[配套K12]2018版高考数学大一轮复习 第八章 立体几何与空间向量 8.6 空间向量及其运算试题 理 北师大版
2018版高考数学一轮复习 第八章 立体几何 8.6 空间向量及其运算和空间位置关系真题演练集训 理 新人教A版

2018版高考数学一轮复习 第八章 立体几何 8.6 空间向量及其运算
和空间位置关系真题演练集训 理 新人教A 版
“两向量同向”意义不清致误分析
[典例] 已知向量a =(1,2,3),b =(x ,x 2+y -2,y ),并且a ,b 同向,则x ,y 的值分别为________.
[错因分析] 将a ,b 同向和a∥b 混淆,没有搞清a∥b 的意义:a ,b 方向相同或相反.
[解析] 由题意知,a∥b ,
所以x 1=x 2+y -22=y 3
, 即⎩⎪⎨⎪⎧ y =3x ,①x 2+y -2=2x .②
把①代入②,得
x 2+x -2=0,(x +2)(x -1)=0,
解得x =-2或x =1.
当x =-2时,y =-6;
当x =1,y =3.
当⎩⎪⎨⎪⎧ x =-2,y =-6时,b =(-2,-4,-6)=-2a ,
两向量a ,b 反向,不符合题意,所以舍去.
当⎩⎪⎨⎪
⎧ x =1,y =3时,b =(1,2,3)=a ,
a 与
b 同向,所以⎩⎪⎨⎪⎧ x =1,y =3.
[答案] 1,3
温馨提醒
1.两向量平行和两向量同向不是等价的,同向是平行的一种情况,两向量同向能推出两向量平行,但反过来不成立,也就是说,“两向量同向”是“两向量平行”的充分不必要条件.
2.若两向量a ,b 满足a =λb (b ≠0)且λ>0,则a ,b 同向;在a ,b 的坐标都是非零的条件下,a ,b 的坐标对应成比例且比值为正值.。
2018版高考数学理北师大版大一轮复习讲义教师版文档

1.多面体的表面积、侧面积因为多面体的各个面都是平面,所以多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.圆柱、圆锥、圆台的侧面展开图及侧面积公式3.柱、锥、台和球的表面积和体积【知识拓展】1.与体积有关的几个结论(1)一个组合体的体积等于它的各部分体积的和或差. (2)底面面积及高都相等的两个同类几何体的体积相等. 2.几个与球有关的切、接常用结论 (1)正方体的棱长为a ,球的半径为R , ①若球为正方体的外接球,则2R =3a ; ②若球为正方体的内切球,则2R =a ; ③若球与正方体的各棱相切,则2R =2a .(2)若长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2. (3)正四面体的外接球与内切球的半径之比为3∶1. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)多面体的表面积等于各个面的面积之和.( √ ) (2)锥体的体积等于底面积与高之积.( × ) (3)球的体积之比等于半径比的平方.( × )(4)简单组合体的体积等于组成它的简单几何体体积的和或差.( √ ) (5)长方体既有外接球又有内切球.( × )(6)圆柱的一个底面积为S ,侧面展开图是一个正方形,那么这个圆柱的侧面积是2πS .( × )1.(教材改编)已知圆锥的表面积等于12π cm 2,其侧面展开图是一个半圆,则底面圆的半径为( )A .1 cmB .2 cmC .3 cm D.32 cm答案 B解析 S 表=πr 2+πrl =πr 2+πr ·2r =3πr 2=12π, ∴r 2=4,∴r =2 cm.2.某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是( )A .90 cm 2B .129 cm 2C .132 cm 2D .138 cm 2答案 D解析 该几何体如图所示,长方体的长,宽,高分别为6 cm,4 cm ,3 cm ,直三棱柱的底面是直角三角形,边长分别为3 cm,4 cm ,5 cm ,所以表面积S =[2×(4×6+4×3)+3×6+3×3]+(5×3+4×3+2×12×4×3)=99+39=138(cm 2).3.(2016·全国甲卷)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为( ) A .12π B.323π C .8π D .4π答案 A解析 由题意可知正方体的棱长为2,其体对角线23即为球的直径,所以球的表面积为4πR 2=(2R )2π=12π,故选A.4.《九章算术》商功章有题:一圆柱形谷仓,高1丈3尺313寸,容纳米2 000斛(1丈=10尺,1尺=10寸,斛为容积单位,1斛≈1.62立方尺,π≈3),则圆柱底面圆周长约为( ) A .1丈3尺 B .5丈4尺 C .9丈2尺 D .48丈6尺 答案 B解析 设圆柱底面半径为r 尺,高为h 尺,依题意,圆柱体积为V =πr 2h =2 000×1.62≈3×r 2×13.33,所以r 2≈81,即r ≈9,所以圆柱底面圆周长为2πr ≈54,54尺=5丈4尺,即圆柱底面圆周长约为5丈4尺,故选B.5.(2016·成都一诊)如图为一个半球挖去一个圆锥后的几何体的三视图,则剩余部分与挖去部分的体积之比为________.答案 1∶1解析 由三视图可知半球的半径为2,圆锥底面圆的半径为2,高为2,所以V 圆锥=13×π×23=83π,V 半球=12×43π×23=163π,所以V 剩余=V 半球-V 圆锥=83π,故剩余部分与挖去部分的体积之比为1∶1.题型一 求空间几何体的表面积例1 (1)(2016·淮北模拟)一个多面体的三视图如图所示,则该多面体的表面积为( )A .21+ 3B .18+ 3C .21D .18(2)一个六棱锥的体积为23,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为________. 答案 (1)A (2)12解析 (1)由几何体的三视图可知,该几何体的直观图如图所示,因此该几何体的表面积为 6×(4-12)+2×34×(2)2=21+ 3.故选A.(2)设正六棱锥的高为h ,侧面的斜高为h ′. 由题意,得13×6×12×2×3×h =23,∴h =1,∴斜高h ′=12+(3)2=2, ∴S 侧=6×12×2×2=12.思维升华 空间几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理. (3)旋转体的表面积问题注意其侧面展开图的应用.(2016·大连模拟)如图所示的是一个几何体的三视图,则该几何体的表面积为________.答案 26解析 该几何体为一个长方体从正上方挖去一个半圆柱剩下的部分,长方体的长,宽,高分别为4,1,2,挖去半圆柱的底面半径为1,高为1, 所以表面积为S =S长方体表-2S半圆柱底-S圆柱轴截面+S半圆柱侧=2×4×1+2×1×2+2×4×2-π×12-2×1+12×2π×1=26.题型二 求空间几何体的体积命题点1 求以三视图为背景的几何体的体积例2 (2016·山东)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A.13+23πB.13+23πC.13+26π D .1+26π 答案 C解析 由三视图知,半球的半径R =22,四棱锥为正四棱锥,它的底面边长为1,高为1,∴V =13×1×1×1+12×43π×⎝⎛⎭⎫223=13+26π,故选C. 命题点2 求简单几何体的体积例3 (2015·江苏)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为______________________________________. 答案7解析 设新的底面半径为r ,由题意得13πr 2·4+πr 2·8=13π×52×4+π×22×8,解得r =7.思维升华 空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解. (2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.(1)(2016·四川)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的主视图如图所示,则该三棱锥的体积是________.(2)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,则该多面体的体积为( )A.23 B.33 C.43 D.32答案 (1)33(2)A 解析 (1)由题意可知,因为三棱锥每个面都是腰为2的等腰三角形,由主视图可得俯视图(如图),且三棱锥高为h =1,则体积V =13Sh =13×(12×23×1)×1=33.(2)如图,分别过点A ,B 作EF 的垂线,垂足分别为G ,H ,连接DG , CH ,容易求得EG =HF =12,AG=GD =BH =HC =32,∴S △AGD =S △BHC =12×22×1=24,∴V =V E -ADG +V F -BCH +V AGD -BHC =2V E -ADG +V AGD -BHC =13×24×12×2+24×1=23.故选A.题型三 与球有关的切、接问题例4 已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( ) A.3172B .210 C.132 D .310答案 C解析 如图所示,由球心作平面ABC 的垂线,则垂足为BC 的中点M . 又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA =(52)2+62=132. 引申探究1.已知棱长为4的正方体,则此正方体外接球和内切球的体积各是多少?解 由题意可知,此正方体的体对角线长即为其外接球的直径,正方体的棱长即为其内切球的直径.设该正方体外接球的半径为R ,内切球的半径为r . 又正方体的棱长为4,故其体对角线长为43, 从而V 外接球=43πR 3=43π×(23)3=323π,V 内切球=43πr 3=43π×23=32π3.2.已知棱长为a 的正四面体,则此正四面体的表面积S 1与其内切球的表面积S 2的比值为多少?解 正四面体的表面积为S 1=4·34·a 2=3a 2,其内切球半径r 为正四面体高的14,即r =14·63a=612a ,因此内切球表面积为S 2=4πr 2=πa 26,则S 1S 2=3a 2πa 26=63π. 3.已知侧棱和底面边长都是32的正四棱锥,则其外接球的半径是多少? 解 依题意得,该正四棱锥的底面对角线的长为32×2=6,高为(32)2-(12×6)2=3,因此底面中心到各顶点的距离均等于3,所以该正四棱锥的外接球的球心即为底面正方形的中心,其外接球的半径为3.思维升华 空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P ,A ,B ,C 构成的三条线段P A ,PB ,PC 两两互相垂直,且P A =a ,PB =b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,利用4R 2=a 2+b 2+c 2求解.(2016·全国丙卷)在封闭的直三棱柱ABCA 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( ) A .4π B.9π2C .6π D.32π3答案 B解析 由题意知,底面三角形的内切圆直径为4.三棱柱的高为3,所以球的最大直径为3,V 的最大值为9π2.15.巧用补形法解决立体几何问题典例 (2016·青岛模拟)如图,在△ABC 中,AB =8,BC =10,AC =6,DB ⊥平面ABC ,且AE ∥FC ∥BD ,BD =3,FC =4,AE =5,则此几何体的体积为________.思想方法指导 解答本题时可用“补形法”完成.“补形法”是立体几何中一种常见的重要方法,在解题时,把几何体通过“补形”补成一个完整的几何体或置于一个更熟悉的几何体中,巧妙地破解空间几何体的体积等问题,常见的补形法有对称补形、联系补形与还原补形,对于还原补形,主要涉及台体中“还台为锥”,将不规则的几何体补成规则的几何体等. 解析 用“补形法”把原几何体补成一个直三棱柱,使AA ′=BB ′=CC ′=8,所以V 几何体=12V 三棱柱=12×S △ABC ×AA ′=12×24×8=96.答案 961.已知某几何体的三视图如图所示,则该几何体的体积为( )A .4+π2B .4+3π2C .4+5π2D .4+π答案 C解析 由题意可知,几何体的体积为圆柱的体积加长方体的体积再减去与长方体等高的圆柱的体积的12,即π·12·3+2·2·1-12π·12·1=4+5π2.2.(2016·大同模拟)一个几何体的三视图如图所示,且其左视图是一个等边三角形,则这个几何体的体积为( )A.(4+π)33B.(8+π)36C.(8+π)33D .(4+π) 3答案 B解析 由三视图可知该几何体是由一个半圆锥和一个四棱锥组成的,其中半圆锥的底面半径为1,四棱锥的底面是一个边长为2的正方形,它们的高均为 3.则V =13·⎝⎛⎭⎫12π+4·3=(8+π)36.故选B.3.(2015·山东)在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A.2π3 B.4π3C.5π3 D .2π 答案 C解析 过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,如图所示,该几何体的体积为V =V 圆柱-V 圆锥=π·AB 2·BC -13·π·CE 2·DE=π×12×2-13π×12×1=5π3,故选C.4.(2015·安微)一个四面体的三视图如图所示,则该四面体的表面积是( )A .1+ 3B .2+ 3C .1+2 2D .2 2答案 B解析 由空间几何体的三视图可得该空间几何体的直观图,如图所示,∴该四面体的表面积为S 表=2×12×2×1+2×34×(2)2=2+3,故选B.5.(2016·广东东莞一中、松山湖学校联考)某几何体的三视图如图所示,其俯视图是由一个半圆与其直径组成的图形,则此几何体的体积是( )A.203π B .6π C.103π D.163π 答案 C解析 该几何体是由半个圆柱和半个圆锥构成的组合体,所以V =12×π×4×1+12×13×π×4×2=103π.故选C.6.(2016·福建三明一中第二次月考)如图,直三棱柱ABC -A 1B 1C 1的六个顶点都在半径为1的半球面上,AB =AC ,侧面BCC 1B 1是半球底面圆的内接正方形,则侧面ABB 1A 1的面积为( )A. 2B.22C .2D .1 答案 A解析 由题意知,球心在正方形的中心上,球的半径为1,则正方形的边长为 2.∵ABC —A 1B 1C 1为直三棱柱,∴平面ABC ⊥平面BCC 1B 1,∴BC 为截面圆的直径,∴∠BAC =90°.∵AB =AC ,∴AB =1.∴侧面ABB 1A 1的面积为2×1= 2.故选A.7.如图,正方体ABCD -A 1B 1C 1D 1的棱长为3,以顶点A 为球心,2为半径作一个球,则图中球面与正方体的表面相交所得到的两段弧长之和为________.答案 56π解析 由题意,图中弧为过球心的平面与球面相交所得大圆的一段弧,因为∠A 1AE =∠BAF =π6,所以∠EAF =π6,由弧长公式知弧EF 的长为2×π6=π3.弧为不过球心的平面与球面相交所得小圆的一段弧,其圆心为B ,因为球心到平面BCC 1B 1的距离d =3,球的半径R =2,所以小圆的半径r =R 2-d 2=1,又∠GBF =π2,所以弧的长为1×π2=π2.故两段弧长之和为5π6.8.(2016·新疆乌鲁木齐地区二诊)已知四面体ABCD 满足AB =CD =6,AC =AD =BC =BD =2,则四面体ABCD 的外接球的表面积是________. 答案 7π解析 (图略)在四面体ABCD 中, 取线段CD 的中点为E ,连接AE ,BE . ∵AC =AD =BC =BD =2, ∴AE ⊥CD ,BE ⊥CD . 在Rt △AED 中,CD =6, ∴AE =102.同理BE =102. EFFG FG取AB 的中点为F ,连接EF .由AE =BE ,得EF ⊥AB .在Rt △EF A 中, ∵AF =12AB =62,AE =102,∴EF =1.取EF 的中点为O ,连接OA , 则OF =12.在Rt △OF A 中,OA =72.∵OA =OB =OC =OD , ∴该四面体的外接球的半径是72, ∴外接球的表面积是7π.9. (2016·三门峡陕州中学对抗赛)如图所示,AB 是圆O 的直径,点C 是圆O 上异于A ,B 的点,PO 垂直于圆O 所在的平面,且PO =OB =1.则三棱锥P -ABC 体积的最大值为________.答案 13解析 V P -ABC =13PO ·S △ABC ,当△ABC 的面积最大时,三棱锥P -ABC 体积达到最大值.当CO ⊥AB 时,△ABC 的面积最大,最大值为12×2×1=1,此时V P -ABC =13PO ·S △ABC =13.10.(2016·浙江)如图,在△ABC 中,AB =BC =2,∠ABC =120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD =DA ,PB =BA ,则四面体PBCD 的体积的最大值是________.答案 12解析 设PD =DA =x ,在△ABC 中,AB =BC =2,∠ABC =120°, ∴AC =AB 2+BC 2-2·AB ·BC ·cos ∠ABC =4+4-2×2×2×cos 120°=23,∴CD =23-x ,且∠ACB =12(180°-120°)=30°,∴S △BCD =12BC ·DC ·sin ∠ACB =12×2×(23-x )×12=12(23-x ).要使四面体体积最大,当且仅当点P 到平面BCD 的距离最大,而P 到平面BCD 的最大距离为x .则V 四面体PBCD =13×12(23-x )x =16[-(x -3)2+3],由于0<x <23,故当x =3时,V 四面体PBCD 的最大值为16×3=12.11.(2015·课标全国Ⅰ)如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD .(1)证明:平面AEC ⊥平面BED ;(2)若∠ABC =120°,AE ⊥EC ,三棱锥EACD 的体积为63,求该三棱锥的侧面积. (1)证明 因为四边形ABCD 为菱形,所以AC ⊥BD . 因为BE ⊥平面ABCD ,所以AC ⊥BE . 因为BE ∩BD =B ,所以AC ⊥平面BED . 又AC 平面AEC ,所以平面AEC ⊥平面BED .(2)解 设AB =x ,在菱形ABCD 中,由∠ABC =120°,可得AG =GC =32x ,GB =GD =x 2. 因为AE ⊥EC ,所以在Rt △AEC 中,可得EG =32x . 由BE ⊥平面ABCD ,知△EBG 为直角三角形, 可得BE =22x . 由已知得,三棱锥EACD 的体积V EACD =13·12AC ·GD ·BE =624x 3=63.故x =2.从而可得AE =EC =ED = 6.所以△EAC 的面积为3,△EAD 的面积与△ECD 的面积均为 5. 故三棱锥EACD 的侧面积为3+2 5.12.如图,△ABC 内接于圆O ,AB 是圆O 的直径,四边形DCBE 为平行四边形,DC ⊥平面ABC ,AB =2,EB = 3.(1)求证:DE ⊥平面ADC ;(2)设AC =x ,V (x )表示三棱锥B -ACE 的体积,求函数V (x )的解析式及最大值. (1)证明 ∵四边形DCBE 为平行四边形, ∴CD ∥BE ,BC ∥DE .∵DC ⊥平面ABC ,BC 平面ABC ,∴DC ⊥BC . ∵AB 是圆O 的直径,∴BC ⊥AC ,且DC ∩AC =C , ∴BC ⊥平面ADC .∵DE ∥BC ,∴DE ⊥平面ADC .(2)解 ∵DC ⊥平面ABC ,∴BE ⊥平面ABC . 在Rt △ABE 中,AB =2,EB = 3.在Rt △ABC 中,∵AC =x ,BC =4-x 2(0<x <2), ∴S △ABC =12AC ·BC =12x ·4-x 2,∴V (x )=V E -ABC =36x ·4-x 2(0<x <2). ∵x 2(4-x 2)≤(x 2+4-x 22)2=4,当且仅当x 2=4-x 2,即x =2时,取等号,∴x =2时,体积有最大值33.。
2018版高考数学(理)(人教)大一轮复习讲义第八章立体几何与空间向量8.3

内容索引
基础知识
自主学习
题型分类
课时作业
深度剖析
基础知识
自主学习
知识梳理
1.四个公理 公理1:如果一条直线上的 两点 在一个平面内,那么这条直线在此平面内. 公理2:过 不在一条直线上 的三点,有且只有一个平面. 公理3:如果两个不重合的平面有一个公共点,那么它们 有且只有一条 过 该点的公共直线. 公理4:平行于同一条直线的两条直线互相 平行 .
(2) 如图,在正方体 ABCD - A1B1C1D1 中, M , N 分别是
BC1,CD1的中点,则下列判断错误的是 A.MN与CC1垂直
B.MN与AC垂直
答案
解析
几何画板展示
C.MN与BD平行
D.MN与A1B1平行
(3)在图中,G、N、M、H分别是正三棱柱(两底面为正三角形的直棱柱) 的顶点或所在棱的中点 ,则表示直线 GH 、 MN 是异面直线的图形有
思想方法指导 答案 解析
课时作业
1.设a,b是两条不同的直线,α,β是两个不同的平面,a⊂α,b⊥β,则
“α∥β”是“a⊥b”的
A.充分不必要条件 √
答案
解析
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
若a⊂α,b⊥β,α∥β,则由α∥β,b⊥β⇒b⊥α, 又a⊂α,所以a⊥b;若a⊥b,a⊂α,b⊥β, 则b⊥α或b∥α或b⊂α,此时α∥β或α与β相交, 所以“α∥β”是“a⊥b”的充分不必要条件,故选A.
1 2 3 4 5 6 7 8 9 10 11 12 13
2.(2016· 福州质检 ) 在三棱柱 ABC- A1B1C1 中, E、 F分别为棱 AA1 、 CC1 的中点,则在空间中与直线A1B1、EF、BC都相交的直线 答案 A.不存在 C.有且只有三条 B.有且只有两条 D.有无数条 √
2018版高考数学理北师大版大一轮复习讲义教师版文档

1.四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内(即直线在平面内).公理2:经过不在同一条直线上的三点,有且只有一个平面(即可以确定一个平面).公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条通过这个点的公共直线. 公理4:平行于同一条直线的两条直线平行. 2.直线与直线的位置关系 (1)位置关系的分类⎩⎨⎧共面直线⎩⎪⎨⎪⎧平行直线相交直线异面直线:不同在任何一个平面内,没有公共点(2)异面直线所成的角①定义:过空间任意一点P 分别引两条异面直线a ,b 的平行线l 1,l 2(a ∥l 1,b ∥l 2),这两条相交直线所成的锐角(或直角)叫作异面直线a ,b 所成的角(或夹角). ②范围:⎝⎛⎦⎤0,π2. 3.直线与平面的位置关系有直线在平面内、直线与平面相交、直线与平面平行三种情况. 4.平面与平面的位置关系有平行、相交两种情况. 5.等角定理空间中,如果两个角的两边分别对应平行,那么这两个角相等或互补.【知识拓展】1.唯一性定理(1)过直线外一点有且只有一条直线与已知直线平行.(2)过直线外一点有且只有一个平面与已知直线垂直.(3)过平面外一点有且只有一个平面与已知平面平行.(4)过平面外一点有且只有一条直线与已知平面垂直.2.异面直线的判定定理经过平面内一点的直线与平面内不经过该点的直线互为异面直线.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果两个不重合的平面α,β有一条公共直线a,就说平面α,β相交,并记作α∩β=a.(√)(2)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线.(×)(3)两个平面ABC与DBC相交于线段BC.(×)(4)经过两条相交直线,有且只有一个平面.(√)(5)没有公共点的两条直线是异面直线.(×)1.下列命题正确的个数为()①梯形可以确定一个平面;②若两条直线和第三条直线所成的角相等,则这两条直线平行;③两两相交的三条直线最多可以确定三个平面;④如果两个平面有三个公共点,则这两个平面重合.A.0 B.1 C.2 D.3答案 C解析②中两直线可以平行、相交或异面,④中若三个点在同一条直线上,则两个平面相交,①③正确.2.(2016·浙江)已知互相垂直的平面α,β交于直线l.若直线m,n满足m∥α,n⊥β,则() A.m∥l B.m∥nC.n⊥l D.m⊥n答案 C解析由已知,α∩β=l,∴lβ,又∵n⊥β,∴n⊥l,C正确.3.(2016·合肥质检)已知l ,m ,n 为不同的直线,α,β,γ为不同的平面,则下列判断正确的是( )A .若m ∥α,n ∥α,则m ∥nB .若m ⊥α,n ∥β,α⊥β,则m ⊥nC .若α∩β=l ,m ∥α,m ∥β,则m ∥lD .若α∩β=m ,α∩γ=n ,l ⊥m ,l ⊥n ,则l ⊥α 答案 C解析 m ,n 可能的位置关系为平行,相交,异面,故A 错误;根据面面垂直与线面平行的性质可知B 错误;根据线面平行的性质可知C 正确;若m ∥n ,根据线面垂直的判定可知D 错误,故选C.4.(教材改编)如图所示,已知在长方体ABCD -EFGH 中,AB =23,AD =23,AE =2,则BC 和EG 所成角的大小是______,AE 和BG 所成角的大小是________.答案 45° 60°解析 ∵BC 与EG 所成的角等于EG 与FG 所成的角即∠EGF ,tan ∠EGF =EF FG =2323=1,∴∠EGF =45°,∵AE 与BG 所成的角等于BF 与BG 所成的角即∠GBF ,tan ∠GBF =GF BF =232=3,∴∠GBF=60°.5.如图,正方体的底面与正四面体的底面在同一平面α上,且AB ∥CD ,则直线EF 与正方体的六个面所在的平面相交的平面个数为________.答案 4解析 EF 与正方体左、右两侧面均平行.所以与EF 相交的侧面有4个.题型一 平面基本性质的应用例1 (1)(2016·山东)已知直线a ,b 分别在两个不同的平面α,β内,则“直线a 和直线b 相交”是“平面α和平面β相交”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 A解析 若直线a 和直线b 相交,则平面α和平面β相交;若平面α和平面β相交,那么直线a 和直线b 可能平行或异面或相交,故选A.(2)已知空间四边形ABCD (如图所示),E 、F 分别是AB 、AD 的中点,G 、H 分别是BC 、CD 上的点,且CG =13BC ,CH =13DC .求证:①E 、F 、G 、H 四点共面; ②三直线FH 、EG 、AC 共点. 证明 ①连接EF 、GH ,如图所示,∵E 、F 分别是AB 、AD 的中点, ∴EF ∥BD .又∵CG =13BC ,CH =13DC ,∴GH ∥BD ,∴EF ∥GH , ∴E 、F 、G 、H 四点共面.②易知FH 与直线AC 不平行,但共面,∴设FH ∩AC =M ,∴M ∈平面EFHG ,M ∈平面ABC . 又∵平面EFHG ∩平面ABC =EG , ∴M ∈EG ,∴FH 、EG 、AC 共点. 思维升华 共面、共线、共点问题的证明(1)证明点或线共面问题的两种方法:①首先由所给条件中的部分线(或点)确定一个平面,然后再证其余的线(或点)在这个平面内;②将所有条件分为两部分,然后分别确定平面,再证两平面重合.(2)证明点共线问题的两种方法:①先由两点确定一条直线,再证其他各点都在这条直线上;②直接证明这些点都在同一条特定直线上.(3)证明线共点问题的常用方法是:先证其中两条直线交于一点,再证其他直线经过该点.如图,平面ABEF ⊥平面ABCD ,四边形ABEF 与四边形ABCD 都是直角梯形,∠BAD =∠F AB =90°,BC ∥AD 且BC =12AD ,BE ∥AF 且BE =12AF ,G 、H 分别为F A 、FD 的中点.(1)证明:四边形BCHG 是平行四边形; (2)C 、D 、F 、E 四点是否共面?为什么? (1)证明 由已知FG =GA ,FH =HD , 可得GH 綊12AD .又BC 綊12AD ,∴GH 綊BC .∴四边形BCHG 为平行四边形.(2)解 ∵BE 綊12AF ,G 是F A 的中点,∴BE 綊FG ,∴四边形BEFG 为平行四边形,∴EF ∥BG . 由(1)知BG 綊CH ,∴EF ∥CH ,∴EF 与CH 共面.又D∈FH,∴C、D、F、E四点共面.题型二判断空间两直线的位置关系例2(1)(2015·广东)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是()A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交(2)如图,在正方体ABCD-A1B1C1D1中,M,N分别是BC1,CD1的中点,则下列判断错误的是()A.MN与CC1垂直B.MN与AC垂直C.MN与BD平行D.MN与A1B1平行(3)在图中,G、N、M、H分别是正三棱柱(两底面为正三角形的直棱柱)的顶点或所在棱的中点,则表示直线GH、MN是异面直线的图形有________.(填上所有正确答案的序号)答案(1)D(2)D(3)②④解析(1)若l与l1,l2都不相交,则l∥l1,l∥l2,∴l1∥l2,这与l1和l2异面矛盾,∴l至少与l1,l2中的一条相交.(2)连接B1C,B1D1,如图所示,则点M是B1C的中点,MN是△B1CD1的中位线,∴MN∥B1D1,又BD∥B1D1,∴MN∥BD.∵CC1⊥B1D1,AC⊥B1D1,∴MN⊥CC1,MN⊥AC.又∵A1B1与B1D1相交,∴MN与A1B1不平行,故选D.(3)图①中,直线GH∥MN;图②中,G、H、N三点共面,但M∉面GHN,因此直线GH与MN异面;图③中,连接MG,GM∥HN,因此GH与MN共面;图④中,G、M、N共面,但H∉面GMN,因此GH与MN异面.所以图②④中GH与MN异面.思维升华空间中两直线位置关系的判定,主要是异面、平行和垂直的判定.对于异面直线,可采用直接法或反证法;对于平行直线,可利用三角形(梯形)中位线的性质、公理4及线面平行与面面平行的性质定理;对于垂直关系,往往利用线面垂直的性质来解决.(1)已知a,b,c为三条不重合的直线,有下列结论:①若a⊥b,a⊥c,则b∥c;②若a⊥b,a⊥c,则b⊥c;③若a∥b,b⊥c,则a⊥c.其中正确的个数为()A.0 B.1 C.2 D.3(2)(2016·南昌一模)已知a、b、c是相异直线,α、β、γ是相异平面,则下列命题中正确的是() A.a与b异面,b与c异面⇒a与c异面B.a与b相交,b与c相交⇒a与c相交C.α∥β,β∥γ⇒α∥γD.aα,bβ,α与β相交⇒a与b相交答案(1)B(2)C解析(1)在空间中,若a⊥b,a⊥c,则b,c可能平行,也可能相交,还可能异面,所以①②错,③显然成立.(2)如图(1),在正方体中,a 、b 、c 是三条棱所在直线,满足a 与b 异面,b 与c 异面,但a ∩c =A ,故A 错误;在图(2)的正方体中,满足a 与b 相交,b 与c 相交,但a 与c 不相交,故B 错误;如图(3),α∩β=c ,a ∥c ,则a 与b 不相交,故D 错误.题型三 求两条异面直线所成的角例3 (2016·重庆模拟)如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,则异面直线AP 与BD 所成的角为________.答案 π3解析 如图,将原图补成正方体ABCD -QGHP ,连接GP ,则GP ∥BD ,所以∠APG 为异面直线AP 与BD 所成的角, 在△AGP 中,AG =GP =AP , 所以∠APG =π3.引申探究在本例条件下,若E ,F ,M 分别是AB ,BC ,PQ 的中点,异面直线EM 与AF 所成的角为θ,求cos θ的值.解 设N 为BF 的中点,连接EN ,MN ,则∠MEN 是异面直线EM 与AF 所成的角或其补角. 不妨设正方形ABCD 和ADPQ 的边长为4, 则EN =5,EM =26, MN =33.在△MEN 中,由余弦定理得 cos ∠MEN =EM 2+EN 2-MN 22EM ·EN=24+5-332×26×5=-130=-3030.即cos θ=3030. 思维升华 用平移法求异面直线所成的角的三步法 (1)一作:根据定义作平行线,作出异面直线所成的角; (2)二证:证明作出的角是异面直线所成的角;(3)三求:解三角形,求出作出的角.如果求出的角是锐角或直角,则它就是要求的角;如果求出的角是钝角,则它的补角才是要求的角.已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为( ) A.16 B.36 C.13 D.33答案 B解析 画出正四面体ABCD 的直观图,如图所示.设其棱长为2,取AD 的中点F , 连接EF ,设EF 的中点为O ,连接CO , 则EF ∥BD ,则∠FEC 就是异面直线CE 与BD 所成的角. △ABC 为等边三角形, 则CE ⊥AB , 易得CE =3, 同理可得CF =3, 故CE =CF .因为OE =OF ,所以CO ⊥EF . 又EO =12EF =14BD =12,所以cos ∠FEC =EO CE =123=36.16.构造模型判断空间线面位置关系典例 已知m ,n 是两条不同的直线,α,β为两个不同的平面,有下列四个命题: ①若m ⊥α,n ⊥β,m ⊥n ,则α⊥β; ②若m ∥α,n ∥β,m ⊥n ,则α∥β; ③若m ⊥α,n ∥β,m ⊥n ,则α∥β; ④若m ⊥α,n ∥β,α∥β,则m ⊥n . 其中所有正确的命题是________.思想方法指导 本题可通过构造模型法完成,构造法实质上是结合题意构造符合题意的直观模型,然后将问题利用模型直观地作出判断,这样减少了抽象性,避免了因考虑不全面而导致解题错误.对于线面、面面平行、垂直的位置关系的判定,可构造长方体或正方体化抽象为直观去判断.解析借助于长方体模型来解决本题,对于①,可以得到平面α、β互相垂直,如图(1)所示,故①正确;对于②,平面α、β可能垂直,如图(2)所示,故②不正确;对于③,平面α、β可能垂直,如图(3)所示,故③不正确;对于④,由m⊥α,α∥β可得m⊥β,因为n∥β,所以过n作平面γ,且γ∩β=g,如图(4)所示,所以n与交线g平行,因为m⊥g,所以m⊥n,故④正确.答案①④1.设a,b是两条不同的直线,α,β是两个不同的平面,aα,b⊥β,则“α∥β”是“a⊥b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析若aα,b⊥β,α∥β,则由α∥β,b⊥β⇒b⊥α,又aα,所以a⊥b;若a⊥b,aα,b⊥β,则b⊥α或b∥α或bα,此时α∥β或α与β相交,所以“α∥β”是“a⊥b”的充分不必要条件,故选A.2.(2016·福州质检)在三棱柱ABC-A1B1C1中,E、F分别为棱AA1、CC1的中点,则在空间中与直线A1B1、EF、BC都相交的直线()A.不存在B.有且只有两条C.有且只有三条D.有无数条答案 D解析 在EF 上任意取一点M ,直线A 1B 1与M 确定一个平面,这个平面与BC 有且仅有1个交点N ,当M 的位置不同时确定不同的平面,从而与BC 有不同的交点N ,而直线MN 与A 1B 1、EF 、BC 分别有交点P 、M 、N ,如图,故有无数条直线与直线A 1B 1、EF 、BC 都相交.3.对于任意的直线l 与平面α,在平面α内必有直线m ,使m 与l ( ) A .平行 B .相交C .垂直D .互为异面直线答案 C解析 不论l ∥α,l α,还是l 与α相交,α内都有直线m 使得m ⊥l .4.在四面体ABCD 的棱AB ,BC ,CD ,DA 上分别取E ,F ,G ,H 四点,如果EF 与HG 交于点M ,则( ) A .M 一定在直线AC 上 B .M 一定在直线BD 上C .M 可能在AC 上,也可能在BD 上 D .M 既不在AC 上,也不在BD 上 答案 A解析 由于EF ∩HG =M ,且EF 平面ABC ,HG 平面ACD ,所以点M 为平面ABC 与平面ACD 的一个公共点,而这两个平面的交线为AC ,所以点M 一定在直线AC 上,故选A.5.四棱锥P -ABCD 的所有侧棱长都为5,底面ABCD 是边长为2的正方形,则CD 与P A 所成角的余弦值为( ) A.255B.55C.45D.35答案 B解析 因为四边形ABCD 为正方形,故CD ∥AB ,则CD 与P A 所成的角即为AB 与P A 所成的角,即为∠P AB .在△P AB 内,PB =P A =5,AB =2,利用余弦定理可知cos ∠P AB =P A 2+AB 2-PB 22×P A ×AB =5+4-52×5×2=55,故选B. 6.下列命题中,正确的是( )A .若a ,b 是两条直线,α,β是两个平面,且aα,b β,则a ,b 是异面直线B .若a ,b 是两条直线,且a ∥b ,则直线a 平行于经过直线b 的所有平面C .若直线a 与平面α不平行,则此直线与平面内的所有直线都不平行D .若直线a ∥平面α,点P ∈α,则平面α内经过点P 且与直线a 平行的直线有且只有一条 答案 D解析 对于A ,当α∥β,a ,b 分别为第三个平面γ与α,β的交线时,由面面平行的性质可知a ∥b ,故A 错误.对于B ,设a ,b 确定的平面为α,显然a α,故B 错误.对于C ,当a α时,直线a 与平面α内的无数条直线都平行,故C 错误.易知D 正确.故选D.7.(2016·南昌高三期末)如图,在直三棱柱ABC -A 1B 1C 1中,底面为直角三角形.∠ACB =90°,AC =6,BC =CC 1=2,P 是BC 1上一动点,则CP +P A 1的最小值为________.答案 5 2解析 连接A 1B ,将△A 1BC 1与△CBC 1同时展平形成一个平面四边形A 1BCC 1,则此时对角线CP +P A 1=A 1C 达到最小,在等腰直角三角形△BCC 1中,BC 1=2,∠CC 1B =45°,在△A 1BC 1中,A 1B =40=210,A 1C 1=6,BC 1=2,∴A 1C 21+BC 21=A 1B 2,即∠A 1C 1B =90°.对于展开形成的四边形A 1BCC 1,在△A 1C 1C 中,C 1C =2,A 1C 1=6,∠A 1C 1C =135°,由余弦定理有,CP +P A 1=A 1C =2+36-122cos 135°=50=5 2.8.如图是正四面体(各面均为正三角形)的平面展开图,G 、H 、M 、N 分别为DE 、BE 、EF 、EC 的中点,在这个正四面体中,①GH 与EF 平行; ②BD 与MN 为异面直线; ③GH 与MN 成60°角; ④DE 与MN 垂直.以上四个命题中,正确命题的序号是________. 答案 ②③④解析 把正四面体的平面展开图还原,如图所示,GH 与EF 为异面直线,BD 与MN 为异面直线,GH 与MN 成60°角,DE ⊥MN .9.(2015·浙江)如图,三棱锥ABCD 中,AB =AC =BD =CD =3,AD =BC =2,点M ,N 分别是AD ,BC 的中点,则异面直线AN ,CM 所成的角的余弦值是________.答案 78解析 如图所示,连接DN ,取线段DN 的中点K ,连接MK ,CK .∵M 为AD 的中点, ∴MK ∥AN ,∴∠KMC 为异面直线AN ,CM 所成的角. ∵AB =AC =BD =CD =3,AD =BC =2,N 为BC 的中点,由勾股定理求得AN =DN =CM =22, ∴MK = 2.在Rt △CKN 中,CK =(2)2+12= 3. 在△CKM 中,由余弦定理,得 cos ∠KMC =CM 2+MK 2-CK 22CM ×MK=(22)2+(2)2-(3)22×22×2=78.10.(2016·郑州质检)如图,矩形ABCD 中,AB =2AD ,E 为边AB 的中点,将△ADE 沿直线DE 翻折成△A 1DE .若M 为线段A 1C 的中点,则在△ADE 翻折过程中,下面四个命题中不正确的是________.①BM 是定值;②点M 在某个球面上运动; ③存在某个位置,使DE ⊥A 1C ; ④存在某个位置,使MB ∥平面A 1DE . 答案 ③解析 取DC 中点F ,连接MF ,BF ,MF ∥A 1D 且MF =12A 1D ,FB ∥ED 且FB =ED ,所以∠MFB =∠A 1DE .由余弦定理可得MB 2=MF 2+FB 2-2MF ·FB ·cos ∠MFB 是定值,所以M 是在以B 为圆心,MB 为半径的球上,可得①②正确;由MF ∥A 1D 与FB ∥ED 可得平面MBF ∥平面A 1DE ,可得④正确;A 1C 在平面ABCD 中的投影与AC 重合,AC 与DE 不垂直,可得③不正确.11.如图,在正方体ABCD —A 1B 1C 1D 1中,O 为正方形ABCD 的中心,H 为直线B 1D 与平面ACD 1的交点.求证:D 1、H 、O 三点共线.证明 如图,连接BD ,B 1D 1, 则BD ∩AC =O , ∵BB 1綊DD 1,∴四边形BB 1D 1D 为平行四边形,又H ∈B 1D , B 1D 平面BB 1D 1D , 则H ∈平面BB 1D 1D ,∵平面ACD 1∩平面BB 1D 1D =OD 1,∴H ∈OD 1. 即D 1、H 、O 三点共线.12.如图所示,等腰直角三角形ABC 中,∠A =90°,BC =2,DA ⊥AC ,DA ⊥AB ,若DA =1,且E 为DA 的中点.求异面直线BE 与CD 所成角的余弦值.解 如图所示,取AC 的中点F ,连接EF ,BF ,在△ACD 中,E 、F 分别是AD 、AC 的中点, ∴EF ∥CD .∴∠BEF 或其补角即为异面直线BE 与CD 所成的角. 在Rt △EAB 中,AB =AC =1,AE =12AD =12,∴BE =52. 在Rt △EAF 中,AF =12AC =12,AE =12,∴EF =22. 在Rt △BAF 中,AB =1,AF =12,∴BF =52. 在等腰三角形EBF 中,cos ∠FEB =12EF BE =2452=1010.∴异面直线BE与CD 所成角的余弦值为1010. 13.已知正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为D 1C 1,C 1B 1的中点,AC ∩BD =P ,A 1C 1∩EF =Q .求证:(1)D 、B 、F 、E 四点共面;(2)若A 1C 交平面DBFE 于R 点,则P ,Q ,R 三点共线. 证明 (1)如图所示,因为EF 是△D 1B 1C 1的中位线, 所以EF ∥B 1D 1.在正方体ABCD -A 1B 1C 1D 1中,B 1D 1∥BD , 所以EF ∥BD .所以EF ,BD 确定一个平面. 即D 、B 、F 、E 四点共面. (2)在正方体ABCD -A 1B 1C 1D 1中, 设平面A 1ACC 1确定的平面为α, 又设平面BDEF 为β. 因为Q ∈A 1C 1,所以Q ∈α.又Q∈EF,所以Q∈β.则Q是α与β的公共点,同理,P点也是α与β的公共点.所以α∩β=PQ.又A1C∩β=R,所以R∈A1C,则R∈α且R∈β.则R∈PQ,故P,Q,R三点共线.。
2018版高考数学大一轮复习第八章立体几何与空间向量.

第•八章.立体几何与空间向虽第1讲空间几何体的结构、三视图和直观图最新考纲I•认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构;2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图;3•会用平行投影方法画岀简单空间图形的三视图与直观图,了解空间图形的不同表示形式.椅理自测,理绥记忆知识梳理1•简单多面体的结构特征(1) 棱柱的侧棱都丫巾II相等,上、下底面是全等一且平行的多边形:(2) 棱锥的底面足任总多边形,侧面足有•个公共顶点的三角形:(3) 棱台可由JliLT-底面的平面截棱锥得到,其上、卜•底面是相似多边形.2.旋转体的形成3•三视图(1) 几何体的三视图包括正视图、侧视图、俯视图,分别足从儿何体的也方、生生方、生上方观察几何体画出的轮廓线.(2) 三视图的画法①基木要求:长对正,髙丫齐,宽相等.②在画三视图时,重叠的线只训一条,挡住的线要画成虚线.4. 直观图空间儿何体的直观图常用红二割画法來画,氏规则是:(I)原图形屮x轴、y轴、z轴两两垂fl,ft观图中,疋轴、轴的夹角为45°(或135°), z'轴与f轴、y,轴所在平面逢鱼.(2) 原图形中卩行J:坐标轴的线段,直观图中仍分别V仃「坐标轴.平行厲轴和2轴的线段在直观图中保持原长度不变, 平行于曲II的线段长度在直观图中变为原来的一半.诊断自测1 •判断正课(在括号内打“ J ”或“ X ”)斫精彩PPT展示(1) 有两个面平行,其余各面都是平行四边形的几何体是棱柱・()(2) 自一个面是多边形,其余各面都是三角形的儿何体是棱锥・()(3) 用斜二测画法画水平放置的ZA时,若Z4的两边分别平行于x轴和y轴,且ZA = 90° ,则在直观图中,ZA = 45° .()(4) 正方体、球、圆锥各自的三视图屮,三视图均相同・()解析(1)反例:由两个平行六面体上下组合在一起的图形满足条件,但不是棱柱.(2)反例:如图所示不是棱锥.(3)用斜二测画法画水平放置的Z人时,把川y轴画成相交成45。
2018版高考数学大一轮复习第八章立体几何与空间向量.

由此还原为原图形如图 2 所示,是直角梯形A′B′C′D′. 2 在梯形A′B′C′D′中,A′D′=1,B′C′= 2 +1,A′B′=∴这块菜地的面积 S=2(A′D′+
B′C′·A′B′=+1+=2+ 2 . 2 答案 2+ 2
[思想方法] 1.画三视图的三个原则: (1画法规则:“长对正,宽相等,高平齐”. (2摆放规则:侧视图在正视图的右侧,俯视图在正视图的正下方. (3实虚线的画法规则:可见轮廓线和棱用实线画出,不可见线和棱用虚线画出. 2.棱台和圆台是分别用平行于棱锥和圆锥的底面的平面截棱锥和圆锥后得到的,所以在解决棱台和
圆台的相关问题时,常“还台为锥”,体现了转化的数学思想.
[易错防范] 1.台体可以看成是由锥体截得的,易忽视截面与底面平行且侧棱延长后必交于一点. 2.空间几何体不同放置时其三视图不一定相同. 3.对于简单组合体,若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,易忽
视实虚线的画法.。
2018版高考数学大一轮复习第八章立体几何与空间向量8.7立体几何中的向量方法(一)__证明平行与垂

第八章 立体几何与空间向量 8.7 立体几何中的向量方法(一)——证明平行与垂直教师用书 理 新人教版1.直线的方向向量与平面的法向量的确定(1)直线的方向向量:在直线上任取一非零向量作为它的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎪⎨⎪⎧n ·a =0,n ·b =0.2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数x ,y ,使v =x v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u . (4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1 ∥u 2. 3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0. (2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u . (3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)直线的方向向量是唯一确定的.( × ) (2)平面的单位法向量是唯一确定的.( × ) (3)若两平面的法向量平行,则两平面平行.( √ ) (4)若两直线的方向向量不平行,则两直线不平行.( √ ) (5)若a ∥b ,则a 所在直线与b 所在直线平行.( × )(6)若空间向量a 平行于平面α,则a 所在直线与平面α平行.( × )1.已知A (1,0,0),B (0,1,0),C (0,0,1),则下列向量是平面ABC 法向量的是( )A .(-1,1,1)B .(1,-1,1)C .(-33,-33,-33) D .(33,33,-33) 答案 C解析 设n =(x ,y ,z )为平面ABC 的法向量, 则⎩⎪⎨⎪⎧n ·AB →=0,n ·AC →=0,化简得⎩⎪⎨⎪⎧-x +y =0,-x +z =0,∴x =y =z .故选C.2.直线l 的方向向量a =(1,-3,5),平面α的法向量n =(-1,3,-5),则有( ) A .l ∥α B .l ⊥α C .l 与α斜交 D .l ⊂α或l ∥α答案 B解析 由a =-n 知,n ∥a ,则有l ⊥α,故选B.3.平面α的法向量为(1,2,-2),平面β的法向量为(-2,-4,k ),若α∥β,则k 等于( )A .2B .-4C .4D .-2 答案 C解析 ∵α∥β,∴两平面法向量平行, ∴-21=-42=k-2,∴k =4. 4.(教材改编)设u ,v 分别是平面α,β的法向量,u =(-2,2,5),当v =(3,-2,2)时,α与β的位置关系为________;当v =(4,-4,-10)时,α与β的位置关系为________. 答案 α⊥β α∥β解析 当v =(3,-2,2)时,u ·v =(-2,2,5)·(3,-2,2)=0⇒α⊥β. 当v =(4,-4,-10)时,v =-2u ⇒α∥β.5.(教材改编)如图所示,在正方体ABCD -A 1B 1C 1D 1中,O 是底面正方形ABCD 的中心,M 是D 1D 的中点,N 是A 1B 1的中点,则直线ON ,AM 的位置关系是________.答案 垂直解析 以A 为原点,分别以AB →,AD →,AA 1→所在直线为x ,y ,z 轴,建立空间直角坐标系,设正方体棱长为1,则A (0,0,0),M (0,1,12),O (12,12,0),N (12,0,1),AM →·ON →=(0,1,12)·(0,-12,1)=0,∴ON 与AM 垂直.题型一 利用空间向量证明平行问题例1 (2016·重庆模拟)如图所示,平面PAD ⊥平面ABCD ,ABCD 为正方形,△PAD 是直角三角形,且PA =AD =2,E ,F ,G 分别是线段PA ,PD ,CD 的中点.求证:PB ∥平面EFG .证明 ∵平面PAD ⊥平面ABCD ,ABCD 为正方形,△PAD 是直角三角形,且PA =AD ,∴AB ,AP ,AD 两两垂直,以A 为坐标原点,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0).∴PB →=(2,0,-2),FE →=(0,-1,0),FG →=(1,1,-1), 设PB →=sFE →+tFG →,即(2,0,-2)=s (0,-1,0)+t (1,1,-1),∴⎩⎪⎨⎪⎧t =2,t -s =0,-t =-2,解得s =t =2,∴PB →=2FE →+2FG →,又∵FE →与FG →不共线,∴PB →,FE →与FG →共面. ∵PB ⊄平面EFG ,∴PB ∥平面EFG .引申探究本例中条件不变,证明平面EFG ∥平面PBC . 证明 ∵EF →=(0,1,0),BC →=(0,2,0), ∴BC →=2EF →,∴BC ∥EF .又∵EF ⊄平面PBC ,BC ⊂平面PBC , ∴EF ∥平面PBC ,同理可证GF ∥PC ,从而得出GF ∥平面PBC . 又EF ∩GF =F ,EF ⊂平面EFG ,GF ⊂平面EFG , ∴平面EFG ∥平面PBC .思维升华 (1)恰当建立空间直角坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键.(2)证明直线与平面平行,只需证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算.(2016·北京海淀区模拟)正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是C 1C ,B 1C 1的中点.求证:MN ∥平面A 1BD .证明 如图所示,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.设正方体的棱长为1,则M (0,1,12),N (12,1,1),D (0,0,0),A 1(1,0,1),B (1,1,0),于是MN →=(12,0,12),DA 1→=(1,0,1),DB →=(1,1,0).设平面A 1BD 的法向量为n =(x ,y ,z ),则n ·DA 1→=0,且n ·DB →=0,得⎩⎪⎨⎪⎧x +z =0,x +y =0.取x =1,得y =-1,z =-1. 所以n =(1,-1,-1).又MN →·n =(12,0,12)·(1,-1,-1)=0,所以MN →⊥n .又MN ⊄平面A 1BD ,所以MN ∥平面A 1BD . 题型二 利用空间向量证明垂直问题 命题点1 证线面垂直例2 如图所示,正三棱柱(底面为正三角形的直三棱柱)ABC —A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .证明 方法一 设平面A 1BD 内的任意一条直线m 的方向向量为m .由共面向量定理,则存在实数λ,μ,使m =λBA 1→+μBD →.令BB 1→=a ,BC →=b ,BA →=c ,显然它们不共面,并且|a |=|b |=|c |=2,a ·b =a·c =0,b·c =2,以它们为空间的一个基底, 则BA 1→=a +c ,BD →=12a +b ,AB 1→=a -c ,m =λBA 1→+μBD →=⎝⎛⎭⎪⎫λ+12μa +μb +λc , AB 1→·m =(a -c )·⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫λ+12μa +μb +λc =4⎝ ⎛⎭⎪⎫λ+12μ-2μ-4λ=0.故AB 1→⊥m ,结论得证. 方法二 取BC 的中点O ,连接AO .因为△ABC 为正三角形, 所以AO ⊥BC .因为在正三棱柱ABC —A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1, 所以AO ⊥平面BCC 1B 1.取B 1C 1的中点O 1,以O 为原点,分别以OB →,OO 1→,OA →所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,则B (1,0,0),D (-1,1,0),A 1(0,2,3),A (0,0,3),B 1(1,2,0).设平面A 1BD 的法向量为n =(x ,y ,z ),BA 1→=(-1,2,3),BD →=(-2,1,0). 因为n ⊥BA 1→,n ⊥BD →, 故⎩⎪⎨⎪⎧n ·BA 1→=0,n ·BD →=0⇒⎩⎨⎧-x +2y +3z =0,-2x +y =0,令x =1,则y =2,z =-3,故n =(1,2,-3)为平面A 1BD 的一个法向量, 而AB 1→=(1,2,-3),所以AB 1→=n ,所以AB 1→∥n , 故AB 1⊥平面A 1BD . 命题点2 证面面垂直例3 (2017·武汉月考)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为a 的正方形,侧面PAD ⊥底面ABCD ,且PA =PD =22AD ,设E ,F 分别为PC ,BD 的中点.(1)求证:EF ∥平面PAD ; (2)求证:平面PAB ⊥平面PDC .证明 (1)如图,取AD 的中点O ,连接OP ,OF .因为PA =PD ,所以PO ⊥AD .因为侧面PAD ⊥底面ABCD ,平面PAD ∩平面ABCD =AD , 所以PO ⊥平面ABCD .又O ,F 分别为AD ,BD 的中点,所以OF ∥AB . 又ABCD 是正方形,所以OF ⊥AD . 因为PA =PD =22AD ,所以PA ⊥PD ,OP =OA =a 2. 以O 为原点,OA ,OF ,OP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系, 则A (a 2,0,0),F (0,a 2,0),D (-a 2,0,0),P (0,0,a 2),B (a 2,a,0),C (-a2,a,0).因为E 为PC 的中点,所以E (-a 4,a 2,a4).易知平面PAD 的一个法向量为OF →=(0,a 2,0),因为EF →=(a 4,0,-a 4),且OF →·EF →=(0,a 2,0)·(a 4,0,-a 4)=0,所以EF ∥平面PAD .(2)因为PA →=(a 2,0,-a 2),CD →=(0,-a,0),所以PA →·CD →=(a 2,0,-a 2)·(0,-a,0)=0,所以PA →⊥CD →,所以PA ⊥CD .又PA ⊥PD ,PD ∩CD =D ,所以PA ⊥平面PDC . 又PA ⊂平面PAB ,所以平面PAB ⊥平面PDC . 思维升华 证明垂直问题的方法(1)利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.(2)其一证明直线与直线垂直,只需要证明两条直线的方向向量垂直;其二证明线面垂直,只需证明直线的方向向量与平面内不共线的两个向量垂直即可,当然 ,也可证直线的方向向量与平面的法向量平行;其三证明面面垂直:①证明两平面的法向量互相垂直;②利用面面垂直的判定定理,只要能证明一个平面内的一条直线的方向向量为另一个平面的法向量即可.(2016·青岛模拟)如图,在多面体ABC -A 1B 1C 1中,四边形A 1ABB 1是正方形,AB=AC ,BC =2AB ,B 1C 1綊12BC ,二面角A 1-AB -C 是直二面角.求证:(1)A 1B 1⊥平面AA 1C ; (2)AB 1∥平面A 1C 1C .证明 (1)∵二面角A 1-AB -C 是直二面角,四边形A 1ABB 1为正方形, ∴AA 1⊥平面BAC . 又∵AB =AC ,BC =2AB ,∴∠CAB =90°,即CA ⊥AB , ∴AB ,AC ,AA 1两两互相垂直.建立如图所示的空间直角坐标系,点A 为坐标原点,设AB =2,则A (0,0,0),B 1(0,2,2),A 1(0,0,2),C (2,0,0),C 1(1,1,2).A 1B 1→=(0,2,0),A 1A →=(0,0,-2),AC →=(2,0,0),设平面AA 1C 的一个法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·A 1A →=0,n ·AC →=0,即⎩⎪⎨⎪⎧-2z =0,2x =0,即⎩⎪⎨⎪⎧x =0,z =0,取y =1,则n =(0,1,0).∴A 1B 1→=2n ,即A 1B 1→∥n . ∴A 1B 1⊥平面AA 1C .(2)易知AB 1→=(0,2,2),A 1C 1→=(1,1,0),A 1C →=(2,0,-2), 设平面A 1C 1C 的一个法向量m =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧m ·A 1C 1→=0,m ·A 1C →=0,即⎩⎪⎨⎪⎧x 1+y 1=0,2x 1-2z 1=0,令x 1=1,则y 1=-1,z 1=1,即m =(1,-1,1). ∴AB 1→·m =0×1+2×(-1)+2×1=0, ∴AB 1→⊥m .又AB 1⊄平面A 1C 1C ,∴AB 1∥平面A 1C 1C . 题型三 利用空间向量解决探索性问题例4 (2016·北京)如图,在四棱锥PABCD 中,平面PAD ⊥平面ABCD ,PA ⊥PD ,PA =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5.(1)求证:PD ⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AMAP的值;若不存在,说明理由. (1)证明 ∵平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,AB ⊥AD ,AB ⊂平面ABCD , ∴AB ⊥平面PAD .∵PD ⊂平面PAD ,∴AB ⊥PD .又PA ⊥PD ,PA ∩AB =A ,且PA ,PB ⊂平面PAB , ∴PD ⊥平面PAB .(2)解 取AD 中点O ,连接CO ,PO ,∵PA =PD , ∴PO ⊥AD .又∵PO ⊂平面PAD , 平面PAD ⊥平面ABCD , ∴PO ⊥平面ABCD , ∵CO ⊂平面ABCD , ∴PO ⊥CO ,∵AC =CD ,∴CO ⊥AD .以O 为原点建立如图所示空间直角坐标系.易知P (0,0,1),B (1,1,0),D (0,-1,0),C (2,0,0). 则PB →=(1,1,-1),PD →=(0,-1,-1),PC →=(2,0,-1). CD →=(-2,-1,0).设n =(x 0,y 0,1)为平面PCD 的一个法向量.由⎩⎪⎨⎪⎧n ·PD →=0,n ·PC →=0得⎩⎪⎨⎪⎧-y 0-1=0,2x 0-1=0,解得⎩⎪⎨⎪⎧y 0=-1,x 0=12.即n =⎝ ⎛⎭⎪⎫12,-1,1.设PB 与平面PCD 的夹角为θ. 则sin θ=|cos 〈n ,PB →〉|=|n ·PB →||n ||PB →|=|12-1-1|14+1+1×3=33. (3)解 设M 是棱PA 上一点,则存在λ∈[0,1]使得AM →=λAP →,因此点M (0,1-λ,λ),BM →=(-1,-λ,λ),∵BM ⊄平面PCD ,∴BM ∥平面PCD ,∴BM →·n =0,即(-1,-λ,λ)·⎝ ⎛⎭⎪⎫12,-1,1=0,解得λ=14,∴在棱PA 上存在点M 使得BM ∥平面PCD ,此时AM AP =14.思维升华 对于“是否存在”型问题的探索方式有两种:一种是根据条件作出判断,再进一步论证;另一种是利用空间向量,先设出假设存在点的坐标,再根据条件求该点的坐标,即找到“存在点”,若该点坐标不能求出,或有矛盾,则判定“不存在”.(2016·深圳模拟)如图所示,四边形ABCD 是边长为1的正方形,MD ⊥平面ABCD ,NB ⊥平面ABCD ,且MD =NB =1,E 为BC 的中点.(1)求异面直线NE 与AM 所成角的余弦值;(2)在线段AN 上是否存在点S ,使得ES ⊥平面AMN ?若存在,求线段AS 的长;若不存在,请说明理由.解 (1)如图,以D 为坐标原点,建立空间直角坐标系Dxyz ,依题意得D (0,0,0),A (1,0,0),M (0,0,1),C (0,1,0),B (1,1,0),N (1,1,1),E (12,1,0),所以NE →=(-12,0,-1),AM →=(-1,0,1),因为|cos 〈NE →,AM →〉|=|NE →·AM →||NE →||AM →|=1252×2=1010.所以异面直线NE 与AM 所成角的余弦值为1010. (2)假设在线段AN 上存在点S ,使得ES ⊥平面AMN . 连接AE ,如图所示.因为AN →=(0,1,1),可设AS →=λAN →=(0,λ,λ), 又EA →=(12,-1,0),所以ES →=EA →+AS →=(12,λ-1,λ).由ES ⊥平面AMN , 得⎩⎪⎨⎪⎧ES →·AM →=0,ES →·AN →=0,即⎩⎪⎨⎪⎧-12+λ=0,λ-+λ=0,解得λ=12,此时AS →=(0,12,12),|AS →|=22.经检验,当AS =22时,ES ⊥平面AMN . 故线段AN 上存在点S ,使得ES ⊥平面AMN ,此时AS =22.19.利用向量法解决立体几何问题典例 (12分)(2016·吉林实验中学月考)如图1所示,正△ABC 的边长为4,CD 是AB 边上的高,E ,F 分别是AC 和BC 边的中点,现将△ABC 沿CD 翻折成直二面角A -DC -B ,如图2所示.(1)试判断直线AB 与平面DEF 的位置关系,并说明理由; (2)求二面角E -DF -C 的余弦值;(3)在线段BC 上是否存在一点P ,使AP ⊥DE ?证明你的结论. 思想方法指导 对于较复杂的立体几何问题可采用向量法(1)用向量法解决立体几何问题,是空间向量的一个具体应用,体现了向量的工具性,这种方法可把复杂的推理证明、辅助线的作法转化为空间向量的运算,降低了空间想象演绎推理的难度,体现了由“形”转“数”的转化思想.(2)两种思路:①选好基底,用向量表示出几何量,利用空间向量有关定理与向量的线性运算进行判断.②建立空间直角坐标系,进行向量的坐标运算,根据运算结果的几何意义解释相关问题. 规范解答解 (1)AB ∥平面DEF ,理由如下:在△ABC 中,由E ,F 分别是AC ,BC 中点,得EF ∥AB . 又AB ⊄平面DEF ,EF ⊂平面DEF , ∴AB ∥平面DEF .[1分](2)以D 为原点,建立如图所示的空间直角坐标系,则A (0,0,2),B (2,0,0),C (0,23,0),E (0,3,1),F (1,3,0),[3分] 易知平面CDF 的法向量为DA →=(0,0,2), 设平面EDF 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧DF →·n =0,DE →·n =0,即⎩⎨⎧x +3y =0,3y +z =0,取n =(3,-3,3),cos 〈DA →,n 〉=DA →·n |DA →||n |=217,∴二面角E -DF -C 的余弦值为217.[6分] (3)设P (x ,y,0),则AP →·DE →=3y -2=0, ∴y =233.又BP →=(x -2,y,0),PC →=(-x,23-y,0), ∵BP →∥PC →,∴(x -2)(23-y )=-xy , ∴3x +y =2 3.[9分]把y =233代入上式得x =43,∴P (43,233,0),∴BP →=13BC →,∴在线段BC 上存在点P (43,233,0),使AP ⊥DE .[12分]1.(2016·茂名调研)已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ).若a ,b ,c 三向量共面,则实数λ等于( ) A.627 B.637 C.607 D.657 答案 D解析 由题意得c =t a +μb =(2t -μ,-t +4μ,3t -2μ),∴⎩⎪⎨⎪⎧7=2t -μ,5=-t +4μ,λ=3t -2μ,∴⎩⎪⎨⎪⎧t =337,μ=177,λ=657.2.(2017·西安质检)若平面α,β的法向量分别是n 1=(2,-3,5),n 2=(-3,1,-4),则( ) A .α∥βB .α⊥βC .α,β相交但不垂直D .以上答案均不正确答案 C解析 ∵n 1·n 2=2×(-3)+(-3)×1+5×(-4)≠0, ∴n 1与n 2不垂直,且不共线. ∴α与β相交但不垂直.3.已知平面α内有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则下列点P 中,在平面α内的是( )A .P (2,3,3)B .P (-2,0,1)C .P (-4,4,0)D .P (3,-3,4)答案 A解析 逐一验证法,对于选项A ,MP →=(1,4,1),∴MP →·n =6-12+6=0,∴MP →⊥n ,∴点P 在平面α内,同理可验证其他三个点不在平面α内.4.若AB →=λCD →+μCE →,则直线AB 与平面CDE 的位置关系是( ) A .相交 B .平行C .在平面内D .平行或在平面内 答案 D解析 ∵AB →=λCD →+μCE →,∴AB →、CD →、CE →共面, ∴AB 与平面CDE 平行或在平面CDE 内.5.设u =(-2,2,t ),v =(6,-4,4)分别是平面α,β的法向量.若α⊥β,则t 等于( ) A .3 B .4 C .5 D .6 答案 C解析 ∵α⊥β,则u ·v =-2×6+2×(-4)+4t =0,∴t =5.6.(2016·泰安模拟)如图所示,在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B 和AC 上的点,A 1M =AN =2a3,则MN 与平面BB 1C 1C 的位置关系是( )A .斜交B .平行C .垂直D .MN 在平面BB 1C 1C 内答案 B解析 建立如图所示的空间直角坐标系,由于A 1M =AN =2a 3, 则M (a ,2a 3,a 3),N (2a 3,2a 3,a ),MN →=(-a 3,0,2a 3).又C 1D 1⊥平面BB 1C 1C ,所以C 1D 1→=(0,a,0)为平面BB 1C 1C 的一个法向量. 因为MN →·C 1D 1→=0,所以MN →⊥C 1D 1→,又MN ⊄平面BB 1C 1C , 所以MN ∥平面BB 1C 1C .7.(2017·广州质检)已知平面α内的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是__________________________. 答案 α∥β解析 设平面α的法向量为m =(x ,y ,z ), 由m ·AB →=0,得x ·0+y -z =0⇒y =z , 由m ·AC →=0,得x -z =0⇒x =z ,取x =1, ∴m =(1,1,1),m =-n , ∴m ∥n ,∴α∥β.8.(2016·潍坊模拟)已知点P 是平行四边形ABCD 所在的平面外一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量;④AP →∥BD →.其中正确的是________. 答案 ①②③解析 ∵AB →·AP →=0,AD →·AP →=0, ∴AB ⊥AP ,AD ⊥AP ,则①②正确. 又AB →与AD →不平行,∴AP →是平面ABCD 的法向量,则③正确.∵BD →=AD →-AB →=(2,3,4),AP →=(-1,2,-1), ∴BD →与AP →不平行,故④错误.*9.如图,圆锥的轴截面SAB 是边长为2的等边三角形,O 为底面中心,M 为SO 中点,动点P 在圆锥底面内(包括圆周).若AM ⊥MP ,则点P 形成的轨迹长度为________.答案72解析 由题意可知,建立空间直角坐标系,如图所示.则A (0,-1,0),B (0,1,0),S (0,0,3),M (0,0,32),设P (x ,y,0), ∴AM →=(0,1,32),MP →=(x ,y ,-32),即y =34,∴点P 的轨迹方程为y =34.根据圆的弦长公式,可得点P 形成的轨迹长度为21-342=72. 10.如图,在三棱锥PABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上.已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)若点M 是线段AP 上一点,且AM =3.试证明平面AMC ⊥平面BMC .证明 (1)如图所示,以O 为坐标原点,OD ,OP 所在直线为y 轴,z 轴,建立空间直角坐标系Oxyz .则O (0,0,0),A (0,-3,0),B (4,2,0),C (-4,2,0),P (0,0,4).于是AP →=(0,3,4), BC →=(-8,0,0),∴AP →·BC →=(0,3,4)·(-8,0,0)=0, ∴AP →⊥BC →,即AP ⊥BC . (2)由(1)知AP =5,又AM =3,且点M 在线段AP 上, ∴AM →=35AP →=⎝ ⎛⎭⎪⎫0,95,125,又BC →=(-8,0,0),AC →=(-4,5,0),BA →=(-4,-5,0),∴BM →=BA →+AM →=⎝ ⎛⎭⎪⎫-4,-165,125,则AP →·BM →=(0,3,4)·⎝ ⎛⎭⎪⎫-4,-165,125=0,∴AP →⊥BM →,即AP ⊥BM ,又根据(1)的结论知AP ⊥BC ,且BM ∩BC =B , ∴AP ⊥平面BMC ,于是AM ⊥平面BMC . 又AM ⊂平面AMC ,故平面AMC ⊥平面BMC .11.(2016·长沙模拟)如图,在四棱锥P —ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E 、F 分别是AB 、PB 的中点.(1)求证:EF ⊥CD ;(2)在平面PAD 内求一点G ,使GF ⊥平面PCB ,并证明你的结论.(1)证明 如图,分别以DA 、DC 、DP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,设AD =a ,则D (0,0,0),A (a,0,0),B (a ,a,0),C (0,a,0),E ⎝⎛⎭⎪⎫a ,a 2,0,P (0,0,a ),F ⎝ ⎛⎭⎪⎫a 2,a 2,a 2.EF →=⎝ ⎛⎭⎪⎫-a2,0,a 2,DC →=(0,a,0).∵EF →·DC →=0,∴EF →⊥DC →,即EF ⊥CD .(2)解 设G (x,0,z ),则FG →=⎝ ⎛⎭⎪⎫x -a2,-a 2,z -a 2,若使GF ⊥平面PCB ,则由FG →·CB →=⎝ ⎛⎭⎪⎫x -a2,-a 2,z -a 2·(a,0,0)=a ⎝ ⎛⎭⎪⎫x -a 2=0,得x =a2; 由FG →·CP →=⎝ ⎛⎭⎪⎫x -a2,-a 2,z -a 2·(0,-a ,a )=a 22+a ⎝ ⎛⎭⎪⎫z -a 2=0,得z =0.∴G 点坐标为⎝ ⎛⎭⎪⎫a2,0,0,即G 为AD 的中点.*12.如图所示,在多面体ABCDEF 中,四边形ABCD 是正方形,EF ∥AB ,EF ⊥FB ,AB =2EF ,∠BFC =90°,BF =FC ,H 是BC 的中点.(1)求证:FH ∥平面EDB ; (2)求证:AC ⊥平面EDB .证明 (1)∵四边形ABCD 为正方形,∴AB ⊥BC .又EF ∥AB ,∴EF ⊥BC .又EF ⊥FB ,FB ∩BC =B ,∴EF ⊥平面BFC . ∴EF ⊥FH ,∴AB ⊥FH .又BF =FC ,H 为BC 的中点,∴FH ⊥BC . 又AB ∩BC =B ,∴FH ⊥平面ABC .以H 为坐标原点,HB →为x 轴正方向,HF →为z 轴正方向,建立如图所示空间直角坐标系.设BH =1,则A (1,-2,0),B (1,0,0),C (-1,0,0),D (-1,-2,0),E (0,-1,1),F (0,0,1). 设AC 与BD 的交点为G ,连接GE ,GH , 则G (0,-1,0),∴GE →=(0,0,1), 又HF →=(0,0,1),∴HF →∥GE →. 又GE ⊂平面EDB ,HF ⊄平面EDB , ∴FH ∥平面EDB .(2)∵AC →=(-2,2,0),GE →=(0,0,1), AC →·GE →=0, ∴AC ⊥GE .又AC ⊥BD ,EG ∩BD =G , ∴AC ⊥平面EDB .。
2018版高考数学一轮复习第八章立体几何8.6空间向量及其运算理

第八章立体几何8.6空间向量及其运算理基础知识自主学习ET知识梳理-----------------------------i. 空间向量的有关概念2. 空间向量中的有关定理(1) 共线向量定理空间两个向量a与b(b^0)共线的充要条件是存在实数入,使得a=入b.(2) 共面向量定理共面向量定理的向量表达式:p= xa+ yb,其中x, y€ R, a, b为不共线向量.(3) 空间向量基本定理如果三个向量a, b, c不共面,那么对空间任一向量p,存在有序实数组{x, y, z},使得p=xa+ yb+ zc, {a, b, c}叫做空间的一个基底.3 •空间向量的数量积及运算律(1) 数量积及相关概念①两向量的夹角已知两个非零向量a, b,在空间任取一点0,作6*a, OB= b,则/ A0B叫做向量a, b的夹角,记作〈a, b〉,其范围是0w〈a, b〉w n,若〈a, b〉= 专,则称a与b互相垂直,记作a丄b.②两向量的数量积已知空间两个非零向量a, b,则I a ll b lcos 〈a, b〉叫做向量a, b的数量积,记作a • b,即a • b= I a ll b lcos 〈 a, b〉.2424(2)空间向量数量积的运算律 ①结合律: (入 a ) - b =入(a • b ); ②交换律: a - b = b - a ; ③分配律: a •( b + c ) = a - b + a - c . 4 .空间向量的坐标表示及其应用 设 a = (a i , a 2, a 3), b = (b i ,b 2, b 3).向量表示坐标表小数量积 a •bab 1+ a 2b 2 + a 3b 3共线 a =入 b (b ^0,入 € R)a 1=入 bi , a 2=入b 2, a 3=入 b 3垂直 a - b = 0(a *0,0)a 1b + a 2b 2 + a 3b 3= 0模|a |寸 a 1+ a ;+ a 2 夹角〈a , b > (a *0, b *0) cos 〈 a , b > =ab + a 2b 2 + a 3b 3 寸 a 1 + a 2 + a 3 •寸 b + b 2 + b【知识拓展】 1. 向量三点共线定理:在平面中A B C 三点共线的充要条件是:0A= x O B^ y &C 其中x +y=1) , 0为平面内任意一点. 2.向量四点共面定理: 在空间中P 、A 、B C 四点共面的充要条件是: O P= xOAb y O B^ zOC 其中x + y + z = 1), O 为空间中任意一点. 【思考辨析】判断下列结论是否正确(请在括号中打“V”或“ x”) (1)空间中任意两非零向量 a , b 共面.( V )⑵ 在向量的数量积运算中(a • b ) • c = a •( b • c ) . ( x ) ⑶对于非零向量b ,由a • b = b • c ,则a = c .( x )(4) 两向量夹角的范围与两异面直线所成角的范围相同.(X )⑸若A 、B C D 是空间任意四点,则有 鯨詁DA= 0.( V )考点自测1.已知正四面体ABCD勺棱长为a,点E, F分别是BC AD的中点,贝U Afe- AF勺值为(A. a2B.新C. 4a2D.答案C24解析如图,设AB= a, A C= b, AD= c,则| a| = | b| = | c| = a,且a, b, c三向量两两夹角为60°. AE= 2(a+ b) , AF= j c,—A —A 1 11 1 2 2 1 2••• AE- AF= 2(a + b) • j c= &(a • c + b • c) = 4( a cos 60 ° + a cos 60 ° ) = -a .2 . (2016 •大连模拟)向量a= ( —2, - 3,1) , b= (2,0,4) , c = ( —4,—6,2),下列结论正确的是()A. a〃b, a H cB. a〃b, a丄cC. a// c, a丄bD.以上都不对答案C解析因为c = ( —4,—6,2) = 2( —2, —3,1) = 2a,所以a/ c.又a • b= ( —2) x 2+ ( —3) x o+ 1X 4= 0,所以a丄b.故选C.3 .与向量(一3,—4,5)共线的单位向量是 ____________________________ .答案嚅,罕-弓和-器,-警鳥解析因为与向量a共线的单位向量是土吕,又因为向量(一3 , —4,5)的模为| a|P - 3 2+——4 2+ 52= 5迄,所以与向量(一3,—4,5)共线的单位向量是土立(—3,—4, 5)= ± 10(—3,— 4,5).4.如图,在四面体O—ABC中, OA= a, OB= b, A(= c, D为BC的中点,E为AD的中点,贝U S E = _________ .(用a, b, c表示)1 1 1答案尹+ :b+4c解析A E= 1陥扌张中酣4-O B^4A C1 1 1 =2a + 4b +4c .5.(教材改编)正四面体ABCD 勺棱长为2, E , F 分别为BC AD 中点,贝U EF 的长为 ___________ 答案 、2解析 |EF 2= E F = (E C +D F 2=EC +CD + 評+ 2( EC-亦 E C- DK 2D- DF2 2 2=1 + 2 + 1 + 2(1 X 2X cos 120 ° + 0 + 2X 1X cos 120 ° ) =2,•••|曲=2,A EF 的长为,2.题型分类深度剖析题型一 空间向量的线性运算用AB AD AA 表示OC,则OC =答案2画2*+ AA解析 O C = 2A C = 2(A B + AD ,• OC = S C + CC = 2(A B + AD + AA=1AB + 2AD + AA .⑵ 三棱锥O-ABC 中 , M N 分别是OA BC 的中点,6是厶ABC 勺重心,用基向量 OA O B O C表示M G O G2 2 2 1 2 2 2 解 MG= M/+ A G= ;O/+ 3AN23例1 (1)如图所示,在长方体ABC D ABGD 中,O 为AC 的中点.=2OA + 3(A N - O A=2oA + 訥囱 AC - OA1 A 1 A 1 A=-占。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章 立体几何与空间向量 8.6 空间向量及其运算试题 理 北师大版1.空间向量的有关概念2.空间向量中的有关定理 (1)共线向量定理空间两个向量a 与b (b ≠0)共线的充要条件是存在实数λ,使得a =λb . (2)空间向量基本定理如果向量e 1, e 2,e 3是空间三个不共面的向量,a 是空间任一向量,那么存在唯一一组实数λ1,λ2,λ3,使得a =λe 1+λ2e 2+λ3e 3.空间中不共面的三个向量e 1,e 2,e 3叫作这个空间的一个基底.3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫作向量a ,b 的夹角,记作〈a ,b 〉,其范围是0≤〈a ,b 〉≤π,若〈a ,b 〉=π2,则称a 与b 互相垂直,记作a ⊥b .②两向量的数量积已知空间两个非零向量a ,b ,则|a ||b |cos 〈a ,b 〉叫作向量a ,b 的数量积,记作a ·b ,即a ·b =|a ||b |cos 〈a ,b 〉. (2)空间向量数量积的运算律 ①λ(a ·b )=(λa )·b (λ∈R ); ②交换律:a ·b =b ·a ;③分配律:a ·(b +c )=a ·b +a ·c . 4.空间向量的坐标表示及其应用 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3).【知识拓展】1.向量三点共线定理:在平面中A 、B 、C 三点共线的充要条件是:OA →=xOB →+yOC →(其中x +y =1),O 为平面内任意一点.2.向量四点共面定理:在空间中P 、A 、B 、C 四点共面的充要条件是:OP →=xOA →+yOB →+zOC →(其中x +y +z =1),O 为空间中任意一点.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)空间中任意两非零向量a ,b 共面.( √ )(2)在向量的数量积运算中(a ·b )·c =a ·(b ·c ).( × ) (3)对于非零向量b ,由a ·b =b ·c ,则a =c .( × )(4)两向量夹角的范围与两异面直线所成角的范围相同.( × ) (5)若A 、B 、C 、D 是空间任意四点,则有AB →+BC →+CD →+DA →=0.( √ )1.已知正四面体ABCD 的棱长为a ,点E ,F 分别是BC ,AD 的中点,则AE →·AF →的值为( )A .a 2B.12a 2C.14a 2D.34a 2答案 C解析 如图,设AB →=a ,AC →=b ,AD →=c ,则|a |=|b |=|c |=a ,且a ,b ,c 三向量两两夹角为60°.AE →=12(a +b ),AF →=12c ,∴AE →·AF →=12(a +b )·12c =14(a ·c +b ·c )=14(a 2cos 60°+a 2cos 60°)=14a 2.2.(2016·大连模拟)向量a =(-2,-3,1),b =(2,0,4),c =(-4,-6,2),下列结论正确的是( ) A .a ∥b ,a ∥c B .a ∥b ,a ⊥c C .a ∥c ,a ⊥b D .以上都不对答案 C解析 因为c =(-4,-6,2)=2(-2,-3,1)=2a , 所以a ∥c .又a ·b =(-2)×2+(-3)×0+1×4=0, 所以a ⊥b .故选C.3.与向量(-3,-4,5)共线的单位向量是_________________. 答案 ⎝⎛⎭⎪⎫3210,225,-22和⎝ ⎛⎭⎪⎫-3210,-225,22解析 因为与向量a 共线的单位向量是±a|a |,又因为向量(-3,-4,5)的模为-2+-2+52=52,所以与向量(-3,-4,5)共线的单位向量是±152(-3,-4,5)=±210(-3,-4,5). 4.如图,在四面体O -ABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,则OE →=________.(用a ,b ,c 表示)答案 12a +14b +14c解析 OE →=12OA →+12OD →=12OA →+14OB →+14OC →=12a +14b +14c . 5.(教材改编)正四面体ABCD 的棱长为2,E ,F 分别为BC ,AD 中点,则EF 的长为________. 答案2解析 |EF →|2=EF →2=(EC →+CD →+DF →)2=EC →2+CD →2+DF →2+2(EC →·CD →+EC →·DF →+CD →·DF →)=12+22+12+2(1×2×cos 120°+0+2×1×cos 120°) =2,∴|EF →|=2,∴EF 的长为 2.题型一 空间向量的线性运算例1 (1)如图所示,在长方体ABCD -A 1B 1C 1D 1中,O 为AC 的中点. 用AB →,AD →,AA 1→表示OC 1→,则OC 1→=________________.答案 12AB →+12AD →+AA 1→解析 OC →=12AC →=12(AB →+AD →),∴OC 1→=OC →+CC 1→=12(AB →+AD →)+AA 1→=12AB →+12AD →+AA 1→. (2)三棱锥O -ABC 中,M ,N 分别是OA ,BC 的中点,G 是△ABC 的重心,用基向量OA →,OB →,OC →表示MG →,OG →.解 MG →=MA →+AG →=12OA →+23AN →=12OA →+23(ON →-OA →)=12OA →+23[12(OB →+OC →)-OA →] =-16OA →+13OB →+13OC →.OG →=OM →+MG →=12OA →-16OA →+13OB →+13OC →=13OA →+13OB →+13OC →. 思维升华 用已知向量表示某一向量的方法用已知向量来表示未知向量,一定要结合图形,以图形为指导是解题的关键.要正确理解向量加法、减法与数乘运算的几何意义.首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量.在立体几何中三角形法则、平行四边形法则仍然成立.(2016·青岛模拟)如图所示,在空间几何体ABCD -A 1B 1C 1D 1中,各面为平行四边形,设AA 1→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:(1)AP →; (2)MP →+NC 1→.解 (1)因为P 是C 1D 1的中点, 所以AP →=AA 1→+A 1D 1→+D 1P → =a +AD →+12D 1C 1→=a +c +12AB →=a +c +12b .(2)因为M 是AA 1的中点, 所以MP →=MA →+AP →=12A 1A →+AP →=-12a +(a +c +12b )=12a +12b +c . 又NC 1→=NC →+CC 1→=12BC →+AA 1→=12AD →+AA 1→=12c +a , 所以MP →+NC 1→=(12a +12b +c )+(a +12c )=32a +12b +32c .题型二 共线定理、共面定理的应用例2 (2016·天津模拟)如图,已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点.(1)求证:E ,F ,G ,H 四点共面; (2)求证:BD ∥平面EFGH ;(3)设M 是EG 和FH 的交点,求证:对空间任一点O ,有OM →=14(OA →+OB →+OC →+OD →).证明 (1)连接BG ,则EG →=EB →+BG → =EB →+12(BC →+BD →)=EB →+BF →+EH → =EF →+EH →,由共面向量定理的推论知E ,F ,G ,H 四点共面. (2)因为EH →=AH →-AE →=12AD →-12AB →=12(AD →-AB →)=12BD →, 所以EH ∥BD .又EH 平面EFGH ,BD 平面EFGH , 所以BD ∥平面EFGH .(3)找一点O ,并连接OM ,OA ,OB ,OC ,OD ,OE ,OG .由(2)知EH →=12BD →,同理FG →=12BD →,所以EH →=FG →,即EH 綊FG , 所以四边形EFGH 是平行四边形, 所以EG ,FH 交于一点M 且被M 平分. 故OM →=12(OE →+OG →)=12OE →+12OG → =12[12(OA →+OB →)]+12[12(OC →+OD →)] =14(OA →+OB →+OC →+OD →). 思维升华 (1)证明空间三点P ,A ,B 共线的方法 ①PA →=λPB →(λ∈R );②对空间任一点O ,OP →=OA →+tAB →(t ∈R ); ③对空间任一点O ,OP →=xOA →+yOB →(x +y =1). (2)证明空间四点P ,M ,A ,B 共面的方法 ①MP →=xMA →+yMB →;②对空间任一点O ,OP →=OM →+xMA →+yMB →;③对空间任一点O ,OP →=xOM →+yOA →+zOB →(x +y +z =1); ④PM →∥AB →(或PA →∥MB →或PB →∥AM →).已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,若点M 满足OM →=13(OA →+OB→+OC →).(1)判断MA →,MB →,MC →三个向量是否共面; (2)判断点M 是否在平面ABC 内. 解 (1)由题意知OA →+OB →+OC →=3OM →, ∴OA →-OM →=(OM →-OB →)+(OM →-OC →) 即MA →=BM →+CM →=-MB →-MC →, ∴MA →,MB →,MC →共面.(2)由(1)知MA →,MB →,MC →共面且基线过同一点M , ∴M ,A ,B ,C 四点共面. 从而点M 在平面ABC 内. 题型三 空间向量数量积的应用例3 (2016·济南模拟)如图,已知平行六面体ABCD -A 1B 1C 1D 1中,底面ABCD 是边长为1的正方形,AA 1=2,∠A 1AB =∠A 1AD =120°.(1)求线段AC 1的长;(2)求异面直线AC 1与A 1D 所成角的余弦值; (3)求证:AA 1⊥BD .(1)解 设AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=1,|c |=2,a ·b =0,c ·a =c ·b =2×1×cos 120°=-1. ∵AC 1→=AC →+CC 1→=AB →+AD →+AA 1→=a +b +c , ∴|AC 1→|=|a +b +c | =a +b +c2=|a |2+|b |2+|c |2+a ·b +b ·c +c ·a=12+12+22+-1-= 2.∴线段AC 1的长为 2.(2)解 设异面直线AC 1与A 1D 所成的角为θ, 则cos θ=|cos 〈AC 1→,A 1D →〉|=⎪⎪⎪⎪⎪⎪⎪⎪AC 1→·A 1D →|AC1→||A 1D →|.∵AC 1→=a +b +c ,A 1D →=b -c ,∴AC 1→·A 1D →=(a +b +c )·(b -c )=a ·b -a ·c +b 2-c 2=0+1+12-22=-2, |A 1D →|=b -c2=|b |2-2b ·c +|c |2=12--+22=7.∴cos θ=⎪⎪⎪⎪⎪⎪⎪⎪AC 1→·A 1D →|AC 1→||A 1D →=|-22×7|=147.故异面直线AC 1与A 1D 所成角的余弦值为147. (3)证明 ∵AA 1→=c ,BD →=b -a ,∴AA 1→·BD →=c ·(b -a )=c ·b -c ·a =(-1)-(-1)=0,∴AA 1→⊥BD →,∴AA 1⊥BD .思维升华 (1)利用向量的数量积可证明线段的垂直关系,也可以利用垂直关系,通过向量共线确定点在线段上的位置;(2)利用夹角公式,可以求异面直线所成的角,也可以求二面角;(3)可以通过|a |=a 2,将向量的长度问题转化为向量数量积的问题求解.如图,在平行六面体ABCD -A 1B 1C 1D 1中,以顶点A 为端点的三条棱长度都为1,且两两夹角为60°.(1)求AC 1→的长;(2)求BD 1→与AC →夹角的余弦值. 解 (1)记AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, ∴a ·b =b ·c =c ·a =12.|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2×(12+12+12)=6,∴|AC 1→|=6,即AC 1的长为 6. (2)BD 1→=b +c -a ,AC →=a +b , ∴|BD 1→|=2,|AC →|=3,BD 1→·AC →=(b +c -a )·(a +b )=b 2-a 2+a ·c +b ·c =1, ∴cos〈BD 1→,AC →〉=BD 1→·AC →|BD 1→||AC →|=66.即BD 1→与AC →夹角的余弦值为66.18.坐标法在立体几何中的应用典例 (12分) 如图,已知直三棱柱ABC -A 1B 1C 1,在底面△ABC 中,CA =CB =1,∠BCA =90°,棱AA 1=2,M ,N 分别是A 1B 1,A 1A 的中点.(1)求BN →的模;(2)求cos 〈BA 1→,CB 1→〉的值; (3)求证:A 1B ⊥C 1M .思想方法指导 利用向量解决立体几何问题时,首先要将几何问题转化成向量问题,通过建立坐标系利用向量的坐标进行求解.规范解答 (1)解 如图,建立空间直角坐标系.依题意得B (0,1,0),N (1,0,1), 所以|BN →|=-2+-2+-2= 3.[2分](2)解 依题意得A 1(1,0,2),B (0,1,0),C (0,0,0),B 1(0,1,2).所以BA 1→=(1,-1,2),CB 1→=(0,1,2),BA 1→·CB 1→=3,|BA 1→|=6,|CB 1→|=5,所以cos 〈BA 1→,CB 1→〉=BA 1→·CB 1→|BA 1→||CB 1→|=3010.[6分](3)证明 依题意得C 1(0,0,2),M (12,12,2),A 1B →=(-1,1,-2),C 1M →=(12,12,0).[9分]所以A 1B →·C 1M →=-12+12+0=0,所以A 1B →⊥C 1M →,即A 1B ⊥C 1M .[12分]1.在下列命题中:①若向量a ,b 共线,则向量a ,b 所在的直线平行;②若向量a ,b 所在的直线为异面直线,则向量a ,b 一定不共面; ③若三个向量a ,b ,c 两两共面,则向量a ,b ,c 共面;④已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p 总存在实数x ,y ,z 使得p =x a +y b +z c .其中正确命题的个数是( )A .0B .1C .2D .3 答案 A解析 a 与b 共线,a ,b 所在的直线也可能重合,故①不正确;根据自由向量的意义知,空间任意两向量a ,b 都共面,故②不正确;三个向量a ,b ,c 中任意两个一定共面,但它们三个却不一定共面,故③不正确;只有当a ,b ,c 不共面时,空间任意一向量p 才能表示为p =x a +y b +z c ,故④不正确,综上可知四个命题中正确的个数为0,故选A.2.(2016·郑州模拟)已知a =(2,1,-3),b =(-1,2,3),c =(7,6,λ),若a ,b ,c 三向量共面,则λ等于( ) A .9 B .-9 C .-3 D .3 答案 B解析 由题意知c =x a +y b ,即(7,6,λ)=x (2,1,-3)+y (-1,2,3), ∴⎩⎪⎨⎪⎧2x -y =7,x +2y =6,-3x +3y =λ,解得λ=-9.3.已知a =(-2,1,3),b =(-1,2,1),若a ⊥(a -λb ),则实数λ的值为( ) A .-2 B .-143 C.145 D .2答案 D解析 由题意知a ·(a -λb )=0,即a 2-λa ·b =0, 所以14-7λ=0,解得λ=2.4.如图,在大小为45°的二面角A -EF -D 中,四边形ABFE ,CDEF 都是边长为1的正方形,则B ,D 两点间的距离是( )A. 3B. 2 C .1 D.3- 2答案 D解析 ∵BD →=BF →+FE →+ED →,∴|BD →|2=|BF →|2+|FE →|2+|ED →|2+2BF →·FE →+2FE →·ED →+2BF →·ED → =1+1+1-2=3-2, 故|BD →|=3- 2.5.已知a ,b 是异面直线,A ,B ∈a ,C ,D ∈b ,AC ⊥b ,BD ⊥b 且AB =2,CD =1,则异面直线a ,b 所成的角等于( )A .30° B.45° C.60° D.90° 答案 C解析 如图,设AC →=a ,CD →=b ,DB →=c ,则AB →=a +b +c ,所以cos 〈AB →,CD →〉=a +b +c b |a +b +c ||b |=12,所以异面直线a ,b 所成的角等于60°, 故选C.6.(2016·深圳模拟)正方体ABCD -A 1B 1C 1D 1的棱长为a ,点M 在AC 1上且AM →=12MC 1→,N 为B 1B的中点,则|MN →|为( ) A.216a B.66a C.156a D.153a 答案 A解析 以D 为原点建立如图所示的空间直角坐标系,则A (a ,0,0),C 1(0,a ,a ),N (a ,a ,a2).设M (x ,y ,z ),∵点M 在AC 1上且AM →=12MC 1→,∴(x -a ,y ,z )=12(-x ,a -y ,a -z ),∴x =23a ,y =a 3,z =a 3.∴M (2a 3,a 3,a 3),∴|MN →|=a -23a2+a -a32+a 2-a32=216a . 7.A ,B ,C ,D 是空间不共面四点,且AB →·AC →=0,AC →·AD →=0,AB →·AD →=0,则△BCD 的形状是________三角形.(填锐角、直角、钝角中的一个) 答案 锐角解析 因为BC →·BD →=(AC →-AB →)·(AD →-AB →) =AC →·AD →-AC →·AB →-AB →·AD →+AB →2 =AB →2>0,所以∠CBD 为锐角.同理∠BCD ,∠BDC 均为锐角.8.设O -ABC 是四面体,G 1是△ABC 的重心,G 是OG 1上的一点,且OG =3GG 1,若OG →=xOA →+yOB →+zOC →,则x ,y ,z 的值分别为______________.答案 14,14,14解析 如图所示,取BC 的中点E ,连接AE .OG →=34OG 1→=34(OA →+AG 1→)=34OA →+12AE → =34OA →+14(AB →+AC →) =34OA →+14(OB →-OA →+OC →-OA →) =14(OA →+OB →+OC →), ∴x =y =z =14.9.(2016·合肥模拟)已知a =(x,4,1),b =(-2,y ,-1),c =(3,-2,z ),a ∥b ,b ⊥c ,则c =________. 答案 (3,-2,2)解析 因为a ∥b ,所以x-2=4y =1-1, 解得x =2,y =-4,此时a =(2,4,1),b =(-2,-4,-1), 又因为b ⊥c ,所以b ·c =0,即-6+8-z =0,解得z =2,于是c =(3,-2,2). 10.(2016·天津模拟)已知ABCD -A 1B 1C 1D 1为正方体, ①(A 1A →+A 1D 1→+A 1B 1→)2=3A 1B 1→2; ②A 1C →·(A 1B 1→-A 1A →)=0;③向量AD 1→与向量A 1B →的夹角是60°; ④正方体ABCD -A 1B 1C 1D 1的体积为 |AB →·AA 1→·AD →|.其中正确的序号是________. 答案 ①②解析 ①中,(A 1A →+A 1D 1→+A 1B 1→)2=A 1A →2+A 1D 1→2+A 1B 1→2=3A 1B 1→2,故①正确;②中,A 1B 1→-A 1A →=AB 1→,因为AB 1⊥A 1C ,故②正确;③中,两异面直线A 1B 与AD 1所成的角为60°,但AD 1→与A 1B →的夹角为120°,故③不正确;④中,|AB →·AA 1→·AD →|=0,故④也不正确.11.如图,在平行六面体ABCD -A1B 1C 1D 1中,点M ,P ,Q 分别为棱AB ,CD ,BC 的中点,若平行六面体的各棱长均相等,则①A 1M ∥D 1P ; ②A 1M ∥B 1Q ; ③A 1M ∥平面DCC 1D 1; ④A 1M ∥平面D 1PQB 1.以上正确说法的个数为________. 答案 3解析 A 1M →=A 1A →+AM →=A 1A →+12AB →,D 1P →=D 1D →+DP →=A 1A →+12AB →,∴A 1M →∥D 1P →,∴A 1M ∥D 1P ,由线面平行的判定定理可知,A 1M ∥平面DCC 1D 1,A 1M ∥平面D 1PQB 1.①③④正确.12.如图所示,已知空间四边形ABCD 的每条边和对角线长都等于1,点E ,F ,G 分别是AB ,AD ,CD 的中点,计算:(1)EF →·BA →;(2)EF →·DC →; (3)EG 的长;(4)异面直线AG 与CE 所成角的余弦值. 解 (1)设AB →=a ,AC →=b ,AD →=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, EF →=12BD →=12c -12a ,BA →=-a ,DC →=b -c .EF →·BA →=⎝ ⎛⎭⎪⎫12c -12a ·(-a )=12a 2-12a·c =14. (2)EF →·DC →=12(c -a )·(b -c )=12(b·c -a·b -c 2+a·c )=-14. (3)EG →=EB →+BC →+CG →=12a +b -a +12c -12b=-12a +12b +12c ,|EG →|2=14a 2+14b 2+14c 2-12a·b +12b·c -12c·a =12,则|EG →|=22.(4)AG →=12b +12c ,CE →=CA →+AE →=-b +12a ,cos 〈AG →,CE →〉=AG →·CE →|AG →||CE →|=-23,由于异面直线所成角的范围是⎝⎛⎦⎥⎤0,π2,所以异面直线AG 与CE 所成角的余弦值为23.13.(2016·沈阳模拟)如图,在直三棱柱ABC —A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D 、E 分别为AB 、BB ′的中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值. (1)证明 设CA →=a ,CB →=b ,CC ′→=c , 根据题意得,|a |=|b |=|c |, 且a·b =b·c =c·a =0,∴CE →=b +12c ,A ′D —————————————→=-c +12b -12a .∴CE →·A ′D ——————————————→=-12c 2+12b 2=0.∴CE →⊥A ′D ——————————————→,即CE ⊥A ′D .(2)解 ∵AC ′————————————→=-a +c ,|AC ′→|=2|a |,|CE →|=52|a |.AC ′→·CE →=(-a +c )·⎝⎛⎭⎪⎫b +12c =12c 2=12|a |2,∴c os 〈AC ′→,CE →〉=12|a |22·52|a |2=1010. 即异面直线CE 与AC ′所成角的余弦值为1010. 14.如图,在正方体ABCD -A 1B 1C 1D 1中,AA 1→=a ,AB →=b ,AD →=c ,点M ,N 分别是A 1D ,B 1D 1的中点.(1)试用a ,b ,c 表示MN →; (2)求证:MN ∥平面ABB 1A 1. (1)解 ∵A 1D →=AD →-AA 1→=c -a , ∴A 1M →=12A 1D →=12(c -a ).同理,A 1N →=12(b +c ),∴MN →=A 1N →-A 1M →=12(b +c )-12(c -a )=12(b +a )=12a +12b . (2)证明 ∵AB 1→=AA 1→+AB →=a +b , ∴MN →=12AB 1→,即MN ∥AB 1,∵AB 1平面ABB 1A 1,MN 平面ABB 1A 1,∴MN ∥平面ABB 1A 1.。