预应力锚索加固边坡的FLAC3D数值模拟分析

合集下载

FLAC_3D的锚杆拉拔数值模拟试验_江文武

FLAC_3D的锚杆拉拔数值模拟试验_江文武

图 3 网格剖分图
szz
Z sxx X
锚杆
X Y
sxx
沿锚杆轴 向施加固 定的速度 v
szz 7.5m
10 m 5 m 限制 Y 方向的位移
图 4 锚杆拉拔数值模型示意图
为了模拟锚杆拉拔过程中的影响因素,即影 响锚杆锚固的效应的因素:1) 模拟了在同样的外 部条件下,唯有浆体的摩擦角( φg = 00 ,100 ,200 , 300 ,400 ) 不同的条件作用下沿着锚杆轴向、径向 锚杆的应力与应变的分布规律以及锚杆的锚固 力、浆体界面上的剪应力分布特征;2) 模拟了在 同样的外部条件下,唯有浆体有效围压( σm = 0, 2,4,6,8 MPa) 不同的条件作用下沿着锚杆轴向、 径向锚杆的应力与应变的分布规律以及锚杆的锚 固力、浆体界面上的剪应力分布特征;同时还模拟 了锚杆在拉拔过程中,锚索与岩体间的界面发生 剪切屈服、产生滑动直至拉拔破坏具体过程.
·130·
哈尔滨工业大学学报
第 41 卷
变形和强度起着重要的作用[1 ~ 4]. 加锚岩体的数 值模拟方法大都还是基于有限元法,但一般都过 低估计锚固效果. 然而 FLAC - 3D 即三维快速拉 格朗日分析方法的出现,又为锚杆在岩体锚固机 理提供了新的机遇. 本文就锚固体的摩擦角、有效 围压等对锚杆锚固性能的影响作了分析,对锚杆 拉拔过程中锚杆锚固失效的特点进行了探索,并 将现场试验与数值模拟计算进行了对比和分析.
3 数值模拟试验结果
通过多种方案的数值模拟试验可知图 5( a) 是现场试验得到一系列的力与位移之间的曲线, 从图 5( a) 中得知锚杆直径为 15. 2 mm 的锚杆锚 固力 = 17 t / m. 图 5( b) 是根据现场的地质条件建 模后计算得到的锚杆所受力与位移之间的曲线, 图 5(b)中显示当锚杆自由端施加的力小于某一 值时,力与位移基本成正比关系,当力达到一定值 即锚 固 力 时,力 保 持 不 变,而 位 移 呈 无 限 增 大 趋 势,说明锚杆已经整体失稳,锚固作用失效,图 6

预应力锚索框架作用下附加应力的FLAC~3D模拟

预应力锚索框架作用下附加应力的FLAC~3D模拟

第30卷 第4期 成都理工大学学报(自然科学版) V o l.30N o .4 2003年8月JOU RNAL O F CHEN GDU UN I V ERS ITY O F TECHNOLO GY (Science &Technol ogy Editi o n )A ug .2003 [文章编号]167129727(2003)0420339207预应力锚索框架作用下附加应力的F LAC 3D模拟[收稿日期]2002204230[作者简介]丁秀美(1976-),女,博士生,工程地质专业.丁秀美 黄润秋 臧亚君(成都理工大学环境与土木工程学院,成都610059)[摘要]为研究预应力锚索框架与岩土体的相互作用机理及施加预应力产生的附加应力,以福建省漳(州)龙(岩)高速公路和溪段K 63+730~950与K 64+690~790边坡的锚索框架加固为工程实例,在对预应力锚索框架结构力学作用机理分析的基础上,建立相应的三维地质力学模型,应用FLA C 3D 快速拉格郎日差分程序对此进行数值模拟,并对这种抑制结构作用下的附加应力分布规律进行了初步探索。

[]FLA C 3D ;预应力锚索框架;地梁;附加应力[分类号]TU 457 [文献标识码]A 随着高速公路网建设向山区的转移,将出现大量的路堑类土质边坡,所以如何采用经济、安全的措施对这些边坡进行加固,保证高速公路的正常运营是当前一个极其重要的课题。

预应力锚索框架结构采用对预应力锚索施加的预应力将滑动岩体与稳定岩体紧密连结为一体,增加岩体各层面的抗滑力,同时又通过坡面上框架梁将各个锚索有效地连成一个整体,形成一个由表及里的加固体系,进而达到防止整体边坡失稳的目的,是一种新型的抗滑结构。

但作者查阅大量文献后发现,目前为止,预应力锚索框架结构对岩土体作用机理、影响范围、作用后的应力分布等的研究还相对较少,对施加预应力坡体内所产生的附加应力的研究参见有关文献资料。

FLAC3D软件建立边坡的三维数值模型分析

FLAC3D软件建立边坡的三维数值模型分析

FLAC3D软件建立边坡的三维数值模型分析结合FLAC3D软件的优点,以某公路工程的边坡为例,对FLAC3D软件在建立边坡三维数值模型中的应用进行了分析和探讨。

标签:FLAC3D软件边坡三维数值模型0前言对于公路工程而言,边坡的稳定性直接影响着工程施工的顺利进行,影响着整个工程的施工质量,在工程中的作用是十分巨大的。

影响边坡稳定性的因素是多种多样的,运用FLAC3D软件,结合相应的岩土勘察参数,可以建立边坡的三维数值模型,从而方便对边坡的应力场分布规律以及最大不平衡力的收敛情况进行分析,以实现对边坡的加固。

1 FLAC3D软件概述FLAC3D是二维的有限差分程序FLAC2D的护展,能够进行土质、岩石和其它材料的三维结构受力特性模拟和塑性流动分析。

FLAC3D采用了显式拉格朗日算法以及混合离散分区技术,可以非常准确地对材料的塑性破坏和流动进行模拟。

由于不需要形成刚度矩阵,可以在较小的内存空间中,求解大氛围的三维问题。

FLAC3D的优点包括以下几个方面:(1)混合离散法的应用,相比于有限元法中常用的离散集成法更加准确,更加合理;(2)采用动态运动方程实现对于静态系统的模拟,在模拟物理上的不稳定过程不存在数值上的障碍;(3)采用了“显式解”方案。

因此,显式解方案对非线性的应力-应变关系的求解所花费的时间,几乎与线性本构关系相同,而隐式求解方案将会花费较长的时间求解非线性问题。

而且,它没有必要存储刚度矩阵,这就意味着;采用中等容量的内存可以求解多单元结构;模拟大变形问题并不比小变形问题多消耗更多的计算时间,因为没有任何刚度矩阵要被修改。

2 FLAC3D软件建立边坡的三维数值模型2.1工程概况某城乡高速通道全长21km,从山林地区穿行,与该地区的一条河流并行,公路整体边坡呈岩质,部分路段为土质边坡。

受公路自身承载力等因素的影响,边坡工程出现了风化、滑坡等病害,严重影响了公路的行车安全,需要引起相关人员的重视和研究。

预应力锚索框架作用下附加应力的FLAC~3D模拟

预应力锚索框架作用下附加应力的FLAC~3D模拟

预应力锚索框架作用下附加应力的FLAC~3D模拟预应力锚索框架是一种常用于土木工程和岩石力学中的结构体系,通过施加预定的预应力来增加结构的强度和稳定性。

在FLAC-3D软件中,可以使用它来模拟附加应力的作用。

下面将详细介绍FLAC-3D中使用预应力锚索框架进行模拟的过程。

首先,需要在FLAC-3D中创建模型。

模型的建立主要包括两个方面:建立地质模型和定义锚索框架。

在建立地质模型时,需要确定模型的尺寸、边界条件、材料参数等。

在定义锚索框架时,需要确定预应力锚索的位置、数量、大小等参数。

这些参数可以通过实际工程设计或者试验数据获得,也可以通过经验公式和理论计算得到。

接下来,需要对模型进行网格划分。

网格划分是将模型划分为离散的小单元,用于计算和模拟各个单元的力学行为。

网格划分的精度会直接影响到计算结果的准确性,因此需要根据具体问题和计算资源进行适当的网格划分。

然后,需要定义材料参数。

材料参数包括岩土材料的强度、刚度、渗透性等特性。

在FLAC-3D中,可以通过输入岩土材料的本构模型和参数来描述材料的力学行为。

在预应力锚索框架模拟中,还需要定义预应力锚索的材料参数,包括锚索的刚度、长度和预应力大小等。

这些参数可以根据实际工程设计或者试验数据得到。

接下来,需要定义边界条件和加载方式。

边界条件是模拟过程中的约束条件,可以通过定义边界面的位移、固定和施加载荷等方式进行。

在预应力锚索框架模拟中,需要将锚索的端点固定,并施加预应力大小和方向的加载。

然后,可以进行模拟计算。

FLAC-3D使用有限差分法来求解模型中各个节点的位移、应力和应变等参数。

通过迭代计算,可以得到模拟过程中的各个时间步的结果。

最后,可以进行结果分析和评估。

通过对模拟结果的分析,可以得到模型的应力、位移和应变等信息。

可以通过与实际工程或者试验数据的对比,来评估模型的准确性和可靠性。

总之,使用FLAC-3D软件进行预应力锚索框架模拟可以帮助我们更好地理解和分析结构在附加应力作用下的力学行为。

FLAC数值模拟介绍

FLAC数值模拟介绍

FLAC-3D(Three Dimensional Fast Lagrangian Analysis of Continua)是美国Itasca Consulting Goup lnc开发的三维快速拉格朗日分析程序, 该程序能较好地模拟地质材料在达到强度极限或屈服极限时, 发生的破坏或塑性流动的力学行为, 特别适用于分析渐进破坏和失稳以及模拟大变形.FLAC3D分析的使用领域根据手册总结如下:(1) 承受荷载能力与变形分析: 用于边坡稳定和基础设计(2) 渐进破坏与坍塌反演: 用于硬岩采矿和隧道设计(3) 断层构造的影响研究: 用于采矿设计(4) 施加于地质体锚索支护所提供的支护力研究: 岩锚和土钉的设计(5) 排水和不排水加载条件下全饱和流体流动和孔隙压力扩散研究: 挡土墙结构的地下水流动, 和土体固结研究(6) 粘性材料的蠕变特性: 用于碳酸钾盐矿设计(7) 陡滑面地质结构的动态加载: 用于地震工程和矿山岩爆研究(8) 爆炸荷载和振动的动态响应: 用于隧道开挖和采矿活动(9) 结构的地震感应: 用于土坝设计(10) 由于温度诱发荷载所导致的变形和结构的不稳定(11) 大变形材料分析: 用于研究粮仓谷物流动和放矿的矿石流动10种材料本构模型Flac3D中为岩土工程问题的求解开发了特有的本构模型, 总共包含了10种材料模型:(1) 开挖模型null(2) 3个弹性模型(各向同性, 横观各向同性和正交各向同性弹性模型)(3) 6个塑性模型(Drucker-Prager模型、Morh-Coulomb模型、应变硬化/软化模型、遍布节理模型、双线性应变硬化/软化遍布节理模型和修正的cam粘土模型).Flac3D网格中的每个区域可以给以不同的材料模型, 并且还允许指定材料参数的统计分布和变化梯度. 还包含了节理单元, 也称为界面单元, 能够模拟两种或多种材料界面不同材料性质的间断特性. 节理允许发生滑动或分离, 因此可以用来模拟岩体中的断层、节理或摩擦边界.FLAC3D中的网格生成器gen, 通过匹配、连接由网格生成器生成局部网格, 能够方便地生成所需要的三维结构网格. 还可以自动产生交岔结构网格(比如说相交的巷道), 三维网格由整体坐标系x, y, z系统所确定, 这就提供了比较灵活的产生和定义三维空间参数.五种计算模式(l) 静力模式:这是FLAC-3D默认模式, 通过动态松弛方法得静态解.(2) 动力模式:用户可以直接输人加速度、速度或应力波作为系统的边界条件或初始条件, 边界可以固定边界和自由边界. 动力计算可以与渗流问题相藕合.(3) 蠕变模式:有五种蠕变本构模型可供选择以模拟材料的应力-应变-时间关系:Maxwell模型、双指数模型、参考蠕变模型、粘塑性模型、脆盐模型. (4) 渗流模式:可以模拟地下水流、孔隙压力耗散以及可变形孔隙介质与其间的粘性流体的耦合. 渗流服从各向同性达西定律, 流体和孔隙介质均被看作可变形体. 考虑非稳定流, 将稳定流看作是非稳定流的特例. 边界条件可以是固定孔隙压力或恒定流, 可以模拟水源或深井. 渗流计算可以与静力、动力或温度计算耦合, 也可以单独计算.(5) 温度模式:可以模拟材料中的瞬态热传导以及温度应力. 温度计算可以与静力、动力或渗流计算藕合, 也可单独计算.模拟多种结构形式(l) 对于通常的岩体、土体或其他材料实体, 用八节点六面体单元模拟. (2) FIAC-3D包含有四种结构单元:梁单元、锚单元、桩单元、壳单元. 可用来模拟岩土工程中的人工结构如支护、衬砌、锚索、岩栓、土工织物、摩擦桩、板桩等.(3) FLAC-3D的网格中可以有界面, 这种界面将计算网格分割为若干部分, 界面两边的网格可以分离, 也可以发生滑动, 因此, 界面可以模拟节理、断层或虚拟的物理边界.有多种边界条件边界方位可以任意变化, 边界条件可以是速度边界、应力边界, 单元部可以给定初始应力, 节点可以给定初始位移、速度等, 还可以给定地下水位以计算有效应力、所有给定量都可以具有空间梯度分布.FLAC-3D嵌语言FISHFLAC-3D具有强大嵌语言FISH, 使得用户可以定义新的变量或函数, 以适应用户的特殊需要, 例如, 利用HSH做以下事情:(l) 用户可以自定义材料的空间分布规律, 如非线性分布等.(2) 用户可以定义变量, 追踪其变化规律并绘图表示或打印输出.(3) 用户可以自己设计FLAC-3D部没有的单元形态.(4) 在数值试验中可以进行伺服控制.(5) 用户可以指定特殊的边界条件.(6) 自动进行参数分析(7) 利用FLAC-3D部定义的Fish变量或函数, 用户可以获得计算过程中节点、单元参数, 如坐标、位移、速度、材料参数、应力、应变、不平衡力等.FLAC-3D前后处理功能FLAC-3D具有强大的自动三维网格生成器, 部定义了多种单元形态, 用户还可以利用FISH自定义单元形态, 通过组合基本单元, 可以生成非常复杂的三维网格, 比如交叉隧洞等.在计算过程中的任何时刻用户都可以用高分辨率的彩色或灰度图或数据文件输出结果, 以对结果进行实时分析, 图形可以表示网格、结构以及有关变量的等值线图、矢量图、曲线图等, 可以给出计算域的任意截面上的变量图或等直线图, 计算域可以旋转以从不同的角度观测计算结果.FLAC3D计算分析一般步骤与大多数程序采用数据输入方式不同, FLAC采用的是命令驱动方式. 命令字控制着程序的运行. 在必要时, 尤其是绘图, 还可以启动FLAc用户交互式图形界面. 为了建立FLAC计算模型, 必须进行以下三个方面的工作:(1) 有限差分网格(2) 本构特性与材料性质(3) 边界条件与初始条件完成上述工作后, 可以获得模型的初始平衡状态, 也就是模拟开挖前的原岩应力状态. 然后, 进行工程开挖或改变边界条件来进行工程的响应分析, 类似于FLAC的显式有限差分程序的问题求解. 与传统的隐式求解程序不同, FLAC采用一种显式的时间步来求解代数方程. 进行一系列计算步后达到问题的解.在FLAC中, 达到问题所需的计算步能够通过程序或用户加以控制, 但是, 用户必须确定计算步是否已经达到问题的最终的解.后处理(一) 用tecplot绘制曲线(1) 第一主应力(2) xdisp、ydisp、zdisp、disp(二) 用excel做曲线隧道(1) 做地表沉降槽(zdisp)(2) 地表横向位移(xdisp)(3) 隧道中线竖向沉降曲线(zdisp)(4) 提取位移矢量图,(5) 显示初期支护结构力(6) 显示state(找塑性区)基坑(1) 做地表沉降槽(zdisp)(2) 提取位移矢量图,(3) 显示初期支护结构力(4) 显示state(找塑性区)边坡(1) 做安全系数和应变图模型最优化用FLAC3D解决问题时, 为了得到最有效的分析使模型最优化是很重要的.(1) 检查模型运行时间:一个FLAC3D例子的运行时间是区域数的4/3倍. 这个规则适用于平衡条件下的弹性问题. 对于塑性问题, 运行时间会有点改变, 但是不会很大, 但是如果发生塑性流动, 这个时间将会大的多. 对一个具体模型检查自己机子的计算速度很重要. 一个简单的方法就是运行基准测试. 然后基于区域数的改变, 用这个速度评估具体模型的计算速度.(2) 影响运行时间的因素:FLAC3D有时会需要较长时间才可以收敛主要发生在下列情况下:(a)材料本身刚度变异或材料与结构及接触面之间的刚度差异很大.(b)划分的区域尺寸相差很大. 这些尺寸差异越大编码就越无效. 在做详细分析前应该研究刚度差异的影响. 例如, 一个荷载作用下的刚性板, 可以用一系列顶点固定的网格代替, 并施以等速度. (记住FIX命令确定速度, 而不是位移. )地下水的出现将使体积模量发生明显的增加(流体-固体相互作用).(3) 考虑网格划分的密度:FLAC3D使用常应变单元. 如果应力/应变曲线倾斜度比较高, 那么你将需要许多区域来代表多变的分区. 通过运行划分密度不同的同一个问题来检查影响. FLAC3D应用常应变区域, 因为当用多的少节点单元与用比较少的多节点单元模拟塑性流动时相比更准确.应尽可能保持网格, 尤其是重要区域网格的统一. 避免长细比大于5:1的细长单元, 并避免单元尺寸跳跃式变化(即应使用平滑的网格). 应用GENERATE命令中的比率关键词, 使细划分区域平滑过渡到粗划分区域.(4) 自动发现平衡状态:默认情况下, 当执行SOLVE 命令时, 系统将自动发现力的平衡. 当模型中所有网格顶点中所有力的平均量级与其中最大的不平衡力的量级的比率小于1*10时, 认为达到了平衡状态. 注意一个网格顶点的力由力(例如, 由于重力)和外力(例如, 由于所加的应力边界条件)共同引起. 因为比率是没有尺寸的, 所以对于有不同的单元体系的模型, 在大多数情况下, 不平衡力和所加力比率的限制给静力平衡提供了一个精确的限制.同时还提供了其他的比率限制;可以用SET ratio 命令施加. 如果默认的比率限制不能为静力平衡提供一个足够精确的限制, 那么应考虑可供选择的比率限制. 默认的比率限制同样可用于热分析和流体分析的稳定状态求解. 对于热分析,是对不平衡热流量和所加的热流量量级进行评估, 而不是力. 对于流体分析,对不平衡流度和所加流度量级进行评估.(5) 考虑选择阻尼:对于静力分析, 默认的阻尼是局部阻尼, 对于消除大多数网格顶点的速度分量周期性为零时的动能很有效. 这是因为质量的调节过程依赖于速度的改变. 局部阻尼对于求解静力平衡是一个非常有效的计算法则且不会引入错误的阻尼力(见Cundall 1987).如果在求解最后状态, 重要区域的网格海域的速度分量不为零, 那么说明默认的阻尼对于达到平衡状态是不够的. 有另外一种形式的阻尼, 叫组合阻尼, 相比局部阻尼可以使稳定状态达到更好的收敛, 这时网格将发生明显的刚性移动. 例如, 求解轴向荷载作用下桩的承载力或模拟蠕变时都可能发生. 使用SETmechanical damp combined命令来调用组合阻尼. 组合阻尼对于减小动能方面不如局部阻尼有效, 所以应注意使系统的动力激发最小化. 可以用SETmechanical damp local命令转换到默认阻尼.(6) 检查模型反应:FLAC3D 显示了一个相试的物理系统是怎样变化的. 做一个简单的试验证明你在做你认为你在做的事情. 例如, 如果荷载和实体在几何尺寸上都是对称的, 当然反应也是对称的. 改变了模型以后, 执行几个时步(假如, 5或10步), 证明初始反应是正确的, 并且发生的位置是正确的. 对应力或位移的期望值做一个估计, 与FLAC3D 的输出结果作比较.如果你对模型施加了一个猛烈的冲击, 你将会得到猛烈的反应. 如果你对模型作了一些看起来不合理的事情, 你一定要等待奇怪的结果. 如果在分析的一个给定阶段, 得到了意外值, 那么回顾到这个阶段所用的时步.在进行模拟前很关键的是检查输出结果. 例如, 除了一个角点速度很大外, 一切都很合理, 那么在你理解原因前不要继续下去. 这种情况下, 你可能没有给定适当的网格边界.(7) 初始化变量:在模拟基坑开挖过程时, 在达到目的前通常要初始化网格顶点位移. 因为计算次序法则不要求位移, 所以可以初始化位移, 这只是由网格顶点的速度决定, 并有益于用户初始化速度却是一件难事. 如果设定网格顶点的速度为一常数, 那么这些点在设置否则前保持不变. 所以, 不要为了清除这些网格的速度而简单的初始化它们为零. . . 这将影响模拟结果. 然而, 有时设定速度为零是有用的(例如, 消除所有的动能).(8) 最小化静力分析的瞬时效应:对于连续性静力分析, 经过许多阶段逐步接近结果是很重要的. . . 即, 当问题条件突然改变时, 通过最小化瞬时波的影响, 使结果更加“静力”. 使FLAC3D 解决办法更加静态的方法有两种.(a) 当突然发生一个变化时(例如, 通过使区域值为零模拟开挖), 设定强度性能为很高的值以得到静力平衡. 然后为了确保不平衡力很低, 设定性能为真实值, 再计算, 这样, 由瞬时现象引起的失败就不会发生了.(b) 当移动材料时, 用FISH 函数或表格记录来逐步减少荷载.(9) 改变模型材料:FLAC3D 对一个模拟中所用的材料数没有限制. 这个准则已经尺寸化, 允许用户在自己所用版本的FLAC3D中最大尺寸网格的每个区域(假如设定的)使用不同的材料.(10) 运行在现场原位应力和重力作用下的问题:有很多问题在建模时需要考虑现场原位应力和重力的作用. 这种问题的一个例子是深层矿业开挖:回填. 此时大多数岩石受很高的原位应力区的影响(即, 自重应力由于网孔尺寸的限制可以忽略不计), 但是回填桩的放置使自重应力发展导致岩石在荷载作用下可能坍塌. 在这些模拟中要注意的重点(因为任何一种模拟都有重力的作用)是网格的至少三个点在空间上应固定. . . 否则, 整个网格在重力作用下将转动. 如果你曾经注意到整个网格在重力加速度矢量方向发生转动, 那么你可能忘记在空间上固定网格了.FLAC3D主要适明模拟计算地质材料和岩土上程的力学行为。

基于FLAC_3D_的自由式预应力锚索数值模拟方式探讨

基于FLAC_3D_的自由式预应力锚索数值模拟方式探讨
结压力 的 实 测 与 分 析 J . 岩 土 工 程 学 报, 2009, 31 ( 2): 207- 212. 12 张向东, 张树光, 李永 靖, 等. 冻土三轴 流变特 性试验 研究与冻结壁厚度的确定 J . 岩石力学与工程学报. 2004, 23( 3) : 395- 400.
作者简介: 马茂艳 ( 1975 - ), 女, 浙 江东 阳人, 博士, 安 徽建筑工业学院讲师, 主 要从事地下工程、岩土工程研究。
(收稿日期: 2009- 12- 31; 责任编辑: 梁绍权 )
( 上接第 137页 )
图 4 3种模拟方式轴力图
2 种 方式 在锚索 的最 外端 均 出现 了 小 幅的 预 应 力损 失现象, 然后迅速攀升到最大值。方式 3的最大轴 力 95. 3 kN, 整个 自由段 的轴力 持平, 维持 在最大 值。在内锚固段 3种方式轴力大幅衰减, 直至为 0。 从轴力在预应力锚索内的分布来看, 方式 3 较为接 近实际情况。
问题探讨
煤 矿 安 全 ( 2010- 07)
∃ 137∃
2. 2 锚索参数 预应力锚索的基本参数见表 2。
表 2 锚索参数
参数 直径 /mm 屈服拉力 /kPa 预应力 / kN
值 20 2 320 100
2. 3 水泥浆参数 水泥浆参数见表 3, 其中浆体的刚度 kg 可以从
拉拔试验直接获得, 也可用下式计算:
25 0. 02
自由式预应力锚索由 2 部分组成: 自由张拉段 和内锚固段, 见图 1。算例自由段长 29 m, 内锚固段 长 6 m。 FLAC3D中对于自由式锚索的模拟, 先生成 整根锚索, 然后给自由段的浆体参数均赋为 0( 相当 于只有内锚固段采用锚索单元模拟 ), 再通过 sel ca ble pretension给自由 段施加预张拉力。此外, 自由 段和内锚固 段都应 划分为 较小 的区 段, 每段赋 予 C id值, 例如, 算例自由端划分为 10 段, C id 编号依 次为 1, 2, &, 10, 内锚固段划分为 6段, C id编号依 次为 11, 12, &, 16。

基于FLAC3D的边坡稳定性分析与数值模拟

基于FLAC3D的边坡稳定性分析与数值模拟

基于FLAC3D的边坡稳定性分析与数值模拟一、简介边坡稳定性分析在工程领域中有着重要的作用。

它涉及到建筑、交通、水利、矿山等各个领域。

对于一个边坡的稳定性分析,既可以通过经验式来求解,也可以使用数值模拟的方法来模拟。

不过经验式的只提供了一种极为近似的方法,它的不精确性会极大影响到工程的稳定性,因此本文将着重讨论与介绍基于FLAC3D的边坡稳定数值模拟。

二、FLAC3D介绍FLAC3D是三维有限差分数值模拟软件,它可以对不同地质结构进行分析,用于工程设计和施工中的不同步骤。

它不同于其他软件在于它的第一原则是保证“力学流变关系与物质本质无关”,也就是说它考虑了岩土材料的物性力学关系,基本上可以表示材料弹性、塑性和损伤行为。

三、FLAC3D边坡稳定性分析建模1.模型建立边坡建模过程中,首先需要进行数据输入。

包括边坡的空间坐标、地层的力学特性、边坡各部分的理论参数以及模拟的初始状态等。

其次,建立边坡的三维模型,并将其导入FLAC3D中,进行有限差分离散化有限元分析。

2.力学特征参数建立模型后,需要输入材料特性参数。

边坡材料类型、岩石力学特性参数、孔隙度等参数必须输入,以及整个模拟的潜在地震活动参数,还需要进行弹性模量、泊松比、拟合合金数量等参数的选取和计算。

3.模拟结果有限差分离散化分析后,在FLAC3D的图形用户界面上显示出边坡的应力、应变、位移、位移梯度、杆升沉和过程时间等参数。

这些参数可以分别被检测和评估,对于模拟结果的评估相当重要。

四、FLAC3D数值模拟的优势与不足1.优势一方面,FLAC3D基于真实岩体力学模型,同时考虑了地震影响对边坡稳定性的影响,模拟结果更加真实可靠。

另一方面,FLAC3D模拟具有可重复、精确、精细的特点,它捕捉到了许多实际难以测量或难以理解的复杂现象。

2.不足FLAC3D模拟过程需要输入大量的实验数据,并且计算量也比较大,所以对计算机的要求较高,模拟过程的时间和稳定性需要保持充分的考虑。

基于FLAC3D预应力锚杆抗滑桩支护边坡地震响应分析

基于FLAC3D预应力锚杆抗滑桩支护边坡地震响应分析

基于FLAC3D预应力锚杆抗滑桩支护边坡地震响应分析作者:黄士奎赵杰刘道勇来源:《地震研究》2016年第01期摘要:建立预应力锚杆抗滑桩支护边坡三维模型,通过坡面监测点分析地震作用下边坡坡面监测点位移、加速度响应以及地震过程中抗滑桩所受剪力与弯矩的受力规律。

结果表明:地震作用下边坡坡面产生永久位移,最大水平位移发生在边坡中下部;与无支护边坡相比,预应力锚杆抗滑桩支护边坡能有效抑制坡面峰值加速度PGA放大系数。

地震作用下抗滑桩随地震历时的增加受力不断变大,最后趋于稳定,其中剪力呈现倒“S”型,桩身弯矩呈现“S”型。

研究结论对预应力锚杆抗滑桩支护边坡的抗震设计有一定参考价值。

关键词:预应力锚杆抗滑桩;FLAC3D;地震响应;抗滑桩受力;加速度中图分类号:TU435 文献标识码:A 文章编号:1000-0666(2016)01-0074-050 引言我国拥有占国土面积2/3的山地,自然地理环境导致了我国有相当数量的边坡。

近年来全国范围内都在进行大规模的工程建设,高速公路、铁路、隧道、采矿和建筑工程等的施工,迫使我们对这些边坡进行加固。

其中,抗滑桩支护技术自1860年开始得到应用(刘德功,2011)。

近年来,在抗滑桩基础上发展起来的预应力锚杆抗滑桩技术作为一种新型的支护形式能有效提高边坡的抗震稳定性,被广泛应用于工程实践中。

随着社会的发展,边坡及其加固相关的抗震问题得到研究者越来越多的重视。

但预应力锚杆抗滑桩的设计方法并不成熟,特别是地震作用下桩体的受力及其加固效果还不是很明确(于玉贞,邓丽军,2007)。

近年来国内学者从不同的角度做了大量的研究工作,陶云辉等(2010)对地震作用下抗滑桩的支护原理进行了数值模拟研究;肖晓春等(2002)对地震过程中支护结构与土体相互作用问题进行了归纳总结;于玉贞等(2008)借助土工试验离心机和专用振动台对砂土边坡进行了动力试验,研究抗滑桩支护下边坡的地震响应分析以及支护结构与土体相互作用规律;王谊(2012)借助F1AC3D有限差分软件,在地震作用下对预应力锚索支护边坡的应力影响因素进行了研究,重点对锚索的各个设计参数开展一系列研究,为边坡的加固设计和施工提供理论依据;周德培等(2010)通过对汶川地震引起的道路边坡工程破坏进行实例考察,分析了各类边坡的破坏机理及相应支护结构的破坏形式,调查发现锚索(杆)抗滑桩支护的边坡破坏相对较小,这是因为这些支护结构能够与岩土体较好地形成一个统一的整体,在地震作用过程中这些支护结构能够与坡体的变形很好地协调一致。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0 引 言
文献标识码 : C
文章编号 : 1 0 0 8— 3 3 8 3 ( 2 0 1 3 ) 0 3— 0 1 0 7— 0 2
预应力锚索支护技 术是边坡 加固的先进技术之一 , 在 国 内外工程 中得 到广泛 应用 , 但其 理 论研 究 还相 对滞 后。因 此, 结合工程实际 , 利用 F L A C 3 D软件 , 对边坡 的锚 固作 用效 果及边坡稳定性状态进行数值模拟分析 , 对边坡加固工 程具 有重 要 的 现 实 意义 。
为0 . 2— 0 . 6 MP a 。
生产 厂 家 提 供 的 出 厂 证 明 取 得 , 具 体参 数 如 下: A= 1 4 0 m m , T = 2 . 6 e N , E= 1 . 9 5 e “ P a , 灌 浆体 的参数 经现场 抗拔试验 获得 , 具体参数为 g r _ c o h = 1 0 e , g r _ k= 2 e 。 2 . 2 . 3 边界条件 以及初 始条件的设置 根据 以上建立 的模 型和 实际情 况限制模 型底部任 何方 向的位移 和右侧水平方 向的位移 , 模型上部 与边坡部位为 自
=2 0 k N / m , C=6 0 e P a, =2 0 。 , K =3 . 5 7 e 7 P a

为保证贵惠高速公路区间各 路段 高边坡 的稳定 , 坡 比采 用1 : 0 . 5~ 1 : 1 , 坡高 1 0 m一级 , 采用框架式锚杆 和框架预应
C=
2 . 0 8 e P a, 锚索钢绞线 的横截 面积 、 抗 拉强度 、 弹 性模 量从
力锚 索联 合支 护 等 处 治 措施 , 锚杆长 6 . 0 m, 锚 索长 6— 2 6 m, 间距 5 m x 4 m。预应力 锚索采用无 粘结 钢绞线 A S T - M A 4 1 6—8 7 a 标准 2 7 0级 7 中1 5 . 2 4 a r m。锚 固段长度 8 m, 钻 孔孔径 ‘ p 1 3 0 mm, 锚索孑 L 内 自孔底 一次性 压满水 泥浆 , 注浆 压力为 0 . 3 5— 0 . 6 M P a 。锚 索 自由段采用 防护油及 塑料 管 隔离 , 每束锚索设计施加张拉力 8 5 0 k N 。锚杆材料采用 2 5 水泥砂浆 锚 杆 , 施 工时 下 倾 与 水 平 夹 角为 3 0 。 , 允 许 误 差 ±1 。 , 锚杆注浆 的水泥浆 强度必 须保证 93 0 MP a , 注浆压 力
1 工 程 实例 1 . 1 工程 概 况
贵阳 至 惠水 高 速 公 路 是 《 贵 州 省 高 速 公 路 网 规划 》 “ 6 7 8 ” 网中“ 四纵 ” 崇溪 河 一罗 甸高 速 的重要 组成 路段 , 在 K 3 5+2 8 5一K 3 5+4 6 0路 段 , 路 线 切 割 山体 , 边 坡 最 高 3 1 . 4 3 m, 上覆粘土夹碎石 0— 2 m, 下 伏基 岩为 二叠 系上统 吴家坪组第二段下亚段褐黄色泥质粉砂岩 。岩层产状 : 3 0 4 。  ̄4 2 。 , 该段挖方边坡为陡倾顺 向坡 , 软质岩边坡 , 岩 体破 碎 , 节理裂隙 发 育 , 边 坡 开挖 后 下 滑 力 5 9 3 9 . 3 k N, 抗 滑 力 5 7 9 2 . 1 k N, 安全系数为 0 . 9 3 6 , 边坡稳 定性 差 , 路 基边 坡开 挖后边坡 易发生坍塌失稳。
了两种状态 下的最大不平衡力变化 曲线 、 剪应变增量 云图, 并 通过 这些 图具 体分析了该路段在这两种状态 下 的边坡稳定 性状态 , 验证 了预应力锚索对高边坡具有 良好 的支护效果 , 是一项值 得大力推广的先进技术。 关键词 : 预应力锚索 ; 高边坡 ; 数值模拟
中图分类号 : U 4 4 2
1 . 2 治 理 方 案
2 . 2 . 1 数值模 拟模 型的确定 要比较真实的反映实际问题 , 需要选择 有代表性 的剖 面 进行数值模拟模型 。根据 现场的实际需要 , 本次对贵惠高速 区间高边坡进行稳定 性分 析 , 选取 了 K 3 5+ 4 0 0一K 3 5+4 1 0 路段进行数值模拟 , 本论 文采用 的模 型为均匀 质岩体 , 采用 六 面块体 网格 和楔 形 体 网格 两 种 基 本 网格 建立 。其长 取 1 2 0 m, 宽取 1 0 m, 高取 3 1 . 4 m, 岩体 内布设 1 2根孔 预应力 锚索 和 3 2根锚杆 , 具体情 况依路 段锚索 的实 际布置情 况进 行确定 。该模 型 一 共 划 分 单 元 数 为 5 9 3 5个 , 节 点 数 为
8 0 4 6个 。
2 . 2 . 2 本构特性和材料参数 的设 置 由于本论文模拟 的是岩石 、 土体这样的松散或胶结 的粒 状材料 , 并在实施过程 中进行 了边 坡开挖 , 故在计 算 中采 用 摩尔一库仑塑性模型 、 弹性模 型 以及空模型三种本构模 型。 根据现场地形 、 地质具 报告 ( 详勘 ) 》 作参 考资料 , 考虑到上覆粘土夹碎石土层较浅 , 本模 型建 立时忽略各地层 岩性的差别 , 围岩取均质泥质粉砂岩 , 其物理力学参 数如下 :
张 青, 耿春 波, 李 维
( 贵州省交通 建设咨询监理有限公司 ) 摘 要: 以贵州省贵惠高速 公路 区 间开挖后 的潜 在失稳 边坡 为依 托 , 通过 F L A C 3 D有 限差分 软件 , 分别 对
K 3 5+ 4 0 0~K 3 5+ 4 1 0路段开挖后无支护状态 、 开挖后采用预应力锚索支 护状态进行 了数值模 拟分析 , 得 出
2 0 1 3年 第 3期 ( 总第 2 2 9期)
黑 龙江交通 科技
HE L L ONGJ I ANG J I AOT ONG KE J I
No. 3, 2 0 1 3
( S u m N o . 2 2 9 )
预应 力 锚 索加 固边 坡 的 F L A C 3 D数值 模 拟分 析
相关文档
最新文档