山西省阳泉市2016年中考数学一轮复习专题18线段角相交线和平行线
中考数学复习----《相交线与平行线之平行线》知识点总结与专项练习题(含答案解析)

中考数学复习----《相交线与平行线之平行线》知识点总结与专项练习题(含答案解析)知识点总结1. 三线八角:同位角,内错角,同旁内角。
2. 平行线定义:两条永不相交的直线的位置关系是平行线。
3. 平行线性质:①两直线平行,同位角相等。
②两直线平行,内错角相等。
③两直线平行,同旁内角互补。
④同一平面内,过直线外一点有且只有一条直线与已知直线平行。
⑤平行于同一直线的两直线平行。
即c b b a ∥,∥,则c a ∥。
4. 平行线的判定:①同位角相等,两直线平行。
②内错角相等,两直线平行。
③同旁内角相等,两直线平行。
④垂直于同一直线的两直线平行。
即若c a b a ⊥⊥,,则c a ∥。
⑤平行于同一直线的两直线平行。
即若c b b a ∥,∥,则c a ∥。
5. 平行线间的距离:平行线间的距离处处相等。
练习题9.(2022•青海)数学课上老师用双手形象的表示了“三线八角”图形,如图所示(两大拇指代表被截直线,食指代表截线).从左至右依次表示()A.同旁内角、同位角、内错角B.同位角、内错角、对顶角C.对顶角、同位角、同旁内角D.同位角、内错角、同旁内角【分析】两条线a、b被第三条直线c所截,在截线的同旁,被截两直线的同一方,把这种位置关系的角称为同位角;两个角分别在截线的异侧,且夹在两条被截线之间,具有这样位置关系的一对角互为内错角;两个角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角.据此作答即可.【解答】解:根据同位角、内错角、同旁内角的概念,可知第一个图是同位角,第二个图是内错角,第三个图是同旁内角.故选:D.10.(2022•贺州)如图,直线a,b被直线c所截,下列各组角是同位角的是()A.∠1与∠2 B.∠1与∠3 C.∠2与∠3 D.∠3与∠4【分析】同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角.【解答】解:根据同位角、邻补角、对顶角的定义进行判断,A、∠1和∠2是对顶角,故A错误;B、∠1和∠3是同位角,故B正确;C、∠2和∠3是内错角,故C错误;D、∠3和∠4是邻补角,故D错误.故选:B.11.(2022•东营)如图,直线a∥b,一个三角板的直角顶点在直线a上,两直角边均与直线b相交,∠1=40°,则∠2=()A.40°B.50°C.60°D.65°【分析】先由已知直角三角板得∠4=90°,然后由∠1+∠3+∠4=180°,求出∠3的度数,再由直线a∥b,根据平行线的性质,得出∠2=∠3=50°.【解答】解:如图:∵∠4=90°,∠1=40°,∠1+∠3+∠4=180°,∴∠3=180°﹣90°﹣40°=50°,∵直线a∥b,∴∠2=∠3=50°.故选:B.12.(2022•资阳)将直尺和三角板按如图所示的位置放置.若∠1=40°,则∠2度数是()A.60°B.50°C.40°D.30°【分析】如图,易知三角板的∠A为直角,直尺的两条边平行,则可得∠1的对顶角和∠2的同位角互为余角,即可求解.【解答】解:如图,根据题意可知∠A为直角,直尺的两条边平行,∴∠2=∠ACB,∵∠ACB+∠ABC=90°,∠ABC=∠1,∴∠2=90°﹣∠1=90°﹣40°=50°,故选:B.13.(2022•襄阳)已知直线m∥n,将一块含30°角的直角三角板ABC(∠ABC=30°,∠BAC=60°)按如图方式放置,点A,B分别落在直线m,n上.若∠1=70°.则∠2的度数为()A.30°B.40°C.60°D.70°【分析】根据平行线的性质求得∠ABD,再根据角的和差关系求得结果.【解答】解:∵m∥n,∠1=70°,∴∠1=∠ABD=70°,∵∠ABC=30°,∴∠2=∠ABD﹣∠ABC=40°,故选:B.14.(2022•锦州)如图,直线a∥b,将含30°角的直角三角板ABC(∠ABC=30°)按图中位置摆放,若∠1=110°,则∠2的度数为()A.30°B.36°C.40°D.50°【分析】根据平行线的性质可得∠3=∠1=110°,则有∠4=70°,然后根据三角形外角的性质可求解.【解答】解:如图,∵a∥b,∠1=110°,∴∠3=∠1=110°,∴∠4=180°﹣∠3=70°,∵∠B=30°∴∠2=∠4﹣∠B=40°;故选:C.15.(2022•六盘水)如图,a∥b,∠1=43°,则∠2的度数是()A.137°B.53°C.47°D.43°【分析】根据平行线的性质,得∠2=∠1=43°.【解答】解:∵a∥b,∠1=43°,∴∠2=∠1=43°.故选:D.16.(2022•济南)如图,AB∥CD,点E在AB上,EC平分∠AED,若∠1=65°,则∠2的度数为()A.45°B.50°C.57.5°D.65°【分析】根据平行线的性质,由AB∥CD,得∠AEC=∠1=65°.根据角平分线的定义,得EC平分∠AED,那么∠AED=2∠AEC=130°,进而求得∠2=180°﹣∠AED=50°.【解答】解:∵AB∥CD,∴∠AEC=∠1=65°.∵EC平分∠AED,∴∠AED=2∠AEC=130°.∴∠2=180°﹣∠AED=50°.故选:B.17.(2022•丹东)如图,直线l1∥l2,直线l3与l1,l2分别交于A,B两点,过点A作AC ⊥l2,垂足为C,若∠1=52°,则∠2的度数是()A.32°B.38°C.48°D.52°【分析】根据平行线的性质求出∠ABC,根据三角形内角和定理求出即可.【解答】解:∵直线l1∥l2,∠1=52°,∴∠ABC=∠1=52°,∵AC⊥l2,∴∠ACB=90°,∴∠2=180°﹣∠ABC﹣∠ACB=180°﹣52°﹣90°=38°,故选:B.18.(2022•南通)如图,a∥b,∠3=80°,∠1﹣∠2=20°,则∠1的度数是()A.30°B.40°C.50°D.80°【分析】根据平行线的性质可得∠1=∠4,然后根据三角形的外角可得∠3=∠4+∠2,从而可得∠1+∠2=80°,最后进行计算即可解答.【解答】解:如图:∵a∥b,∴∠1=∠4,∵∠3是△ABC的一个外角,∴∠3=∠4+∠2,∵∠3=80°,∴∠1+∠2=80°,∵∠1﹣∠2=20°,∴2∠1+∠2﹣∠2=100°,∴∠1=50°,故选:C.19.(2022•西藏)如图,l1∥l2,∠1=38°,∠2=46°,则∠3的度数为()A.46°B.90°C.96°D.134°【分析】根据平行线的性质定理求解即可.【解答】解:∵l1∥l2,∴∠1+∠3+∠2=180°,∵∠1=38°,∠2=46°,∴∠3=96°,故选:C.20.(2022•兰州)如图,直线a∥b,直线c与直线a,b分别相交于点A,B,AC⊥b,垂足为C.若∠1=52°,则∠2=()A.52°B.45°C.38°D.26°【分析】根据平行线的性质可得∠ABC=52°,根据垂直定义可得∠ACB=90°,然后利用直角三角形的两个锐角互余,进行计算即可解答.【解答】解:∵a∥b,∴∠1=∠ABC=52°,∵AC⊥b,∴∠ACB=90°,∴∠2=90°﹣∠ABC=38°,故选:C.21.(2022•通辽)如图,一束光线AB先后经平面镜OM,ON反射后,反射光线CD与AB平行,当∠ABM=35°时,∠DCN的度数为()A.55°B.70°C.60°D.35°【分析】根据“两直线平行,同旁内角互补”解答即可.【解答】解:∵∠ABM=35°,∠ABM=∠OBC,∴∠OBC=35°,∴∠ABC=180°﹣∠ABM﹣∠OBC=180°﹣35°﹣35°=110°,∵CD∥AB,∴∠ABC+∠BCD=180°,∴∠BCD=180°﹣∠ABC=70°,∵∠BCO=∠DCN,∠BCO+∠BCD+∠DCN=180°,∴∠DCN=(180°﹣∠BCD)=55°,故选:A.22.(2022•潍坊)如图是小亮绘制的潜望镜原理示意图,两个平面镜的镜面AB与CD平行,入射光线l与出射光线m平行.若入射光线l与镜面AB的夹角∠1=40°10',则∠6的度数为()A.100°40' B.99°80' C.99°40' D.99°20'【分析】先根据反射角等于入射角求出∠2的度数,再求出∠5的度数,最后根据平行线的性质得出即可.【解答】解:∵入射角等于反射角,∠1=40°10',∴∠2=∠1=40°10',∵∠1+∠2+∠5=180°,∴∠5=180°﹣40°10'﹣40°10'=99°40',∵入射光线l与出射光线m平行,∴∠6=∠5=99°40'.故选:C.23.(2022•新疆)如图,AB与CD相交于点O,若∠A=∠B=30°,∠C=50°,则∠D=()A.20°B.30°C.40°D.50°【分析】根据∠A=∠B=30°,得出AC∥DB,即可得出∠D=∠C=50°.【解答】解:∵∠A=∠B=30°,∴AC∥DB,又∵∠C=50°,∴∠D=∠C=50°,故选:D.24.(2022•柳州)如图,直线a,b被直线c所截,若a∥b,∠1=70°,则∠2的度数是()A.50°B.60°C.70°D.110°【分析】由两直线平行,同位角相等可知∠2=∠1.【解答】解:∵a∥b,∴∠2=∠1=70°.故选:C.25.(2022•雅安)如图,已知直线a∥b,直线c与a,b分别交于点A,B,若∠1=120°,则∠2=()A.60°B.120°C.30°D.15°【分析】本题要注意到∠1的对顶角与∠2同旁内角,并且两边互相平行,可以考虑平行线的性质及对顶角相等.【解答】解:∵∠1=120°,∴它的对顶角是120°,∵a∥b,∴∠2=60°.故选:A.26.(2022•宿迁)如图,AB∥ED,若∠1=70°,则∠2的度数是()A.70°B.80°C.100°D.110°【分析】根据两直线平行,同旁内角互补和对顶角相等解答.【解答】解:∵∠1=70°,∴∠3=70°,∵AB∥ED,∴∠2=180°﹣∠3=180°﹣70°=110°,故选:D.27.(2022•陕西)如图,AB∥CD,BC∥EF.若∠1=58°,则∠2的大小为()A.120°B.122°C.132°D.148°【分析】根据两直线平行,内错角相等分别求出∠C、∠CGF,再根据平角的概念计算即可.【解答】解:∵AB∥CD,∠1=58°,∴∠C=∠1=58°,∵BC∥EF,∴∠CGF=∠C=58°,∴∠2=180°﹣∠CGF=180°﹣58°=122°,故选:B.28.(2022•吉林)如图,如果∠1=∠2,那么AB∥CD,其依据可以简单说成()A.两直线平行,内错角相等B.内错角相等,两直线平行C.两直线平行,同位角相等D.同位角相等,两直线平行【分析】由平行的判定求解.【解答】解:∵∠1=∠2,∴AB∥CD(同位角相等,两直线平行),故选:D.29.(2022•台州)如图,已知∠1=90°,为保证两条铁轨平行,添加的下列条件中,正确的是()A.∠2=90°B.∠3=90°C.∠4=90°D.∠5=90°【分析】根据平行线的判定逐项分析即可得到结论.【解答】解:A.由∠2=90°不能判定两条铁轨平行,故该选项不符合题意;B.由∠3=90°=∠1,可判定两枕木平行,故该选项不符合题意;C.∵∠1=90°,∠4=90°,∴∠1=∠4,∴两条铁轨平行,故该选项符合题意;D.由∠5=90°不能判定两条铁轨平行,故该选项不符合题意;故选:C.30.(2022•郴州)如图,直线a∥b,且直线a,b被直线c,d所截,则下列条件不能判定直线c∥d的是()A.∠3=∠4 B.∠1+∠5=180°C.∠1=∠2 D.∠1=∠4【分析】根据平行线的判定定理进行一一分析.【解答】解:A、若∠3=∠4时,由“内错角相等,两直线平行”可以判定c∥d,不符合题意;B、若∠1+∠5=180°时,由“同旁内角互补,两直线平行”可以判定c∥d,不符合题意;C、若∠1=∠2时,由“内错角相等,两直线平行”可以判定a∥b,不能判定c∥d,符合题意;D、由a∥b推知∠4+∠5=180°.若∠1=∠4时,则∠1+∠5=180°,由“同旁内角互补,两直线平行”可以判定c∥d,不符合题意.故选:C.。
中考数学复习之线与角、平行线的性质及判定,考点过关与基础练习题

第二部分图形与几何19.线段、角、相交线与平行线知识过关1.直线、射线、线段(1)直线上一点和它____的部分叫做射线;直线上两点和它们____的部分叫做线段,这两点叫做线段的_______.(2)两点_____一条直线,两点之间线段最短,两点之间_____的长度,叫做两点间的距离.(3)线段的中点把线段_______等分.2.角(1)角:有_____端点的两条射线组成的图形叫做角,角也可以看作由一条_____绕着它的端点旋转而形成的图形.(2)余角:如果两个角的和等于_____,那么就说这两个角互为余角._____或等角的余角相等.(3)补角:如果两个角的和等于_____,那么就说这两个角互为补角._____或等角的补角相等.(4)一条射线把一个角分成两个______的角,这条射线叫做这个角的平分线.3.相交线(1)对顶角:如果一个角的两边分别是另一个角的两边的_____延长线,则称这两个角是对顶角,对顶角______.(2)垂直:在同一平面内,两条直线相交成90,叫做两条直线相互垂直,其中一条叫做另一条的垂线.(3)垂直的性质:同一平面内,过一点_____一条直线与已知直线垂直,直线外一点和直线上所有点的连接中,_______最短.(4)点到直线的距离:从直线外一点到这条直线的_____的长度,叫做点到直线的距离.4.平行线(1)平行线:平面内,_______的两条直线叫做平行线.(2)平面内两条直线的位置关系:_________和_________.(3)平行公理:过直线外一点,有且______一条直线与已知直线平行.如果两条直线都与第三条直线平行,那么这两条直线也互相______.(4)平行线的性质:如果两条直线平行,那么同位角相等,_____相等,同旁内角_______.(5)平行线的判定:如果同位角相等,或______或______互补,那么两直线平行.5.命题的概念(1)命题:______的语句叫做命题.(2)命题的组成:命题由______和______两部分组成.(3)命题的形成:命题可以写成“如果.......,那么.......”的形式,以如果开头的部分是_____,以那么开头的部分是________.(4)命题的真假:_______的命题叫做真命题,______的命题叫做假命题.6.尺规作图(1)在几何里,把用没有刻度的____和____这两种工具作几何图形的方法称为尺规作图.(2)常见的五种基本作图:①作一条线段等于已知线段;①作一个角等于已知角;①作一个角的平分线;①过一个点作已知直线的垂线;①作线段的垂直平分线.➢考点过关考点1 线段长度的有关计算例1已知线段AB=10cm,点D是线段AB的中点,直线AB上有一点C,并且BC=2cm,则线段DC=.考点2对顶角、邻补角的相关计算如图,点O为直线AB上一点,OC平分∠AOD,∠BOD=3∠BOE,若∠AOC=α,则∠COE 的度数为()A.3αB.120°−43αC.90°D.120°−13α考点3平行线的性质例3如图,AC∥BD,AE平分∠BAC交BD于点E,若∠1=54°,则∠2等于()A.108°B.117°C.126°D.54°考点4平行线的判定与性质综合例4如图1,直线HD∥GE,点A是直线HD上一点,点C是直线GE上一点,点B是直线HD、GE之间的一点.(1)过点B作BF∥GE,试说明:∠ABC=∠HAB+∠BCG;(2)如图2,RC平分∠BCG,BM∥CR,BN平分∠ABC,当∠HAB=40°时,点C在直线AB右侧运动的过程中,∠NBM的度数是否不变,若是,求出该度数;若不是,请说明理由.考点5命题的真假例5下列结论中,正确的有①对顶角相等;②两直线平行,同旁内角相等;③面积相等的两个三角形全等;④有两边和一个角分别对应相等的两个三角形全等;⑤钝角三角形三条高所在的直线交于一点,且这点在钝角三角形外部.()A.2个B.3个C.4个D.5个考点6尺规作图例6如图,在Rt△ABC中,∠C=90°,∠B=30°,AC=4,观察图中尺规作图的痕迹,则AD的长是.➢真题演练1.如图,OC在∠AOB外部,OM,ON分别是∠AOC,∠BOC的平分线.∠AOB=110°,∠BOC=60°,则∠MON的度数为()A.50°B.75°C.60°D.55°2.如图,OC、OD为∠AOB内的两条射线,OC平分∠AOB,∠BOD=3∠COD,若∠COD =10°,则∠AOB的度数是()A.30°B.40°C.60°D.80°3.如图,已知ON,OM分别平分∠AOC和∠BON.若∠MON=20°,∠AOM=35°,则∠AOB的度数为()A.15°B.35°C.40°D.55°4.如图,已知∠AOB.按照以下步骤作图:①以点O为圆心,以适当的长为半径作弧,分别交∠AOB的两边于C,D两点,连接CD.②分别以点C,D为圆心,以大于线段OC 的长为半径作弧,两弧在∠AOB内交于点E,连接CE,DE.③连接OE交CD于点M.下列结论中不正确的是()A.∠CEO=∠DEO B.CM=MDC.∠OCD=∠ECD D.S四边形OCED=12CD•OE5.下列说法正确的是()A.如果两个角相等,那么这两个角是对顶角B.内错角相等C.过直线外一点有且只有一条直线与已知直线平行D.一个角的补角一定是钝角6.下列说法错误的是()A.在同一平面内,没有公共点的两条直线是平行线B.如果两条直线都与第三条直线平行,那么这两条直线也互相平行C.经过直线外一点有且只有一条直线与该直线平行D.在同一平面内,不相交的两条线段是平行线7.如图所示,C为线段AB的中点,D在线段CB上,DA=6cm,DB=4cm,则CD的长度为______cm.8.如图,在Rt△ABC中,∠C=90°,∠B=30°,AC=4,观察图中尺规作图的痕迹,则AD的长是.9.如图,C是线段AB上一点,D,E分别是线段AC,BC的中点,若AB=10,则DE=.10.如图,C,D为线段AB上两点,AB=7cm,AD=1.5cm,D为线段AC的中点,则线段CB=cm.11.(1)已知:如图1,AB∥CD,求证:∠B+∠D=∠BED;(2)已知:如图2,AB∥CD,试探求∠B、∠D与∠E之间的数量关系,并说明理由.拓展提升:如图3,已知AB∥DE,BF,EF分别平分∠ABC与∠CED,若∠BCE=140°,求∠BFE的度数.12.如图,AB∥CD,点P为平面内一点.(1)如图①,当点P在AB与CD之间时,若∠A=20°,∠C=45°,则∠P=°;(2)如图②,当点P在点B右上方时,∠ABP、∠CDP、∠BPD之间存在怎样的数量关系?请给出证明;(不需要写出推理依据)(3)如图③,EB平分∠PEG,FP平分∠GFD,若∠PFD=40°,则∠G+∠P=°.➢课后练习1.如图,已知AB∥DF,DE和AC分别平分∠CDF和∠BAE,若∠DEA=46°,∠ACD=56°,则∠CDF的度数为()A.22°B.33°C.44°D.55°2.如图,直线CE∥DF,∠CAB=135°,∠ABD=85°,则∠1+∠2=()A.30°B.35°C.36°D.40°3.如图,已知a∥b,则∠ACD的度数是()A.45°B.60°C.73°D.90°4.如图所示,直线a∥b,∠2=31°,∠A=28°,则∠1=()A.61°B.60°C.59°D.58°5.下列说法正确的是()A.延长射线AB到CB.若AM=BM,则M是线段AB的中点C .两点确定一条直线D .过一点有且只有一条直线与已知直线平行6.下列说法正确的是( )A .垂直于同一条直线的两直线互相垂直B .经过一点有且只有一条直线与已知直线平行C .如果两条直线被第三条直线所截,那么同位角相等D .从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离7.下列说法中错误的是( )A .过一点有且只有一条直线与已知直线平行B .在同一平面内,过一点有且只有一条直线与已知直线垂直C .两条直线相交,有且只有一个交点D .若两条直线相交成直角,则这两条直线互相垂直8.下列说法正确的是( )A .过直线上一点有且只有一条直线与已知直线平行B .不相交的两条直线叫做平行线C .直线外一点到该直线的所有线段中垂线最短D .过直线外一点有且只有一条直线与已知直线平行9.如图,在△ABC 中,分别以点A 和点B 为圆心,以相同的长(大于12AB )为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,交AC 于点E ,连接CD .若△CDB 的面积为12,△ADE 的面积为9,则四边形EDBC 的面积为( )A .15B .16C .18D .2010.如图是用直尺和圆规作已知角的平分线的示意图,则说明∠CAD =∠DAB 的依据是( )A .SASB .ASAC .AASD .SSS11.如图,点A 、B 、C 在同一条直线上,点D 为BC 的中点,点P 为AC 延长线上一动点(AD ≠DP ),点E 为AP 的中点,则AC−BP DE 的值是 .12.如图,点D是线段AB上一点,点C是线段BD的中点,AB=8,CD=3,则线段AD长为.13.如图1,已知∠BOC=40°,OE平分∠AOC,OF平分∠BOC.(1)若AO⊥BO,则∠EOF是多少度?(2)如图2,若角平分线OE的位置在射线OB和射线OF之间(包括重合),请说明∠AOC的度数应控制在什么范围.14.如图,已知∠1=∠2,∠C=∠D.(1)求证:AC∥DF;(2)如果∠DEC=105°,求∠C的度数.15.如图,已知BC⊥AE,DE⊥AE,∠2+∠3=180°.(1)请你判断CF与BD的位置关系,并证明你的结论;(2)若∠1=70°,BC平分∠ABD,试求∠ACF的度数.➢冲击A+在半径为5的⊙O中,AB是直径,点C是直径AB上方半圆上一动点,连接AC、BC.(1)如图1,则△ABC面积的最大值是;(2)如图2,如果AC=8,①则BC=;②作∠ACB的平分线CP交⊙O于点P,求长CP的长.(3)如图3,连接AP并保持CP平分∠ACB,D为线段BC的中点,过点D作DH⊥AP,在C点运动过程中,请直接写出DH长的最大值.。
中考数学专项复习线段、角、相交线与平行线

线段、角、相交线与平行线【知识框架】【知识梳理】知识点1 直线、射线、线段知识点2 角针对训练1.下列四个角中,最有可能与70°角互补的是( )2.如图,直线AB与直线CD相交于点O,E是∠AOD内一点,已知OE⊥AB,∠BOD=45°,则∠COE的度数是( )A.125°B.135°C.145°D.155°3如图,OB是∠AOC的角平分线,OD是∠COE的角平分线.如果∠AOB=40°,∠COE=60°,则∠BOD的度数为( )A.50°B.60°C.65°D.70°知识点3 相交线对顶角对顶角相等.垂直性质1 过一点有且只有⑩ 条直线与已知直线垂直.性质2 直线外一点与直线上各点连接的所有线段中,⑪最短.点到直线的距离直线外一点到这条直线的⑫的长度,叫做点到直线的距离.知识点4 角的平分线与线段的垂直平分线角的平分线线段的垂直平分线性质角的平分线上的点到角两边的距离⑬ .线段垂直平分线上的点与这条线段两个端点的距离⑭ .判定角的内部到角的两边距离相等的点在⑮上.与一条线段两个端点距离相等的点,在这条线段的⑯上.针对练习1.如图,CF是△ABC的外角∠ACM的平分线,且CF∥AB,∠ACF=50°,则∠B的度数为( )A.80°B.40°C.60°D.50°2.如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是( )A.PA=PBB.PO平分∠APBC.OA=OBD.AB垂直平分OP3.如图,∠AOB=70°,QC⊥OA于C,QD⊥OB于D,若QC=QD,则∠AOQ = .4.如图,在平行四边形ABCD中,AB=4,BC=6,AC的垂直平分线交AD于点E,则△CDE的周长是( )A.7B.10C.11D.125.如图,AD⊥BC于点D,D为BC的中点,连接AB,∠ABC的平分线交AD于点O,连接OC,若∠AOC=125°,则∠ABC= .知识点5 平行线平行线的概念在同一平面内,的两条直线叫做平行线.平行公理经过直线外一点有且只有条直线与已知直线平行.平行公理的推论如果两条直线都和第三条直线平行,那么这两条直线也 .平行线的判定,两直线平行. ,两直线平行. ,两直线平行.平行线的性质两直线平行, . 两直线平行, . 两直线平行, .平行线间的距离定义过平行线上的一点作另一条平行线的垂线,的长度叫做两条平行线间的距离.性质两条平行线间的距离处处 .知识点6 命题命题的概念判断一件事情的句子叫做命题.命题的分类命题分为命题和命题.命题的组成命题由和两个部分组成.针对练习1.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为( )A.30°B.60°C.80°D.120°2.如图,直线l1∥l2,l3⊥l4,∠1=44°,那么∠2的度数为( )A.46°B.44°C.36°D.22°3.如图,把一块含有45°角的直角三角板两个顶点放在直尺的对边上,如果∠1=20°,则∠2的度数是( )A.15°B.20°C.25°D.30°4.如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,求∠2的度数.【巩固练习】1.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是( )A.两点确定一条直线B.两点之间,线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直2.如图,C、D是线段AB上的两点,且D是线段AC的中点,若AB=10 cm,BC=4 cm,则AD的长为( )A.2 cmB.3 cmC.4 cmD.6 cm3.把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理正确的是( )A.两点确定一条直线B.垂线段最短C.两点之间线段最短D.三角形两边之和大于第三边4.如图,是我们学过的用直尺画平行线的方法示意图,画图原理是( )A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等5.如图,直线m∥n,则∠α为( )A.70°B.65°C.50°D.40°6.如图,直线AB、CD相交于O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数为( )A.35°B.45°C.55°D.65°7.如图,能判定EB∥AC的条件是( )A.∠C=∠ABEB.∠A=∠EBDC.∠C=∠ABCD.∠A=∠ABE8.如图,将直角三角尺的直角顶点靠在直尺上,且斜边与这根直尺平行.图中与∠α互余的角共有( )A.1个B.2个C.3个D.4个9.如图,AB∥ED,AG平分∠BAC,∠ECF=70°, 则∠FAG的度数是( )A.155°B.145°C.110°D.35°10.(2014·泰安)在△ABC和△A1B1C1中,下列四个命题:(1)若AB=A1B1,AC=A1C1,∠A=∠A1,则△ABC≌△A1B1C1;(2)若AB=A1B1,AC=A1C1,∠B=∠B1,则△ABC≌△A1B1C1;(3)若∠A=∠A1,∠C=∠C1,则△ABC∽△A1B1C1;(4)若AC∶A1C1=CB∶C1B1,∠C=∠C1,则△ABC∽△A1B1C1.其中真命题的个数为( )A.4个B.3个C.2个D.1个11.若∠α的补角为76°28′,则∠α= .12.已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题:,该逆命题是命题(填“真”或“假”).13.如图,BD是∠ABC的平分线,P是BD上的一点,PE⊥BA于点E,PE=4 cm,则点P到边BC的距离为 __________cm.14.直线l1∥l2,一块含45°角的直角三角板如图所示放置,∠1=85°,则∠2= .15.如图,点D,E分别在AB,BC上,DE∥AC,AF∥BC,∠1=70°,则∠2= .16.如图,CD与BE互相垂直平分,AD⊥DB,∠BDE=70°,则∠CAD= .17.如图,EF∥BC,AC平分∠BAF,∠B=80°.求∠C的度数.18.如图,线段AB=4,点O是线段AB上一点,C、D分别是线段OA、OB的中点,小明据此很轻松地求得CD=2.他在反思过程中突发奇想:若点O运动到AB的延长线上时,原有的结论“CD=2”是否仍然成立?请帮小明画出图形并说明理由.。
山西省中考数学考点题复习 线段、角、相交线和平行线

【例2】 (2014·河南)如图,直线AB,CD相交于点O,射线OM 平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数为( ) C
A.35° B.45° C.55° D.65°
【点评】 当已知中有“相交线”出现的时候,要充分挖掘其中 隐含的“邻补角和对顶角”,以帮助解题.
[对应训练] 2.(1)(2015·梧州)如图,已知直线 AB 与 CD 交于点 O,ON 平分∠DOB,
错解
解:∵OD 是∠AOB 的平分线,∴∠BOD=12∠AOB.∵∠BOE=12 ∠EOC,∴∠BOE=13∠BOC,∠EOC=23∠BOC,∵∠AOB+∠BOC=180 °,∴∠EOC=23×180°=120°.答:∠EOC 的度数是 120°.
剖析 若不用方程的思想方法来考虑本题,可能无法下手,或以错误 告终.本题已知角度的数量关系及某一个角的度数,要求其他角的度数, 因为给出度数的角∠DOE 不能运用角平分线,也不知∠DOE 与其他角的 任何关系,因此∠DOE=72°,这个条件用不上,那么此时可以考虑在应 用题中学习的一种方法,当某个量不知道或不好表示时,我们常用未知数 把这个量设出来,其他的量也都可以用这个未知数表示出来,再列出方程 解出这个未知数.当然,未知数的设法有多种.
3.有公共端点的两条射线所组成的图形叫做角,也可以把角 看成是由一条射线绕着它的端点旋转而成的图形.
(1)1周角=__2__平角=__4__直角= 360° ,
1°= 60′ ,1′= 60″ .
(2)小于直角的角叫做锐__角__;大于直角而小于平角的角叫做_钝__角_ ;度数是90°的角叫做_直__角_.
;
②两直线平行, 内错角相等
;
③两直线平行, 同旁内角互补
九年级数学《线段、角、相交线、平行线》复习课课件

角的相关概念及性质
3.角平分线 (1)定义:从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线. (2)性质:角平分线上的点到这个角的两边的距离相等. (3)判定:在一个角的内部,到角的两边距离相等的点在这个角的平分线上. 基础点对点
相交线
3.线段的垂直平分线 (1)定义:经过线段的中点且与这条线段垂直的直线叫做这条线段的垂直平分线. (2)性质:线段垂直平分线上的点与这条线段两个端点的距离相等. (3)判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.
基础点对点
如图,在△ABC中,AC的垂直平分线分别交AC、BC于E、D两点, 且AB=5,BC=8,则△ABD的周长为( A ) A.13 B.14 C.15 D.16
考点四:命题、公理、定理和证明 2.
03
针对性习题
完成课下的针对性练习
PART FOUR
感谢聆听 THANKS
1.[2018·德州] 如图 16-9,将一副三角尺按不同的位置摆 放,下列摆放方式中∠α 与∠β 互余的是 ( )
[答案] A [解析] 图①中∠α 与∠β 互余,图②中∠α= ∠β,图③中∠α=∠β,图④中∠α 与∠β 互补. 故选 A.
A.图①
B.图②
图 16-9 C.图③
D.图④
考点二:线与角的概念和基本性质
命题、公理、定理、证明
3.定理:经过推理证实的真命题叫做定理.因为定理的逆命题不一定都是真命题,所以不是 所有的定理都有逆定理. 4.公理:有一类命题的正确性是人们在长期的实践中总结出来的,并把它们作为判断其他 命题真伪的原始依据,这样的真命题叫做公理.
中考数学复习《角、相交线与平行线》经典题型及测试题(含答案)

中考数学复习《角、相交线与平行线》经典题型及测试题(含答案)命题点分类集训命题点1 线段【命题规律】主要考查:①两点之间线段最短;②两点确定一条直线这两个基本事实.【命题预测】与图形的变换中立体图形的侧面展开结合,求两点之间的最短距离,另外也会与对称性结合,考查两线段和的最小值.1. 如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A. 垂线段最短B. 经过一点有无数条直线C. 经过两点,有且仅有一条直线D. 两点之间,线段最短1. D第1题图第2题图2. 如图,AB⊥AC,AD⊥BC,垂足分别为A,D.则图中能表示点到直线距离的线段共有( )A. 2条B. 3条C. 4条D. 5条2. D【解析】AD是点A到直线BC的距离;BA是点B到直线AC的距离;BD是点B到直线AD的距离;CA是点C到直线AB的距离;CD是点C到直线AD的距离,共5条,故答案为D.命题点2 角、余角、补角及角平分线【命题规律】主要考查:①角度的计算(度分秒之间的互化);②余角、补角的计算;③角平分线的性质.【命题预测】角、余角、补角及角平分线等基本概念是图形认识的基础,应给予重视.3. 下列各图中,∠1与∠2互为余角的是( )3. B4. 如图,OP为∠AOB的平分线,PC⊥OB于点C,且PC=3,点P到OA的距离为________.4. 3【解析】如解图,过点P作PD⊥OA于点D,∵OP为∠AOB的平分线,PC⊥OB于点C,∴PD=PC,∵PC=3,∴PD=3,即点P到点OA的距离为3.5. 1.45°=________′.5. 87【解析】∵1°=60′,∴0.45°=27′,∴1.45°=87′.6. 已知∠A=100°,那么∠A的补角为________度.6. 80【解析】用180度减去已知角,就得这个角的补角.即∠A的补角为:180°-100°=80°.命题点3 相交线与平行线【命题规律】考查形式:①三线八角中同位角、内错角、同旁内角的识别或计算,有时综合对顶角、邻补角求角度;②综合角平分线、垂线求角度;③综合三角形的相关知识求角度;④根据角的关系判断两直线的关系.【命题预测】平行线性质是认识图形的基础知识,也是全国命题的潮流和方向.7. 如图,直线a,b被直线c所截,∠1与∠2的位置关系是( )A. 同位角B. 内错角C. 同旁内角D. 对顶角7. B【解析】根据相交线的性质及角的定义可知∠1与∠2的位置关系为内错角,故选B.第7题图第8题图第9题图8. 如图,已知a、b、c、d四条直线,a∥b,c∥d,∠1=110°,则∠2等于( )A. 50°B. 70°C. 90°D. 110°8. B【解析】如解图,∵a∥b,∴∠3+∠4=180°,∵c∥d,∴∠2=∠4,∵∠1=∠3,∴∠2=180°-∠1=70°,故本题选B.9. 如图,在下列条件中,不能..判定直线a与b平行的是( )A. ∠1=∠2B. ∠2=∠3C. ∠3=∠5D. ∠3+∠4=180°9. C【解析】逐项分析如下:选项逐项分析正误A∵∠1=∠2,即同位角相等,两直线平行,∴a∥b √B∵∠2=∠3,即内错角相等,两直线平行,∴a∥b √∵∠3、∠5既不是a与b被第三直线所截的同位角,也不是内错角,×C∴∠3=∠5,不能够判定a与b平行D∵∠3+∠4=180°,即同旁内角互补,两直线平行,∴a∥b √10. 如图,将一块直角三角板的直角顶点放在直尺的一边上,如果∠1=50°,那么∠2的度数是( )A. 30°B. 40°C. 50°D. 60°10. B 【解析】如解图,∠1+∠3=90°,∴∠3=90°-∠1=90°-50°=40°,由平行线性质得∠2=∠3=40°.11. 如图所示,AB ∥CD ,EF ⊥BD ,垂足为E ,∠1=50°,则∠2的度数为( )A . 50°B . 40°C . 45°D . 25°11. B 【解析】∵EF ⊥BD ,∠1=50°,∴∠D =90°-50°=40°,∵AB ∥CD ,∴∠2=∠D =40°.第10题图 第11题图 第12题图 第13题图12. 如图,AB ∥CD ,直线EF 与AB ,CD 分别交于点M ,N ,过点N 的直线GH 与AB 交于点P ,则下列结论错误的是( )A . ∠EMB =∠END B . ∠BMN =∠MNC C . ∠CNH =∠BPGD . ∠DNG =∠AME12. D 【解析】A.两直线平行,同位角相等,∴∠EMB =∠END ;B.两直线平行,内错角相等,∴∠BMN =∠MNC ;C.两直线平行,同位角相等,∴∠CNH =∠APH ,又∠BPG =∠APH ,∴∠CNH =∠BPG ;D.∠DNG 和∠AME 无法推导数量关系,故不一定相等,答案为D.13. 如图,直线a∥b,∠1=45°,∠2=30°,则∠P=________°.13. 75 【解析】如解图,过点P 作PH ∥a ∥b ,∴∠FPH =∠1,∠EPH =∠2,又∵∠1=45°,∠2=30°,∴∠EPF =∠EPH +∠HPF =30°+45°=75°.命题点4 命 题【命题概况】命题考查的知识点比较多,一般几个知识点结合考查,考查形式有:①下面说法错误(正确)的是;②写出命题…的逆命题;③能说明…是假命题的反例.【命题趋势】命题为新课标新增内容,考查知识比较综合,是全国命题点之一.14. (2016宁波)能说明命题“对于任何实数a ,|a|>-a”是假命题的一个反例可以是( )A . a =-2B . a =13C . a =1D . a = 214. A 【解析】由于一个正数的绝对值是它本身,它的相反数是一个负数,所以当a =13,1,2时,|a |>-a 总是成立,当a =-2时,|-2|=2=-(-2),此时|a |=-a ,故本题选A.15. 写出命题“如果a =b ,那么3a =3b”的逆命题...:________________________. 15. 如果3a =3b ,那么a =b 【解析】命题由条件和结论构成,则其逆命题只需将原来命题的条件和结论互换即可,即将结论作为条件,将条件作为结论. ∵命题“如果a =b ,那么3a =3b ,”中条件为“如果a =b ”,结论为“那么3a =3b ”,∴其逆命题为“如果3a =3b ,那么a =b ”.中考冲刺集训一、选择题1. 如图,AB∥CD,DA⊥AC,垂足为A,若∠ADC=35°,则∠1的度数为( )A. 65°B. 55°C. 45°D. 35°第1题图第2题图第3题图2. 如图,AB∥CD,AE平分∠CAB交CD于点E.若∠C=50°,则∠AED=( )A. 65°B. 115°C. 125°D. 130°3. 如图,∠AOB的一边OA为平面镜,∠AOB=37°36′,在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,则∠DEB的度数是( )A.75°36′B.75°12′C.74°36′D.74°12′二、填空题4. 如图,平行线AB,CD被直线AE所截,∠1=50°,则∠A=________.第4题图第5题图第6题图5. 如图,直线CD∥EF,直线AB与CD、EF分别相交于点M、N,若∠1=30°,则∠2=________.6. 如图,AB∥CD,直线EF分别交AB,CD于M,N两点,将一个含有45°角的直角三角尺按如图所示的方式摆放.若∠EMB=75°,则∠PNM等于________度.7. 如图,直线AB∥CD,BC平分∠ABD.若∠1=54°,则∠2=________°.第7题图第8题图第9题图8. 如图,AB∥CD∥EF,若∠A=30°,∠AFC=15°,则∠C=________.9.如图,OP平分∠AOB,∠AOP=15°,PC∥OA,PD⊥OA于点D,PC=4,则PD=________.答案与解析:1. B【解析】∵DA⊥AC,∠ADC=35°,∴∠ACD=90°-∠ADC=90°-35°=55°,∵AB∥CD,∴∠1=∠ACD=55°,故选B.2. B【解析】∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=50°,∴∠CAB=130°,∵AE平分∠CAB,∴∠EAB=12∠CAB=65°.又∵AB∥CD,∴∠AED+∠EAB=180°,∴∠AED=180°-∠EAB=180°-65°=115°.3. B【解析】根据平面镜反射原理可知,∠ADC=∠ODE,∵DC∥OB,∴∠ADC=∠AOE,∴∠ODE=∠AOE=37°36′,∴∠DEB=∠ODE+∠AOE=37°36′+37°36′=75°12′,故选B.4. 50°5. 30°6. 307. 72【解析】∵CD∥AB,∴∠CBA=∠1=54°,∠ABD+∠CDB=180°,∵CB平分∠ABD,∴∠DBC=∠CBA=54°,∴∠CDB=180°-54°-54°=72°,∴∠2=∠CDB=72°.8. 15°【解析】由两直线平行,内错角相等,可得∠A=∠AFE=30°,∠C=∠CFE,由∠AFC=15°,可得∠CFE=∠C=∠AFE-∠AFC=15°.第9题解图9. 2【解析】如解图,过点P作PE⊥OB于点E,∵OP平分∠AOB,∴PD=PE,∠AOB=2∠AOP=30°,∵PC∥OA,∴∠ECP=∠AOB=30°,∴PE=12PC=2,∴PD=PE=2.。
中考数学一轮复习《线段、角、相交线与平行线》知识梳理及典型例题讲解课件

C.AB∥CD→∠ABC+∠C=180°
D.∠1=∠2→AD∥BC
B
知识点5 命题
命题
判断一件事情的语句叫做命题,命题有题设和结论两部分
真命题
如果题设成立,那么结论一定成立的命题
假命题
如果题设成立,不能保证结论一定成立的命题
互逆命题
在两个命题中,如果一个命题的题设和结论分别是另一个命题的结论和题设,那么这两个命题称为互逆命题,其中一个命题是另一个命题的逆命题
A.39°
B.40°
C.41°
D.42°
B
4.如图,m∥n,其中∠1=40°,则∠2的度数为( B )
A.130°
B.140°
C.150°
D.160°
B
5.如图,∠1+∠2=180°,∠3=104°,则∠4的度数是( B )
A.74°
B.76°
C.84°
58
10
48
27
19
12
22.25
53.21
4.如图,两块三角板的直角顶点O重合在一起,∠BOD=35°,则∠AOC的度数为 35° .
35°
5.如图,O是直线AB上一点,OD是∠AOC的平分线,已知∠COD=35°,则∠BOD的度数为 145° ;若DE⊥OA于点E,且DE=3,则点D到OC的距离为 3 .
145°
3
知识点3 相交线
1.三线八角
对顶角
性质:对顶角⑦ 相等 .如图,∠1与∠3,∠2与∠4,∠5与∠7,∠6与∠8
邻补角
性质:邻补角之和等于180°.如图,∠1与∠4,∠2与∠3,∠5与∠8,∠6与∠7
同位角
如图,∠1与∠5,∠2与∠6,∠3与∠7,∠4与∠8
线段 角 相交线 平行线中考复习

平行性质: 两直线平行 内错角相等。(公理) 两直线平行 同位角相等。(公理)
两直线平行 同旁内角互补。(公理) 平行线等分线段定理,平行线分线段成比例定
理 平行线弦所夹圆弧相等。 平行线的一组同位角(内错角)的角分线互相
平行,同旁内角的角分线互相垂直。 两边互相平行的两个角相等或互补;两边互相
垂直的两个角相等பைடு நூலகம்互补。
中垂线(垂直平分线) :垂直平分线上点到线段两 端距离相等,到线段两端距离相等的点在垂直平分线 上。(尺规作图) (等腰三角形,矩形、菱形、正方 形、圆径定理,轴对称里面涉及)
(3)平行:
过直线外一点有且只有一条直线和已知直线平行。(公理)
判定: 内错角相等,两直线平行。(公理) 同位角相等,两直线平行。(公理) 同旁内角互补,两直线平行。(公理) 平行于同一条直线的两条直线互相平行。 垂直于同一条直线的两条直线互相平行。 中位线平行于第三边,等于第三边的一半。
边的比。 角分线上点到角两边距离相等,到角两边距离相
等的点在角平分线上。 一分钟时针旋转0.5度,一分钟分针旋转6度 ,1
分钟秒针旋转360度。
初中所学的距离:
点到点(线段长度) 点到线(垂线段长度) 两平行线间距离。
定义、命题、定理、公理(公理化思想 欧氏 几何 )
判断一件事情的语句叫做命题。 命题组成:题设(如果、条件)、结论。 命题分类:真、假命题。 原命题 逆命题。 证明假命题的办法:举反例。 反证法。 欧几里得《几何原本 》,明朝科学家徐光启 和意大利传教士利玛窦翻译前6卷,后九卷由李 善兰和英国人伟烈亚力翻译引入中国。
2.两点之间线段最短(公理) 线:直线、线段、射线 线段中点: 线段AB 中点C则有AC=BC=1/2AB。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线段、角、相交线和平行线
题组练习一(问题习题化)
1. 如图,经过刨平的木析上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线. 能解释这一实际问题的数学知识是( )
A .两点确定一条直线
B .两点之间线段最短
C .垂线段最短
D .在同一平面内,过一点有且只有一条直线与已知直线垂直
2. 如图,BC ⊥AE 于点C ,CD ∥AB ,∠B=55°,则∠1等于_____.
3.如图,AB ∥CD 若∠A BE=120°,∠DCE=35°.
求∠BEC 的度数.
4.如图,已知∠1+∠2=180°,∠3=∠B ,试判断∠AED 与∠ACB 的大小关系,并说明理由.
知识梳理 点
题组练习二(知识网络化)
5.在直线l 上任取一点A 截取AB=16cm 再截取AC=40cm ,则AB 的中点D 与AC 的中点E 的距离是_____.
6.钟表上12时15分时,时针与分针的夹角为( )
O B A.90 B.82.5 C.67.5 D.60
7.两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,…,那么六条直线最多有( )个交点.
8. 如图,直线l ∥m ∥n ,等边△ABC 的顶点B 、C 分别在直线n 和m 上,边BC 与直线n 所夹的角为25°,则∠α的度数为_____.
9.如图,直线l 为某一河边,A.B 是河边同侧的两个村庄,(1)请你画出由A 地经B
地去河边最短的路线;
(2)若要在河边建一个水站P ,使得到A ,B 两村庄的距离和最小.
10.(1)如图∠
AOB=90,OM 平分∠AOC ,DN 平分∠BOC ,求∠MON 的度数;
(2)如果①中,∠AOB=α,其他条件不变,求∠MON 的度数;
(3)如果①中,∠BOC=β,其他条件不变,求∠MON 的度数;
(4)从①②③的结果,能看出什么规律;
(5)线段计算与角计算存在着紧密联系,它们之间可以互相借鉴解法,请你模仿①—④设计一道以线段为背景的计算题,写出其中的规律.
题组练习三(中考考点链接)
11.已知直线AB ,CB ,l 在同一平面内,若AB⊥l,垂足为B ,CB⊥l,垂足也为B
,则符合题意的图形可以是( )
A . B
. C . D .
12.如图,在方格纸中,线段a ,b ,c ,d 的端点在格点上,通过平移其中两条线段,使得和第三条线段首尾相接组成三角形,则能组成三角形的不同平移方法有( )
A. 3种
B. 6种
C. 8种
D. 12种
13.如图,一条铁路修到一个村子边时,需拐弯绕道而过,如果第一次拐的角∠A是105度,第二次拐的角∠B是135度,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,那么∠C 应为多少度?
答案:1.A;2.35°
3.过点E作EF∥AB.
∵AB∥CD,∴EF∥AB∥CD.
∴.
∠FEC=∠DCE.
∵=120=60,
∠FEC=35.
4.∠AED=∠ACB,理由如下:
∵∠1+∠2=180°,又∠1+∠4=180°,
∴∠2=∠4.
∴AB∥EF(内错角相等,两直线平行).
∴∠5=∠3.
又∠3=∠B,
∴∠5=∠B.
∴DE∥BC(同位角相等,两直线平行).
∴∠AED=∠ACB(两直线平行,同位角相等).
5.12或28cm;
6.B;
7.15;
8.35°;
9.略;
10.(1)∠MON=∠COM-∠CON= AOC-BOC=120-30=45;
(2)∠MON=∠COM-∠CON= AOC-BOC
=(∠AOC-∠BOC)==45;
(3)∠MON=∠COM-∠CON= AOC-BOC
=(∠AOC-∠BOC)==45;
(4)∠MON的大小等于∠AOB的一半,与BOC的大小无关;
(5)如图,设线段AB=a,延长AB到C使BC=b,点M.N分别是AC,BC的中点,求MN的
A C
长.
规律:MN的长度等于AB的一半,而与BC的长度大小无
11.C;12.B;
13. 解:过点B作直线BE∥CD.
∵CD∥AF,
∴B E∥CD∥AF.
∴∠A=∠ABE=105°.
∴∠CBE=∠ABC﹣∠ABE=30°.
又∵BE∥CD,
∴∠CBE+∠C=180°.
∴∠C=150°.。