2012年天津高考理科数学试题及答案(word版)
2012年普通高等学校招生全国统一考试(天津卷)数学试题 (理科) 解析版

2012年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:本卷共8小题,每小题5分,共40分.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(1)i 是虚数单位,复数ii +-37=(A )2+i (B )2–i(C )-2+i (D )-2–i【命题意图】本试题主要考查了复数的概念以及复数的加、减、乘、除四则运算.【解析】复数i i i i i i i i -=-=+---=+-2101020)3)(3()3)(7(37,选B.【答案】B (2)设,R ∈ϕ则“0=ϕ”是“))(cos()(R x x x f ∈+=ϕ为偶函数”的(A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件(D )既不充分与不必要条件【命题意图】本试题主要考查了三角函数的奇偶性的判定以及充分条件与必要条件的判定.【解析】∵=0ϕ⇒()=cos (+)f x x ϕ()x R ∈为偶函数,反之不成立,∴“=0ϕ”是“()=cos (+)f x x ϕ()x R ∈为偶函数”的充分而不必要条件.【答案】A(3)阅读右边的程序框图,运行相应的程序,当输入x 的值为-25时,输出x 的值为(A )-1(B )1(C )3(D )9【命题意图】本试题主要考查了算法框图的读取,并能根据已给的算法程序进行运算.【解析】第一次循环,415125=-=--=x ,第二次循环11214=-=-=x ,第三次循环不满足条件输出3112=+⨯=x ,选C.【答案】C(4)函数22)(3-+=x x f x 在区间(0,1)内的零点个数是(A )0(B )1(C )2(D )3【命题意图】本试题主要考查了函数与方程思想,函数的零点的概念,零点存在定理以及作图与用图的数学能力.【解析】解法1:因为函数22)(3-+=x x f x 的导数为032ln 2)('2≥+=x x f x ,所以函数22)(3-+=x x f x 单调递增,又0121)0(<-=-=f ,01212)1(>=-+=f ,所以根据根的存在定理可知在区间)1,0(内函数的零点个数为1个,选B.解法2:设1=2x y ,32=2y x -,在同一坐标系中作出两函数的图像如图所示:可知B 正确.【答案】B(5)在5212(xx -的二项展开式中,x 的系数为(A )10(B )-10(C )40(D )-40【命题意图】本试题主要考查了二项式定理中的通项公式的运用,并借助于通项公式分析项的系数.【解析】∵25-1+15=(2)()r r r r T C x x -⋅-=5-10-352(1)r r r r C x -,∴103=1r -,即=3r ,∴x 的系数为40-.【答案】D (6)在ABC ∆中,内角A ,B ,C 所对的边分别是c b a ,,,已知8b=5c ,C=2B ,则cosC=(A )257(B )257-(C )257±(D )2524【命题意图】本试题主要考查了正弦定理、三角函数中的二倍角公式.考查学生分析、转化与计算等能力.【解析】∵8=5b c ,由正弦定理得8sin =5sin B C ,又∵=2C B ,∴8sin =5sin 2B B ,所以8sin =10sin cos B B B ,易知sin 0B ≠,∴4cos =5B ,2cos =cos 2=2cos 1C B B -=725.【答案】A(7)已知△ABC 为等边三角形,=2AB ,设点P ,Q 满足=AP AB λ ,=(1)AQ AC λ- ,R λ∈,若3=2BQ CP ⋅- ,则=λ(A )12(B)12(C)12(D)32-±7.A【命题意图】本试题以等边三角形为载体,主要考查了向量加减法的几何意义,平面向量基本定理,共线向量定理及其数量积的综合运用.【解析】∵=BQ AQ AB - =(1)AC AB λ-- ,=CP AP AC - =AB AC λ- ,又∵3=2BQ CP ⋅- ,且||=||=2AB AC ,0<,>=60AB AC ,0=||||cos 60=2AB AC AB AC ⋅⋅ ,∴3[(1)]()=2AC AB AB AC λλ---- ,2223||+(1)+(1)||=2AB AB AC AC λλλλ--⋅- ,所以234+2(1)+4(1)=2λλλλ---,解得1=2λ.【答案】A(8)设R n m ∈,,若直线02)1()1(=-+++y n x m 与圆1)1()1(22=-+-y x 相切,则m+n 的取值范围是(A )]31,31[+-(B )),31[]31,(+∞+⋃--∞(C )]222,222[+-(D )),222[]222,(+∞+⋃--∞【命题意图】本试题主要考查了直线与圆的位置关系,点到直线的距离公式,重要不等式,一元二次不等式的解法,并借助于直线与圆相切的几何性质求解的能力.【解析】∵直线(1)+(1)2=0m x n y ++-与圆22(1)+(y 1)=1x --相切,∴圆心(1,1)到直线的距离为d ,所以21()2m n mn m n +=++≤,设=t m n +,则21+14t t ≥,解得(,2)t ∈-∞-∞ .【答案】D第Ⅱ卷二、填空题:本大题共6小题,每小题5分,共30分.(9)某地区有小学150所,中学75所,大学25所.现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取_________所学校,中学中抽取________所学校.【命题意图】本试题主要考查了统计中的分层抽样的概念以及样本获取的方法与计算.【解析】∵分层抽样也叫按比例抽样,由题知学校总数为250所,所以应从小学中抽取15030=18250⨯,中学中抽取7530=9250⨯.【答案】18,9(10)一个几何体的三视图如图所示(单位:m ),则该几何体的体积为_________m 3.【命题意图】本试题主要考查了简单组合体的三视图的画法与体积的计算以及空间想象能力.【解析】由三视图可该几何体为两个相切的球上方了一个长方体组成的组合体,所以其体积为:343=361+2()32V π⨯⨯⨯⨯=18+9π3m .【答案】π918+(11)已知集合},32|{<+∈=x R x A 集合},0)2)((|{<--∈=x m x R x B 且),,1(n B A -= 则m =__________,n =__________.【命题意图】本试题主要考查了集合的交集的运算及其运算性质,同时考查绝对值不等式与一元二次不等式的解法以及分类讨论思想.【解析1】∵={||+2|<3}A x R x ∈={||5<<1}x x -,又∵=(1,)A B n - ,画数轴可知=1m -,=1n .【解析2】由32<+x ,得323<+<-x ,即15<<-x ,所以集合}15{<<-=x x A ,因为)1(n B A ,-= ,所以1-是方程0)2)((=--x m x 的根,所以代入得0)1(3=+m ,所以1-=m ,此时不等式0)2)(1(<-+x x 的解为21<<-x ,所以)11(,-=B A ,即1=n 。
2012年天津高考数学理科试卷(带详解)

2012年天津高考数学卷解析一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.i 是虚数单位,复数7i3iz -==+ ( )A .2i + B.2i - C .2i -+ D .2i --【测量目标】复数代数形式的四则运算.【考查方式】直接给出复数的分式形式求其值. 【难易程度】容易 【参考答案】B 【试题解析】7i (7i)(3i)217i 3i 12i 3i (3i)(3i)10z ------====-++- 2.设ϕ∈R ,则“0ϕ=”是“()cos()()f x x x ϕ=+∈R 为偶函数”的 ( ) A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件 【测量目标】三角函数的奇偶性,充分、必要条件.【考查方式】判断三角函数初相参数取值与函数奇偶性的关系. 【难易程度】容易 【参考答案】A【试题解析】∵0ϕ=⇒()cos()()f x x x ϕ=+∈R 为偶函数,反之不成立,∴“0ϕ=”是“()cos()()f x x x ϕ=+∈R 为偶函数”的充分而不必要条件.3.阅读右边的程序框图,运行相应的程序,当输入x 的值为25-时,输出x 的值为 ( ) A.1- B.1 C.3 D.9第3题图【测量目标】循环结构的程序框图.【考查方式】阅读程序框图得出程序运算结果. 【难易程度】容易 【参考答案】C 【试题解析】根据图给的算法程序可知:第一次4x =,第二次1x =,则输出2113x =⨯+=.4.函数3()22xf x x =+-在区间(0,1)内的零点个数是 ( )A.0B.1 C .2 D .3 【测量目标】函数零点的求解与判断.【考查方式】直接给出函数的解析式判断其零点的个数. 【难易程度】容易 【参考答案】B【试题解析】解法1:因为(0)1021f =+-=-,3(1)2228f =+-=,即(0)(1)0f f <且函数()f x 在()0,1内连续不断,故()f x 在()0,1内的零点个数是1.解法2:设3122,2,x y y x ==-在同一坐标系中作出两函数的图像如图所示:可知B 正确.第4题图5.在251(2)x x-的二项展开式中,x 的系数为 ( ) A.10 B.10- C.40 D.40- 【测量目标】二项式定理.【考查方式】直接给出一个二项展开式求某项的系数. 【难易程度】容易 【参考答案】D【试题解析】∵2515103155C (2)()2(1)C r r r r r r rr T x x x ----+=-=-,∴ 1031r -=,即3r =,∴x 的系数为40-.6.在ABC △中,内角,,A B C 所对的边分别是,,a b c ,已知85,2b c C B ==,则cos C =( ) A.725B.725-C.725±D.2425【测量目标】正弦定理,三角函数中的二倍角公式.【考查方式】已知三角形角与边的关系运用正弦定理求一角的余弦值. 【难易程度】容易 【参考答案】A【试题解析】∵85b c =,由正弦定理得8sin 5sin B C =,(步骤1)又∵2C B =,∴8sin 5sin 2B B =,(步骤2)所以8sin 10sin cos B B B =,易知sin 0B ≠,(步骤3)∴4cos 5B =,27cos cos 22cos 125C B B ==-=.(步骤4) 7.已知ABC △为等边三角形,2AB =,设点,P Q 满足,AP AB λ=(1),AQ AC λ=-λ∈R ,若32BQ CP =-,则λ=( )A.12B.122±C.1102±D.3222-±【测量目标】平面向量在平面几何中的应用.【考查方式】给出三角形边的向量关系式,运用平面向量的知识求解未知参数. 【难易程度】中等 【参考答案】A【试题解析】∵(1),BQ AQ AB AC AB λ=-=--CP AP AC AB AC λ=-=-,(步骤1) 又∵32BQ CP =-,且2AB AC ==,,60AB AC ︒<>=,cos602AB AC AB AC ︒==(步骤2),∴3(1)()2AC AB AB AC λλ⎡⎤---=-⎣⎦,2223(1)(1)2AB AB AC AC λλλλ+--+-=,(步骤3)所以2342(1)4(1)2λλλλ+--+-=,解得12λ=. (步骤4)第7题图8.设,m n ∈R ,若直线(1)(1)20m x n y ++--=与圆22(1)(1)1x y -+-=相切,则m n +的取值范围是 ( ) A.13,13⎡⎣ B.(),1313,⎡-∞++∞⎣C.222,222⎡-+⎣D.(),222222,⎤⎡-∞-++∞⎦⎣【测量目标】直线与圆的位置关系.【考查方式】已知一直线与圆的位置关系求未知参数的取值范围. 【难易程度】中等 【参考答案】D【试题解析】∵直线(1)(1)20m x n y ++--=与圆22(1)(1)1x y -+-=相切,(步骤1)∴圆心(1,1)到直线的距离为22(1)(1)21(1)(1)m n d m n +++-==+++,所以212m n mn m n +=++()(步骤2)设t m n =+,则2114t t +,解得(),222222,t ⎤⎡∈-∞-++∞⎦⎣.(步骤3)二、填空题:本大题共6小题,每小题5分,共30分.9.某地区有小学150所,中学75所,大学25所. 现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调査,应从小学中抽取 所学校,中学中抽取 所学校. 【测量目标】分层抽样.【考查方式】运用分层抽样里的按比例抽样知识解决实际问题. 【难易程度】容易 【参考答案】18,9【试题解析】∵分层抽样也叫按比例抽样,由题知学校总数为250所, 所以应从小学中抽取15030=18250⨯,中学中抽取75309250⨯=. 10.―个几何体的三视图如图所示(单位:m ),则该几何体的体积为 3m .第10题图【测量目标】由三视图求几何体的表面积与体积.【考查方式】给出一个几何体的三视图求其原几何体的体积. 【难易程度】容易 【参考答案】189π+ 【试题解析】由三视图可该几何体为两个相切的球上方了一个长方体组成的组合体,所以其体积为: 3433612π()189π32V =⨯⨯+⨯⨯=+3m . 11.已知集合{}23A x x =∈+<R ,集合{}()(2)0B x x m x =∈--<R ,且(1,)A B n =-,则m = ,n = .【测量目标】集合的基本运算,集合间的关系.【考查方式】给出含有未知参数的集合通过它们直接的关系求出未知参数. 【难易程度】容易 【参考答案】1-,1【试题解析】∵{}{}2351A x x x x =∈+<=-<<R ,又∵(1,)A B n =-,画数轴可知1,1m n =-=.12.己知抛物线的参数方程为22,2,x pt y pt ⎧=⎨=⎩(t 为参数),其中0p >,焦点为F ,准线为l ,过抛物线上一点M 作的垂线,垂足为E ,若EF ME =,点M 的横坐标是3,则p = . 【测量目标】抛物线的简单几何性质.【考查方式】给出抛物线的参数方程,运用其简单的几何性质求未知数. 【难易程度】中等 【参考答案】2【试题解析】∵22,2,x pt y pt ⎧=⎨=⎩可得抛物线的标准方程为22(0)y px p =>,(步骤1)∴焦点(,0)2pF ,∵点M 的横坐标是3,则(3,6)M p ±,(步骤2)所以点(,6),2p E p -±222()(06)22p pEF p =++±(步骤3)由抛物线得几何性质得2213,,63924p ME EF MF p p p p =+=∴+=++,解得2p =.(步骤4)13.如图,已知AB 和AC 是圆的两条弦.过点B 作圆的切线与AC 的延长线相交于点D ,过点C 作BD 的平行线与圆相交于点E ,与AB 相交于点F ,33,1,,2AF FB EF ===则线段CD 的长为 .第13题图【测量目标】圆的性质的应用.【考查方式】给出与圆相关的直线与线段由圆的性质求未知线段. 【难易程度】中等 【参考答案】43【试题解析】∵33,1,,2AF FB EF ===由相交弦定理得AF FB EF FC =,所以2FC =,(步骤1)又48//,,233AF FC ABBD CE BD FC AB BD AF∴===⨯=,(步骤2)设CD x =,则4AD x =,再由切割线定理得2BD CD AD =,即284()3x x =,解得43x =,故43CD =.(步骤3)14.已知函数211x y x -=-的图象与函数2y kx =-的图象恰有两个交点,则实数k 的取值范围是 .【测量目标】函数图像的应用.【考查方式】已知两个函数的图像的位置关系求解未知参数的取值范围. 【难易程度】中等 【参考答案】(0,1)(1,4)【试题解析】∵函数2y kx =-的图像直线恒过定点(0,2)B -,且(1,2),(1,0),(1,2)A C D --,∴2+2==010AB k --,0+2==210BC k ---,2+2==410BD k -,由图像可知(0,1)(1,4)k ∈.第14题图三、解答题:本大题共6小题,共80分. 解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)已知函数2ππ()sin(2)sin(2)2cos 1,33f x x x x x =++-+-∈R . (Ⅰ)求函数()f x 的最小正周期; (Ⅱ)求函数()f x 在区间ππ,44⎡⎤-⎢⎥⎣⎦上的最大值和最小值. 【测量目标】三角函数的周期性、最值.【考查方式】给出三角函数的函数解析式求解其最小正周期和在某个区间内的最值. 【试题解析】(Ⅰ)2ππ()sin(2)sin(2)2cos 133f x x x x =++-+-ππ2sin 2cos cos 22)34x x x =+=+ (步骤1)函数()f x 的最小正周期为2ππ2T ==(步骤2)(Ⅱ)ππππ3π2π2sin(2)11()24444424x x x f x -⇒-+⇒-+⇔-(步骤3) 当πππ2()428x x +==时,max ()2f x =πππ2()444x x +=-=-时,min ()1f x =-(步骤4)16.(本小题满分13分)现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏. (Ⅰ)求这4个人中恰有2人去参加甲游戏的概率:(Ⅱ)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率: (Ⅲ)用,X Y 分别表示这4个人中去参加甲、乙游戏的人数,记X Y ξ=-,求随机变量ξ的分布列与数学期望E ξ.【测量目标】互斥事件与相对独立事件的相关性质、数学期望.【考查方式】针对实际问题运用互斥事件与相对独立事件的性质求解概率问题. 【难易程度】中等【试题解析】(Ⅰ)每个人参加甲游戏的概率为13p =,参加乙游戏的概率为213p -=(步骤1)这4个人中恰有2人去参加甲游戏的概率为22248C (1)27p p -=.(步骤2)(Ⅱ)44(4,)()C (1)(0,1,2,3,4)k k kXB p P X k p p k -⇒==-=,(步骤3) 这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率为1(3)(4)9P X P X =+==(步骤4) (Ⅲ)ξ可取0,2,48(0)(2)2740(2)(1)(3)8117(4)(0)(4)81P P X P P X P X P P X P X ξξξ=======+=====+==(步骤5)随机变量ξ的分布列为84017148024********E ξ=⨯+⨯+⨯=(步骤6)17.(本小题满分13分)如图,在四棱锥P ABCD -中,PA 丄平面ABCD ,,,45,2,1AC AD AB BC BAC PA AD AC ︒⊥⊥∠====.(Ⅰ)证明:PC AD ⊥;(Ⅱ)求二面角A PC D --的正弦值;(Ⅲ)设E 为棱PA 上的点,满足异面直线BE 与CD 所成的角为30︒,求AE 的长.第17题图【测量目标】线线垂直、异面直线所成的角的正弦值. 【考查方式】通过空间几何体中的线线,线面直接的位置角度关系求证线线垂直以及异面直线所成角的正弦值. 【难易程度】较难【试题解析】(Ⅰ)以,,AD AC AP 为,,x y z 正半轴方向,建立空间直角坐标系A xyz -.(步骤1)则11(2,0,0),(0,1,0),(,,0),(0,0,2)22D C B P -(步骤2) (0,1,2),(2,0,0)0PC AD PC AD PC AD =-=⇒=⇔⊥(步骤3)第17题(1)图(Ⅱ)(0,1,2),(2,1,0)PC CD =-=-,设平面PCD 的法向量(,,)x y z =n则0202200PC y z y z x y x z CD ⎧=-==⎧⎧⎪⇔⇔⎨⎨⎨-===⎩⎩⎪⎩n n 取1(1,2,1)z =⇒=n (步骤4)(2,0,0)AD =是平面PAC 的法向量 630cos ,sin ,66AD AD AD AD <>==⇒<>=n n n n得:二面角A PC D --(步骤5)(Ⅲ)设[]0,2AE h =∈;则(0,0,2)AE =,11(,,),(2,1,0)22BE h CD ==-cos ,10BE CD BE CD hBE CD<>=⇔=⇔=即AE =(步骤6)18.(本小题满分13分)已知{}n a 是等差数列,其前n 项和为n S ,{}n b 是等比数列,且1144442,27,10a b a b S b ==+=-=(Ⅰ)求数列{}n a 与{}n b 的通项公式;(Ⅱ)记112231n n n n n T a b a b a b a b --=++++…;证明:12210()n n n T a b n ++=-+∈N . 【测量目标】等差等比数列的通项及性质.【考查方式】给出等差等比数列中已知项之间的关系求解数列的通项,由两种数列结合成的新数列的性质运用与证明. 【难易程度】较难【试题解析】(Ⅰ)设数列{}n a 的公差为d ,数列{}n b 的公比为q ;则34434412732322710246210a b d d q S b q a d q +==⎧++=⎧⎧⇔⇔⎨⎨⎨-==+-=⎩⎩⎩(步骤1)得:31,2nn n a n b =-=(Ⅱ)121122311211...2222()22n n n n n n n n n n n a a T a b a b a b a b a a a a ----=++++=+++=+++……111213132352222n n n n n n n a n n n c c ------++==-=-(步骤2)[]1223112()()()2()n n n n n n T c c c c c c c c -=-+-++-=-…1022(35)1021212102n n n n n n n b a T b a =⨯-+=--⇔+=-(步骤3)19.(本小题满分14分)设椭圆22221(0)x y a b a b+=>>的左、右顶点分别为,A B ,点P 在椭圆上且异于,A B 两点,O 为坐标原点. (Ⅰ)若直线AP 与BP 的斜率之积为12-,求椭圆的离心率; (Ⅱ)若AP OA =,证明:直线OP 的斜率k 满足k >【测量目标】椭圆的标准方程、椭圆的简单几何性质、直线与椭圆的位置关系. 【考查方式】由椭圆的简单几何性质求解椭圆的标准方程以及椭圆的参数,判断椭圆与直线的位置关系求解未知数的取值范围.【难易程度】较难 【试题解析】(Ⅰ)取(0,),(,0),(,0)P b A a B a -;则221()22AP BP b b k k a b a a ⨯=⨯-=-⇔=(步骤1)222212a b e e a -==⇔=(步骤2)(Ⅱ)设(cos ,sin )(02π)P a b θθθ<;则线段OP 的中点(cos ,sin )22ab Q θθ(步骤3)1AQ AP OA AQ OP k k =⇔⊥⇔⨯=- sin sin cos 22cos AQ AQ AQb k b ak ak a a θθθθ=⇔-=+(步骤4)2223AQAQ ak b a k k ⇒+<⇔<⇔>(步骤5)20.(本小题满分14分)已知函数()ln()f x x x a =-+的最小值为0,其中0a >. (Ⅰ)求a 的值;(Ⅱ)若对任意的[)0,x ∈+∞,有2()f x kx 成立,求实数k 的最小值;(Ⅲ)证明:*12ln(21)2()21ni n n i =-+<∈-∑N .【测量目标】运用导数的相关性质求函数的最值,证明与推理最值问题. 【考查方式】给出函数解析式运用导数的相关性质求解其函数最值. 【难易程度】较难【试题解析】(Ⅰ)函数()f x 的定义域为(,)a -+∞(步骤1)11()ln()()101x a f x x x a f x x a a x a x a+-'=-+⇒=-==⇔=->-++ (步骤2)()01,()01f x x a f x a x a ''>⇔>-<⇔-<<-得:1x a =-时,min ()(1)101f x f a a a =-⇔-=⇔=(步骤3)(Ⅱ)设22()()ln(1)(0)g x kx f x kx x x x =-=-++则()0g x 在[)0,x ∈+∞上恒成立min ()0(0)g x g ⇔=(*)(步骤4)(1)1ln 200g k k =-+⇒>1(221)()2111x kx k g x kx x x +-'=-+=++(步骤5)①当1210()2k k -<<时,0012()00()(0)2k g x x x g x g k -'⇔=⇒<与(*)矛盾②当12k 时,min ()0()(0)0g x g x g '⇒==符合(*)(步骤6)得:实数k 的最小值为12(Ⅲ)由(2)得:21ln(1)2x x x -+<对任意的0x >值恒成立 取[]222(1,2,3,,)ln(21)ln(21)2121(21)x i n i i i i i ==⇒+--<---…(步骤7)当1n =时,2ln32-< 得:12ln(21)221n i n i =-+<-∑ 当2i 时,2211(21)2321i i i <---- 得:121ln(21)ln(21)2ln 3122121n i i i i n =⎡⎤-++-<-+-<⎢⎥--⎣⎦∑(步骤8)。
2012年天津市高考数学试卷(理科)

2012年天津市高考数学试卷(理科)一、选择题1.(3分)i是虚数单位,复数=()A.2+i B.2﹣i C.﹣2+i D.﹣2﹣i2.(3分)设φ∈R,则“φ=0”是“f(x)=cos(x+φ)(x∈R)为偶函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件3.(3分)阅读程序框图,运行相应的程序,当输入x的值为﹣25时,输出x的值为()A.﹣1 B.1 C.3 D.94.(3分)函数f(x)=2x+x3﹣2在区间(0,1)内的零点个数是()A.0 B.1 C.2 D.35.(3分)在(2x2﹣)5的二项展开式中,x项的系数为()A.10 B.﹣10 C.40 D.﹣406.(3分)在△ABC中,内角A,B,C所对的边分别是a,b,c.已知8b=5c,C=2B,则cosC=()A.B.C.D.7.(3分)已知△ABC为等边三角形,AB=2.设点P,Q满足,,λ∈R.若=﹣,则λ=()A.B.C. D.8.(3分)设m,n∈R,若直线(m+1)x+(n+1)y﹣2=0与圆(x﹣1)2+(y﹣1)2=1相切,则m+n的取值范围是()A.[1﹣,1+] B.(﹣∞,1﹣]∪[1+,+∞)C.[2﹣2,2+2]D.(﹣∞,2﹣2]∪[2+2,+∞)二、填空题9.(3分)某地区有小学150所,中学75所,大学25所.先采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取所学校,中学中抽取所学校.10.(3分)一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.11.(3分)已知集合A={x∈R||x+2|<3},集合B={x∈R|(x﹣m)(x﹣2)<0},且A∩B=(﹣1,n),则m=,n=.12.(3分)已知抛物线的参数方程为(t为参数),其中p>0,焦点为F,准线为l.过抛物线上一点M作l的垂线,垂足为E.若|EF|=|MF|,点M的横坐标是3,则p=.13.(3分)如图,已知AB和AC是圆的两条弦,过点B作圆的切线与AC的延长线相交于点D,过点C作BD的平行线与圆相交于点E,与AB相交于点F,AF=3,FB=1,EF=,则线段CD的长为.14.(3分)已知函数y=的图象与函数y=kx﹣2的图象恰有两个交点,则实数k的取值范围是.三、解答题15.已知函数f(x)=sin(2x+)+sin(2x﹣)+2cos2x﹣1,x∈R.(1)求函数f(x)的最小正周期;(2)求函数f(x)在区间[]上的最大值和最小值.16.现有4个人去参加娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.(1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X﹣Y|,求随机变量ξ的分布列与数学期望Eξ.17.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.(1)证明:PC⊥AD;(2)求二面角A﹣PC﹣D的正弦值;(3)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.18.已知{a n}是等差数列,其前n项和为S n,{b n}是等比数列,且a1=b1=2,a4+b4=27,S4﹣b4=10.(1)求数列{a n}与{b n}的通项公式;(2)记T n=a n b1+a n﹣1b2+…+a1b n,n∈N*,证明:T n+12=﹣2a n+10b n(n∈N*).19.设椭圆的左右顶点分别为A,B,点P在椭圆上且异于A,B两点,O为坐标原点.(1)若直线AP与BP的斜率之积为,求椭圆的离心率;(2)若|AP|=|OA|,证明直线OP的斜率k满足|k|>.20.已知函数f(x)=x﹣ln(x+a)的最小值为0,其中a>0.(1)求a的值;(2)若对任意的x∈[0,+∞),有f(x)≤kx2成立,求实数k的最小值;(3)证明:(n∈N*).2012年天津市高考数学试卷(理科)参考答案与试题解析一、选择题1.(3分)(2012•天津)i是虚数单位,复数=()A.2+i B.2﹣i C.﹣2+i D.﹣2﹣i【分析】由题意,可对此代数分子分母同乘以分母的共轭,整理即可得到正确选项【解答】解:故选B2.(3分)(2012•天津)设φ∈R,则“φ=0”是“f(x)=cos(x+φ)(x∈R)为偶函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】直接把φ=0代入看能否推出是偶函数,再反过来推导结论即可.【解答】解:因为φ=0时,f(x)=cos(x+φ)=cosx是偶函数,成立;但f(x)=cos(x+φ)(x∈R)为偶函数时,φ=kπ,k∈Z,推不出φ=0.故“φ=0”是“f(x)=cos(x+φ)(x∈R)为偶函数”的充分而不必要条件.故选:A.3.(3分)(2012•天津)阅读程序框图,运行相应的程序,当输入x的值为﹣25时,输出x的值为()A.﹣1 B.1 C.3 D.9【分析】根据题意,按照程序框图的顺序进行执行,当|x|≤1时跳出循环,输出结果.【解答】解:当输入x=﹣25时,|x|>1,执行循环,x=﹣1=4;|x|=4>1,执行循环,x=﹣1=1,|x|=1,退出循环,输出的结果为x=2×1+1=3.故选:C.4.(3分)(2012•天津)函数f(x)=2x+x3﹣2在区间(0,1)内的零点个数是()A.0 B.1 C.2 D.3【分析】根据函数f(x)=2x+x3﹣2在区间(0,1)内单调递增,f(0)f(1)<0,可得函数在区间(0,1)内有唯一的零点【解答】解:由于函数f(x)=2x+x3﹣2在区间(0,1)内单调递增,又f(0)=﹣1<0,f(1)=1>0,所以f(0)f(1)<0,故函数f(x)=2x+x3﹣2在区间(0,1)内有唯一的零点,故选B.5.(3分)(2012•天津)在(2x2﹣)5的二项展开式中,x项的系数为()A.10 B.﹣10 C.40 D.﹣40【分析】由题意,可先由公式得出二项展开式的通项T r+1==,再令10﹣3r=1,得r=3即可得出x项的系数==【解答】解:(2x2﹣)5的二项展开式的通项为T r+1令10﹣3r=1,得r=3故x项的系数为=﹣40故选D6.(3分)(2012•天津)在△ABC中,内角A,B,C所对的边分别是a,b,c.已知8b=5c,C=2B,则cosC=()A.B.C.D.【分析】直接利用正弦定理以及二倍角公式,求出sinB,cosB,然后利用平方关系式求出cosC的值即可.【解答】解:因为在△ABC中,内角A,B,C所对的边分别是a,b,c.已知8b=5c,C=2B,所以8sinB=5sinC=5sin2B=10sinBcosB,所以cosB=,B为三角形内角,所以B∈(0,).C.所以sinB==.所以sinC=sin2B=2×=,cosC==.故选:A.7.(3分)(2012•天津)已知△ABC为等边三角形,AB=2.设点P,Q满足,,λ∈R.若=﹣,则λ=()A.B.C. D.【分析】根据向量加法的三角形法则求出,进而根据数量积的定义求出再根据=﹣即可求出λ.【解答】解:∵,,λ∈R∴,∵△ABC为等边三角形,AB=2∴=+λ+(1﹣λ)=2×2×cos60°+λ×2×2×cos180°+(1﹣λ)×2×2×cos180°+λ(1﹣λ)×2×2×cos60°=2﹣4λ+4λ﹣4+2λ﹣2λ2,=﹣2λ2+2λ﹣2∵=﹣∴4λ2﹣4λ+1=0∴(2λ﹣1)2=0∴故选A8.(3分)(2012•天津)设m,n∈R,若直线(m+1)x+(n+1)y﹣2=0与圆(x﹣1)2+(y﹣1)2=1相切,则m+n的取值范围是()A.[1﹣,1+] B.(﹣∞,1﹣]∪[1+,+∞)C.[2﹣2,2+2]D.(﹣∞,2﹣2]∪[2+2,+∞)【分析】由圆的标准方程找出圆心坐标和半径r,由直线与圆相切时,圆心到直线的距离等于圆的半径,利用点到直线的距离公式列出关系式,整理后利用基本不等式变形,设m+n=x,得到关于x 的不等式,求出不等式的解集得到x的范围,即为m+n的范围.【解答】解:由圆的方程(x﹣1)2+(y﹣1)2=1,得到圆心坐标为(1,1),半径r=1,∵直线(m+1)x+(n+1)y﹣2=0与圆相切,∴圆心到直线的距离d==1,整理得:m+n+1=mn≤,设m+n=x,则有x+1≤,即x2﹣4x﹣4≥0,∵x2﹣4x﹣4=0的解为:x1=2+2,x2=2﹣2,∴不等式变形得:(x﹣2﹣2)(x﹣2+2)≥0,解得:x≥2+2或x≤2﹣2,则m+n的取值范围为(﹣∞,2﹣2]∪[2+2,+∞).故选D二、填空题9.(3分)(2012•天津)某地区有小学150所,中学75所,大学25所.先采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取18所学校,中学中抽取9所学校.【分析】从250所学校抽取30所学校做样本,样本容量与总体的个数的比为3:25,得到每个个体被抽到的概率,根据三个学校的数目乘以被抽到的概率,分别写出要抽到的数目,得到结果.【解答】解:某城地区有学校150+75+25=250所,现在采用分层抽样方法从所有学校中抽取30所,每个个体被抽到的概率是=,∵某地区有小学150所,中学75所,大学25所.∴用分层抽样进行抽样,应该选取小学×150=18所,选取中学×75=9所.故答案为:18,9.10.(3分)(2012•天津)一个几何体的三视图如图所示(单位:m),则该几何体的体积为18+9πm3.【分析】由三视图可知该几何体为上部是一个长方体,长、宽、高分别为6,3,1(单位:m),下部为两个半径均为的球体.分别求体积再相加即可.【解答】解:由三视图可知该几何体为上部是一个长方体,长、宽、高分别为6,3,1(单位:m),体积6×3×1=18.下部为两个半径均为的球体,体积2ו()3=9π故所求体积等于18+9π故答案为:18+9π11.(3分)(2012•天津)已知集合A={x∈R||x+2|<3},集合B={x∈R|(x﹣m)(x﹣2)<0},且A∩B=(﹣1,n),则m=﹣1,n=1.【分析】由题意,可先化简A集合,再由B集合的形式及A∩B=(﹣1,n)直接作出判断,即可得出两个参数的值.【解答】解:A={x∈R||x+2|<3}={x∈R|﹣5<x<1},又集合B={x∈R|(x﹣m)(x﹣2)<0},A∩B=(﹣1,n).如图由图知m=﹣1,n=1,故答案为﹣1,1.12.(3分)(2012•天津)已知抛物线的参数方程为(t为参数),其中p>0,焦点为F,准线为l.过抛物线上一点M作l的垂线,垂足为E.若|EF|=|MF|,点M的横坐标是3,则p=2.【分析】把抛物线的参数方程化为普通方程为y2=2px,则由抛物线的定义可得及|EF|=|MF|,可得△MEF为等边三角形,设点M的坐标为(3,m ),则点E(﹣,m),把点M的坐标代入抛物线的方程可得p=.再由|EF|=|ME|,解方程可得p的值.【解答】解:抛物线的参数方程为(t为参数),其中p>0,焦点为F,准线为l,消去参数可得x=2p,化简可得y2=2px,表示顶点在原点、开口向右、对称轴是x轴的抛物线,故焦点F(,0),准线l的方程为x=﹣.则由抛物线的定义可得|ME|=|MF|,再由|EF|=|MF|,可得△MEF为等边三角形.设点M的坐标为(3,m ),则点E(﹣,m).把点M的坐标代入抛物线的方程可得m2=2×p×3,即p=.再由|EF|=|ME|,可得p2+m2=,即p2+6p=9++3p,解得p=2,或p=﹣6 (舍去),故答案为2.13.(3分)(2012•天津)如图,已知AB和AC是圆的两条弦,过点B作圆的切线与AC的延长线相交于点D,过点C作BD的平行线与圆相交于点E,与AB相交于点F,AF=3,FB=1,EF=,则线段CD的长为.【分析】由相交弦定理求出FC,由相似比求出BD,设DC=x,则AD=4x,再由切割线定理,BD2=CD•AD 求解.【解答】解:由相交弦定理得到AF•FB=EF•FC,即3×1=×FC,FC=2,在△ABD中AF:AB=FC:BD,即3:4=2:BD,BD=,设DC=x,则AD=4x,再由切割线定理,BD2=CD•AD,即x•4x=()2,x=故答案为:14.(3分)(2012•天津)已知函数y=的图象与函数y=kx﹣2的图象恰有两个交点,则实数k的取值范围是(0,1)∪(1,4).【分析】先化简函数的解析式,在同一个坐标系下画出函数y=的图象与函数y=kx﹣2的图象,结合图象,可得实数k的取值范围.【解答】解:y===函数y=kx﹣2的图象恒过点(0,﹣2)在同一个坐标系下画出函数y=的图象与函数y=kx﹣2的图象结合图象可实数k的取值范围是(0,1)∪(1,4)故答案为:(0,1)∪(1,4)三、解答题15.(2012•天津)已知函数f(x)=sin(2x+)+sin(2x﹣)+2cos2x﹣1,x∈R.(1)求函数f(x)的最小正周期;(2)求函数f(x)在区间[]上的最大值和最小值.【分析】(1)利用正弦函数的两角和与差的公式与辅助角公式将f(x)=sin(2x+)+sin(2x﹣)+2cos2x﹣1化为f(x)=sin(2x+),即可求得函数f(x)的最小正周期;(2)可分析得到函数f(x)在区间[]上是增函数,在区间[,]上是减函数,从而可求得f(x)在区间[]上的最大值和最小值.【解答】解:(1)∵f(x)=sin2x•co s+cos2x•sin+sin2x•cos﹣cos2x•sin+cos2x=sin2x+cos2x=sin(2x+),∴函数f(x)的最小正周期T==π.(2)∵函数f(x)在区间[]上是增函数,在区间[,]上是减函数,又f(﹣)=﹣1,f()=,f()=1,∴函数f(x)在区间[]上的最大值为,最小值为﹣1.16.(2012•天津)现有4个人去参加娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.(1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X﹣Y|,求随机变量ξ的分布列与数学期望Eξ.【分析】依题意,这4个人中,每个人去参加甲游戏的概率为,去参加乙游戏的人数的概率为设“这4个人中恰有i人去参加甲游戏”为事件A i(i=0,1,2,3,4),故P(A i)=(1)这4个人中恰有2人去参加甲游戏的概率为P(A2);(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏”为事件B,则B=A3∪A4,利用互斥事件的概率公式可求;(3)ξ的所有可能取值为0,2,4,由于A1与A3互斥,A0与A4互斥,求出相应的概率,可得ξ的分布列与数学期望.【解答】解:依题意,这4个人中,每个人去参加甲游戏的概率为,去参加乙游戏的人数的概率为设“这4个人中恰有i人去参加甲游戏”为事件A i(i=0,1,2,3,4),∴P(A i)=(1)这4个人中恰有2人去参加甲游戏的概率为P(A2)=;(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏”为事件B,则B=A3∪A4,∴P(B)=P(A3)+P(A4)=(3)ξ的所有可能取值为0,2,4,由于A1与A3互斥,A0与A4互斥,故P(ξ=0)=P(A2)=P(ξ=2)=P(A1)+P(A3)=,P(ξ=4)=P(A0)+P(A4)=∴ξ的分布列是数学期望Eξ=17.(2012•天津)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.(1)证明:PC⊥AD;(2)求二面角A﹣PC﹣D的正弦值;(3)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.【分析】解法一(1)以A为原点,建立空间直角坐标系,通过得出•=0,证出PC⊥AD.(2)求出平面PCD,平面PCD的一个法向量,利用两法向量夹角求解.(3)设E(0,0,h),其中h∈[0,2],利用cos<>=cos30°=,得出关于h的方程求解即可.解法二:(1)通过证明AD⊥平面PAC得出PC⊥AD.(2)作AH⊥PC于点H,连接DH,∠AHD为二面角A﹣PC﹣D的平面角.在RT△DAH中求解(3)因为∠ADC<45°,故过点B作CD的平行线必与线段AD相交,设交点为F,连接BE,EF,故∠EBF(或其补角)为异面直线BE与CD所成的角.在△EBF中,因为EF<BE,从而∠EBF=30°,由余弦定理得出关于h的方程求解即可.【解答】解法一:如图,以A为原点,建立空间直角坐标系,则A(0,0,0),D(2,0,0),C (0,1,0),B(﹣,,0),P(0,0,2).(1)证明:易得=(0,1,﹣2),=(2,0,0),于是•=0,所以PC⊥AD.(2)解:=(0,1,﹣2),=(2,﹣1,0),设平面PCD的一个法向量为=(x,y,z),则即取z=1,则以=(1,2,1).又平面PAC的一个法向量为=(1,0,0),于是cos<>==,sin<>=所以二面角A﹣PC﹣D的正弦值为.(3)设E(0,0,h),其中h∈[0,2],由此得=(,﹣,h).由=(2,﹣1,0),故cos<>===所以=cos30°=,解得h=,即AE=.解法二:(1)证明:由PA⊥平面ABCD,可得PA⊥AD,又由AD⊥AC,PA∩AC=A,故AD⊥平面PAC,又PC⊂平面PAC,所以PC⊥AD.(2)解:如图,作AH⊥PC于点H,连接DH,由PC⊥AD,PC⊥AH,可得PC⊥平面ADH,因此DH⊥PC,从而∠AHD为二面角A﹣PC﹣D的平面角.在RT△PAC中,PA=2,AC=1,所以AH=,由(1)知,AD⊥AH,在RT△DAH中,DH==,因此sin∠AHD==.所以二面角A﹣PC﹣D的正弦值为.(3)解:如图,因为∠ADC<45°,故过点B作CD的平行线必与线段AD相交,设交点为F,连接BE,EF,故∠EBF(或其补角)为异面直线BE与CD所成的角.由于BF∥CD,故∠AFB=∠ADC,在RT△DAC中,CD=,sin∠ADC=,故sin∠AFB=.在△AFB中,由,AB=,sin∠FAB=sin135°=,可得BF=,由余弦定理,BF2=AB2+AF2﹣2ABAFcos∠FAB,得出AF=,设AE=h,在RT△EAF中,EF==,在RT△BAE中,BE==,在△EBF中,因为EF<BE,从而∠EBF=30°,由余弦定理得到,cos30°=,解得h=,即AE=.18.(2012•天津)已知{a n}是等差数列,其前n项和为S n,{b n}是等比数列,且a1=b1=2,a4+b4=27,S4﹣b4=10.(1)求数列{a n}与{b n}的通项公式;(2)记T n=a n b1+a n﹣1b2+…+a1b n,n∈N*,证明:T n+12=﹣2a n+10b n(n∈N*).【分析】(1)直接设出首项和公差,根据条件求出首项和公差,即可求出通项.(2)先写出T n的表达式;方法一:借助于错位相减求和;方法二:用数学归纳法证明其成立.【解答】解:(1)设等差数列的公差为d,等比数列的公比为q,由a1=b1=2,得a4=2+3d,b4=2q3,s4=8+6d,由条件a4+b4=27,s4﹣b4=10,得方程组,解得,故a n=3n﹣1,b n=2n,n∈N*.(2)证明:方法一,由(1)得,T n=2a n+22a n﹣1+23a n﹣2+…+2n a1;①;2T n=22a n+23a n﹣1+…+2n a2+2n+1a1;②;由②﹣①得,T n=﹣2(3n﹣1)+3×22+3×23+…+3×2n+2n+2=+2n+2﹣6n+2=10×2n﹣6n﹣10;而﹣2a n+10b n﹣12=﹣2(3n﹣1)+10×2n﹣12=10×2n﹣6n﹣10;故T n+12=﹣2a n+10b n(n∈N*).方法二:数学归纳法,③当n=1时,T1+12=a1b1+12=16,﹣2a1+10b1=16,故等式成立,④假设当n=k时等式成立,即T k+12=﹣2a k+10b k,则当n=k+1时有,T k+1=a k+1b1+a k b2+a k﹣1b3+…+a1b k+1=a k+1b1+q(a k b1+a k﹣1b2+…+a1b k)=a k+1b1+qT k=a k+1b1+q(﹣2a k+10b k﹣12)=2a k+1﹣4(a k+1﹣3)+10b k+1﹣24 =﹣2a k+1+10b k+1﹣12.即T k+1+12=﹣2a k+1+10b k+1,因此n=k+1时等式成立.③④对任意的n∈N*,T n+12=﹣2a n+10b n成立.19.(2012•天津)设椭圆的左右顶点分别为A,B,点P在椭圆上且异于A,B 两点,O为坐标原点.(1)若直线AP与BP的斜率之积为,求椭圆的离心率;(2)若|AP|=|OA|,证明直线OP的斜率k满足|k|>.【分析】(1)设P(x0,y0),则,利用直线AP与BP的斜率之积为,即可求得椭圆的离心率;(2)依题意,直线OP的方程为y=kx,设P(x0,kx0),则,进一步可得,利用AP|=|OA|,A(﹣a,0),可求得,从而可求直线OP的斜率的范围.【解答】(1)解:设P(x0,y0),∴①∵椭圆的左右顶点分别为A,B,∴A(﹣a,0),B(a,0)∴,∵直线AP与BP的斜率之积为,∴代入①并整理得∵y0≠0,∴a2=2b2∴∴∴椭圆的离心率为;(2)证明:依题意,直线OP的方程为y=kx,设P(x0,kx0),∴∵a>b>0,kx0≠0,∴∴②∵|AP|=|OA|,A(﹣a,0),∴∴∴代入②得∴k2>3∴直线OP的斜率k满足|k|>.20.(2012•天津)已知函数f(x)=x﹣ln(x+a)的最小值为0,其中a>0.(1)求a的值;(2)若对任意的x∈[0,+∞),有f(x)≤kx2成立,求实数k的最小值;(3)证明:(n∈N*).【分析】(1)确定函数的定义域,求导函数,确定函数的单调性,求得函数的最小值,利用函数f (x)=x﹣ln(x+a)的最小值为0,即可求得a的值;(2)当k≤0时,取x=1,有f(1)=1﹣ln2>0,故k≤0不合题意;当k>0时,令g(x)=f(x)﹣kx2,即g(x)=x﹣ln(x+1)﹣kx2,求导函数,令g′(x)=0,可得x1=0,,分类讨论:①当k≥时,,g(x)在(0,+∞)上单调递减,g(x)≤g(0)=0;②当0<k<时,,对于,g′(x)>0,因此g(x)在上单调递增,由此可确定k的最小值;(3)当n=1时,不等式左边=2﹣ln3<2=右边,不等式成立;当n≥2时,,在(2)中,取k=,得f(x)≤x2,从而可得,由此可证结论.【解答】(1)解:函数的定义域为(﹣a,+∞),求导函数可得令f′(x)=0,可得x=1﹣a>﹣a令f′(x)>0,x>﹣a可得x>1﹣a;令f′(x)<0,x>﹣a可得﹣a<x<1﹣a∴x=1﹣a时,函数取得极小值且为最小值∵函数f(x)=x﹣ln(x+a)的最小值为0,∴f(1﹣a)=1﹣a﹣0,解得a=1(2)解:当k≤0时,取x=1,有f(1)=1﹣ln2>0,故k≤0不合题意当k>0时,令g(x)=f(x)﹣kx2,即g(x)=x﹣ln(x+1)﹣kx2,求导函数可得g′(x)=g′(x)=0,可得x1=0,①当k≥时,,g′(x)<0在(0,+∞)上恒成立,因此g(x)在(0,+∞)上单调递减,从而对任意的x∈[0,+∞),总有g(x)≤g(0)=0,即对任意的x∈[0,+∞),有f(x)≤kx2成立;②当0<k<时,,对于,g′(x)>0,因此g(x)在上单调递增,因此取时,g(x0)≥g(0)=0,即有f(x0)≤kx02不成立;综上知,k≥时对任意的x∈[0,+∞),有f(x)≤kx2成立,k的最小值为(3)证明:当n=1时,不等式左边=2﹣ln3<2=右边,所以不等式成立当n≥2时,在(2)中,取k=,得f(x)≤x2,∴(i≥2,i∈N*).∴=f(2)+<2﹣ln3+=2﹣ln3+1﹣<2综上,(n∈N*).。
2012年普通高等学校招生全国统一考试数学天津卷(理)

数学天津卷(理)一、选择题1.i 是虚数单位,复数7-i3+i =( )A .2+iB .2-iC .-2+iD .-2-i2.设φ∈R ,则“φ=0”是“f (x )=cos (x +φ)(x ∈R )为偶函数”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件3.阅读下面的程序框图,运行相应的程序,当输入x 的值为-25时,输出x 的值为( )A .-1B .1C .3D .94.函数f (x )=2x +x 3-2在区间(0,1)内的零点个数是( ) A .0 B .1 C .2 D .35.在(2x 2-1x )5的二项展开式中,x 的系数为( )A .10B .-10C .40D .-406.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知8b =5c ,C =2B ,则cos C =( )A.725 B .-725C .±725 D.2425A.12B.1±22C.1±102D.-3±2228.设m ,n ∈R ,若直线(m +1)x +(n +1)y -2=0与圆(x -1)2+(y -1)2=1相切,则m +n 的取值范围是( )A .[1-3,1+ 3 ]B .(-∞,1- 3 ]∪[1+3,+∞)C .[2-22,2+2 2 ]D .(-∞,2-2 2 ]∪[2+22,+∞)二、填空题9.某地区有小学150所,中学75所,大学25所.现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取____________所学校,中学中抽取____________所学校.10.一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.11.已知集合A ={x ∈R ||x +2|<3},集合B ={x ∈R |(x -m )(x -2)<0},且A ∩B =(-1,n ),则m =__________,n =________.12.已知抛物线的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt ,(t 为参数),其中p >0,焦点为F ,准线为l .过抛物线上一点M 作l 的垂线,垂足为E .若|EF |=|MF |,点M 的横坐标是3,则p =________.13.如图,已知AB 和AC 是圆的两条弦,过点B 作圆的切线与AC 的延长线相交于点D .过点C 作BD 的平行线与圆相交于点E ,与AB 相交于点F ,AF =3,FB =1,EF =32,则线段CD 的长为________.14.已知函数y =|x 2-1|x -1的图像与函数y =kx -2的图像恰有两个交点,则实数k 的取值范围是________.三、解答题15.已知函数f (x )=sin(2x +π3)+sin(2x -π3)+2cos 2x -1,x ∈R .(1)求函数f (x )的最小正周期;(2)求函数f (x )在区间[-π4,π4]上的最大值和最小值.16.现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏;(1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X ,Y 分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X -Y |.求随机变量ξ的分布列与数学期望Eξ.17.如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AC ⊥AD ,AB ⊥BC ,∠BAC =45°,P A =AD =2,AC =1.(1)证明PC ⊥AD ;(2)求二面角A -PC -D 的正弦值;(3)设E 为棱P A 上的点,满足异面直线BE 与CD 所成的角为30°,求AE 的长.18.已知{a n }是等差数列,其前n 项和为S n ,{b n }是等比数列,且a 1=b 1=2,a 4+b 4=27,S 4-b 4=10.(1)求数列{a n }与{b n }的通项公式;(2)记T n =a n b 1+a n -1b 2+…+a 1b n ,n ∈N *,证明T n +12=-2a n +10b n (n ∈N *.)19.设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B ,点P 在椭圆上且异于A ,B 两点,O 为坐标原点.(1)若直线AP 与BP 的斜率之积为-12,求椭圆的离心率;(2)若|AP |=|OA |,证明直线OP 的斜率k 满足|k |> 3.20.已知函数f (x )=x -ln(x +a )的最小值为0,其中a >0. (1)求a 的值;(2)若对任意的x ∈[0,+∞),有 f (x )≤kx 2成立,求实数k 的最小值; (3)证明-ln(2n +1)<2(n ∈N *).答案 数学天津卷(理)一、选择题1.解析:7-i 3+i =(7-i )(3-i )(3+i )(3-i )=20-10i10=2-i.答案:B2.解析:因为f (x )是偶函数⇔φ=k π,k ∈Z ,所以“φ=0”是“f (x )是偶函数”的充分而不必要条件.答案:A3.解析:按照程序框图逐次写出运行结果.由程序框图可知,该程序运行2次后退出循环,退出循环时x =1,所以输出的x 的值为3.答案:C4.解析:法一:函数f (x )=2x +x 3-2在区间(0,1)内的零点个数即为函数y =2x ,y =2-x 3在区间(0,1)内的图像的交点个数,作出图像即可知两个函数图像在区间(0,1)内有1个交点,故原函数在区间(0,1)内的零点个数是1.法二:由题意知f (x )为单调增函数且f (0)=-1<0,f (1)=1>0, 所以在区间(0,1)内有且只有一个零点. 答案:B5.解析:二项式(2x 2-1x )5展开式的第r +1项为T r +1=C r 5(2x 2)5-r(-1x)r =C r 5·25-r ×(-1)r x 10-3r,当r =3时,含有x ,其系数为C 35·22×(-1)3=-40. 答案:D6.解析:由C =2B 得sin C =sin 2B =2sin B cos B ,由正弦定理及8b =5c 得cos B =sin C 2 sin B=c 2b =45,所以cos C =cos 2B =2cos 2 B -1=2×(45)2-1=725. 答案:A 7.=(-λ-1,3(1-λ))·(2λ-1,-3)=-(λ+1)(2λ-1)-3×3(1-λ)=-32,解得λ=12. 答案:A8.解析:由题意可得|m +n |(m +1)2+(n +1)2=1,化简得mn =m +n +1≤(m +n )24,解得m+n ≤2-22或m +n ≥2+2 2.答案:D二、填空题9.解析:从小学中抽取30×150150+75+25=18所学校;从中学中抽取30×75150+75+25=9所学校.答案:18 910.解析:由三视图可知,该几何体是组合体,上面是长、宽、高分别是6、3、1的长方体,下面是两个半径均为32的球,其体积为6×3×1+2×43×π×(32)3=18+9π.答案:18+9π11.解析:因为|x +2|<3,即-5<x <1,所以A =(-5,1),又A ∩B ≠∅,所以m <1,B =(m,2),由A ∩B =(-1,n )得m =-1,n =1.答案:-1 112.解析:由题意知,抛物线的普通方程为y 2=2px (p >0),焦点F (p 2,0),准线x =-p2,设准线与x 轴的交点为A .由抛物线定义可得|EM |=|MF |,所以△MEF 是正三角形,在直角三角形EF A 中,|EF |=2|F A |,即3+p2=2p ,得p =2.答案:213.解析:由相交弦定理可得CF ·FE =AF ·FB ,得CF =2.又因为CF ∥DB ,所以CF DB =AF AB,得DB =83,且AD =4CD ,由切割线定理得DB 2=DC ·DA =4CD 2,得CD =43.答案:4314.解析:因为函数y =|x 2-1|x -1=⎩⎪⎨⎪⎧x +1,x ≤-1或x >1,-x -1,-1<x <1,所以函数y =kx -2的图像恒过点(0,-2),根据图像易知,两个函数图像有两个交点时,0<k <1或1<k <4.答案:(0,1)∪(1,4) 三、解答题15.解:(1)f (x )=sin 2x ·cos π3+cos 2x ·sin π3+sin 2x ·cos π3-cos 2x ·sin π3+cos 2x =sin 2x +cos 2x =2sin(2x +π4).所以,f (x )的最小正周期T =2π2=π. (2)因为f (x )在区间[-π4,π8]上是增函数,在区间[π8,π4]上是减函数.又f (-π4)=-1,f (π8)=2,f (π4)=1,故函数f (x )在区间[-π4,π4]上的最大值为2,最小值为-1.16.解:依题意,这4个人中,每个人去参加甲游戏的概率为13,去参加乙游戏的概率为23.设“这4个人中恰有i 人去参加甲游戏”为事件A i (i =0,1,2,3,4), 则P (A i )=C i 4(13)i (23)4-i .(1)这4个人中恰有2人去参加甲游戏的概率P (A 2)=C 24(13)2(23)2=827. (2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B ,则B =A 3∪A 4.由于A 3与A 4互斥,故P (B )=P (A 3)+P (A 4)=C 34(13)3(23)+C 44(13)4=19. 所以,这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率为19.(3)ξ的所有可能取值为0,2,4. 由于A 1与A 3互斥,A 0与A 4互斥,故 P (ξ=0)=P (A 2)=827,P (ξ=2)=P (A 1)+P (A 3)=4081,P (ξ=4)=P (A 0)+P (A 4)=1781.所以ξ的分布列是随机变量ξ的数学期望Eξ=0×827+2×4081+4×1781=14881.17.解:法一:如图,以点A为原点建立空间直角坐标系,依题意得A (0,0,0),D (2,0,0),C (0,1,0),B (-12,12,0),P (0,0,2). (1)易得=(0,1,-2),=(2,0,0),可得n =(1,2,1).可取平面P AC 的法向量m =(1,0,0). 于是cos 〈m ,n 〉=m·n|m |·|n |=16=66,从而sin 〈m ,n 〉=306. 所以二面角A -PC -D 的正弦值为306. (3)设点E 的坐标为(0,0,h ),其中h ∈[0,=3212+h 2×5=310+20h2,所以,310+20h 2=cos 30°=32,解得h =1010,即AE =1010. 法二:(1)证明:由P A ⊥平面ABCD ,可得P A ⊥AD ,又由AD ⊥AC ,P A ∩AC =A ,故AD ⊥平面P AC ,又PC ⊂平面P AC ,所以PC ⊥AD .(2)如图,作AH ⊥PC 于点H ,连接DH .由PC ⊥AD ,PC ⊥AH ,可得PC ⊥平面ADH ,因此DH ⊥PC ,从而∠AHD 为二面角A -PC -D 的平面角.在Rt △P AC 中,P A =2,AC =1,由此得AH =25. 由(1)知AD ⊥AH .故在Rt △DAH 中,DH =AD 2+AH 2=2305. 因为sin ∠AHD =AD DH =306. 所以二面角A -PC -D 的正弦值为306. (3)如图,因为∠ADC <45°,故过点B 作CD 的平行线必与线段AD 相交,设交点为F ,连接BE ,EF .故∠EBF 或其补角为异面直线BE 与CD 所成的角.由于BF ∥CD ,故∠AFB =∠ADC .在Rt △DAC 中, CD =5,sin ∠ADC =15, 故sin ∠AFB =15. 在△AFB 中,由BF sin ∠F AB =AB sin ∠AFB ,AB =12,sin ∠F AB =sin 135°=22,可得BF =52. 由余弦定理,BF 2=AB 2+AF 2-2AB ·AF ·cos ∠F AB , 可得AF =12.设AE =h .在Rt △EAF 中,EF =AE 2+AF 2= h 2+14.在Rt △BAE 中,BE =AE 2+AB 2=h 2+12.在△EBF 中,因为EF <BE ,从而∠EBF =30°,由余弦定理得cos 30°=BE 2+BF 2-EF 22BE ·BF .可解得h =1010. 所以AE =1010. 18.解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q .由a 1=b 1=2,得a 4=2+3d ,b 4=2q 3,S 4=8+6d .由条件,得方程组⎩⎪⎨⎪⎧ 2+3d +2q 3=27,8+6d -2q 3=10,解得⎩⎪⎨⎪⎧d =3,q =2.所以a n =3n -1,b n =2n ,n ∈N *. (2)法一:由(1)得T n =2a n +22a n -1+23a n -2+…+2n a 1, ① 2T n =22a n +23a n -1+…+2n a 2+2n +1a 1. ②由②-①,得T n =-2(3n -1)+3×22+3×23+…+3×2n +2n +2=12(1-2n -1)1-2+2n +2-6n +2=10×2n -6n -10.而-2a n +10b n -12=-2(3n -1)+10×2n -12=10×2n -6n -10,故T n +12=-2a n +10b n ,n ∈N *.法二:(1)当n =1时,T 1+12=a 1b 1+12=16,-2a 1+10b 1=16,故等式成立; (2)假设当n =k 时等式成立,即T k +12=-2a k +10b k ,则当n =k +1时有: T k +1=a k +1b 1+a k b 2+a k -1b 3+…+a 1b k +1 =a k +1b 1+q (a k b 1+a k -1b 2+…+a 1b k ) =a k +1b 1+qT k=a k +1b 1+q (-2a k +10b k -12) =2a k +1-4(ak +1-3)+10b k +1-24 =-2a k +1+10bk +1-12. 即T k +1+12=-2a k +1+10b k +1. 因此n =k +1时等式也成立.由(1)和(2),可知对任意n ∈N *,T n +12=-2a n +10b n 成立. 19.解:(1)设点P 的坐标为(x 0,y 0).由题意,有 x 20a 2+y 20b2=1. ①由A (-a,0),B (a,0)得k AP =y 0x 0+a ,k BP =y 0x 0-a. 由k AP ·k BP =-12,可得x 20=a 2-2y 20,代入①并整理得(a 2-2b 2)y 20=0. 由于y 0≠0,故a 2=2b 2.于是e 2=a 2-b 2a 2=12,所以椭圆的离心率e =22.(2)法一:依题意,直线OP 的方程为y =kx ,设点P 的坐标为(x 0,y 0).由条件得⎩⎪⎨⎪⎧y 0=kx 0,x 20a 2+y 20b 2=1. 消去y 0并整理得x 20=a 2b 2k 2a 2+b2.②由|AP |=|OA |,A (-a,0)及y 0=kx 0,得(x 0+a )2+k 2x 20=a 2.整理得(1+k 2)x 20+2ax 0=0.而x 0≠0,于是x 0=-2a 1+k 2,代入②,整理得(1+k 2)2=4k 2(ab )2+4.由a >b >0,故(1+k 2)2>4k 2+4,即k 2+1>4,因此k 2>3,所以|k |> 3.法二:依题意,直线OP 的方程为y =kx ,可设点P 的坐标为(x 0,kx 0).由点P 在椭圆上,有x 20a 2+k 2x 20b 2=1.因为a >b >0,kx 0≠0,所以x 20a 2+k 2x 20a 2<1,即(1+k 2)x 20<a 2. ③由|AP |=|OA |,A (-a,0),得(x 0+a )2+k 2x 20=a 2,整理得(1+k 2)x 20+2ax 0=0,于是x 0=-2a 1+k 2.代入③,得(1+k 2)4a 2(1+k 2)2<a 2,解得k 2>3,所以|k |> 3. 20.解:(1)f (x )的定义域为(-a ,+∞). f ′(x )=1-1x +a =x +a -1x +a .由f ′(x )=0,解得x =1-a >-a .当x 变化时,f ′(x ),f (x )的变化情况如下表:因此,f (x )在x =1-a 处取得最小值, 故由题意f (1-a )=1-a =0,所以a =1. (2)当k ≤0时,取x =1,有f (1)=1-ln 2>0, 故 k ≤0不合题意.当k >0时,令g (x )=f (x )-kx 2,即g (x )=x -ln(x +1)-kx 2.g ′(x )=xx +1-2kx =-x [2kx -(1-2k )]x +1.令g ′(x )=0,得x 1=0,x 2=1-2k 2k >-1.(1)当k ≥12时,1-2k 2k ≤0,g ′(x )<0在(0,+∞)上恒成立,因此g (x )在[0,+∞)上单调递减.从而对于任意的x ∈[0,+∞),总有g (x )≤g (0)=0,即f (x )≤kx 2在[0,+∞)上恒成立.故k ≥12符合题意. (2)当0<k <12时,1-2k 2k >0,对于x ∈(0,1-2k 2k ),g ′(x )>0,故g (x )在(0,1-2k 2k)内单调递增.因此当取x 0∈(0,1-2k 2k)时,g (x 0)>g (0)=0, 即f (x 0)≤kx 20不成立.故0<k <12不合题意. 综上,k 的最小值为12. (3)当n =1时,不等式左边=2-ln 3<2=右边,所以不等式成立.当n ≥2时,∑i =1nf (22i -1)=∑i =1n [22i -1-ln(1+22i -1)]=∑i =1n22i -1-∑i =1n [ln(2i +1)-ln(2i -1)]=∑i =1n22i -1-ln(2n +1). 在(2)中取k =12,得f (x )≤x 22(x ≥0),从而 f (22i -1)≤2(2i -1)2<2(2i -3)(2i -1)(i ∈N *,i ≥2), 所以有∑i =1n22i -1-ln(2n +1)=∑i =1n f (22i -1)=f (2)+∑i =2n f (22i -1)<2-ln 3+∑i =2n 2(2i -3)(2i -1) =2-ln 3+∑i =2n(12i -3-12i -1)=2-ln 3+1-12n -1<2. 综上,∑i =1n22i -1-ln (2n +1)<2,n ∈N *.。
2012年天津市高考数学试卷(理科)答案与解析

2012年天津市高考数学试卷(理科)参考答案与试题解析一、选择题1.(3分)(2012•天津)i是虚数单位.复数=()2.(3分)(2012•天津)设φ∈R.则“φ=0”是“f(x)=cos(x+φ)(x∈R)为偶函数”3.(3分)(2012•天津)阅读程序框图.运行相应的程序.当输入x的值为﹣25时.输出x 的值为().x=﹣x35.(3分)(2012•天津)在(2x2﹣)5的二项展开式中.x项的系数为()=.)==6.(3分)(2012•天津)在△ABC中.内角A.B.C所对的边分别是a.b.c.已知8b=5c.C=2B.cosB=.B).sinB==.nC=sin2B=2×.=.7.(3分)(2012•天津)已知△ABC为等边三角形.AB=2.设点P.Q满足..λ∈R.若=﹣.则λ=().再根据﹣..+λ﹣λ)﹣的三角形法则求出.AB=2.即可求解!8.(3分)(2012•天津)设m.n∈R.若直线(m+1)x+(n+1)y﹣2=0与圆(x﹣1)2+(y﹣1)2﹣.1+∪[1+.2.2+2].=1.整理得:m+n+1=mn≤x+1≤=2+22)≥0或]∪[2+2二、填空题9.(3分)(2012•天津)某地区有小学150所.中学75所.大学25所.先采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查.应从小学中抽取18 所学校.中学中抽取9 所学校.=.应该选取小学选取中学×75=910.(3分)(2012•天津)一个几何体的三视图如图所示(单位:m).则该几何体的体积为18+9πm3.下部为两个半径均为的球体.分别求体积再相加即可.下部为两个半径均为的球体•(11.(3分)(2012•天津)已知集合A={x∈R||x+2|<3}.集合B={x∈R|(x﹣m)(x﹣2)<0}.且A∩B=(﹣1.n).则m= ﹣1 .n= 1 .12.(3分)(2012•天津)已知抛物线的参数方程为(t为参数).其中p>0.焦点为F.准线为l.过抛物线上一点M作l的垂线.垂足为E.若|EF|=|MF|.点M的横坐标是3.则p= 2 .(﹣.再由解:抛物线的参数方程为(.0﹣(﹣.=+6p=9+13.(3分)(2012•天津)如图.已知AB和AC是圆的两条弦.过点B作圆的切线与AC的延长线相交于点D.过点C作BD的平行线与圆相交于点E.与AB相交于点F.AF=3.FB=1.EF=.则线段CD的长为.3×1=×FCBD.BD=.(故答案为:14.(3分)(2012•天津)已知函数y=的图象与函数y=kx﹣2的图象恰有两个交点.则实数k的取值范围是(0.1)∪(1.4).==三、解答题15.(2012•天津)已知函数f(x)=sin(2x+)+sin(2x﹣)+2cos2x﹣1.x∈R.(1)求函数f(x)的最小正周期;(2)求函数f(x)在区间[]上的最大值和最小值.2x+)=2x+)[.cos sin cos sin)=π.[.](﹣(=(上的最大值为=2x+16.(2012•天津)现有4个人去参加娱乐活动.该活动有甲、乙两个游戏可供参加者选择.为增加趣味性.约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏.掷出点数为1或2的人去参加甲游戏.掷出点数大于2的人去参加乙游戏.(1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X.Y分别表示这4个人中去参加甲、乙游戏的人数.记ξ=|X﹣Y|.求随机变量ξ的分布列与数学期望Eξ.每个人去参加甲游戏的概率为.去参加乙游戏的人数的概率为.===17.(2012•天津)如图.在四棱锥P﹣ABCD中.PA⊥平面ABCD.AC⊥AD.AB⊥BC.∠BAC=45°.PA=AD=2.AC=1.(1)证明:PC⊥AD;(2)求二面角A﹣PC﹣D的正弦值;(3)设E为棱PA上的点.满足异面直线BE与CD所成的角为30°.求AE的长.通过得出>=cos30°=..0)证明:易得.•=0.解:=的一个法向量为=即则以=的一个法向量为==.由此得﹣=<==cos30°=.h=AH===..CD=sin∠ADC=由.sin∠FAB=sin135°=BF=..EF==..BE==.cos30°=h=.18.(2012•天津)已知{a n}是等差数列.其前n项和为S n.{b n}是等比数列.且a1=b1=2.a4+b4=27.s4﹣b4=10.(1)求数列{a n}与{b n}的通项公式;(2)记T n=a n b1+a n﹣1b2+…+a1b n.n∈N*.证明:T n+12=﹣2a n+10b n(n∈N*).得方程组..19.(2012•天津)设椭圆的左右顶点分别为A.B.点P在椭圆上且异于A.B两点.O为坐标原点.(1)若直线AP与BP的斜率之积为.求椭圆的离心率;(2)若|AP|=|OA|.证明直线OP的斜率k满足|k|>...则可求得.①的左右顶点分别为的斜率之积为∴∴椭圆的离心率为∴代入②得.20.(2012•天津)已知函数f(x)=x﹣ln(x+a)的最小值为0.其中a>0.(1)求a的值;(2)若对任意的x∈[0.+∞).有f(x)≤kx2成立.求实数k的最小值;(3)证明:(n∈N*).=0..k≥时.g时.对于.≤从而可得求导函数可得=0.k≥时时k≥时对任意的k=x∴<﹣(。
2012年天津市高考数学试卷(理科)

2012年天津市高考数学试卷(理科)一、选择题1.(3分)i是虚数单位,复数=()A.2+i B.2﹣i C.﹣2+i D.﹣2﹣i2.(3分)设φ∈R,则“φ=0”是“f(x)=cos(x+φ)(x∈R)为偶函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件3.(3分)阅读程序框图,运行相应的程序,当输入x的值为﹣25时,输出x 的值为()A.﹣1 B.1 C.3 D.94.(3分)函数f(x)=2x+x3﹣2在区间(0,1)内的零点个数是()A.0 B.1 C.2 D.35.(3分)在(2x2﹣)5的二项展开式中,x项的系数为()A.10 B.﹣10 C.40 D.﹣406.(3分)在△ABC中,内角A,B,C所对的边分别是a,b,c.已知8b=5c,C=2B,则cosC=()A.B.C.D.(3分)已知△ABC为等边三角形,AB=2.设点P,Q满足,,7.λ∈R.若=﹣,则λ=()A.B.C.D.8.(3分)设m,n∈R,若直线(m+1)x+(n+1)y﹣2=0与圆(x﹣1)2+(y﹣1)2=1相切,则m+n的取值范围是()A.[1﹣,1+] B.(﹣∞,1﹣]∪[1+,+∞)C.[2﹣2,2+2] D.(﹣∞,2﹣2]∪[2+2,+∞)二、填空题9.(3分)某地区有小学150所,中学75所,大学25所.先采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取所学校,中学中抽取所学校.10.(3分)一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.11.(3分)已知集合A={x∈R||x+2|<3},集合B={x∈R|(x﹣m)(x﹣2)<0},且A∩B=(﹣1,n),则m= ,n= .12.(3分)已知抛物线的参数方程为(t为参数),其中p>0,焦点为F,准线为l.过抛物线上一点M作l的垂线,垂足为E.若|EF|=|MF|,点M的横坐标是3,则p= .13.(3分)如图,已知AB和AC是圆的两条弦,过点B作圆的切线与AC的延长线相交于点D,过点C作BD的平行线与圆相交于点E,与AB相交于点F,AF=3,FB=1,EF=,则线段CD的长为.14.(3分)已知函数y=的图象与函数y=kx﹣2的图象恰有两个交点,则实数k的取值范围是.三、解答题15.已知函数f(x)=sin(2x+)+sin(2x﹣)+2cos2x﹣1,x∈R.(1)求函数f(x)的最小正周期;(2)求函数f(x)在区间[]上的最大值和最小值.16.现有4个人去参加娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.(1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X﹣Y|,求随机变量ξ的分布列与数学期望Eξ.17.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.(1)证明:PC⊥AD;(2)求二面角A﹣PC﹣D的正弦值;(3)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.18.已知{an }是等差数列,其前n项和为Sn,{bn}是等比数列,且a1=b1=2,a4+b4=27,S 4﹣b4=10.(1)求数列{an }与{bn}的通项公式;(2)记Tn =anb1+an﹣1b2+…+a1bn,n∈N*,证明:Tn+12=﹣2an+10bn(n∈N*).19.设椭圆的左右顶点分别为A,B,点P在椭圆上且异于A,B两点,O为坐标原点.(1)若直线AP与BP的斜率之积为,求椭圆的离心率;(2)若|AP|=|OA|,证明直线OP的斜率k满足|k|>.20.已知函数f(x)=x﹣ln(x+a)的最小值为0,其中a>0.(1)求a的值;(2)若对任意的x∈[0,+∞),有f(x)≤kx2成立,求实数k的最小值;(3)证明:(n∈N*).2012年天津市高考数学试卷(理科)参考答案与试题解析一、选择题1.(3分)(2012•天津)i是虚数单位,复数=()A.2+i B.2﹣i C.﹣2+i D.﹣2﹣i【分析】由题意,可对此代数分子分母同乘以分母的共轭,整理即可得到正确选项【解答】解:故选B2.(3分)(2012•天津)设φ∈R,则“φ=0”是“f(x)=cos(x+φ)(x∈R)为偶函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】直接把φ=0代入看能否推出是偶函数,再反过来推导结论即可.【解答】解:因为φ=0时,f(x)=cos(x+φ)=cosx是偶函数,成立;但f(x)=cos(x+φ)(x∈R)为偶函数时,φ=kπ,k∈Z,推不出φ=0.故“φ=0”是“f(x)=cos(x+φ)(x∈R)为偶函数”的充分而不必要条件.故选:A.3.(3分)(2012•天津)阅读程序框图,运行相应的程序,当输入x的值为﹣25时,输出x的值为()A.﹣1 B.1 C.3 D.9【分析】根据题意,按照程序框图的顺序进行执行,当|x|≤1时跳出循环,输出结果.【解答】解:当输入x=﹣25时,|x|>1,执行循环,x=﹣1=4;|x|=4>1,执行循环,x=﹣1=1,|x|=1,退出循环,输出的结果为x=2×1+1=3.故选:C.4.(3分)(2012•天津)函数f(x)=2x+x3﹣2在区间(0,1)内的零点个数是()A.0 B.1 C.2 D.3【分析】根据函数f(x)=2x+x3﹣2在区间(0,1)内单调递增,f(0)f(1)<0,可得函数在区间(0,1)内有唯一的零点【解答】解:由于函数f(x)=2x+x3﹣2在区间(0,1)内单调递增,又f(0)=﹣1<0,f(1)=1>0,所以f(0)f(1)<0,故函数f(x)=2x+x3﹣2在区间(0,1)内有唯一的零点,故选B.5.(3分)(2012•天津)在(2x2﹣)5的二项展开式中,x项的系数为()A.10 B.﹣10 C.40 D.﹣40【分析】由题意,可先由公式得出二项展开式的通项==,再令10﹣3r=1,得r=3即可Tr+1得出x项的系数【解答】解:(2x2﹣)5的二项展开式的通项为==Tr+1令10﹣3r=1,得r=3故x项的系数为=﹣40故选D6.(3分)(2012•天津)在△ABC中,内角A,B,C所对的边分别是a,b,c.已知8b=5c,C=2B,则cosC=()A.B.C.D.【分析】直接利用正弦定理以及二倍角公式,求出sinB,cosB,然后利用平方关系式求出cosC的值即可.【解答】解:因为在△ABC中,内角A,B,C所对的边分别是a,b,c.已知8b=5c,C=2B,所以8sinB=5sinC=5sin2B=10sinBcosB,所以cosB=,B为三角形内角,所以B ∈(0,).C.所以sinB==.所以sinC=sin2B=2×=,cosC==.故选:A.7.(3分)(2012•天津)已知△ABC为等边三角形,AB=2.设点P,Q满足,,λ∈R.若=﹣,则λ=()A.B.C.D.【分析】根据向量加法的三角形法则求出,进而根据数量积的定义求出再根据=﹣即可求出λ.【解答】解:∵,,λ∈R∴,∵△ABC为等边三角形,AB=2∴=+λ+(1﹣λ)=2×2×cos60°+λ×2×2×cos180°+(1﹣λ)×2×2×cos180°+λ(1﹣λ)×2×2×cos60°=2﹣4λ+4λ﹣4+2λ﹣2λ2,=﹣2λ2+2λ﹣2∵=﹣∴4λ2﹣4λ+1=0∴(2λ﹣1)2=0∴故选A8.(3分)(2012•天津)设m,n∈R,若直线(m+1)x+(n+1)y﹣2=0与圆(x﹣1)2+(y﹣1)2=1相切,则m+n的取值范围是()A.[1﹣,1+] B.(﹣∞,1﹣]∪[1+,+∞)C.[2﹣2,2+2] D.(﹣∞,2﹣2]∪[2+2,+∞)【分析】由圆的标准方程找出圆心坐标和半径r,由直线与圆相切时,圆心到直线的距离等于圆的半径,利用点到直线的距离公式列出关系式,整理后利用基本不等式变形,设m+n=x,得到关于x的不等式,求出不等式的解集得到x的范围,即为m+n的范围.【解答】解:由圆的方程(x﹣1)2+(y﹣1)2=1,得到圆心坐标为(1,1),半径r=1,∵直线(m+1)x+(n+1)y﹣2=0与圆相切,∴圆心到直线的距离d==1,整理得:m+n+1=mn≤,设m+n=x,则有x+1≤,即x2﹣4x﹣4≥0,∵x2﹣4x﹣4=0的解为:x1=2+2,x2=2﹣2,∴不等式变形得:(x﹣2﹣2)(x﹣2+2)≥0,解得:x≥2+2或x≤2﹣2,则m+n的取值范围为(﹣∞,2﹣2]∪[2+2,+∞).故选D二、填空题9.(3分)(2012•天津)某地区有小学150所,中学75所,大学25所.先采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取18 所学校,中学中抽取9 所学校.【分析】从250所学校抽取30所学校做样本,样本容量与总体的个数的比为3:25,得到每个个体被抽到的概率,根据三个学校的数目乘以被抽到的概率,分别写出要抽到的数目,得到结果.【解答】解:某城地区有学校150+75+25=250所,现在采用分层抽样方法从所有学校中抽取30所,每个个体被抽到的概率是=,∵某地区有小学150所,中学75所,大学25所.∴用分层抽样进行抽样,应该选取小学×150=18所,选取中学×75=9所.故答案为:18,9.10.(3分)(2012•天津)一个几何体的三视图如图所示(单位:m),则该几何体的体积为18+9πm3.【分析】由三视图可知该几何体为上部是一个长方体,长、宽、高分别为6,3,1(单位:m),下部为两个半径均为的球体.分别求体积再相加即可.【解答】解:由三视图可知该几何体为上部是一个长方体,长、宽、高分别为6,3,1(单位:m),体积6×3×1=18.下部为两个半径均为的球体,体积2ו()3=9π故所求体积等于18+9π故答案为:18+9π11.(3分)(2012•天津)已知集合A={x∈R||x+2|<3},集合B={x∈R|(x﹣m)(x﹣2)<0},且A∩B=(﹣1,n),则m= ﹣1 ,n= 1 .【分析】由题意,可先化简A集合,再由B集合的形式及A∩B=(﹣1,n)直接作出判断,即可得出两个参数的值.【解答】解:A={x∈R||x+2|<3}={x∈R|﹣5<x<1},又集合B={x∈R|(x﹣m)(x﹣2)<0},A∩B=(﹣1,n).如图由图知m=﹣1,n=1,故答案为﹣1,1.12.(3分)(2012•天津)已知抛物线的参数方程为(t为参数),其中p>0,焦点为F,准线为l.过抛物线上一点M作l的垂线,垂足为E.若|EF|=|MF|,点M的横坐标是3,则p= 2 .【分析】把抛物线的参数方程化为普通方程为y2=2px,则由抛物线的定义可得及|EF|=|MF|,可得△MEF为等边三角形,设点M的坐标为(3,m ),则点E(﹣,m),把点M的坐标代入抛物线的方程可得 p=.再由|EF|=|ME|,解方程可得p的值.【解答】解:抛物线的参数方程为(t为参数),其中p>0,焦点为F,准线为l,消去参数可得x=2p,化简可得y2=2px,表示顶点在原点、开口向右、对称轴是x轴的抛物线,故焦点F(,0),准线l的方程为x=﹣.则由抛物线的定义可得|ME|=|MF|,再由|EF|=|MF|,可得△MEF为等边三角形.设点M的坐标为(3,m ),则点E(﹣,m).把点M的坐标代入抛物线的方程可得m2=2×p×3,即 p=.再由|EF|=|ME|,可得 p2+m2=,即 p2+6p=9++3p,解得p=2,或p=﹣6 (舍去),故答案为 2.13.(3分)(2012•天津)如图,已知AB和AC是圆的两条弦,过点B作圆的切线与AC的延长线相交于点D,过点C作BD的平行线与圆相交于点E,与AB相交于点F,AF=3,FB=1,EF=,则线段CD的长为.【分析】由相交弦定理求出FC,由相似比求出BD,设DC=x,则AD=4x,再由切割线定理,BD2=CD•AD求解.【解答】解:由相交弦定理得到AF•FB=EF•FC,即3×1=×FC,FC=2,在△ABD中AF:AB=FC:BD,即3:4=2:BD,BD=,设DC=x,则AD=4x,再由切割线定理,BD2=CD•AD,即x•4x=()2,x=故答案为:14.(3分)(2012•天津)已知函数y=的图象与函数y=kx﹣2的图象恰有两个交点,则实数k的取值范围是(0,1)∪(1,4).【分析】先化简函数的解析式,在同一个坐标系下画出函数y=的图象与函数y=kx﹣2的图象,结合图象,可得实数k的取值范围.【解答】解:y===函数y=kx﹣2的图象恒过点(0,﹣2)在同一个坐标系下画出函数y=的图象与函数y=kx﹣2的图象结合图象可实数k的取值范围是(0,1)∪(1,4)故答案为:(0,1)∪(1,4)三、解答题15.(2012•天津)已知函数f(x)=sin(2x+)+sin(2x﹣)+2cos2x﹣1,x∈R.(1)求函数f(x)的最小正周期;(2)求函数f(x)在区间[]上的最大值和最小值.【分析】(1)利用正弦函数的两角和与差的公式与辅助角公式将f(x)=sin (2x+)+sin(2x﹣)+2cos2x﹣1化为f(x)=sin(2x+),即可求得函数f(x)的最小正周期;(2)可分析得到函数f(x)在区间[]上是增函数,在区间[,]上是减函数,从而可求得f(x)在区间[]上的最大值和最小值.【解答】解:(1)∵f(x)=sin2x•cos+cos2x•sin+sin2x•cos﹣cos2x •sin+cos2x=sin2x+cos2x=sin(2x+),∴函数f (x )的最小正周期T==π.(2)∵函数f (x )在区间[]上是增函数,在区间[,]上是减函数, 又f (﹣)=﹣1,f ()=,f ()=1,∴函数f (x )在区间[]上的最大值为,最小值为﹣1.16.(2012•天津)现有4个人去参加娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.(1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率; (3)用X ,Y 分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X ﹣Y|,求随机变量ξ的分布列与数学期望E ξ.【分析】依题意,这4个人中,每个人去参加甲游戏的概率为,去参加乙游戏的人数的概率为设“这4个人中恰有i 人去参加甲游戏”为事件A i (i=0,1,2,3,4),故P (A i )=(1)这4个人中恰有2人去参加甲游戏的概率为P (A 2);(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏”为事件B ,则B=A 3∪A 4,利用互斥事件的概率公式可求;(3)ξ的所有可能取值为0,2,4,由于A 1与A 3互斥,A 0与A 4互斥,求出相应的概率,可得ξ的分布列与数学期望.【解答】解:依题意,这4个人中,每个人去参加甲游戏的概率为,去参加乙游戏的人数的概率为设“这4个人中恰有i 人去参加甲游戏”为事件A i (i=0,1,2,3,4),∴P (A i )=(1)这4个人中恰有2人去参加甲游戏的概率为P(A2)=;(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏”为事件B,则B=A3∪A4,∴P(B)=P(A3)+P(A4)=(3)ξ的所有可能取值为0,2,4,由于A1与A3互斥,A与A4互斥,故P(ξ=0)=P(A2)=P(ξ=2)=P(A1)+P(A3)=,P(ξ=4)=P(A)+P(A4)=∴ξ的分布列是数学期望Eξ=17.(2012•天津)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.(1)证明:PC⊥AD;(2)求二面角A﹣PC﹣D的正弦值;(3)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.【分析】解法一(1)以A为原点,建立空间直角坐标系,通过得出•=0,证出PC⊥AD.(2)求出平面PCD,平面PCD的一个法向量,利用两法向量夹角求解.(3)设E(0,0,h),其中h∈[0,2],利用cos<>=cos30°=,得出关于h的方程求解即可.解法二:(1)通过证明AD⊥平面PAC得出PC⊥AD.(2)作AH⊥PC于点H,连接DH,∠AHD为二面角A﹣PC﹣D的平面角.在RT△DAH中求解(3)因为∠ADC<45°,故过点B作CD的平行线必与线段AD相交,设交点为F,连接BE,EF,故∠EBF(或其补角)为异面直线BE与CD所成的角.在△EBF中,因为EF<BE,从而∠EBF=30°,由余弦定理得出关于h的方程求解即可.【解答】解法一:如图,以A为原点,建立空间直角坐标系,则A(0,0,0),D(2,0,0),C(0,1,0),B(﹣,,0),P(0,0,2).(1)证明:易得=(0,1,﹣2),=(2,0,0),于是•=0,所以PC ⊥AD.(2)解:=(0,1,﹣2),=(2,﹣1,0),设平面PCD的一个法向量为=(x,y,z),则即取z=1,则以=(1,2,1).又平面PAC的一个法向量为=(1,0,0),于是cos<>==,sin<>=所以二面角A﹣PC﹣D的正弦值为.(3)设E(0,0,h),其中h∈[0,2],由此得=(,﹣,h).由=(2,﹣1,0),故cos<>===所以=cos30°=,解得h=,即AE=.解法二:(1)证明:由PA⊥平面ABCD,可得PA⊥AD,又由AD⊥AC,PA∩AC=A,故AD⊥平面PAC,又PC⊂平面PAC,所以PC⊥AD.(2)解:如图,作AH⊥PC于点H,连接DH,由PC⊥AD,PC⊥AH,可得PC⊥平面ADH,因此DH⊥PC,从而∠AHD为二面角A ﹣PC﹣D的平面角.在RT△PAC中,PA=2,AC=1,所以AH=,由(1)知,AD⊥AH,在RT△DAH中,DH==,因此sin∠AHD==.所以二面角A﹣PC﹣D的正弦值为.(3)解:如图,因为∠ADC<45°,故过点B作CD的平行线必与线段AD相交,设交点为F,连接BE,EF,故∠EBF(或其补角)为异面直线BE与CD所成的角.由于BF∥CD,故∠AFB=∠ADC,在RT△DAC中,CD=,sin∠ADC=,故sin ∠AFB=.在△AFB中,由,AB=,sin∠FAB=sin135°=,可得BF=,由余弦定理,BF2=AB2+AF2﹣2ABAFcos∠FAB,得出AF=,设AE=h,在RT△EAF中,EF==,在RT△BAE中,BE==,在△EBF中,因为EF<BE,从而∠EBF=30°,由余弦定理得到,cos30°=,解得h=,即AE=.18.(2012•天津)已知{an }是等差数列,其前n项和为Sn,{bn}是等比数列,且a 1=b1=2,a4+b4=27,S4﹣b4=10.(1)求数列{an }与{bn}的通项公式;(2)记Tn =anb1+an﹣1b2+…+a1bn,n∈N*,证明:Tn+12=﹣2an+10bn(n∈N*).【分析】(1)直接设出首项和公差,根据条件求出首项和公差,即可求出通项.(2)先写出Tn的表达式;方法一:借助于错位相减求和;方法二:用数学归纳法证明其成立.【解答】解:(1)设等差数列的公差为d,等比数列的公比为q,由a1=b1=2,得a4=2+3d,b4=2q3,s4=8+6d,由条件a4+b4=27,s4﹣b4=10,得方程组,解得,故an =3n﹣1,bn=2n,n∈N*.(2)证明:方法一,由(1)得,Tn =2an+22an﹣1+23an﹣2+…+2n a1;①;2Tn =22an+23an﹣1+…+2n a2+2n+1a1;②;由②﹣①得,Tn=﹣2(3n﹣1)+3×22+3×23+…+3×2n+2n+2 =+2n+2﹣6n+2=10×2n﹣6n﹣10;而﹣2an +10bn﹣12=﹣2(3n﹣1)+10×2n﹣12=10×2n﹣6n﹣10;故Tn +12=﹣2an+10bn(n∈N*).方法二:数学归纳法,③当n=1时,T1+12=a1b1+12=16,﹣2a1+10b1=16,故等式成立,④假设当n=k时等式成立,即Tk +12=﹣2ak+10bk,则当n=k+1时有,T k+1=ak+1b1+akb2+ak﹣1b3+…+a1bk+1=ak+1b1+q(akb1+ak﹣1b2+…+a1bk)=ak+1b1+qTk=ak+1b1+q(﹣2ak+10bk﹣12)=2ak+1﹣4(ak+1﹣3)+10bk+1﹣24=﹣2ak+1+10bk+1﹣12.即Tk+1+12=﹣2ak+1+10bk+1,因此n=k+1时等式成立.③④对任意的n∈N*,Tn +12=﹣2an+10bn成立.19.(2012•天津)设椭圆的左右顶点分别为A,B,点P在椭圆上且异于A ,B 两点,O 为坐标原点. (1)若直线AP 与BP 的斜率之积为,求椭圆的离心率;(2)若|AP|=|OA|,证明直线OP 的斜率k 满足|k|>.【分析】(1)设P (x 0,y 0),则,利用直线AP 与BP 的斜率之积为,即可求得椭圆的离心率;(2)依题意,直线OP 的方程为y=kx ,设P (x 0,kx 0),则,进一步可得,利用AP|=|OA|,A (﹣a ,0),可求得,从而可求直线OP 的斜率的范围. 【解答】(1)解:设P (x 0,y 0),∴①∵椭圆的左右顶点分别为A ,B ,∴A (﹣a ,0),B (a ,0)∴,∵直线AP 与BP 的斜率之积为,∴代入①并整理得∵y 0≠0,∴a 2=2b 2 ∴∴∴椭圆的离心率为;(2)证明:依题意,直线OP 的方程为y=kx ,设P (x 0,kx 0),∴∵a >b >0,kx 0≠0,∴∴②∵|AP|=|OA|,A(﹣a,0),∴∴∴代入②得∴k2>3∴直线OP的斜率k满足|k|>.20.(2012•天津)已知函数f(x)=x﹣ln(x+a)的最小值为0,其中a>0.(1)求a的值;(2)若对任意的x∈[0,+∞),有f(x)≤kx2成立,求实数k的最小值;(3)证明:(n∈N*).【分析】(1)确定函数的定义域,求导函数,确定函数的单调性,求得函数的最小值,利用函数f(x)=x﹣ln(x+a)的最小值为0,即可求得a的值;(2)当k≤0时,取x=1,有f(1)=1﹣ln2>0,故k≤0不合题意;当k>0时,令g(x)=f(x)﹣kx2,即g(x)=x﹣ln(x+1)﹣kx2,求导函数,令g′=0,,分类讨论:①当k≥时,,(x)=0,可得x1g(x)在(0,+∞)上单调递减,g(x)≤g(0)=0;②当0<k<时,,对于,g′(x)>0,因此g(x)在上单调递增,由此可确定k的最小值;(3)当n=1时,不等式左边=2﹣ln3<2=右边,不等式成立;当n≥2时,,在(2)中,取k=,得f(x)≤x2,从而可得,由此可证结论.【解答】(1)解:函数的定义域为(﹣a,+∞),求导函数可得令f′(x)=0,可得x=1﹣a>﹣a令f′(x)>0,x>﹣a可得x>1﹣a;令f′(x)<0,x>﹣a可得﹣a<x<1﹣a∴x=1﹣a时,函数取得极小值且为最小值∵函数f(x)=x﹣ln(x+a)的最小值为0,∴f(1﹣a)=1﹣a﹣0,解得a=1(2)解:当k≤0时,取x=1,有f(1)=1﹣ln2>0,故k≤0不合题意当k>0时,令g(x)=f(x)﹣kx2,即g(x)=x﹣ln(x+1)﹣kx2,求导函数可得g′(x)=g′(x)=0,可得x1=0,①当k≥时,,g′(x)<0在(0,+∞)上恒成立,因此g(x)在(0,+∞)上单调递减,从而对任意的x∈[0,+∞),总有g(x)≤g(0)=0,即对任意的x∈[0,+∞),有f(x)≤kx2成立;②当0<k<时,,对于,g′(x)>0,因此g(x)在上单调递增,因此取时,g(x0)≥g(0)=0,即有f(x)≤kx2不成立;综上知,k≥时对任意的x∈[0,+∞),有f(x)≤kx2成立,k的最小值为(3)证明:当n=1时,不等式左边=2﹣ln3<2=右边,所以不等式成立当n≥2时,在(2)中,取k=,得f(x)≤x2,∴(i≥2,i∈N*).∴=f(2)+<2﹣ln3+=2﹣ln3+1﹣<2综上,(n∈N*).。
2012年全国高考理科数学试题及答案天津卷word

2012年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第I 卷(选择题〉和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟第I 卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(1)i 是虚数单位,复数7=3i z i-+= (A )2i + (B)2i - (C)2i -+ (D)2i --(2)设R ϕ∈,则“=0ϕ”是“()=cos(+)f x x ϕ()x R ∈为偶函数”的(A )充分而不必要条件 (B)必要而不充分条件(C)充分必要条件 (D)既不充分也不必要条件(3)阅读右边的程序框图,运行相应的程序,当输入x 的值为25-时,输出x 的值为(A )1- (B)1 (C)3 (D)9(4)函数3()=2+2x f x x -在区间(0,1)内的零点个数是(A )0 (B)1 (C)2 (D)3(6)在△ABC 中,内角A ,B ,C 所对的边分别是,,a b c ,已知8=5b c ,=2C B ,则cosC=(A )725(B)725- (C)725± (D)2425 (7)已知△ABC 为等边三角形,=2AB ,设点P ,Q 满足=AP AB λ ,=(1)AQ AC λ- ,R λ∈,若3=2BQ CP ⋅- ,则=λ (A )12C(8)设m ,n R ∈,若直线(1)+(1)2=0m x n y ++-与圆22(1)+(y 1)=1x --相切,则+m n 的取值范围是(A)[1(B)(,1)-∞∞(C)[2-(D)(,2)-∞-∞二、填空题:本大题共6小题,每小题5分,共30分.(9)某地区有小学150所,中学75所,大学25所. 现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调査,应从小学中抽取 所学校,中学中抽取 所学校.(10)―个几何体的三视图如图所示(单位:m ),则该几何体的体积为 3m.(11)已知集合={||+2|<3}A x R x ∈,集合={|()(2)<0}B x R x m x ∈--,且=(1,)A B n - ,则=m ,=n .(12)己知抛物线的参数方程为2=2,=2,x pt y pt ⎧⎨⎩(t 为参数),其中>0p ,焦点为F ,准线为l ,过抛物线上一点M 作的垂线,垂足为E ,若||=||EF MF ,点M 的横坐标是3,则=p .(14)已知函数2|1|=1x y x --的图象与函数=2y kx -的图象恰有两个交点,则实数k 的取值范围是 .三、解答题:本大题共6小题,共80分. 解答应写出文字说明,证明过程或演算步骤.(15)(本小题满分13分)已知函数2()=sin (2+)+sin(2)+2cos 133f x x x x ππ--,x R ∈. (Ⅰ)求函数()f x 的最小正周期;(Ⅱ)求函数()f x 在区间[,]44ππ-上的最大值和最小值. (17)(本小题满分13分)如图,在四棱锥P ABCD -中,PA 丄平面ABCD ,AC 丄AD ,AB 丄BC ,0=45ABC ∠,==2PA AD ,=1AC .(Ⅰ)证明PC 丄AD ;(Ⅱ)求二面角A PC D --的正弦值;(Ⅲ)设E 为棱PA 上的点,满足异面直线BE 与CD 所成的角为030,求AE 的长.(18)(本小题满分13分)已知{n a }是等差数列,其前n 项和为n S,{n b }是等比数列,且1a =1=2b ,44+=27a b ,44=10S b -.(Ⅰ)求数列{n a }与{n b }的通项公式;(Ⅱ)记1121=+++n n n n T a b a b a b - ,+n N ∈,证明+12=2+10n n n T a b -+()n N ∈.(19)(本小题满分14分)设椭圆2222+=1x y a b(>>0)a b 的左、右顶点分别为A ,B ,点P 在椭圆上且异于A ,B 两点,O 为坐标原点.(Ⅰ)若直线AP 与BP 的斜率之积为12-,求椭圆的离心率;(Ⅱ)若||=||AP OA ,证明直线OP 的斜率k 满足|k。
2012年天津市高考数学试卷理科教师版

2012年天津市高考数学试卷(理科)一、选择题=(是虚数单位,复数)3分)(2012?天津)i1.(D.﹣2Bi.2﹣i﹣iC.﹣2+iA.2+【分析】由题意,可对此代数分子分母同乘以分母的共轭,整理即可得到正确选项解:【解答】.故选:B)为偶函)∈φR,则“φ=0”是“f(x=cos(x+φ)(Rx∈(.2(3分)2012?天津)设)数”的(.必要而不充分条件BA.充分而不必要条件.既不充分也不必要条件.充分必要条件DC【分析】直接把φ=0代入看能否推出是偶函数,再反过来推导结论即可.【解答】解:因为φ=0时,f(x)=cos(x+φ)=cosx是偶函数,成立;但f(x)=cos(x+φ)(x∈R)为偶函数时,φ=kπ,k∈Z,推不出φ=0.故“φ=0”是“f(x)=cos(x+φ)(x∈R)为偶函数”的充分而不必要条件.故选:A.3.(3分)(2012?天津)阅读程序框图,运行相应的程序,当输入x的值为﹣25时,输出x的值为()9..3D.A.﹣1B1C时跳出循环,输1x|≤【分析】根据题意,按照程序框图的顺序进行执行,当|出结果.时,25解:当输入x=﹣【解答】;1=4,执行循环,x=﹣1|x|>,1=11,执行循环,x=﹣>|x|=4,退出循环,=1x||.+1=3输出的结果为x=2×1.故选:C3x)内的零点个数是1在区间(2=20+x,﹣)34.(分)(2012?天津)函数f(x)(3.2D10B.C.A.3x)<1f0)(02在区间(,1)内单调递增,f=2f【分析】根据函数(x)(+x﹣)内有唯一的零点1,可得函数在区间(0,03x=)(0)内单调递增,又在区间(﹣20,1fx)(解:由于函数【解答】fx=2+,>)(,<﹣10f1=10所以f(0)f(1)<0,x3﹣2在区间(0=2,+x1)内有唯一的零点,故函数f(x)故选:B.25)项的系数为(﹣)的二项展开式中,x5.(3分)(2012?天津)在(2x C.40.﹣10D.﹣40A.10B【分析】由题意,可先由公式得出二项展开式的通项x 即可得出,得=10﹣3r=1T=r=3,再令1r+项的系数52的二项展开式﹣)的通项为2x【解答】解:(=T=1r+令10﹣3r=1,得r=340=故x项的系数为﹣故选:D.6.(3分)(2012?天津)在△ABC中,内角A,B,C所对的边分别是a,b,c.已知8b=5c,C=2B,则cosC=().DCA..B.【分析】直接利用正弦定理以及二倍角公式,求出sinB,cosB,然后利用平方关系式求出cosC的值即可.【解答】解:因为在△ABC中,内角A,B,C所对的边分别是a,b,c.已知8b=5c,C=2B,所以8sinB=5sinC=5sin2B=10sinBcosB,所以cosB=,B为三角形内角,所以B∈<..C(0,)=.所以sinB==×,所以sinC=sin2B=2=.cosC=故选:A.,Q满足ABC为等边三角形,AB=2.设点P,7.(3分)(2012?天津)已知△)=﹣,则λ=(,λ∈R.若..B.C.DA,根据向量加法的三角形法则求出【分析】进而根据数量积的定义求出再根据.λ=﹣即可求出R【解答】解:∵,λ,∈,∴AB=2ABC∵△为等边三角形,+λ)+∴(=1﹣λ2λ)××2cos180°1×=2×2×cos60°+λ2×2×cos180°+(﹣λ)×2×2×+λ(1﹣cos60°×2,2λ4λ=2﹣+4λ﹣4+2λ﹣22=﹣2λ+2λ﹣﹣=∵21=04λ+∴4λ﹣2=012λ﹣)∴(∴故选:A.8.(3分)(2012?天津)设m,n∈R,若直线(m+1)x+(n+1)y﹣2=0与圆(x22=1相切,则m+n1)的取值范围是()﹣1)y+(﹣A.[1﹣,1+]B.(﹣∞,1﹣]∪[1+,+∞)C.[2﹣2,2+2]D.(﹣∞,2﹣2]∪[2+2,+∞)【分析】由圆的标准方程找出圆心坐标和半径r,由直线与圆相切时,圆心到直线的距离等于圆的半径,利用点到直线的距离公式列出关系式,整理后利用.基本不等式变形,设m+n=x,得到关于x的不等式,求出不等式的解集得到x的范围,即为m+n的范围.22=1,得到圆心坐标为(1,)1)﹣1),半+(y﹣1解:由圆的方程(【解答】x径r=1,∵直线(m+1)x+(n+1)y﹣2=0与圆相切,=1d=,∴圆心到直线的距离,≤+n+1=mn整理得:m2﹣4x﹣4≥0x+1≤,即x,设m+n=x,则有2﹣4x﹣4=0的解为:x=2+2,x∵x=2﹣2,21∴不等式变形得:(x﹣2﹣2)(x﹣2+2)≥0,x≤2﹣或2,解得:x≥2+2∪[2+2,﹣2]+∞).则m+2n的取值范围为(﹣∞,故选:D.二、填空题9.(3分)(2012?天津)某地区有小学150所,中学75所,大学25所.先采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取18所学校,中学中抽取9所学校.【分析】从250所学校抽取30所学校做样本,样本容量与总体的个数的比为3:25,得到每个个体被抽到的概率,根据三个学校的数目乘以被抽到的概率,分别写出要抽到的数目,得到结果.【解答】解:某城地区有学校150+75+25=250所,现在采用分层抽样方法从所有学校中抽取30所,,每个个体被抽到的概率是=∵某地区有小学150所,中学75所,大学25所.∴用分层抽样进行抽样,应该选取小学75=9所,选取中学×150=18×所.故答案为:18,9.10.(3分)(2012?天津)一个几何体的三视图如图所示(单位:m),则该几何3.m9π体的体积为18+,,3长、宽、高分别为6【分析】由三视图可知该几何体为上部是一个长方体,的球体.分别求体积再相加即可.),下部为两个半径均为1(单位:m,高分别为6解:由三视图可知该几何体为上部是一个长方体,长、宽、【解答】.×1=186×33,1(单位:m),体积3=9π)×?(下部为两个半径均为的球体,体积29π+故所求体积等于189π+故答案为:18)mx﹣x∈R|(<||x+2|3},集合B={x(11.3分)(2012?天津)已知集合A={∈R.1,n=m=1,n),则﹣1∩x(﹣2)<0},且AB=(﹣)直接,nB=(﹣1A【分析】由题意,可先化简集合,再由B集合的形式及A∩作出判断,即可得出两个参数的值.,}<1|﹣5<x∈2||x+|<3}={xRRA=【解答】解:{x∈.)1,nA0},∩B=(﹣)<(x∈又集合B={xR|(﹣m)x﹣2如图,n=11由图知m=﹣,.1故答案为﹣1,12.(3分)(t(为参数)2012?天津)已知抛物线的参数方程为,其中p>0,焦点为F,准线为l.过抛物线上一点M作l的垂线,垂足为E.若|EF|=|MF|,点M的横坐标是3,则p=2.2=2px,y则由抛物线的定义可得及【分析】把抛物线的参数方程化为普通方程为|EF|=|MF|,可得△MEF为等边三角形,设点M的坐标为(3,m ),则点E,||ME|EF|=),把点M的坐标代入抛物线的方程可得p=.再由(﹣,m的值.解方程可得pt为参数)【解答】解:抛物线的参数方程为(,其中p>0,焦点为F,,准线为l,消去参数可得x=2p2=2px,表示顶点在原点、开口向右、对称轴是x化简可得y轴的抛物线,.﹣l的方程为x=故焦点F(,0),准线为等边三角形.MEF=|MF|,可得△|则由抛物线的定义可得|ME=|MF|,再由|EF|.m,则点E(﹣,)设点M的坐标为(3,m )2把点M的坐标代入抛物线的方程可得m=2×p×3,即p=.222,即p+6p=9++3p,解得p=2,或p=+|再由|EF=|ME|,可得pm=﹣6 (舍去),故答案为2.13.(3分)(2012?天津)如图,已知AB和AC是圆的两条弦,过点B作圆的切线与AC的延长线相交于点D,过点C作BD的平行线与圆相交于点E,与AB相交于点F,AF=3,FB=1,EF=,则线段CD的长为.,再由切,则AD=4x,由相似比求出BD,设DC=x【分析】由相交弦定理求出FC2求解.割线定理,BD=CD?ADABDFC=2FC1=3AF?FB=EF?FC【解答】解:由相交弦定理得到,即××,,在△中AF:AB=FC:BD,即3:4=2:BD,BD=,22,)x=,即x?4x=DC=x,则AD=4x,再由切割线定理,BD(=CD?AD设故答案为:14.(5分)(2012?天津)已知函数y=的图象与函数y=kx ﹣2的图象恰有两个交点,则实数k的取值范围是(0,1)∪(1,4).【分析】作出函数图象,根据图象交点个数得出k的范围.,或>,【解答】解:y==,<<作出函数y=与y=kx﹣2的图象如图所示:∵函数y=的图象与函数y=kx﹣2的图象恰有两个交点,∴0<k<1或1<k<4.故答案为:(0,1)∪(1,4).三、解答题2.Rx∈x﹣1,2cos2x)=sinf(2012?天津)已知函数(x)(2x++sin(﹣)+.15)的最小正周期;xf1)求函数((,上的最大值和最小值.][xf2()求函数()在区间【分析】(1)利用正弦函数的两角和与差的公式与辅助角公式将(fx)=sin(2x+)2+sin(2x﹣)+2cosx﹣1化为f(x)=sin(2x+),即可求得函数f(x)的最小正周期;,]上是增函数,在区间[,)在区间[]上是(2)可分析得到函数f(x ,]上的最大值和最小值.[f(x)在区间减函数,从而可求得【解答】解:(1)∵f(x)=sin2x?cos+cos2x?sin+sin2x?cos﹣cos2x?sin+cos2x =sin2x+cos2xsin(2x+),==πT=.(x)的最小正周期∴函数f,]上是增函数,在区间[,])在区间f(x[上是减函数,(2)∵函数又f(﹣)=﹣1,f()=,f()=1,,]上的最大值为,最小值为﹣[1.∴函数f(x)在区间16.(2012?天津)现有4个人去参加娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.(1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X﹣Y|,求随机变量ξ的分布列与数学期望Eξ.【分析】依题意,这4个人中,每个人去参加甲游戏的概率为,去参加乙游戏的人数的概率为设“这4个人中恰有i人去参加甲游戏”为事件A(i=0,1,2,3,4),故P(A)ii=(1)这4个人中恰有2人去参加甲游戏的概率为P(A);2.(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏”为事件B,则B=A3∪A,利用互斥事件的概率公式可求;4(3)ξ的所有可能取值为0,2,4,由于A与A互斥,A与A互斥,求出相应4310的概率,可得ξ的分布列与数学期望.【解答】解:依题意,这4个人中,每个人去参加甲游戏的概率为,去参加乙游戏的人数的概率为设“这4个人中恰有i人去参加甲游戏”为事件A(i=0,1,2,3,4),∴P(A)ii=;=人去参加甲游戏的概率为P(A)(1)这4个人中恰有22(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏”为事件B,则B=A3∪A,4∴P)=+P(A(B)=P(A)43(3)ξ的所有可能取值为0,2,4,由于A与A互斥,A与A互斥,故P(ξ=0)4130=(=PA)2=((Pξ=2)=PA))A+P(A)=PP=)+P(A,(ξ=4)(4013Eξ=数学期望17.(2012?天津)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AC⊥AD,AB ⊥BC,∠BAC=45°,PA=AD=2,AC=1.(1)证明:PC⊥AD;(2)求二面角A﹣PC﹣D的正弦值;(3)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.,=0)以A为原点,建立空间直角坐标系,通过得出?【分析】解法一(1.AD ⊥证出PC的一个法向量,利用两法向量夹角求解.PCD(2)求出平面PCD,平面,,得出=>,02],利用cos<=cos30°(3)设E(0,0,h),其中h ∈[的方程求解即可.h关于.ADPC⊥AD⊥平面PAC得出解法二:(1)通过证明RTD的平面角.在A﹣PC﹣PC于点H,连接DH,∠AHD为二面角(2)作AH⊥中求解△DAH,设交点为F的平行线必与线段AD相交,<ADC45°,故过点B作CD(3)因为∠EBFCD所成的角.在△(或其补角)为异面直线BE与连接BE,EF,故∠EBF 的方程求解即可.,由余弦定理得出关于hBE,从而∠EBF=30°中,因为EF<,)0,0A为原点,建立空间直角坐标系,则A(0,【解答】解法一:如图,以.),2P(0,00),B(﹣,,0),,0D(2,,0),C(01,PC,所以,0),于是?=0(,(1)证明:易得=(01,﹣2),=2,0.AD ⊥,=的一个法向量为(x,y,z)设平面,2,,()(2解:=0,1﹣2)=(,﹣10),PCD则即,于是)0,0,1(=的一个法向量为PAC.又平面)1,2,1(=,则以z=1取.,,==>,sin<cos<>=所以二面角A﹣PC﹣D的正弦值为.,2=(,(,﹣h).由),其中h∈[0,2],由此得=h(3)设E(0,0,,=>=﹣1,0),故cos<=.AE=h=,即所以=cos30°=,解得解法二:(1)证明:由PA⊥平面ABCD,可得PA⊥AD,又由AD⊥AC,PA∩AC=A,故AD⊥平面PAC,又PC?平面PAC,所以PC⊥AD.(2)解:如图,作AH⊥PC于点H,连接DH,由PC⊥AD,PC⊥AH,可得PC⊥平面ADH,因此DH⊥PC,从而∠AHD为二面角A﹣PC﹣D的平面角.在RT△PAC中,PA=2,AC=1,所以AH=,由(1)知,AD⊥AH,在RT△DAH=,因此sin∠AHD==.所以二面角中,DH=A ﹣PC﹣D的正弦值为.(3)解:如图,因为∠ADC<45°,故过点B作CD的平行线必与线段AD相交,设交点为F,连接BE,EF,故∠EBF(或其补角)为异面直线BE与CD所成的角.由于BF∥CD,故∠AFB=∠ADC,在RT△DAC中,CD=,sin∠ADC=,故sin∠AFB=.,可得BF=∠FAB=sin135°=,在△AFB中,由,AB=,sin222﹣2ABAFcos∠FAB+AF,得出AF=由余弦定理,BF=AB,,设=EAF△RTAE=h,在中,EF=,中,△BAEBE==在RT在△EBF中,因为EF<BE,从而∠EBF=30°,由余弦定理得到,cos30°=,解得h=,即AE=.(2012?天津)已知{nnn.=10S 是等比数列,且},{ba}是等差数列,其前n项和为S18.﹣ba+b=27,=2a=b,441144的通项公式;}与{b1)求数列{a}(nn**.N)10b(n ∈∈N12=,证明:T+﹣2a++(2)记T=ab+ab…+ab,n nn1n121nnnn﹣)直接设出首项和公差,根据条件求出首项和公差,即可求出通项.1【分析】(的表达式;方法一:借助于错位相减求和;T2)先写出(n方法二:用数学归纳法证明其成立.,,等比数列的公比为q1解:()设等差数列的公差为d【解答】3,+6d,s=8,得a=2+3d,b=2q由a=b=241441,b=10,s﹣由条件a+b=27 4444,得方程组,解得*n.n∈,b=2N,﹣故a=3n1nnn32①; 2 a+2;a+2a+…+)证明:方法一,由((21)得,T=2a12nnn1n﹣﹣1nn23+②;+2 a2T=2+a2…a++2;a1nn1n2﹣2n3n2+2+×22+3×2+…+3+3n=由②﹣①得,T﹣2(﹣1)3×n2n+2=2++﹣6nn;=10×2﹣6n﹣10nn;﹣212=10×+13n212=﹣+2a而﹣10b﹣(﹣)102﹣×﹣6n10nn*)N.10b(n∈故T+12=﹣2a+nnn方法二:数学归纳法,③当n=1时,T+12=ab+12=16,﹣2a+10b=16,故等式成立,11111④假设当n=k 时等式成立,即T+12=﹣2a+10b,kkk则当n=k+1时有,T=ab+ab+ab+…+ab1k131kk1kk211++﹣+=ab+q(ab+ab+…+ab)k1k11112kk﹣+=ab+qT k1k1+=ab+q (﹣2a+10b﹣12)kk11k+=2a﹣4(a﹣3)+10b﹣2411kkk1+++=﹣2a+10b﹣12.1k1k++即T+12=﹣2a+10b,因此n=k+1时等式成立.1kk1k1+++*,T+12=﹣2a+10b③④对任意的n∈N成立.nnn>>P,点,B的左右顶点分别为A天津)设椭圆2012?.(19为坐标原点.OB两点,在椭圆上且异于A,(1)若直线AP与BP的斜率之积为,求椭圆的离心率;(2)若|AP|=|OA|,证明直线OP的斜率k满足|k|>.,利用直线AP与BP的斜率之积,则y))设(1P(x,【分析】00为,即可求得椭圆的离心率;,,则(x,kx)OP(2)依题意,直线的方程为y=kx,设P00<,,可求得)A(﹣a,进一步可得0OA,利用AP|=||,从而可求直线OP的斜率的范围.①,∴x(,y)1【解答】()解:设P00>>,a(B,)0,a(﹣A,∴B,A的左右顶点分别为∵椭圆)0,∴,∴BP的斜率之积为∵直线AP与代入①并整理得22=2b0,∴a∵y≠0∴∴;∴椭圆的离心率为∴,设P(x,kx),证明:(2)依题意,直线OP的方程为y=kx00<,∴,kx≠0∵a>b>00<②∴∵|AP|=|OA|,A(﹣a,0),∴∴∴<代入②得23>∴k∴直线OP的斜率k满足|k|>.20.(2012?天津)已知函数f(x)=x﹣ln(x+a)的最小值为0,其中a>0.(1)求a的值;2成立,求实数kkx的最小值;x∞),有f()≤[(2)若对任意的x∈0,+*<(n∈N).(3)证明:【分析】(1)确定函数的定义域,求导函数,确定函数的单调性,求得函数的最小值,利用函数f(x)=x﹣ln(x+a)的最小值为0,即可求得a的值;时,0>k不合题意;当0≤k故,0>ln2﹣=1)1(f,有x=1时,取0≤k)当2(.22,求导函数,令g′()﹣kxx))=x﹣ln(x+1令g(x)=f(x)﹣kxx,即g(,g>=0,,分类讨论:①当k≥时,=0,可得x1>对于时,,<(x)≤g(0)=0;②当0k<+(x)在(0,∞)上单调递减,g,,上单调递增,由此可)在,g′(x)>0,因此g(x确定k的最小值;(3)当n=1时,不等式左边=2﹣ln3<2=右边,不等式成立;当n≥2时,,在(2)中,取k=,得f(x)≤2<,由此可证结论.,从而可得x【解答】(1)解:函数的定义域为(﹣a,+∞),求导函数可得令f′(x)=0,可得x=1﹣a>﹣a令f′(x)>0,x>﹣a可得x>1﹣a;令f′(x)<0,x>﹣a可得﹣a<x<1﹣a∴x=1﹣a时,函数取得极小值且为最小值∵函数f(x)=x﹣ln(x+a)的最小值为0,∴f(1﹣a)=1﹣a﹣0,解得a=1(2)解:当k≤0时,取x=1,有f(1)=1﹣ln2>0,故k≤0不合题意22,kx+1)﹣)=x﹣ln(xg(x)=f(x)﹣kx,即g(x当k>0时,令=)g′(x求导函数可得>,可得x=0,=0g′(x)1,(0(x)在(在0,+∞)上恒成立,因此g,g′(x)<0时,①当k ≥+∞)上单调递减,从而对任意的x∈[0,+∞),总有g(x)≤g(0)=0,即2成立;kxx)≤(,+∞),有f∈对任意的x[0,g′(x)>0,因此g(x)在,>k②当0<<时,,对于,上单调递增,2,x(时,g不成立;kx)≤(,即有因此取)()≥g0=0fx0002成立,k)≤kx的最小值为∞),有f(x0综上知,k≥时对任意的x∈[,+(3)证明:当n=1时,不等式左边=2﹣ln3<2=右边,所以不等式成立时,2当n≥2<(,∴ik=,得f(x)≤x在(2)中,取*).i∈N≥2,﹣2<+2=f()∴2﹣<ln3=2ln3+﹣+1*<N∈n(.)综上,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第I 卷(选择题〉和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟第I 卷 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)i 是虚数单位,复数7=3i z i-+=(A )2i + (B)2i - (C)2i -+ (D)2i -- 1.B【命题意图】本试题主要考查了复数的概念以及复数的加、减、乘、除四则运算. 【解析】7=3i z i-+=(7)(3)(3)(3)i i i i --+-=2173110i i ---=2i -(2)设R ϕ∈,则“=0ϕ”是“()=cos (+)f x x ϕ()x R ∈为偶函数”的 (A )充分而不必要条件 (B)必要而不充分条件 (C)充分必要条件 (D)既不充分也不必要条件 2.A【命题意图】本试题主要考查了三角函数的奇偶性的判定以及充分条件与必要条件的判定. 【解析】∵=0ϕ⇒()=c o s (+f x x ϕ()x R ∈为偶函数,反之不成立,∴“=0ϕ”是“()=cos (+)f x x ϕ()x R ∈为偶函数”的充分而不必要条件.(3)阅读右边的程序框图,运行相应的程序,当输入x 的值为25-时,输出x 的值为(A )1- (B)1 (C)3 (D)9 3.C【命题意图】本试题主要考查了算法框图的读取,并能根据已给的算法程序进行运算.【解析】根据图给的算法程序可知:第一次=4x ,第二次=1x ,则输出=21+1=3x ⨯. (4)函数3()=2+2xf x x -在区间(0,1)内的零点个数是 (A )0 (B)1 (C)2 (D)34.B【命题意图】本试题主要考查了函数与方程思想,函数的零点的概念,零点存在定理以及作图与用图的数学能力.【解析】解法1:因为(0)=1+02=1f --,3(1)=2+22=8f -,即(0)(1)<0f f ⋅且函数()f x 在(0,1)内连续不断,故()f x 在(0,1)内的零点个数是1.B 正确.+15r 5,∴103=1r -,即=3r ,∴x 的系数为40-.(6)在△ABC 中,内角A ,B ,C 所对的边分别是,,a b c ,已知8=5b c ,=2C B ,则cosC= (A )725(B)725-(C)725±(D)24256.A【命题意图】本试题主要考查了正弦定理、三角函数中的二倍角公式. 考查学生分析、转化与计算等能力.【解析】∵8=5b c ,由正弦定理得8sin =5sin B C ,又∵=2C B ,∴8s i n =5s i n 2B B ,所以8s i n =10s i n c o s B B B ,易知sin 0B ≠,∴4cos =5B ,2cos =cos 2=2cos 1C B B -=725.(7)已知△ABC 为等边三角形,=2A B ,设点P ,Q 满足=AP AB λ,=(1)AQ AC λ-,R λ∈,若3=2BQ C P⋅- ,则=λ(A )12(B)12± (C)12± (D)32-±7.A【命题意图】本试题以等边三角形为载体,主要考查了向量加减法的几何意义,平面向量基本定理,共线向量定理及其数量积的综合运用.【解析】∵=B Q A Q A B - =(1)AC AB λ--,=CP AP AC - =AB AC λ- ,又∵3=2B QC P ⋅- ,且||=||=2A B A C ,0<,>=60A B A C ,0=||||cos 60=2AB AC AB AC ⋅⋅ ,∴3[(1)]()=2A C A B A B A C λλ---- ,2223||+(1)+(1)||=2A B A B A C A C λλλλ--⋅- ,所以234+2(1)+4(1)=2λλλλ---,解得1=2λ.C(8)设m ,n R ∈,若直线(1)+(1)2=0m x n y ++-与圆22(1)+(y 1)=1x --相切,则+m n 的取值范围是(A)[1-(B)(,1)-∞-∞(C)[2-(D)(,2)-∞-∞8.D【命题意图】本试题主要考查了直线与圆的位置关系,点到直线的距离公式,重要不等式,一元二次不等式的解法,并借助于直线与圆相切的几何性质求解的能力.【解析】∵直线(1)+(1)2=0m x n y ++-与圆22(1)+(y 1)=1x --相切,∴圆心(1,1)到直线的距离为=d ,所以21()2m n m n m n +=++≤,设=t m n +,则21+14tt ≥,解得(,2)t ∈-∞-∞ .二、填空题:本大题共6小题,每小题5分,共30分.(9)某地区有小学150所,中学75所,大学25所. 现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调査,应从小学中抽取 所学校,中学中抽取 所学校. 9.18,9【命题意图】本试题主要考查了统计中的分层抽样的概念以及样本获取的方法与计算. 【解析】∵分层抽样也叫按比例抽样,由题知学校总数为250所, 所以应从小学中抽取15030=18250⨯,中学中抽取7530=9250⨯.(10)―个几何体的三视图如图所示(单位:m ),则该几何体的体积为 3m .10.18+9π【命题意图】本试题主要考查了简单组合体的三视图的画法与体积的计算以及空间想象能力. 【解析】由三视图可该几何体为两个相切的球上方了一个长方体组成的组合体,所以其体积为:343=361+2()32V π⨯⨯⨯⨯=18+9π3m .(11)已知集合={||+2|<3}A x R x ∈,集合={|()(2)<0}B x R x m x ∈--,且=(1,)A B n - ,则=m ,=n . 11.1-,1【命题意图】本试题主要考查了集合的交集的运算及其运算性质,同时考查绝对值不等式与一元二次不等式的解法以及分类讨论思想.【解析】∵={||+2|<3}A x R x ∈={||5<<1}x x -,又∵=(1,)A B n - ,画数轴可知=1m -,=1n . (12)己知抛物线的参数方程为2=2,=2,x pt y pt ⎧⎨⎩(t 为参数),其中>0p ,焦点为F ,准线为l ,过抛物线上一点M 作的垂线,垂足为E ,若||=||EF MF ,点M 的横坐标是3,则=p . 12.2【命题意图】本试题主要考查了参数方程及其参数的几何意义,抛物线的定义及其几何性质. 【解析】∵2=2,=2,x pt y pt ⎧⎨⎩可得抛物线的标准方程为2=2y px (>0)p ,∴焦点(,0)2pF ,∵点M 的横坐标是3,则(3,M ±,所以点(,2p E -±,222=()+(022p p E F -由抛物线得几何性质得=+32p M F ,∵=EF M F ,∴221+6=+3+94p p p p ,解得=2p .(13)如图,已知AB 和AC 是圆的两条弦.过点B 作圆的切线与AC 的延长线相交于点D,过点C 作BD 的平行线与圆相交于点E,与AB 相交于点F ,=3A F ,=1FB ,3=2E F ,则线段C D 的长为 .13.43【命题意图】本试题主要考查了平面几何中直线与圆的位置关系,相交弦定理,切割线定理,相似三角形的概念、判定与性质. 【解析】∵=3A F ,=1FB ,3=2E F ,由相交弦定理得=A F F B E F F C ⋅⋅,所以=2F C ,又∵B D ∥CE ,∴=A F F C A BB D,4==23A B B D F C A F⋅⨯=83,设=C D x ,则=4A D x ,再由切割线定理得2=BD CD AD ⋅,即284=()3x x ⋅,解得4=3x ,故4=3C D .(14)已知函数2|1|=1x y x --的图象与函数=2y kx -的图象恰有两个交点,则实数k 的取值范围是 . 14.(0,1)(1,4)【命题意图】本试题主要考查了函数的图像及其性质,利用函数图像确定两函数的交点,从而确定参数的取值范围.【解析】∵函数=2y kx -的图像直线恒过定点B(0,2)-,且(1,2)A -,(1,0)C -,(1,2)D ,∴2+2=410-,由图像可知(0,1)(1,4)k ∈ ..2sin (2+)+sin(2)+2cos 133x x x ππ--,x R ∈.44.【命题意图】本试题主要考查了 【参考答案】【点评】该试题关键在于将已知的函数表达式化为=sin (+)y A x ωϕ的数学模型,再根据此三角模型的图像与性质进行解题即可.(16)(本小题满分13分)现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.(Ⅰ)求这4个人中恰有2人去参加甲游戏的概率:(Ⅱ)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率:(Ⅲ)用,X Y 分别表示这4个人中去参加甲、乙游戏的人数,记=||X Y ξ-,求随机变量ξ的分布列与数学期望E ξ.【命题意图】本试题主要考查了【参考答案】【点评】应用性问题是高考命题的一个重要考点,近年来都通过概率问题来考查,且常考常新,对于此类考题,要注意认真审题,从数学与实际生活两个角度来理解问题的实质,将问题成功转化为古典概型,独立事件、互斥事件等概率模型求解,因此对概率型应用性问题,理解是基础,转化是关键. (17)(本小题满分13分)如图,在四棱锥P A B C D -中,P A 丄平面A B C D ,A C 丄A D ,A B丄B C ,0=45ABC ∠,==2P A A D ,=1A C . (Ⅰ)证明P C 丄A D ;(Ⅱ)求二面角A P C D --的正弦值;(Ⅲ)设E 为棱P A 上的点,满足异面直线BE 与CD 所成的角为030,求AE 的长.【命题意图】本试题主要考查了 【参考答案】【点评】试题从命题的角度来看,整体上题目与我们平时练习的试题相似,但底面是非特殊的四边形,一直线垂直于底面的四棱锥问题,那么创新的地方就是第三问中点E 的位置是不确定的,需要学生根据已知条件进行确定,如此说来就有难度,因此最好使用空间直角坐标系解决该问题为好.(18)(本小题满分13分)已知{n a }是等差数列,其前n 项和为n S ,{n b }是等比数列,且1a =1=2b ,44+=27a b ,44=10S b -.(Ⅰ)求数列{n a }与{n b }的通项公式;(Ⅱ)记1121=+++n n n n T a b a b a b - ,+n N ∈,证明+12=2+10n n n T a b -+()n N ∈. 【命题意图】本试题主要考查了 【参考答案】【点评】该试题命制比较直接,没有什么隐含的条件,就是等比与等差数列的综合应用,但方法多样,第二问可以用错位相减法求解证明,也可用数学归纳法证明,给学生思维空间留有余地,符合高考命题选拔性的原则.(19)(本小题满分14分)设椭圆2222+=1x y ab(>>0)a b 的左、右顶点分别为A ,B ,点P 在椭圆上且异于A ,B 两点,O 为坐标原点. (Ⅰ)若直线AP 与BP 的斜率之积为12-,求椭圆的离心率;(Ⅱ)若||=||AP OA ,证明直线O P 的斜率k 满足|k【命题意图】本试题主要考查了 【参考答案】 【点评】(20)(本小题满分14分)已知函数()=ln (+)f x x x a -的最小值为0,其中>0a . (Ⅰ)求a 的值;(Ⅱ)若对任意的[0,+)x ∈∞,有2()f x kx ≤成立,求实数k 的最小值;(Ⅲ)证明=12ln (2+1)<221ni n i --∑*()n N ∈.【命题意图】本试题主要考查了 【参考答案】【点评】试题分为三问,题面比较简单,给出的函数比较常规,因此入手对于同学们来说没有难度,第二问中,解含参数的不等式时,要注意题中参数的讨论所有的限制条件,从而做到不重不漏;第三问中,证明不等式,应借助于导数证不等式的方法进行.。