°,然后利用勾股定理列式求出AF,再根据直角三角形斜边上的中线等于斜边的一半解答即可.【解答】解:如图,连接AC、CF,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,∴AC=,CF=3,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,AF===2,∵H是AF的中点,∴CH=AF=×2=.故选:B.7.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN =2,则OM=()A.3 B.4 C.5 D.6【分析】过P作PD⊥OB,交OB于点D,在直角三角形POD中,利用锐角三角函数定义求出OD的长,再由PM=PN,利用三线合一得到D为MN中点,根据MN求出MD的长,由OD ﹣MD即可求出OM的长.【解答】解:过P作PD⊥OB,交OB于点D,在Rt△OPD中,cos60°==,OP=12,∴OD=6,∵PM=PN,PD⊥MN,MN=2,∴MD=ND=MN=1,∴OM=OD﹣MD=6﹣1=5.故选:C.8.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB交BC于点D,E为AB上一点,连接DE,则下列说法错误的是()A.∠CAD=30°B.AD=BD C.BD=2CD D.CD=ED【分析】根据三角形内角和定理求出∠CAB,求出∠CAD=∠BAD=∠B,推出AD=BD,AD =2CD即可.【解答】解:∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°,∵AD平分∠CAB,∴∠CAD=∠BAD=30°,∴∠CAD=∠BAD=∠B,∴AD=BD,AD=2CD,∴BD=2CD,根据已知不能推出CD=DE,即只有D错误,选项A、B、C的答案都正确;故选:D.二、填空题(共7小题)9.在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AC=10,则AB= 5 .【分析】根据矩形的性质,可以得到△AOB是等边三角形,则可以求得OA的长,进而求得AB的长.【解答】解:∵四边形ABCD是矩形,∴OA=OB又∵∠AOB=60°∴△AOB是等边三角形.∴AB=OA=AC=5,故答案是:5.10.如图,Rt△ABC中,∠ACB=90°,D为斜边AB的中点,AB=10cm,则CD的长为 5 cm.【分析】根据直角三角形斜边上的中线等于斜边的一半可得CD=AB.【解答】解:∵∠ACB=90°,D为斜边AB的中点,∴CD=AB=×10=5cm.故答案为:5.11.如图,在Rt△ABC中,∠ABC=90°,AC=10cm,点D为AC的中点,则BD= 5 cm.【分析】根据直角三角形斜边上的中线等于斜边的一半可得BD=AC.【解答】解:∵∠ABC=90°,点D为AC的中点,∴BD=AC=×10=5cm.故答案为:5.12.如图,在△ABC中,BD⊥AC于D,点E为AB的中点,AD=6,DE=5,则线段BD的长等于8 .【分析】利用直角三角形斜边上的中线等于斜边的一半,进而结合勾股定理得出BD的长.【解答】解:∵BD⊥AC于D,点E为AB的中点,∴AB=2DE=2×5=10,∴在Rt△ABD中,BD===8.故答案为:8.13.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是 2 .【分析】根据同角的余角相等、等腰△ABE的性质推知∠DBE=30°,则在直角△DBE中由“30度角所对的直角边是斜边的一半”即可求得线段BE的长度.【解答】解:∵∠ACB=90°,FD⊥AB,∴∠ACB=∠FDB=90°,∵∠F=30°,∴∠A=∠F=30°(同角的余角相等).又∵AB的垂直平分线DE交AC于E,∴∠EBA=∠A=30°,∴直角△DBE中,BE=2DE=2.故答案是:2.14.已知直角三角形的两条直角边长为6,8,那么斜边上的中线长是 5 .【分析】利用勾股定理列式求出斜边,再根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:由勾股定理得,斜边==10,所以,斜边上的中线长=×10=5.故答案为:5.15.著名画家达芬奇不仅画艺超群,同时还是一个数学家、发明家.他曾经设计过一种圆规如图所示,有两个互相垂直的滑槽(滑槽宽度忽略不计),一根没有弹性的木棒的两端A、B能在滑槽内自由滑动,将笔插入位于木棒中点P处的小孔中,随着木棒的滑动就可以画出一个圆来.若AB=20cm,则画出的圆的半径为10 cm.【分析】连接OP,根据直角三角形斜边上的中线等于斜边的一半可得OP的长,画出的圆的半径就是OP长.【解答】解:连接OP,∵△AOB是直角三角形,P为斜边AB的中点,∴OP=AB,∵AB=20cm,∴OP=10cm,故答案为:10.三、解答题(共1小题)16.如图,在△ABC中,点D在AB上,且CD=CB,点E为BD的中点,点F为AC的中点,连结EF交CD于点M,连接AM.(1)求证:EF=AC.(2)若∠BAC=45°,求线段AM、DM、BC之间的数量关系.【分析】(1)根据等腰三角形三线合一的性质可得CE⊥BD,再根据直角三角形斜边上的中线等于斜边的一半可得EF=AC;(2)判断出△AEC是等腰直角三角形,根据等腰直角三角形的性质可得EF垂直平分AC,再根据线段垂直平分线上的点到两端点的距离相等可得AM=CM,然后求出CD=AM+DM,再等量代换即可得解.【解答】(1)证明:∵CD=CB,点E为BD的中点,∴CE⊥BD,∵点F为AC的中点,∴EF=AC;(2)解:∵∠BAC=45°,CE⊥BD,∴△AEC是等腰直角三角形,∵点F为AC的中点,∴EF垂直平分AC,∴AM=CM,∵CD=CM+DM=AM+DM,CD=CB,∴BC=AM+DM.。

八年级数学下册第一章三角形的证明回顾与思考新版北师大版

八年级数学下册第一章三角形的证明回顾与思考新版北师大版
(在一个角的内部(包 括顶点)且到角的两边 距离相等的点,在这个 角的平分线上).
DA C
1
P
2
O
EB
不良的习惯会随时阻碍你走向成 名、获利和享乐的路上去。
-- 莎士比亚
演绎推理
线段的垂直平分线
线段垂直平分线上的任意一点到这条线段两个
端点的距离相等.
M
∵MN⊥AB, CA=CB(已知)
P
∴PA=PB
(线段垂直平分线上的任 意一点到这条线段两个端
12
点的距离相等)
A
C
B
N
和一条线段两个端点距离相等的点,在这条 线段的垂直平分线上.
∵AB=AC(已知)
∴点A在线段BC的垂直平分线上 (和一条线段两个端点距离相 等的点,在这条线段的垂直平 分线上)
B
A
7cm
C D
如图,已知AD⊥BD,AC⊥BC,E为AB的中点,试
判断DE与CE是否相等,并说明理由。
D
C
A
E
B
说明两条线段相等,有时还可以通过第三条线
段进行等量代换。
线段的垂直平分线 角平分线
定义 几何证明
命题 互逆 逆命题
线段的垂直平分线及其逆定理
公理 定理 互逆 逆定理
依据
角的平分线及其逆定理
第一章 三角形的证明
明三 角 形 的 证
等腰三角形 直角三角形 线段的垂直平分线
角平分线
等腰三角形
图形


A



D B
C


A

角B
C

性质
两腰相等 等边对等角 三线合一 轴对称图形 三边相等 三角相等 三线合一 轴对称图形

八年级数学下册第一章三角形的证明回顾与思考练习新版北师大版03312100

八年级数学下册第一章三角形的证明回顾与思考练习新版北师大版03312100

三角形的证明等腰三角形的性质与判定专题一.ABCAB=ACDBCDA=DCBD=BAB ) (,为则∠上一点,且1B(2017·山东滨州中考)如图,在△,中,,的大小为A.40°B.36°C.30°D.25°.DEABCBCADAE. ,,上在△,的边2如图所示,点连接①AB=AC②AD=AE; ;③BD=CE.①②③①③②②③;构成三个命题:;??,以此三个等式中的两个作为命题的题设,另一个作为命题的结论①.?; (直接作答)(1)以上三个命题是真命题的为. ),然后证明(2)请选择一个真命题进行证明(先写出所选命题①②③①③②②③①.?(1)解,??,①②③?(2)证明∵AB=AC,方法一:∴B=C.∠∠AD=AE,又∴ADG=AEG.∠∠∵ADG=B+BADAEG=C+CAE∴BAD=CAE.∠∠∠∠∠∠,,∠∠ABDACEAB=ACBAD=CAEAD=AEABDACE.,,,∠则△∠(SAS),在△≌△与△中∴BD=CE.AABCAG,作△方法二:过点的高∵AB=ACAGBC∴BG=CG.,⊥,AD=AEAGDE∴DG=EG.⊥又,,∵BD=BG-DGCE=CG-GE,,∴BD=CE.等边三角形的性质与判定专题二1 .ABCDABAD=DC=DBB=.ADC△:,在△∠中,求证是30°边上的一点3,且导学号99804031如图,.是等边三角形∵DC=DB,证明∴B=DCB=.)∠30°(等边对等角∠∴ADC=DCB+B=.∠∠∠60°AD=DC∴ADC.60°的等腰三角形是等边三角形)是等边三角形(又有一个角等于,△.ABC==BEC.的度数∠3,是等边三角形,∠1求∠∠4△导学号99804032如图,2∵ABC是等边三角形,解△∴AB=BC=CAABC=BCA=CAB=.∠60°,∠∠∵==∴BAC-=ABC-=BCA-CAF=ABD=BCE.∠∠∠∠3,∠∠∠13,∠即∠∠2∠1∠2ABDBCECAF中,和△在△和△∴ABDBCECAF.△≌△≌△(ASA)∴AD=BE=CFBD=CE=AF.,∴AD-AF=BE-BD=CF-CE,FD=DE=EF.即∴DEF.∴FED=.是等边三角形∠60°△∴BEC=-FED=-=.180°∠1180°60°∠20°.ABCDCEBCEAECDPBD,和等边△交在直线于点的同一侧5等边△导学号99804033如图所示,,ACQPQC. :交△于点为等边三角形,求证证明ABCDCEBC=ACDC=ECACB=DCE=60°,∠,在等边△,和等边△∠中,ACB+ACD=DCE+ACDBCD=ACE.所以∠,∠即∠∠∠∠BCDACE中,和△在△BCDACE.(SAS)所以△≌△=.2所以∠1∠ACB=DCE=60°∠因为∠ACD=-ACB-DCE=.所以∠180°∠∠60° 2BCQ=ACP.所以∠∠ACPBCQ,和△在△中BCQACP.CQ=CP.≌△所以所以△QCP=PQC.60°,所以△为等边三角形又因为∠直角三角形的性质与判定专题三2.ABCCDABCD=ADBD.ABC. :△,在△·中,是直角三角形是求证边上的高,6且如图所示222ACDAC=AD+CD.中△,由勾股定理得证明在Rt222BCDBC=BD+CD.中△,由勾股定理得在Rt222222222.AD+BDAD+CDBD+BD+BD=AB=AD∴AC=+BC+=AD·2)(2∴ABC.是直角三角形△.PABCPAPBPCBP为边作,,是等边三角形,内的一点,连接以7034导学号99804如图所示,点PBQ=PB=BQCQPA∶PB∶PC=∶∶PQ.PQC.∠是直角三角形60°,且求证,连接4,若:5,连接△3∵PA∶PB∶PC=∶∶5,34证明∴PA=aPB=aPC=a.3,,5设4PBQ∵PB=BQ=aPBQ=60°,,,4且∠在△中∴PBQ.∴PQ=a.是等边三角形△4222222PQC∵PQ+QC=a+a=a=PC∴PQC.9,在△,中16是直角三角形25△线段垂直平分线与角平分线性质的应用专题四. ) D顶点的距离都相等的点是这个三角形的)到三角形三个8((2016·贵州毕节中考 A.三条高的交点B.三条角平分线的交点C.三条中线的交点D.三条边的垂直平分线的交点.ABCAB=ACBAC=DEACBE=aAE=b,,的垂直平分线中,∠,,36°,若是线段,9(2017·湖南益阳中考)如图在△abABC a+b . 含,2的代数式表示△3的周长为则用.ABCACB=ABDEACEBCF,的延长线于点交于点交,若∠,Rt,10如图所示在△中∠90°,的垂直平分线F=DE=BE.求30°,1,的长 3ABFD∵ACB=解⊥∠,90°,.FDB=∴ACB=∠90°∠.F=∴A=∵F=∠30°,30°∠∠EACABDE的垂直平分线于点交又,.EBA=A=∴∠∠30°.BE=DE=∴DBE22Rt△,中ADF.EDFACABC.ADDEAB:,于点导学号99804035如图,已知是△于点的角平分线,⊥⊥求证11EF.垂直平分DE=DF.AC∴DF∵ADBACDEAB平分∠,,证明,⊥⊥.DEF∴在的垂直平分线上点.ADE∴ADFAD=ADADEADFDE=DF≌Rt和Rt△中,△,,△Rt(HL)△在Rt AE=AF.∴.EF∴A点的垂直平分线上在.AD∵∴EF的垂直平分线两点确定一条直线是线段,直线 420XX—019学年度第一学期生物教研组工作计划指导思想以新一轮课程改革为抓手,更新教育理念,积极推进教学改革。

北师大版八年级数学下册第一章三角形的证明《回顾与思考(2)》习题含答案

北师大版八年级数学下册第一章三角形的证明《回顾与思考(2)》习题含答案

第一章三角形的证明回顾与思考(2)习题含答案一、选择题:1.下列命题:①等腰三角形的角平分线、中线和高重合;②等腰三角形两腰上的高相等;③等腰三角形的最短边是底边;④等边三角形的高、中线、角平分线都相等;⑤等腰三角形都是锐角三角形.其中正确的有()A.1个B.2个C.3个D.4个2.如图,在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于点D,则BD的长为()A.157B.125C.207D.2153. 如图,在△ABC中,AB=AC,点D在AC边上,BD=BC=AD,则∠A的度数为()A. 30°B. 36°C. 45°D. 70°4.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()A.8或10B.8C.10D.6或125.如图,已知∠E=∠F,∠B=∠C,AE=AF,结论:(1)EM=FN;(2)CD=DN;(3)∠FAN=∠EAM;(4) △CAN≌△ABM.其中正确的有()A.1个B.2个C.3个D.4个二、填空题:6.如图所示,在等腰△ABC中,AB=AC, ∠BAC=50°, ∠BAC的平分线与AB的垂直平分线交于点O,点C沿EF折叠后与点O重合,则∠OEC的度数是 .7.若一个三角形的三条高线交点恰好是此三角形的一个顶点,则此三角形是___ ___三角形.8.如图,已知∠BAC=120°,AB=AC,AC的垂直平分线交BC于D,则∠ADB= °.9.如图,在△ABC中,∠C=90°,AM平分∠C AB,CM=20cm,则点M到AB的距离是_____.第6题图第5题图第3题图第2题图第8题图第9题图10.在△ABC 中,AB =4,AC =3,AD 是△ABC 的角平分线,则△ABD 与△ACD 的面积之比是. 三、解答题:11.如图,在△ABC 中,∠B =90°,M 是AC 上任意一点(M 与A 不重合),MD ⊥BC ,且交∠BAC 的平分线于点D ,求证:MA=MD .12.如图所示,以等腰直角三角形ABC 的斜边AB 为边作等边△ABD ,连接DC ,以DC 为边作等边△DCE ,B ,E 在C ,D 的同侧,若AB =2,求BE 的长.13.如图所示,在Rt △ABC 中,∠BAC =90°, AC =2AB ,点D 是AC 的中点,将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A ,D 重合,连接BE ,EC .试猜想线段BE 和EC 的数量及位置关系,并证明你的猜想.第11题图第12题图第13题图14.如图,在△ABC中,AB=AC,作AD⊥AB交BC的延长线于点D,作AE∥BD,CE⊥AC,且AE,CE相交于点E.求证:AD=CE.第14题图15.已知:如图,,是上一点,于点,的延长线交的延长线于点.求证:△是等腰三角形.第15题图答案1.B 解析:只有②④正确.2.A 解析:∵∠BAC =90°,AB =3,AC =4, ∴2222 34 5BC AB AC =+=+=,∴ BC 边上的高=123455⨯÷=. ∵ AD 平分∠BAC ,∴点D 到AB ,AC 的距离相等,设为h , 则111123452225ABC S h h ∆=⨯+⨯=⨯⨯,解得127h =, 1121123 2725ABDS BD ∆=⨯⨯=⨯,解得157BD =.故选A . 3.B 解析:因为,所以. 因为,所以.又因为,所以,所以所以4.C 解析:当等腰三角形的腰长是2,底边长是4时,等腰三角形的三边长是2,2,4,根据三角形的三边关系,不能构成三角形,所以不合题意,舍去;当等腰三角形的腰长是4,底边长是2时,等腰三角形的三边长是4,4,2,根据三角形的三边关系,能构成三角形,所以该三角形的周长为4+4+2=10.5.C 解析:因为, 所以△≌△(),所以,所以, 即故③正确. 又因为,所以△≌△(ASA ), 所以,故①正确. 由△≌△,知, 又因为, 所以△≌△,故④正确.由于条件不足,无法证得②故正确的结论有:①③④.6.100° 解析:如图所示,由AB =AC ,AO 平分∠BAC ,得AO 所在直线是线段BC 的垂直平分线,连接OB ,则OB=OA=OC ,所以∠OAB =∠OBA =×50°=25°,得∠BOA=∠COA=1802525130,︒-︒-︒=︒∠BOC=360°-∠BOA -∠COA =100°.所以∠OBC=∠OCB=1801002︒-︒ =40°. 由于EO=EC ,故∠OEC =180°-2×40°=100°.7.直角 解析:直角三角形的三条高线交点恰好是此三角形的一个顶点;锐角三角形的三条高线交点在此三角形的内部;钝角三角形的三条高线交点在三角形的外部.8. 60︒ 解析:∵ ∠BAC=120︒,AB=AC ,∴ ∠B=∠C=180********.22BAC ︒-∠︒-︒==︒ ∵ AC 的垂直平分线交BC 于点D ,∴ AD=CD .∴ 30,C DAC ∠=∠=︒∴ 303060.ADB C DAC ∠=∠+∠=︒+︒=︒9.20 cm10.4∶3 解析:如图所示,过点D 作DM ⊥AB ,DN ⊥AC , 垂足分别为点M 和点N .∵ AD 平分∠BAC ,∴ DM =DN .∵ AB ×DM ,AC ×DN ,∴ .11.证明:∵MD ⊥BC ,∠B =90°,∴AB ∥MD ,∴∠BAD =∠D.又∵ AD 为∠BAC 的平分线,∴ ∠BAD =∠MAD .∴ ∠D =∠BAD .∴ MA =MD .12.解:因为△ABD 和△CDE 都是等边三角形,所以,∠∠60°.所以∠∠∠∠, 即∠∠.在△和△中,因为所以△≌△,所以.又,所以.在等腰直角△中,2,故.13.解:,BE⊥EC.证明:∵,点D是AC的中点,∴.∵∠∠45°,∴∠∠135°.∵,∴△EAB≌△EDC.∴∠∠.∴∠∠90°.∴⊥.14.证明:∵AE∥BD,∴∠EAC=∠ACB.∵AB=AC,∴∠B=∠ACB.∴∠EAC=∠B.又∵∠BAD=∠ACE=90°,∴△ABD≌△CAE(ASA).∴AD=CE.15.证明:∵,∴∠∠.∵于点,∴∠∠.∴∠∠∠∠.∴∠∠.∵∠∠,∴∠∠.∴△是等腰三角形.。

北师大版八年级数学下册 第1章 三角形的证明 单元测试及解析

北师大版八年级数学下册 第1章 三角形的证明 单元测试及解析

北师大版八年级数学下册第1章三角形的证明单元测试注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)一、选择题30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是【】A.15° B.25° C.30° D.10°2.如图,将三角形△ABC绕着点C顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A的度数是()A. 35°B. 65°C. 55°D. 25°3.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB于点E,且AB=6cm,则△DEB的周长是( )A. 6cmB. 4cmC. 10cmD. 以上都不对4.已知:如图,在Rt△ABC中,∠ACB=90°,∠A<∠B,CM是斜边AB上的中线,将△ACM沿直线CM折叠,点A落在点A1处,CA1与AB交于点N,且AN=AC,则∠A的度数是()A. 30°B. 36°C. 50°D. 60°5.如图,在△ABC中,∠C=60°,∠B=50°,D是BC上一点,DE⊥AB于点E,DF⊥AC于点F,则∠EDF的度数为()A. 90°B. 100°C. 110°D. 120°6.如图,在△ABC中,∠ACB=90°,CD是AB边上的高线,图中与∠A互余的角有()A. 0个B. 1个C. 2个D. 3个7.在直角△ABC中,∠C=30°,斜边AC的长为5cm,则AB的长为()A. 4cmB. 3cmC. 2.5cmD. 2cm8.如果直角三角形中30°角所对的直角边是1cm,那么另一条直角边长是()A. 1cmB. 2cmC. √3cmD. 3cm9.等腰三角形一腰上的高等于这腰的一半,则这个等腰三角形的顶角等于()(A)30°(B)60°(C)30°或150°(D)60°或120°10.如图,BE、CF分别是△ABC的高,M为BC的中点,EF=5,BC=8,则△EFM的周长是()A. 21B. 18C. 13D. 1511.在Rt△ABC中,∠C=90°,AB=2,则AB2+BC2+CA2的值为()A. 2B. 4C. 8D. 1612.如图,在三角形纸片ABC中,AC=6,∠A=30°,∠C=90°,将∠A沿DE折叠,使点A与点B重合,则折痕DE的长为()A. 1B. √2C. √3D. 213.如图,在Rt△ABC中,CD是斜边AB上的中线,则图中与CD相等的线段有()A. AD与BDB. BD与BCC. AD与BCD. AD、BD与BC14.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A. 20B. 12C. 14D. 1315.如图,在Rt△ABC中,∠C=90°,AB=5cm,D为AB的中点,则CD等于()A. 2cmB. 2.5cmC. 3cmD. 4cm第II卷(非选择题)二、解答题(题型注释)∠B=2∠C,且AD⊥BC于D,求证:CD=AB+BD,17.如图,已知:在△ABC中,∠ACB=90°,CD为高,且CD、CE三等分∠ACB.(1)求∠B的度数.(2)求证:CE是AB边上的中线,且12CE AB.18.如图,AD∥BC,BD平分∠ABC,∠A=120°,∠C=60°,AB=CD=4cm,求:(1) AD的长;(2) 四边形ABCD的周长.19.已知锐角△ABC中,CD,BE分别是AB,AC边上的高,M是线段BC的中点,连接DM,EM.(1) 若DE=3,BC=8,求△DME的周长;(2) 若∠A=60°,求证:∠DME=60°;(3) 若BC2=2DE2,求∠A的度数.三、填空题C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则CD=_______.21.如图,△ABC中,∠C=90°,AC﹣BC=2√2,△ABC的面积为7,则AB=__.22.如图,在△ABC中,∠C=90°, ∠ABC=60°,BD平分∠ABC,若AD=6,则AC= .23.如图:△ABC中,∠ACB=90°,CD是高,∠A=30°,BD=3cm,则AD=__ cm.24.如图,△ABC是等腰直角三角形,AB=BC,已知点A的坐标为(﹣2,0),点B的坐标为(0,1),则点C的坐标为__.25.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,交BC于点D,若CD=1,则BD=________.26.已知等腰△ABC中,AD⊥BC于点D,且AD=12BC,则△ABC的底角的度数为________.27.若直角三角形两直角边之比为3∶4,斜边长为20,则它的面积为____.参考答案1.A。

北师大版八年级数学下册第一章三角形的证明专项测试题 附答案解析(一)

北师大版八年级数学下册第一章三角形的证明专项测试题 附答案解析(一)

第一章三角形的证明专项测试题(一)一、单项选择题(本大题共有15小题,每小题3分,共45分)1、如图,在中,已知,的平分线交于点.若,则点到的距离是().A.B.C.D.2、在中,,的垂直平分线交于点,交于点,且,则为().A.B.C.D. 无法确定3、下列说法中,不正确的是().A. 线段有1条对称轴B. 等边三角形有条对称轴C. 角只有1条对称轴D. 底与腰不相等的等腰三角形只有一条对称轴4、如图,平分,,,垂足分别为,.下列结论中不一定成立的是()A.B. 平分C.D. 垂直平分5、若点在线段的垂直平分线上,,则( ).A.B. 无法确定C.D.6、如图,是内一点,且点到的距离,则的依据是()A.B.C.D.7、如图,中,,,则()A.B.C.D.8、到三角形三个顶点的距离都相等的点是这个三角形的()A. 三条高的交点B. 三条角平分线的交点C. 三条中线的交点D. 三条边的垂直平分线的交点9、如图,公路互相垂直,公路的中点与点被湖隔开.若测得的长为,则两点间的距离为()A.B.C.D.10、某一实验装置的截面图如图所示,上方装置可看做一长方形,其侧面与水平线的夹角为,下方是一个直径为,高为的圆柱形容器,若使容器中的液面与上方装置相接触,则容器中液体的高度至少应为()A.B.C.D.11、如图,若要用“”证明,则还需补充条件()A.B. 或C. 且D. 以上都不对12、使两个直角三角形全等的条件是()A. 一个锐角对应相等B. 两个锐角对应相等C. 一条边对应相等D. 两条边对应相等13、已知直角三角形的周长为,斜边上的中线长为.则直角三角形的面积为()A.B.C.D.14、如图,在中,,平分,于.如果,那么等于()A.B.C.D.15、如图,中、平分、,过作直线平行于,交、于、,当的位置及大小变化时,线段和的大小关系是()A. 不能确定B.C.D.二、填空题(本大题共有5小题,每小题5分,共25分)16、等腰三角形两腰上的高相等,这个命题的逆命题是_________________________,这个逆命题是________命题.17、如图,已知PE⊥OA,PF⊥OB,且PE=PF,则点P的位置在________上.18、如图,在中,于,点为的中点,,则线段的长等于.19、如图,在中,,平分,交于点,若,则.20、如图,点在直线上,按如下步骤作图:①以点为圆心,任意长为半径作圆弧,交于点,;②分别以点,为圆心,大于的长为半径作圆弧,两弧相交于点;③作直线,连结,,若,则的大小为度.三、解答题(本大题共有3小题,每小题10分,共30分)21、如图,在中,,是上一点,,过点作的垂线交于点.求证:.22、如图,在中,,是边上的中线,于点,求证:.23、如图,中,,是的高,,求的长.第一章三角形的证明专项测试题(一) 答案部分一、单项选择题(本大题共有15小题,每小题3分,共45分)1、如图,在中,已知,的平分线交于点.若,则点到的距离是().A.B.C.D.【答案】C【解析】解:过点作,交于点,则的长度即为点到直线的距离.,,是的平分线,且,,,已知,.即点到的距离为.故正确答案应选:.2、在中,,的垂直平分线交于点,交于点,且,则为().A.B.C.D. 无法确定【答案】B【解析】解:如图所示.,且平分,,是等腰三角形,,,,,而,且,,解得.故正确答案是:.3、下列说法中,不正确的是().A. 线段有1条对称轴B. 等边三角形有条对称轴C. 角只有1条对称轴D. 底与腰不相等的等腰三角形只有一条对称轴【答案】A【解析】解:线段本身所在的直线为线段的条对称轴,线段的垂直平分线为线段的另1条对称轴,所以线段有条对称轴,本说法错误;等边三角形的条高线(或条角平分线)为等边三角形的条对称轴,本说法正确;角的平分线把角一分为二,故角的平分线只有条,本说法正确;底与腰不相等的三角形,顶角的平分线把三角形一分为二,所以底与腰不相等的三角形只有条对称轴,本说法正确.故正确的答案是:线段有1条对称轴.4、如图,平分,,,垂足分别为,.下列结论中不一定成立的是()A.B. 平分C.D. 垂直平分【答案】D【解析】解:平分,,,,第一选项正确;在和中,,,,,故第二、三选项正确;由等腰三角形三线合一的性质,垂直平分,不一定垂直平分,故本选项错误5、若点在线段的垂直平分线上,,则( ).A.B. 无法确定C.D.【答案】C【解析】解:因为线段垂直平分线的点到线段两端点的距离相等,所以,所以.故答案为:.6、如图,是内一点,且点到的距离,则的依据是()A.B.C.D.【答案】A【解析】解:,,,又,为公共边,.7、如图,中,,,则()A.B.C.D.【答案】A【解析】解:,,,.8、到三角形三个顶点的距离都相等的点是这个三角形的()A. 三条高的交点B. 三条角平分线的交点C. 三条中线的交点D. 三条边的垂直平分线的交点【答案】D【解析】解:到三角形三个顶点的距离都相等的点是这个三角形的三条边的垂直平分线的交点.9、如图,公路互相垂直,公路的中点与点被湖隔开.若测得的长为,则两点间的距离为()A.B.C.D.【答案】D【解析】解:在中,,为的中点,.10、某一实验装置的截面图如图所示,上方装置可看做一长方形,其侧面与水平线的夹角为,下方是一个直径为,高为的圆柱形容器,若使容器中的液面与上方装置相接触,则容器中液体的高度至少应为()A.B.C.D.【答案】A【解析】解:如图,圆桶放置的角度与水平线的夹角为,依题意得是一个斜边为的等腰直角三角形,此三角形中斜边上的高为斜边的一半,即,水深至少应为.11、如图,若要用“”证明,则还需补充条件()A.B. 或C. 且D. 以上都不对【答案】B【解析】解:从图中可知为和的斜边,也是公共边.根据“”定理,证明,还需补充一对直角边相等,即或.12、使两个直角三角形全等的条件是()A. 一个锐角对应相等B. 两个锐角对应相等C. 一条边对应相等D. 两条边对应相等【答案】D【解析】解:一个锐角对应相等,利用已知的直角相等,可得出另一组锐角相等,但不能证明两三角形全等,故错误;两个锐角相等,那么也就是三个对应角相等,但不能证明两三角形全等,故错误;一条边对应相等,再加一组直角相等,不能得出两三角形全等,故错误;两条边对应相等,若是两条直角边相等,可利用证全等;若一直角边对应相等,一斜边对应相等,也可证全等,故正确.13、已知直角三角形的周长为,斜边上的中线长为.则直角三角形的面积为()A.B.C.D.【答案】C【解析】解:,是斜边上的中线,,,,由勾股定理得:,,,.14、如图,在中,,平分,于.如果,那么等于()A.B.C.D.【答案】C【解析】解:,,,,,,平分,,.15、如图,中、平分、,过作直线平行于,交、于、,当的位置及大小变化时,线段和的大小关系是()A. 不能确定B.C.D.【答案】D【解析】解:由平分得,,,,,,是等腰三角形,,同理可得,,(是等腰三角形),.二、填空题(本大题共有5小题,每小题5分,共25分)16、等腰三角形两腰上的高相等,这个命题的逆命题是_________________________,这个逆命题是________命题.【答案】如果一个三角形两边上的高相等,那么这个三角形是等腰三角形;真. 【解析】解:命题“等腰三角形两腰上的高相等”的逆命题是“如果一个三角形两边上的高相等,那么这个三角形是等腰三角形”.它是真命题,可用证明,得到两角相等.17、如图,已知PE⊥OA,PF⊥OB,且PE=PF,则点P的位置在________上.【答案】的平分线【解析】解:由题意知,到角的两边的距离相等的点在角的平分线上,故答案为:的平分线.18、如图,在中,于,点为的中点,,则线段的长等于.【答案】8【解析】解:于,点为的中点,,在中,.19、如图,在中,,平分,交于点,若,则.【答案】14【解析】解:,,平分,,.20、如图,点在直线上,按如下步骤作图:①以点为圆心,任意长为半径作圆弧,交于点,;②分别以点,为圆心,大于的长为半径作圆弧,两弧相交于点;③作直线,连结,,若,则的大小为度.【答案】40【解析】解:由题意可得:垂直平分,则,,故.三、解答题(本大题共有3小题,每小题10分,共30分)21、如图,在中,,是上一点,,过点作的垂线交于点.求证:.【解析】证明:...在和中.,,..,.(三线合一).22、如图,在中,,是边上的中线,于点,求证:.【解析】证明:,是边上的中线,,,,.23、如图,中,,是的高,,求的长.【解析】解:如图,在中,,是高,,,在直角中,,在直角中,.的长为.。

2019-2020学年八年级数学下册第一章三角形的证明回顾与思考测试含解析新版北师大版.doc

2019-2020学年八年级数学下册第一章三角形的证明回顾与思考测试含解析新版北师大版.doc

2019-2020学年八年级数学下册第一章三角形的证明回顾与思考测试含解析新版北师大版一、选择题(每小题3分,共30分)1. 一个直角三角形的两条直角边长分别为6 cm和8 cm,那么这个直角三角形的斜边长为()A. 6 cmB. 8 cmC. 10 cmD. 24 cm【答案】C【解析】根据勾股定理可以得出:斜边长==10cm.故选:C.点睛:此题主要考查了勾股定理的应用,关键是灵活应用勾股定理的公式计算.2. 如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()A. B. C. D.【答案】D【解析】试题分析:由PB+PC=BC和PA+PC=BC易得PA=PB,根据线段垂直平分线定理的逆定理可得点P在AB的垂直平分线上,于是可判断D选项正确.故选D.考点:作图—复杂作图3. 如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠E=35°,则∠BAC的度数为()A. 40°B. 45°C. 60°D. 70°【答案】A【解析】根据平行线的性质可得∠CBD的度数,根据角平分线的性质可得∠CBA的度数,根据等腰三角形的性质可得∠C的度数,根据三角形内角和定理可得∠BAC的度数.解:∵AE∥BD,∴∠CBD=∠E=35°,∵BD平分∠ABC,∴∠CBA=70°,∵AB=AC,∴∠C=∠CBA=70°,∴∠BAC=180°﹣70°×2=40°.故选A.“点睛”考查了平行线的性质,角平分线的性质,等腰三角形的性质和三角形内角和定理.关键是得到∠C=∠CBA=70°.4. 如图,在△ABC中,AC=4 cm,线段AB的垂直平分线交AC于点N,△BCN的周长是7 cm,则BC的长为()A. 1 cmB. 2 cmC. 3 cmD. 4 cm【答案】C【解析】试题分析:根据中垂线的性质可得:BN=AN,则△BCN的周长=BN+NC+BC=AN+NC+BC=AC+BC=7cm,根据AC=4cm可得:BC=7-4=3cm.考点:中垂线的性质5. 如图,小亮将升旗的绳子拉直到旗杆底端,绳子末端刚好接触到地面,然后再将绳子向外拉直,末端距离旗杆8 m处,发现此时绳子末端距离地面2 m,则旗杆的高度(滑轮上方的部分忽略不计)为()A. 12 mB. 13 mC. 16 mD. 17 m【答案】D【解析】如图所示,作BC⊥AE于点C,则BC=DE=8,设AE=x,则AB=x,AC=x-2,在Rt△ABC中,AC2+BC2=AB2,即(x-2)2+82=x2,解得x=17.所以旗杆的高度为17m.6. 下列命题中,其逆命题为真命题的是()A. 若a=b,则a2=b2B. 同位角相等C. 两边和一角对应相等的两个三角形全等D. 等腰三角形两底角不相等【答案】C【解析】根据互为逆命题的关系,题设和结论互换,可知:若a=b,则a2=b2的逆命题为:若a2=b2,则a=b,是假命题;同位角相等的逆命题为:相等的角是同位角,是假命题;两边和一角对应相等的两个三角形全等的逆命题是:全等三角形的对应边相等,对应角相等,是真命题;等腰三角形的两底角不相等的逆命题为:两个角不相等的三角形是等腰三角形,是假命题.故选:C.7. 如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,CE平分∠ACB,若BE=2,则AE的长为()A. B. 1 C. D. 2【答案】B【解析】试题解析:∵在△ABC中,∠B=30°,BC的垂直平分线交AB于E,BE=2,∴BE=CE=2,∴∠B=∠DCE=30°,∵CE平分∠ACB,∴∠ACB=2∠DCE=60°,∠ACE=∠DCE=30°,∴∠A=180°-∠B-∠ACB=90°.在Rt△CAE中,∵∠A=90°,∠ACE=30°,CE=2,∴AE=CE=1.故选B.8. 如图,在△ABC中,CD是AB边上的高,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积为()A. 10B. 7C. 5D. 4【答案】C【解析】作EF⊥BC于F,∵BE平分∠ABC,ED⊥AB,EF⊥BC,∴EF=DE=2,∴S△BCE=BC⋅EF=×5×2=5,故选C.9. 如图,△ABC和△DCE都是边长为2的等边三角形,点B,C,E在同一条直线上,连接BD,则BD的长为()A. 18B. 3C. 12D. 2【答案】D【解析】过点D作DF⊥EC于点F,利用正三角形的性质得出CF=1,BF=3,再利用勾股定理求出DF==,则可得BD=.故选:D.点睛:此题主要考查了勾股定理以及等边三角形的性质,得出DF的长是解题关键.10. 如图,在△ABC中,AB=AC=5,BC=8,P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是()A. 4.8B. 4.8或3.8C. 3.8D. 5【答案】A【解析】试题分析:作AF⊥BC于F,根据等腰三角形三线合一的性质得出BF=CF=4,然后根据勾股定理求得AF=3,连接AP,根据△ABC的面积=△ABP的面积+△ACP的面积解出答案即可.考点:轴对称问题二、填空题(每小题4分,共32分)11. 命题“全等三角形的面积相等”的逆命题是_________.【答案】面积相等的三角形全等【解析】试题分析:把一个命题的题设和结论互换就可得到它的逆命题:“全等三角形的面积相等”的逆命题是:面积相等的三角形是全等三角形.考点:互逆命题12. 若一个三角形的三边长分别为3 m,4 m,5 m,那么这个三角形的面积为___.【答案】6 m2【解析】根据勾股定理的逆定理,可由三边的长判断出此三角形是直角三角形,3cm、4cm是三角形的两直角边,所以根据三角形的面积公式可得面积为3×4÷2=6m2.故答案为:6m2.13. 如图,点D,C,A在同一条直线上,在△ABC中,∠A∶∠ABC∶∠ACB=3∶5∶10,若△EDC≌△ABC,则∠BCE的度数为_.【答案】20°【解析】利用三角形的三角的比∠A:∠ABC:∠ACB=3:5:10,设∠A=3x°,则∠ABC=5x°,∠ACB=10x°,根据三角形的内角和为180°得3x+5x+10x=180,解得x=10,求出三角的度数∠A=30°,∠ABC=50°,∠ACB=100°,可得∠BCN=180°-100°=80°,再由△MNC≌△ABC得到∠ACB=∠MCN=100°,因此可求得∠BCM=∠NCM-∠BCN=100°-80°=20°.故答案为:20°.点睛:本题考查了全等三角形的性质;利用三角形的三角的比,求得三个角的大小是很重要的方法,要注意掌握.14. 如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,交BC于点D,若CD=1,则BD=_.【答案】2【解析】试题分析:根据角平分线性质求出∠BAD的度数,根据含30度角的直角三角形性质求出AD即可得BD.∵∠C=90°,∠B=30°,∴∠CAB=60°,AD平分∠CAB,∴∠BAD=30°,∴BD=AD=2CD=2,考点:含30度角的直角三角形;角平分线的性质视频15. 如图,在△ABC和△ADC中,下列论断:①AB=AD;②∠ABC=∠ADC=90°;③BC=DC.把其中两个论断作为条件,另一个论断作为结论,可以写出_个真命题.【答案】2【解析】根据题意,可得三种命题,由①②③,根据直角三角形全等的判定HL可证明,是真命题;由①③②,能证明∠ABC=∠ADC,但是不能得出一定是90°,是假命题;由②③①,根据SAS可证明两三角形全等,再根据全等三角形的性质可证明,故是真命题.因此可知真命题有2个.故答案为:2.点睛:仔细审题,将其中的两个作为题设,另一个作为结论,可得到三种情况,然后根据全等三角形的判定定理和性质可判断出是否是真命题.16. 如图是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD =45°,∠MBC=30°,则警示牌的高CD为_米.(结果精确到0.1米,参考数据:≈1.41,≈1.73)【答案】2.9【解析】试题分析:在Rt△AMD中,∠MAD=45°,AM=4米,可得MD=4米;在Rt△BMC中,BM=AM+AB=12米,∠MBC=30°,可求得MC=4米,所以警示牌的高CD=4-4=2.9米.考点:解直角三角形.17. 如图,在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是_.【答案】4∶3【解析】试题分析:估计角平分线的性质,可得出△ABD的边AB上的高与△ACD的AC上的高相等,估计三角形的面积公式,即可得出△ABD与△ACD的面积之比等于对应边之比.解:∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=4:3,故答案为4:3.考点:角平分线的性质.18. 如图,∠BOC=9°,点A在OB上,且OA=1.按下列要求画图:以A为圆心,1为半径向右画弧交OC 于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;……依次画下去,直到得到第n条线段,之后不能再画出符合要求的线段,则n=__.【答案】9【解析】试题分析:根据等腰三角形的性质和三角形外角的性质依次可得∠A1AB的度数,∠A2A1C的度数,∠A3A2B的度数,∠A4A3C的度数,…,依此得到规律,再根据三角形外角小于90°即可求解.解:由题意可知:AO=A1A,A1A=A2A1,…,则∠AOA1=∠OA1A,∠A1OA2=∠A1A2A,…,∵∠BOC=9°,∴∠A1AB=18°,∠A2A1C=27°,∠A3A2B=36°的度数,∠A4A3C=45°,…,∴9°n<90°,解得n<10.由于n为整数,故n=9.故选B.考点:等腰三角形的性质.视频三、解答题(共58分)19. 如图,AD是△ABC的角平分线,CE∥AD交BA的延长线于点E,那么△ACE是等腰三角形吗?请证明你的结论.【答案】△ACE是等腰三角形,证明见解析.【解析】试题分析:根据平行线的性质得到∠BAD =∠E,∠CAD=∠ACE;然后结合角平分线的性质和等量代换推知∠E=∠ACE,故△ACE是等腰三角形.试题解析:△ACE是等腰三角形.证明:因为AD是△ABC的角平分线,所以∠BAD=∠CAD.因为CE∥AD,所以∠BAD=∠E,∠CAD=∠ACE.所以∠E=∠ACE.所以AE=AC,即△ACE是等腰三角形.点睛:本题考查了等腰三角形的判定.判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等.20. 如图,在Rt△ABC中,∠B=90°,AB=5,BC=3,AC的垂直平分线DE分别交AB,AC于D,E两点,试求CD的长.【答案】CD的长为3.4.试题解析:因为DE是AC的垂直平分线,所以CD=AD.所以AB=BD+AD=BD+CD.设CD=x,则BD=5-x.在Rt△BCD中,由勾股定理,得 CD2=BC2+BD2,即x2=32+(5-x)2,解得x=3.4.故CD的长为3.4.21. 如图,在△ABC中,AB=AC=10 cm,∠B=15°,CD是AB边上的高,求CD的长.【答案】CD的长是5 cm.【解析】试题分析:根据等边对等角和三角形的外角求出∠CAD的度数,然后根据30°角的直角三角形的性质可求解.试题解析:在△ABC中,因为AB=AC=10 cm,∠B=15°,所以∠B=∠ACB=15°.所以∠DAC=∠B+∠ACB=30°.因为CD是AB边上的高,所以∠D=90°.所以CD=AC=×10=5(cm),即CD的长是5 cm.22. 我们把两组邻边相等的四边形叫做“筝形” .如图所示四边形ABCD是一个筝形,其中AB=CB,AD=CD,对角线AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F.求证:OE=OF.【答案】证明见解析.【解析】试题分析:欲证明OE=OF,只需推知BD平分∠ABC,所以通过全等三角形△ABD≌△CBD(SSS)的对应角相等得到∠ABD=∠CBD,问题就迎刃而解了.试题解析:证明:∵在△ABD和△CBD中,AB=CB,AD=BD,BD=BD,∴△ABD≌△CBD(SSS),∴∠ABD=∠CBD,∴BD平分∠ABC.又∵OE⊥AB,OF⊥CB,∴OE=OF.23. 如图,在Rt△ABC中,∠C=90º,BD是△ABC的角平分线,点O在BD上,分别过点O作OE⊥BC,OF⊥AC,垂足为E,F,且OE=OF.(1)求证:点O在∠BAC的平分线上;(2)若AC=5,BC=12,求OE的长.【答案】(1)证明见解析;(2)OE=2.【解析】试题分析:(1)过点O作OM⊥AB,由角平分线的性质得OE=OM,由正方形的性质得OE=OF,易得OM=OF,由角平分线的判定定理得点O在∠BAC的平分线上;(2)连接OC,根利用勾股定理求出AB的长,据三角形的面积公式即可得出结论.试题解析:(1)证明:过点O作OM⊥AB于点M.因为BD平分∠ABC,OM⊥AB于M,OE⊥BC于E,所以OM=OE.又OE=OF,所以OM=OF.所以点O在∠BAC的平分线上.(2)连接OC.在Rt△ABC中,∠C=90°,AC=5,BC=12,根据勾股定理,得AB=13.因为S△ABO+S△BCO+S△ACO =S△ABC,所以×13·OM+×12·OE+×5·OF=×5×12.由(1)知OM=OE=OF,所以15OE=30,解得OE=2.点睛:本题主要考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.24. 按照题中提供的思路点拨,先填空,然后完成解答的全过程.如图,已知AB=AD,∠BAD=60°,∠BCD=120°,延长BC,使CE=CD,连接DE,求证:BC+DC=AC. 思路点拨:(1)由已知条件AB=AD,∠BAD=60°,可知△ABD是_三角形.同理由已知条件∠BCD=120°得到∠DCE=_,且CE=CD,可知_;(2)要证BC+DC=AC,可将问题转化为证两条线段相等,即_=_;(3)要证(2)中所填写的两条线段相等,可以先证明_.请写出完整的证明过程.【答案】(1)等边,60°,△DCE是等边三角形;(2)AC,BE;(3)△BED≌△ACD,证明见解析.【解析】试题分析:(1)连接BD,根据等边三角形判定推出即可;求出∠DCE=60°,得到等边三角形DCE 即可;(3)根据等边三角形性质推出AD=BD,CD=DE,∠ADB=∠CDE=60°,推出∠ADC=∠BDE,证△ADC≌△BDE即可;(4)由(3)即可得出答案.试题解析:(1)(1)解:连接BD,∵AB=AD,∠BAD=60°,∴△ABD是等边三角形,∵∠BCD=120°,∴∠DCE=180°-∠BCD=180°-120°=60°,∵CE=CD,∴△DCE是等边三角形,故答案为:等边,60°,△DCE是等边三角形.(2)证明:∵等边三角形ABD和DCE,∴AD=BD,CD=DE,∠ADB=∠CDE=60°,∴∠ADB+∠BDC=∠CDE+∠BDC,即∠ADC=∠BDE,在△ADC和△BDE中,∴△ADC≌△BDE,∴AC=BE=BC+CE,故答案为:BE,AC.(3)△BED≌△ACD证明过程如下:连接AC,BD.因为AB=AD,∠BAD=60°,所以△ABD是等边三角形.所以AD=BD,∠ADB=60°.因为∠BCD=120°,所以∠DCE=180°-∠BCD=180°-120°=60°.因为CE=CD,所以△DCE是等边三角形.所以CD=DE,∠CDE=60°.所以∠ADB+∠BDC=∠CDE+∠BDC,即∠ADC=∠BDE.在△ADC和△BDE中,AD=BD,∠ADC=∠BDE,DC=DE,所以△ADC≌△BDE.所以AC=BE=BC+CE=BC+DC.附加题(15分,不计入总分)25. 如图,已知一个边长分别为6、8、10的直角三角形,请设计出一个有一条边长为8的直角三角形,使这两个直角三角形能够拼成一个等腰三角形.(1)画出4种不同拼法(周长不等)的等腰三角形;(2)分别求出4种不同拼法的等腰三角形的周长.【答案】(1)见解析;(2)见解析.【解析】试题分析:(1)根据三角形的三边关系、勾股定理的逆定理和等腰三角形的判定来作图;(2)利用(1)的图形,分别求得每一个等腰三角形的周长.试题解析:(1)答案不唯一,如给出4种不同拼法,如图1-①、1-②、1-③、1-④所示.。

2021-2022学年最新北师大版八年级数学下册第一章三角形的证明章节测评试题(含答案及详细解析)

2021-2022学年最新北师大版八年级数学下册第一章三角形的证明章节测评试题(含答案及详细解析)

北师大版八年级数学下册第一章三角形的证明章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,AD 是△AAA 的角平分线,作AD 的垂直平分线EF 交BC 的延长线于点F ,连接AF .下列结论:①AF DF =;②::ABD ACD SS AB AC =;③BAF ACF ∠=∠;④BF AC ⊥.其中命题一定成立的有( )A .1个B .2个C .3个D .4个2、如图,在等腰Rt ABC ∆中,90A ∠=︒,AB AC =,BD 平分ABC ∠,交AC 于点D ,DE BC ⊥,若10BC =cm ,则DEC 的周长为( )A .8cmB .10cmC .12cmD .14cm3、如图,在△AAA 中,90C ∠=︒,30A ∠=︒,点D 为边AB 的中点,点P 在边AC 上,则PDB △周长的最小值等于( ).A .AC AB + B .ABC .AC BC +D .AC4、如图,AB DF ∥,AC CE ⊥于点C ,BC 与DF 交于点E ,若20A ∠=︒,则CED ∠等于( )A .20°B .50°C .70°D .110°5、如图,在△ABC 中,已知AB =AC =3,BC =4,若D ,E 是边BC 的两个“黄金分割”点,则△ADE 的面积为( )A .10﹣B . 5CD .20﹣6、如图,在ABC 中,AC BC =,30B ∠=︒,D 为AB 的中点,P 为CD 上一点,E 为BC 延长线上一点,且.PA PE =有下列结论:①30PAD PEC ∠+∠=︒;②PAE △为等边三角形;③PD CE CP =-;④.ABC AECP S S =四边形其中正确的结论是( )A .①②③④B .①②C .①②④D .③④7、如图,在△AAA 中, ∠AAA 和∠AAA 的平分线相交于点A ,过点A 作AA ∥AA 交AA 于A ,交AA 于A ,过点A 作AA ⊥AA 于A ,下列四个结论:①AA =AA +AA ;② 1902BOC A ∠=+∠; ③点A 到△AAA 各边的距离相等;④设AA =A , AE AF n +=,则A AAAA =AA .其中正确的结论个数是( )A .1个B .2个C .3个D .4个8、我们称网格线的交点为格点.如图,在4×4的长方形网格中有两个格点A 、B ,连接AB ,在网格中再找一个格点C ,使得△ABC 是等腰直角三角形,则满足条件的格点C 的个数是( )A.3 B.4 C.5 D.69、下列四组数据中,不能..作为直角三角形的三边长的是()A.5,13,12 B.6,8,10 C.9,12,15 D.3,4,610、已知等腰三角形两边的长分别为3和7,则此等腰三角形的周长为()A.10 B.15 C.17 D.19第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,△ABC中,∠A=68°,点D是BC上一点,BD、CD的垂直平分线分别交AB、AC于点E、F,则∠EDF=_____度.2、如图1,△AA1A1是边长为2的等边三角形;如图2,取AA1的中点A2,画等边△AA2A2,连接A1A2;如图3,取AA2的中点3C,画等边△AA3A3,连接A2A3;如图4,取AA3的中点A4,画等边△AA4A4,连接A3A4,则A3A4的长为________.按照此规律一直画下去,则A A A A+1的长为________(用含A的式子表示).……3、若一条长为24cm的细线能围成一边长等于9cm的等腰三角形,则该等腰三角形的腰长为_____cm.4、△ABC的高AD所在直线与高BE所在直线相交于点F且DF=CD,则∠ABC=______.5、如图,在△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,已知AD=4,则D到BC边的距离为________.三、解答题(5小题,每小题10分,共计50分)1、下面是小丽同学设计的“作30°角”的尺规作图过程.已知:如图1,射线OA.求作:∠AOB,使∠AOB=30°.作法:如图2,①在射线OA上任取一点C;②分别以O,C为圆心,OC长为半径作弧,两弧在射线OA的上方交于点D,作射线OD,并连接CD;③以O为圆心,任意长为半径作弧,分别交射线OA,OD于点E,F;④分别以E,F为圆心,以大于12EF的同样长为半径作弧,两弧在∠AOD内部交于点B;⑤作射线OB;∴ ∠AOB就是所求的角.根据小丽设计的尺规作图过程,解答下列问题:(1)使用直尺和圆规,依作法补全图2(保留作图痕迹);(2)补全下面证明过程:证明:连接BE,BF.∵ OC=OD=CD,∴ △OCD是等边三角形.∴∠COD=°.又∵ OE=OF,BE=BF,OB=OB,∴ △OEB≌△OFB()(填推理依据).∴ ∠EOB=∠FOB()(填推理依据).∴ ∠AOB=12COD=30°.∴∠AOB就是所求的角.2、如图,已知在平面直角坐标系中,点A(0,n)是y轴上的一点,且n使得√A−4+√4−A有意义,以OA为边在第一象限内作等边三角形△OAB.(1)求点B的坐标;(2)若点C是在射线BO上第三象限内的一点,连接AC,以AC为边在y轴右侧画等边三角形△ACD,连接BD,OD.①请先依题意补全图形后,求∠ABD的度数;②当OD最小时,求△ACD的边长.3、已知:在△ABC中,AD平分∠BAC,AE=AC.求证:AD∥CE.4、“三等分角”是被称为几何三大难题的三个古希腊作图难题之一.如图1所示的“三等分角仪”是利用阿基米德原理做出的.这个仪器由两根有槽的棒PA,PB组成,两根棒在P点相连并可绕点P 旋转,C点是棒PA上的一个固定点,点A,O可在棒PA,PB内的槽中滑动,且始终保持OA=OC=PC.∠AOB为要三等分的任意角.则利用“三等分角仪”可以得到∠APB=13∠AOB.我们把“三等分角仪”抽象成如图2所示的图形,完成下面的证明.已知:如图2,点O,C分别在∠APB的边PB,PA上,且OA=OC=PC.求证:∠APB=13∠AOB.5、如图,点D,E在△ABC的边BC上,AB=AC,AD=AE,求证:BD=CE.-参考答案-一、单选题1、C【分析】根据垂直平分线的性质和线段垂直平分线的性质即可判断①②;根据∠BAF=∠BAD+∠DAF,∠ACF=∠DAC+∠ADF,即可判断③;根据∠BAF不一定为90°,则∠ACF不一定为90°,即可判断④.【详解】解:∵EF是线段AD的垂直平分线,∴AF=DF,故①正确;∴∠ADF=∠DAF,过点D分别作DH⊥AB于H,DG⊥AC于G,∵AD平分∠BAC,∴DH=DG,∠BAD=∠CAD∵1=2ABDS AB DH⋅△,1=2ACDS AC DG⋅△,∴12=12ABDACDAB DHS ABS ACAC DG⋅=⋅△△,故②正确;∵∠BAF=∠BAD+∠DAF,∠ACF=∠DAC+∠ADF,∴∠BAF=∠ACF,故③正确;∵∠BAF不一定为90°,∴∠ACF不一定为90°,∴AF与BC不一定垂直,故④错误,故选C.【点睛】本题主要考擦了线段垂直平分线的性质,角平分线的性质,熟知角平分线和线段垂直平分线的性质是解题的关键.2、B【分析】根据角平分线上的点到角的两边距离相等可得DE=AD,利用“HL”证明Rt△ABD和Rt△EBD全等,根据全等三角形对应边相等可得AB=BE,然后求出△DEC的周长=BC,再根据BC=10cm,即可得出答案.【详解】解:∵BD是∠ABC的平分线,DE⊥BC,∠A=90°,∴DE AD=,在Rt△ABD和Rt△EBD中,∵BD BDAD DE=⎧⎨=⎩,()Rt ABD Rt EBD HL∴∆∆≌,∴AB=BE,∴△DEC的周长=DE+CD+CE =AD+CD+CE,=AC+CE,=AB+CE,=BE+CE,=BC,∵BC=10cm,∴△DEC的周长是10cm.故选:B.【点睛】本题考查的是角平分线的性质,全等三角形的判定与性质,熟记各性质并求出△DEC 的周长=BC 是解题的关键.3、C【分析】作点B 关于AC 的对称点H ,连接HP 、HD ,由轴对称的性质可知BP HP =,由题意易得2AB BC BH ==,2AB BD =,则有BC BD =,然后由三角形周长公式可知PBD C BP PD BD HP PD BD =++=++,要使其最小,则需满足H 、P 、D 三点共线即可,进而问题可求解.【详解】解:作点B 关于AC 的对称点H ,连接HP 、HD ,如图所示:∴BP HP =,BC HC =,∵90C ∠=︒,30A ∠=︒,∴2AB BC BH ==,∵点D 为边AB 的中点,∴2AB BD =,∴BC BD =,∵ABC HBD ∠=∠,∴ABC HBD ≌(SAS ),∴AC HD =,∵PBDC BP PD BD HP PD BD =++=++,要使其最小,则需满足H 、P 、D 三点共线,即BP PD +的最小值为HD 的长,∴PBD △的周长最小值为AC BC +;故选C .【点睛】本题主要考查轴对称的性质、含30度直角三角形的性质及全等三角形的性质与判定,熟练掌握轴对称的性质、含30度直角三角形的性质及全等三角形的性质与判定是解题的关键.4、C【分析】由AC CE ⊥与20A ∠=︒,即可求得ABC ∠的度数,又由AB DF ∥,根据两直线平行,同位角相等,即可求得CED ∠的度数.【详解】解:∵AC CE ⊥,∴90C ∠=︒,∵20A ∠=︒,∴70ABC ∠=︒,∵AB DF ∥,∴70CED ABC ∠=∠=︒.故选:C .【点睛】题目主要考查了平行线的性质与垂直的性质、三角形内角和定理,熟练掌握平行线的性质是解题关键.5、A【分析】过点A 作AF ⊥BC 于点F ,由题意易得2BF CF ==,再根据点D ,E 是边BC 的两个黄金分割点,可得2BE CD ===,根据勾股定理可得AF =28DE DF ==,然后根据三角形的面积计算公式进行求解.【详解】解:过点A 作AF ⊥BC 于点F ,如图所示:∵3AB AC ==,4BC =,∴2BF CF ==,∴在Rt △AFB 中,AF∵点D ,E 是边BC 的两个黄金分割点,∴2BE CD BC ===,∵4EF BE BF =-=,4DF CD CF =-=,∴DF =EF ,∴28DE DF ==,∴()1181022ADE S DE AF ===-△ 故选:A【点睛】 本题主要考查二次根式的运算、勾股定理及等腰三角形的性质与判定,熟练掌握二次根式的运算、勾股定理及等腰三角形的性质与判定是解题的关键.6、C【分析】连接BP ,由等腰三角形的性质和线段的中垂线性质即可判断①;由三角形内角和定理可求∠PEA +∠PAE =120°,可得60,APE 可判断②;过点A 作AF ⊥BC ,在BC 上截取CG =CP ,由“SAS ”可证△P ′AC ≌△∠EAC ,延长PD 至P ',使,PD P D 则点P 关于AB 的对称点P ′,连接P ′A ,根据对称性质即可判断③;过点A 作AF ⊥BC ,在BC 上截取CG =CP ,由三角形的面积的和差关系可判断④.【详解】解:如图,连接BP ,∵AC=BC,∠ABC=30°,点D是AB的中点,∴∠CAB=∠ABC=30°,AD=BD,CD⊥AB,∠ACD=∠BCD=60°,∴CD是AB的中垂线,∴AP=BP,而AP=PE,∴AP=PB=PE∴∠PAB=∠PBA,∠PEB=∠PBE,∴∠PBA+∠PBE=∠PAB+∠PEB,∴∠ABC=∠PAD+∠PEC=30°,故①正确;∵PA=PE,∴∠PAE=∠PEA,∵∠ABC=∠PAD+∠PEC=30°,∴∠PAE+∠PEA=18060120,APE而,60=PA PE∴△PAE是等边三角形,故②正确;PD P D则点P关于AB的对称点为P′,连接P′A,如图,延长PD至P',使,∴AP=AP′,∠PAD=∠P′AD,∵△PAE 是等边三角形,∴AE =AP ,∴AE =AP ′,∵∠CAD =∠CAP +∠PAD =30°,∴2∠CAP +2∠PAD =60°,∴∠CAP +∠PAD +∠P ′AD =60°﹣∠PAC ,60,EAC PAC∴∠P ′AC =∠EAC ,∵AC =AC ,∴△P ′AC ≌△∠EAC (SAS ),∴CP ′=CE ,∴CE =CP ′=CP +PD +DP ′=CP +2PD , ∴2CE CP PD . 故③错误;过点A 作AF ⊥BC ,在BC 上截取CG =CP ,∵CG=CP,∠BCD=60°,∴△CPG是等边三角形,∴∠CGP=∠PCG=60°,∴∠ECP=∠PGB=120°,且EP=PB,∠PEB=∠PBE,∴△PCE≌△PGB(AAS),∴CE=GB,∴AC=BC=BG+CG=EC+CP,∵∠ABC=30°,AF⊥BE,∴AF=12AB=AD,∵S△ACB=12CB×AF=12(EC+CP)×AF=12EC×AF+12CP×AD=S四边形AECP,∴S四边形AECP=S△ABC.故④正确.所以其中正确的结论是①②④.故选:C.【点睛】本题考查了全等三角形的判定,等边三角形的判定和性质,含30的直角三角形的性质,垂直平分线的定义与性质,添加恰当辅助线是本题的关键.7、C【分析】根据∠ABC和∠ACB的平分线相交于点O和三角形的内角和等于180°,可得1902BOC A∠=+∠;再由∠ABC和∠ACB的平分线相交于点O和EF∥BC,可得∠EOB=∠OBE,∠FOC=∠OCF,从而得到BE=OE,CF=OF,进而得到EF BE CF=+;过点O作OM⊥AB于M,作ON⊥BC于N,连接OA,根据角平分线的性质定理,可得点O到ABC各边的距离相等;又由AE+AF=n,可得S△AEF=S△AOE+S△AOF=12mn,即可求解.【详解】解:在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∵∠ABC+∠ACB=180°-∠A,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=90°-12∠A∴∠BOC=180°-(∠OBC+∠OCB)=90°+12∠A,故②正确;在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠OBE,∠OCB=∠OCF,∵EF∥BC,∴∠OBC=∠EOB,∠OCB=∠FOC,∴∠EOB=∠OBE,∠FOC=∠OCF,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF,故①正确;过点O作OM⊥AB于M,作ON⊥BC于N,连接OA,又∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴ON=OD=OM=m,即点O到△ABC各边的距离相等,故③正确;∵AE+AF=n,∴S△AEF=S△AOE+S△AOF=12AE×OM+12AF×OD=12OD×(AE+AF)=12mn,故④错误;综上所述,正确的结论有3个.故选:C【点睛】本题主要考查了角平分线性质定理,等腰三角形的性质等知识,熟练掌握角平分线上的点到角两边的距离相等是解题的关键.8、A【分析】根据题意,结合图形,分两种情况讨论:①AB为等腰直角△ABC底边;②AB为等腰直角△ABC其中的一条腰.【详解】解:如图:分情况讨论:①AB为等腰直角△ABC底边时,符合条件的格点C点有0个;②AB为等腰直角△ABC其中的一条腰时,符合条件的格点C点有3个.故共有3个点,故选:A.【点睛】本题考查了等腰三角形的性质和判定;解答本题关键是根据题意,画出符合实际条件的图形,数形结合的思想是数学解题中很重要的解题思想.9、D【分析】根据勾股定理的逆定理进行判断即可.【详解】解:A、22251213+=,故A不符合题意.B、222+=,故B不符合题意.6810C、222+=,故C不符合题意.91215D、222+≠,故D符合题意.346故选:D.【点睛】本题主要是考查了勾股定理的逆定理,熟练利用勾股定理来判定三角形是否为直角三角形,是解决本题的关键.10、C【分析】等腰三角形两边的长为3和7,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【详解】解:①当腰是3,底边是7时,3+3<7,不满足三角形的三边关系,因此舍去.②当底边是3,腰长是7时,3+7>7,能构成三角形,则其周长=3+7+7=17.故选:C.【点睛】本题考查了等腰三角形的性质和三角形的三边关系,解题时注意:若没有明确腰和底边,则一定要分类进行讨论,还应验证各种情况是否能构成三角形,这是解题的关键.二、填空题1、68【分析】根据线段垂直平分线的性质得到EB=ED,FD=FC,则∠EDB=∠B,∠FDC=∠C,从而可以得到∠EDB+∠FDC=∠B+∠C,再由∠EDF=180°﹣(∠EDB+∠FDC),∠A=180°﹣(∠B+∠C),即可得到∠EDF=∠A=68°.【详解】解:∵BD、CD的垂直平分线分别交AB、AC于点E、F,∴EB=ED,FD=FC,∴∠EDB=∠B,∠FDC=∠C,∴∠EDB+∠FDC=∠B+∠C,∵∠EDF=180°﹣(∠EDB+∠FDC),∠A=180°﹣(∠B+∠C),∴∠EDF=∠A=68°.故答案为:68.【点睛】本题主要考查了线段垂直平分线的性质,三角形内角和定理,等腰三角形的性质与判定,熟知线段垂直平分线的性质是解题的关键.2【分析】过点C2作C2D⊥B1B2于点D,根据锐角三角函数的定义得出B1D的长,进而得出B1B2的长,同理可得出B2B3的长,找出规律即可得出结论.【详解】解:如图(2),过点C2作C2D⊥B1B2于点D,∵△AB1C1是边长为1的等边三角形,C2是AB1的中点,∴B1C2=B2C2=1.2∵△AB2C2是等边三角形,∴∠B1C2B2=120°,B1C2=B2C2,∴∠DB1C1=∠DB2C2=30°,∴B1D=B1C2•cos30°=12∴B1B2=2B1D同理可得,B2B3,B3B4∴B n B n+1【点睛】本题考查的是等边三角形的性质,根据题意作出辅助线,求出B1B2的长,找出规律是解答此题的关键.3、9或7.5或9【分析】分9是底边和腰长两种情况,分别列出方程,求解即可得到结果.【详解】解:若9cm为底时,腰长应该是12(24-9)=7.5cm,故三角形的三边分别为7.5cm、7.5cm、9cm,∵7.5+7.5=15>9,故能围成等腰三角形;若9cm为腰时,底边长应该是24-9×2=6,故三角形的三边为9cm、9cm、6cm,∵6+9=15>9,∴以9cm、9cm、6cm为三边能围成三角形,综上所述,腰长是9cm或7.5cm,故答案为:9或7.5.【点睛】本题考查了等腰三角形的性质,三角形的周长,掌握等腰三角形的两腰相等是解题的关键.4、45°或135°【分析】根据题意,分两种情况讨论:①当ABC ∆为锐角三角形时;②当ABC ∆为钝角三角形时;作出相应图形,然后利用全等三角形的判定证明三角形全等,根据其性质及各角直角的等量关系即可得.【详解】解:①如图所示:当ABC ∆为锐角三角形时,∵AD BC ⊥,BE AC ⊥,∴90BDF ADC BEC ∠=∠=∠=︒,∴90C CBE ∠+∠=︒,90C CAD ∠+∠=︒,∴CBE CAD ∠=∠,在AAAA 与ADC ∆中,CBE CAD BDF ADC DF CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴AAAA ≅AAAA ,∴BD AD =,∵90ADB ∠=︒,∴45ABC DAB ∠=∠=︒;②如图所示:当ABC ∆为钝角三角形时,∵AD BC ⊥,BE AC ⊥,∴90BDF ADC BEC ∠=∠=∠=︒,∴90C CAD ∠+∠=︒,90C CBE ∠+∠=︒,∴CBE CAD ∠=∠,∵DBF CBE ∠=∠,∴DBF CAD ∠=∠,在AAAA 与ADC ∆中,DBF CAD BDF ADC DF CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴AAAA ≅AAAA ,∴BD AD =,∵90ADB ∠=︒,∴45ABD DAB ∠=∠=︒,18045135ABC ∠=︒-︒=︒,综合①②可得:ABC ∠为45︒或135︒,故答案为:45︒或135︒.【点睛】题目主要考查全等三角形的判定和性质,等腰三角形的性质,根据题意进行分类讨论,作出相应图形是解题关键.5、4【分析】过点D作DE⊥BC于E,根据BD平分∠ABC性质得出AD=DE=4即可.【详解】解:过点D作DE⊥BC于E,∵BD平分∠ABC,∠A=90°,DE⊥BC,∴AD=DE=4.故答案为:4.【点睛】本题考查点到直线的距离,角平分线性质,掌握点到直线的距离,角平分线性质是解题关键.三、解答题1、(1)见解析;(2)60°,SSS,全等三角形对应角相等【分析】(1)根据题意,③以O为圆心,任意长为半径作弧,分别交射线OA,OD于点E,F;④分别以E,F为圆心,以大于12EF的同样长为半径作弧,两弧在∠AOD内部交于点B;⑤作射线OB;则∠AOB就是所求的角.(2)根据等边三角形的性质,三角形全等的性质与判定推理即可【详解】(1)补全作图如下,(2)证明:连接BE,BF.∵ OC=OD=CD,∴ △OCD是等边三角形.∴∠COD=60°.又∵ OE=OF,BE=BF,OB=OB,∴ △OEB≌△OFB(SSS)(填推理依据).∴ ∠EOB=∠FOB(全等三角形对应角相等)(填推理依据).∴ ∠AOB=12COD∠=30°.∴∠AOB就是所求的角.故答案为:60°,SSS,全等三角形对应角相等【点睛】本题考查了基本作图-作角平分线,三角形全等的性质与判定,掌握基本作图是解题的关键.2、(1)B的坐标为2);(2)①见解析,120ABD︒∠=;②△ACD的边长为【详解】(1)利用非负数的性质求解即可.(2)①根据要求作出图形即可.证明△AOC≌△ABD(SAS),可得结论.②由图可知,点D在与AB夹角为120°的直线上运动,推出当OD⊥BD时OD最短,此时点D在x轴上.【解答】解:(1有意义∴40 40nn-≥⎧⎨-≥⎩,∴n=4,∴等边△OAB的边长为4,过点B作BC⊥x轴,垂足为点C,∵∠BOC=30°,∴122BC OB==,∴AA=√AA2−AA2=2√3,点B的坐标为2).(2)①△ACD如图所画:∵△AOB与△ACD是等边三角形,∴∠CAD=∠OAB=∠AOB=60°,AC=AD,AB=AO,∴∠CAO=60°﹣∠OAD=∠DAB,∴△AOC≌△ABD(SAS),∴∠ABD=∠AOC=180°﹣∠AOB=120°.②∵∠ABD=120°,∴由图可知,点D在与AB夹角为120°的直线上运动,∴当OD⊥BD时OD最短,此时点D在x轴上,∴点B的坐标为2),∴OD=在Rt△AOD中,根据勾股定理AD=∴等边△ACD的边长为【点睛】本题属于三角形综合题,考查了等边三角形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题.3、见解析.【分析】先根据角平分线的定义得到∠BAD =12∠BAC ,再根据等腰三角形的性质和三角形外角定理得到∠E =12∠BAC ,从而得到∠BAD =∠E ,即可证明AD ∥CE .【详解】解:∵AD 平分∠BAC ,∴∠BAD =12∠BAC ,∵AE =AC ,∴∠E =∠ACE ,∵∠E +∠ACE =∠BAC ,∴∠E =12∠BAC ,∴∠BAD =∠E ,∴AD ∥CE .【点睛】本题考查了角平分线的定义,等腰三角形的性质,平行线的判定,三角形外角定理,熟知相关定理并灵活应用是解题关键.4、见解析【分析】由OA OC PC ==,得出,POC AOC 为等腰三角形,由外角的性质及等量代换得2CAO APB ∠=∠,再次利用外角的性质及等量代换得3AOB APB ∠=∠,即可证明.【详解】解:OA OC PC ==,,POC AOC ∴为等腰三角形,,APB COP ACO CAO ∴∠=∠∠=∠,由外角的性质得:2ACO APB COP APB ∠=∠+∠=∠,2CAO APB ∠=∠,再由外角的性质得:AOB APB CAO ∠=∠+∠,3AOB APB ∴∠=∠,13APB AOB ∴∠=∠. 【点睛】本题考查了等腰三角形、外角的性质、解题的关键是掌握外角的性质及等量代换的思想进行求解.5、见解析【分析】过A 作AF ⊥BC 于F ,根据等腰三角形的性质得出BF =CF ,DF =EF ,即可求出答案.【详解】证明:如图,过A 作AF ⊥BC 于F ,∵AB =AC ,AD =AE ,∴BF =CF ,DF =EF ,∴BF-DF=CF-EF,∴BD=CE.【点睛】本题考查了等腰三角形的性质的应用,注意:等腰三角形的底边上的高,底边上的中线,顶角的平分线互相重合.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章三角形的证明一、选择题(每小题3分,共30分)1. 一个直角三角形的两条直角边长分别为6 cm和8 cm,那么这个直角三角形的斜边长为()A. 6 cmB. 8 cmC. 10 cmD. 24 cm【答案】C【解析】根据勾股定理可以得出:斜边长==10cm.故选:C.点睛:此题主要考查了勾股定理的应用,关键是灵活应用勾股定理的公式计算.2. 如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()A. B. C. D.【答案】D【解析】试题分析:由PB+PC=BC和PA+PC=BC易得PA=PB,根据线段垂直平分线定理的逆定理可得点P在AB的垂直平分线上,于是可判断D选项正确.故选D.考点:作图—复杂作图3. 如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠E=35°,则∠BAC的度数为()A. 40°B. 45°C. 60°D. 70°【答案】A【解析】根据平行线的性质可得∠CBD的度数,根据角平分线的性质可得∠CBA的度数,根据等腰三角形的性质可得∠C的度数,根据三角形内角和定理可得∠BAC的度数.解:∵AE∥BD,∴∠CBD=∠E=35°,∵BD平分∠ABC,∴∠CBA=70°,∵AB=AC,∴∠C=∠CBA=70°,∴∠BAC=180°﹣70°×2=40°.故选A.“点睛”考查了平行线的性质,角平分线的性质,等腰三角形的性质和三角形内角和定理.关键是得到∠C=∠CBA=70°.4. 如图,在△ABC中,AC=4 cm,线段AB的垂直平分线交AC于点N,△BCN的周长是7 cm,则BC的长为()A. 1 cmB. 2 cmC. 3 cmD. 4 cm【答案】C【解析】试题分析:根据中垂线的性质可得:BN=AN,则△BCN的周长=BN+NC+BC=AN+NC+BC=AC+BC=7cm,根据AC=4cm可得:BC=7-4=3cm.考点:中垂线的性质5. 如图,小亮将升旗的绳子拉直到旗杆底端,绳子末端刚好接触到地面,然后再将绳子向外拉直,末端距离旗杆8 m处,发现此时绳子末端距离地面2 m,则旗杆的高度(滑轮上方的部分忽略不计)为()A. 12 mB. 13 mC. 16 mD. 17 m【答案】D【解析】如图所示,作BC⊥AE于点C,则BC=DE=8,设AE=x,则AB=x,AC=x-2,在Rt△ABC中,AC2+BC2=AB2,即(x-2)2+82=x2,解得x=17.所以旗杆的高度为17m.6. 下列命题中,其逆命题为真命题的是()A. 若a=b,则a2=b2B. 同位角相等C. 两边和一角对应相等的两个三角形全等D. 等腰三角形两底角不相等【答案】C【解析】根据互为逆命题的关系,题设和结论互换,可知:若a=b,则a2=b2的逆命题为:若a2=b2,则a=b,是假命题;同位角相等的逆命题为:相等的角是同位角,是假命题;两边和一角对应相等的两个三角形全等的逆命题是:全等三角形的对应边相等,对应角相等,是真命题;等腰三角形的两底角不相等的逆命题为:两个角不相等的三角形是等腰三角形,是假命题.故选:C.7. 如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,CE平分∠AC B,若BE=2,则AE的长为()A. B. 1 C. D. 2【答案】B【解析】试题解析:∵在△ABC中,∠B=30°,BC的垂直平分线交AB于E,BE=2,∴BE=CE=2,∴∠B=∠DCE=30°,∵CE平分∠ACB,∴∠ACB=2∠DCE=60°,∠ACE=∠DCE=30°,∴∠A=180°-∠B-∠ACB=90°.在Rt△CAE中,∵∠A=90°,∠ACE=30°,CE=2,∴AE=CE=1.故选B.8. 如图,在△ABC中,CD是AB边上的高,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积为()A. 10B. 7C. 5D. 4【答案】C【解析】作EF⊥BC于F,∵BE平分∠ABC,ED⊥AB,EF⊥BC,∴EF=DE=2,∴S△BCE=BC⋅EF=×5×2=5,故选C.9. 如图,△ABC和△DCE都是边长为2的等边三角形,点B,C,E在同一条直线上,连接BD,则BD的长为()A. 18B. 3C. 12D. 2【答案】D【解析】过点D作DF⊥EC于点F,利用正三角形的性质得出CF=1,BF=3,再利用勾股定理求出DF==,则可得BD=.故选:D.点睛:此题主要考查了勾股定理以及等边三角形的性质,得出DF的长是解题关键.10. 如图,在△ABC中,AB=AC=5,BC=8,P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是()A. 4.8B. 4.8或3.8C. 3.8D. 5【答案】A【解析】试题分析:作AF⊥BC于F,根据等腰三角形三线合一的性质得出BF=CF=4,然后根据勾股定理求得AF=3,连接AP,根据△ABC的面积=△ABP的面积+△ACP的面积解出答案即可.考点:轴对称问题二、填空题(每小题4分,共32分)11. 命题“全等三角形的面积相等”的逆命题是_________.【答案】面积相等的三角形全等【解析】试题分析:把一个命题的题设和结论互换就可得到它的逆命题:“全等三角形的面积相等”的逆命题是:面积相等的三角形是全等三角形.考点:互逆命题12. 若一个三角形的三边长分别为3 m,4 m,5 m,那么这个三角形的面积为___.【答案】6 m2【解析】根据勾股定理的逆定理,可由三边的长判断出此三角形是直角三角形,3cm、4cm是三角形的两直角边,所以根据三角形的面积公式可得面积为3×4÷2=6m2.故答案为:6m2.13. 如图,点D,C,A在同一条直线上,在△ABC中,∠A∶∠ABC∶∠ACB=3∶5∶10,若△EDC≌△ABC,则∠BCE的度数为_.【答案】20°【解析】利用三角形的三角的比∠A:∠ABC:∠ACB=3:5:10,设∠A=3x°,则∠ABC=5x°,∠ACB=10x°,根据三角形的内角和为180°得3x+5x+10x=180,解得x=10,求出三角的度数∠A=30°,∠ABC=50°,∠ACB=100°,可得∠BCN=180°-100°=80°,再由△MNC≌△ABC得到∠ACB=∠MCN=100°,因此可求得∠BCM=∠NCM-∠BCN=100°-80°=20°.故答案为:20°.点睛:本题考查了全等三角形的性质;利用三角形的三角的比,求得三个角的大小是很重要的方法,要注意掌握.14. 如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,交BC于点D,若CD=1,则BD=_.【答案】2【解析】试题分析:根据角平分线性质求出∠BAD的度数,根据含30度角的直角三角形性质求出AD即可得BD.∵∠C=90°,∠B=30°,∴∠CAB=60°,AD平分∠CAB,∴∠BAD=30°,∴BD=AD=2CD=2,考点:含30度角的直角三角形;角平分线的性质视频15. 如图,在△ABC和△ADC中,下列论断:①AB=AD;②∠ABC=∠ADC=90°;③BC=DC.把其中两个论断作为条件,另一个论断作为结论,可以写出_个真命题.【答案】2【解析】根据题意,可得三种命题,由①②③,根据直角三角形全等的判定HL可证明,是真命题;由①③②,能证明∠ABC=∠ADC,但是不能得出一定是90°,是假命题;由②③①,根据SAS可证明两三角形全等,再根据全等三角形的性质可证明,故是真命题.因此可知真命题有2个.故答案为:2.点睛:仔细审题,将其中的两个作为题设,另一个作为结论,可得到三种情况,然后根据全等三角形的判定定理和性质可判断出是否是真命题.16. 如图是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD =45°,∠MBC=30°,则警示牌的高CD为_米.(结果精确到0.1米,参考数据:≈1.41,≈1.73)【答案】2.9【解析】试题分析:在Rt△AMD中,∠MAD=45°,AM=4米,可得MD=4米;在Rt△BMC中,BM=AM+AB=12米,∠MBC=30°,可求得MC=4米,所以警示牌的高CD=4-4=2.9米.考点:解直角三角形.17. 如图,在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是_.【答案】4∶3【解析】试题分析:估计角平分线的性质,可得出△ABD的边AB上的高与△ACD的AC上的高相等,估计三角形的面积公式,即可得出△ABD与△ACD的面积之比等于对应边之比.解:∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=4:3,故答案为4:3.考点:角平分线的性质.18. 如图,∠BOC=9°,点A在OB上,且OA=1.按下列要求画图:以A为圆心,1为半径向右画弧交OC 于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;……依次画下去,直到得到第n条线段,之后不能再画出符合要求的线段,则n=__.【答案】9【解析】试题分析:根据等腰三角形的性质和三角形外角的性质依次可得∠A1AB的度数,∠A2A1C的度数,∠A3A2B的度数,∠A4A3C的度数,…,依此得到规律,再根据三角形外角小于90°即可求解.解:由题意可知:AO=A1A,A1A=A2A1,…,则∠AOA1=∠OA1A,∠A1OA2=∠A1A2A,…,∵∠BOC=9°,∴∠A1AB=18°,∠A2A1C=27°,∠A3A2B=36°的度数,∠A4A3C=45°,…,∴9°n<90°,解得n<10.由于n为整数,故n=9.故选B.考点:等腰三角形的性质.视频三、解答题(共58分)19. 如图,AD是△ABC的角平分线,CE∥AD交BA的延长线于点E,那么△ACE是等腰三角形吗?请证明你的结论.【答案】△ACE是等腰三角形,证明见解析.【解析】试题分析:根据平行线的性质得到∠BAD =∠E,∠CAD=∠ACE;然后结合角平分线的性质和等量代换推知∠E=∠ACE,故△ACE是等腰三角形.试题解析:△ACE是等腰三角形.证明:因为AD是△ABC的角平分线,所以∠BAD=∠CAD.因为CE∥AD,所以∠BAD=∠E,∠CAD=∠ACE.所以∠E=∠ACE.所以AE=AC,即△ACE是等腰三角形.点睛:本题考查了等腰三角形的判定.判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等.20. 如图,在Rt△ABC中,∠B=90°,AB=5,BC=3,AC的垂直平分线DE分别交AB,AC于D,E两点,试求CD的长.【答案】CD的长为3.4.试题解析:因为DE是AC的垂直平分线,所以CD=AD.所以AB=BD+AD=BD+CD.设CD=x,则BD=5-x.在Rt△BCD中,由勾股定理,得 CD2=BC2+BD2,即x2=32+(5-x)2,解得x=3.4.故CD的长为3.4.21. 如图,在△ABC中,AB=AC=10 cm,∠B=15°,CD是AB边上的高,求CD的长.【答案】CD的长是5 cm.【解析】试题分析:根据等边对等角和三角形的外角求出∠CAD的度数,然后根据30°角的直角三角形的性质可求解.试题解析:在△ABC中,因为AB=AC=10 cm,∠B=15°,所以∠B=∠ACB=15°.所以∠DAC=∠B+∠ACB=30°.因为CD是AB边上的高,所以∠D=90°.所以CD=AC=×10=5(cm),即CD的长是5 cm.22. 我们把两组邻边相等的四边形叫做“筝形” .如图所示四边形ABCD是一个筝形,其中AB=CB,AD=CD,对角线AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F.求证:OE=OF.【答案】证明见解析.【解析】试题分析:欲证明OE=OF,只需推知BD平分∠ABC,所以通过全等三角形△ABD≌△CBD(SSS)的对应角相等得到∠ABD=∠CBD,问题就迎刃而解了.试题解析:证明:∵在△ABD和△CBD中,AB=CB,AD=BD,BD=BD,∴△ABD≌△CBD(SSS),∴∠ABD=∠CBD,∴BD平分∠ABC.又∵OE⊥AB,OF⊥CB,∴OE=OF.23. 如图,在Rt△ABC中,∠C=90º,BD是△ABC的角平分线,点O在BD上,分别过点O作OE⊥BC,OF⊥AC,垂足为E,F,且OE=OF.(1)求证:点O在∠BAC的平分线上;(2)若AC=5,BC=12,求OE的长.【答案】(1)证明见解析;(2)OE=2.【解析】试题分析:(1)过点O作OM⊥AB,由角平分线的性质得OE=OM,由正方形的性质得OE=OF,易得OM=OF,由角平分线的判定定理得点O在∠BAC的平分线上;(2)连接OC,根利用勾股定理求出AB的长,据三角形的面积公式即可得出结论.试题解析:(1)证明:过点O作OM⊥AB于点M.因为BD平分∠ABC,OM⊥AB于M,OE⊥BC于E,所以OM=OE.又OE=OF,所以OM=OF.所以点O在∠BAC的平分线上.(2)连接OC.在Rt△ABC中,∠C=90°,AC=5,BC=12,根据勾股定理,得AB=13.因为S△ABO+S△BCO+S△ACO =S△ABC,所以×13·OM+×12·OE+×5·OF=×5×12.由(1)知OM=OE=OF,所以15OE=30,解得OE=2.点睛:本题主要考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.24. 按照题中提供的思路点拨,先填空,然后完成解答的全过程.如图,已知AB=AD,∠BAD=60°,∠BCD=120°,延长BC,使CE=CD,连接DE,求证:BC+DC=AC. 思路点拨:(1)由已知条件AB=AD,∠BAD=60°,可知△ABD是_三角形.同理由已知条件∠BCD=120°得到∠DCE=_,且CE=CD,可知_;(2)要证BC+DC=AC,可将问题转化为证两条线段相等,即_=_;(3)要证(2)中所填写的两条线段相等,可以先证明_.请写出完整的证明过程.【答案】(1)等边,60°,△DCE是等边三角形;(2)AC,BE;(3)△BED≌△ACD,证明见解析.【解析】试题分析:(1)连接BD,根据等边三角形判定推出即可;求出∠DCE=60°,得到等边三角形DCE 即可;(3)根据等边三角形性质推出AD=BD,CD=DE,∠ADB=∠CDE=60°,推出∠ADC=∠BDE,证△ADC≌△BDE即可;(4)由(3)即可得出答案.试题解析:(1)(1)解:连接BD,∵AB=AD,∠BAD=60°,∴△ABD是等边三角形,∵∠BCD=120°,∴∠DCE=180°-∠BCD=180°-120°=60°,∵CE=CD,∴△DCE是等边三角形,故答案为:等边,60°,△DCE是等边三角形.(2)证明:∵等边三角形ABD和DCE,∴AD=BD,CD=DE,∠ADB=∠CDE=60°,∴∠ADB+∠BDC=∠CDE+∠BDC,即∠ADC=∠BDE,在△ADC和△BDE中,∴△ADC≌△BDE,∴AC=BE=BC+CE,故答案为:BE,AC.(3)△BED≌△ACD证明过程如下:连接AC,BD.因为AB=AD,∠BAD=60°,所以△ABD是等边三角形.所以AD=BD,∠ADB=60°.因为∠BCD=120°,所以∠DCE=180°-∠BCD=180°-120°=60°.因为CE=CD,所以△DCE是等边三角形.所以CD=DE,∠CDE=60°.所以∠ADB+∠BDC=∠CDE+∠BDC,即∠ADC=∠BDE.在△ADC和△BDE中,AD=BD,∠ADC=∠BDE,DC=DE,所以△ADC≌△BDE.所以AC=BE=BC+CE=BC+DC.附加题(15分,不计入总分)25. 如图,已知一个边长分别为6、8、10的直角三角形,请设计出一个有一条边长为8的直角三角形,使这两个直角三角形能够拼成一个等腰三角形.(1)画出4种不同拼法(周长不等)的等腰三角形;(2)分别求出4种不同拼法的等腰三角形的周长.【答案】(1)见解析;(2)见解析.【解析】试题分析:(1)根据三角形的三边关系、勾股定理的逆定理和等腰三角形的判定来作图;(2)利用(1)的图形,分别求得每一个等腰三角形的周长.试题解析:(1)答案不唯一,如给出4种不同拼法,如图1-①、1-②、1-③、1-④所示.。

相关文档
最新文档