南通市2015届高三三模数学试题含答案
2015届江苏高考南通市高考模拟密卷(三)(南通市数学学科基地命题)

2015届江苏高考南通市高考模拟密卷(三)(南通市数学学科基地命题)南通市数学学科基地命题第Ⅰ卷(必做题,共160分) 一、填空题:本大题共14小题,每小题5分,共70分 . 1.已知集合{}2|20M x x x =-≥,{}|1N x x =≤,则R M N ( )ð= .2.如果1a bi -+与-b i +互为共轭复数(,a b ∈R ,i 为虚数单位), 则||a bi += .3.如右图,该程序运行后输出的结果为 .4.在△ABC 中,∠C =90°,M 是BC 的中点,1AC =.若sin B =13,则AM =________.5.某单位有,,A B C 三部门,其人数比例为3∶4∶5,现欲用分层抽样方法抽调n 名志愿者支援西部大开发 .若在A 部门恰好选出了6名志愿者,那么n =________. 6.函数()2sin()(0,f x x ωϕω=+>且||)2πϕ<的部分图像如图所示,则(0)f 的值为 .7.连续抛掷两颗骰子得到的点数分别是a ,b ,则函数2()f x ax bx =-在1x =处取得最值的概率是 .8.在等差数列{}n a 和等比数列{}n b 中,已知12128,2,1,2a a b b =-=-==,那么满足n n a b =的n 的所有取值构成的集合是 .9.已知如图所示的多面体EF ABCD -中,四边形ABCD 是菱形,四边形BDEF 是矩形,ED ⊥平面ABCD ,∠BAD =3π.若BF =BD=2,则多面体的体积 .10.如果关于x 的方程23ax x +=有两个实数解,那么实数a 的值是 . 11.设()()2,0,1,0.x a x f x x a x x⎧-⎪=⎨++>⎪⎩… 若()0f 是()f x 的最小值,则实数a 的取值范围为 .12.已知椭圆2221(3x y a a +=>的中心、右焦点、右顶点依次为,,,O F G直线2x =x 轴 交于H 点,则FG OH取得最大值时a 的值为 .FEDCBA13.在四边形ABCD 中,2AB =,AD BC =,BA BC BABC+3BD BD,则四边形ABCD 的面积是 .14.()f x 是定义在R 上的奇函数,若当0x ≥时,[)[)12log (1),0,1()13,1,x x f x x x ⎧+∈⎪=⎨⎪--∈+∞⎩ ,则关于x 的函数()()(10)F x f x a a =+-<<的所有零点之和为 (用a 表示) 二、解答题:本大题共6小题,共90分.15.(本小题满分14分)如图,在xoy 平面上,点(1,0)A ,点B 在单位圆上,AOB θ∠=(0θπ<<)(1)若点34(,)55B -,求tan()4πθ+的值;(2)若OA OB OC +=,1813OB OC ⋅=,求cos()3πθ-.16.(本小题满分14分)在四棱锥P ABC D -中,PAC ⊥平面平面ABC D ,ABC ∆是边长为4的正三角形,AC 与BD 的交点M 恰好是AC 中点,又120ADC ∠=,点N 在线段PB 上,且13PN NB =. (1)求证:PA BD ⊥; (2)求证://MN 平面PDC .17.(本小题满分14分)2014年8月以“分享青春,共筑未来”为口号的青奥会在江苏南京举行, 为此某商店经销一种青奥会纪念徽章,每枚徽章的成本为30元,并且每卖出一枚徽章需向相关部门上缴a 元(a 为常数,25a ≤≤),设每枚徽章的售价为x 元(3541x ≤≤).根据市场调查,日销售量与x e (e 为自然对数的底数)成反比例.已知当每枚徽章的售价为40元时,日销售量为10枚. (1)求该商店的日利润()L x 与每枚徽章的售价x 的函数关系式;(2)当每枚徽章的售价为多少元时,该商店的日利润()L x 最大?并求出()L x 的最大值.CBP18.(本小题满分16分) 已知椭圆2222:1(0)x y E a b a b+=>>过点). (1)若A 是椭圆E 的上顶点,12,F F 分别是左右焦点,直线12,AF AF 分别交椭圆于,B C ,直线BO 交AC于D ,求证:3:5ABD ABC S S ∆∆=;(2)若12,A A 分别是椭圆E 的左右顶点,动点M 满足212MA A A ⊥,且1MA 交椭圆E 于点P .求证:OP OM ⋅为定值.19.(本小题满分16分)已知函数21()ln 2f x ax x =+,()g x bx =-,设()()()h x f x g x =-.(1)若()f x 在x =处取得极值,且(1)(1)2f g '=--,求函数h (x )的单调区间; (2)若0a =时函数h (x )有两个不同的零点x 1,x 2.①求b 的取值范围;②求证:1221x x e >.20.(本小题满分16分)若数列{}n C1n c +,②存在常数(M M 与n 无关),使n c M ≤.则称数列{}n c 是“和谐数列”.(1)设n S 为等比数列{}n a 的前n 项和,且442,30a S ==,求证:数列{}n S 是“和谐数列”; (2)设{}n a 是各项为正数,公比为q 的等比数列,n S 是{}n a 的前n 项和,求证:数列{}n S 是“和谐数列”的充要条件为01q <<.第Ⅱ卷(附加题,共40分)21.[选做题]本题包括A 、B 、C 、D 四小题,每小题10分;请选定其中两题,并在相应的答题区域内作答..................... A .(选修4-1:几何证明选讲)如图,AB 是圆O 的直径,D 为圆O 上一点,过D 作圆O 的切线交AB 的延长线于点C .若AB = 2 BC , 求证:A C ∠=∠.B .(选修4-2:矩阵与变换)已知矩阵21a M b ⎡⎤=⎢⎥⎣⎦,其中,a b 均为实数,若点(3,1)A -在矩阵M 的变换作用下得到点(3,5)B ,求矩阵M 的特征值.C .(选修4-4:坐标系与参数方程)在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,两种坐标系取相同的单位长度.已知曲线1325: 45x t C y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数)和曲线22:sin 2cos C ρθθ=相交于A B 、两点,求AB 中点的直角坐标.D .(选修4-5:不等式选讲)已知实数a ,b ,c ,d 满足3a b c d +++=,22222365a b c d +++=,求a 的取值范围.【必做题】第22题、第23题,每题10分,共计20分.22.(本小题满分10分)甲、乙、丙三位同学商量高考后外出旅游,甲提议去古都西安,乙提议去海上花园厦门,丙表示随意.最终,三人商定以抛硬币的方式决定结果.规则是:由丙抛掷硬币若干次,若正面朝上,则甲得一分、乙得零分;若反面朝上,则乙得一分、甲得零分,先得4分者获胜.三人均执行胜者的提议.若记所需抛掷硬币的次数为X . (1)求6X =的概率;(2)求X 的分布列和数学期望.23.(本小题满分10分)在数学上,常用符号来表示算式,如记0ni i a =∑=0123n a a a a a +++++,其中i N ∈,n N +∈.(1)若0a ,1a ,2a ,…,n a 成等差数列,且00a =,求证:()0nii n i a C ==∑12n n a -⋅;(2)若22201221(1)nknn k x a a x a x a x =+=+++∑,20n n i i b a ==∑,记11[(1)]niin i n i d b C ==+-∑,且不等式(1)n nt d b ⋅-≤恒成立,求实数t 的取值范围.2015年高考模拟试卷(3)参考答案南通市数学学科基地命题 第Ⅰ卷(必做题,共160分)一、填空题1.(]0,1; 2; 3.1027; 由流程图,b 和a 的值依次为1,1;3,2;10,3;1027,4,结束循环. 45.24;6.7112; 8.{}3,5 ;【解析】 由已知得,1614,2n n n a n b -=-=,令n n a b =,可得16142n n --=,解得3n =或5,所以满足n n a b =的n 的所有取值构成的集合是{}3,5. 9【解析】如图,连接AC ,AC ∩BD =O .因为四边形ABCD 是菱形,所以,AC ⊥BD ,又因为ED ⊥平面ABCD ,AC ⊂平面ABCD ,所以,ED ⊥AC .因为,ED ,BD ⊂平面BDEF ,且ED ∩BD =D ,所以,AC ⊥平面BDEF ,所以,AO 为四棱锥A -BDEF 的高.又因为,四边形ABCD 是菱形,∠BAD =3π,所以,△ABD 为等边三角形.又因为,BF =BD =2,所以,AD =2,AOS四边形BDEF =4,所以,V 四棱锥A -BDEF=10.2± ; 11.[]0,2; 12.2; 13.;【解析】 设BA a BA=,BC b BC=,BD c BD=,则|a |=|b |=|c |=1,a +b ,所以,得cos<a ,b >=12,又由AD BC =,所以,可得图形为有一个3π角的菱形,所以,其面积22S =⨯=. 14.112a⎛⎫- ⎪⎝⎭;【解析】 根据对称性,作出R 上的函数图象,由()()F x f x a =+,所以,零点就是()f x 与()0,1y a =-∈交点的横坐标,共有5个交点,根据对称性,函数()f x 的图象与()0,1y a =-∈的交点在()2,4之间的交点关于3x =对称,所以,126x x +=,在()()5,43,2----之间的两个交点关于3x =-对称,所以,346x x +=-,设(]1,0x ∈-,则[)0,1x -∈,所以,12()log (1)()f x x f x -=-+=-,即12()log (1)f x x =--+,由()0f x a +=,所以,12log (1)0x a --++=,即5112a x ⎛⎫=- ⎪⎝⎭,所以,12345112ax x x x x ⎛⎫++++=- ⎪⎝⎭.二、解答题OFEDCBA15. (1)由于34(,)55B -,AOB θ∠=,所以3cos 5θ=-,4sin 5θ= ,所以4tan 3θ=-, 所以1tan 1tan()41tan 7πθθθ++==-- ;(2)由于(1,0)OA =,(cos ,sin )OB θθ=,所以(1cos ,sin )OC OA OB θθ=+=+,22218cos (1cos )sin cos cos sin 13OC OB θθθθθθ⋅=⨯++=++=. 所以5cos 13θ=,所以12sin 13θ=,所以cos()coscos sinsin 333πππθθθ-=+=16.(1)因为ABC ∆是正三角形,M 是AC 中点, 所以BM AC ⊥,即BD AC ⊥, 又PAC ABCD ⊥平面平面,,PACABCD AC =平面平面BD ⊂平面ABCD ,,BD AC ⊥所以BD ⊥平面PAC .又PA ⊂平面PAC ,所以.PA BD ⊥.(2)在正三角形ABC 中,BM =在ACD 中,因为M 为AC 中点, DM AC ⊥,所以AD CD =, 因为120ADC ∠=,所以60ADM ∠=. 所以, DM =,所以:3:1BM MD =, 所以::BN NP BM MD =,所以//MN PD . 又MN ⊄平面PDC ,PD ⊂平面PDC ,所 以//MN 平面PDC . 17. (1)设日销售量为x k e ,则4010k e =, 所以4010k e =,则日销售量为4010x e e 枚.每枚徽章的售价为x 元时,每枚徽章的利润为(30)x a --元,则日利润40401030()(30)10(3541)x xe x aL x x a e x e e --=--=≤≤.(2)4031()10(3541)x a xL x e x e +-'=≤≤.①当24a ≤≤时,333135a ≤+≤,而3541x ≤≤, 所以()0,()L x L x '≤在[]35,41上单调递减,CBP则当35x =时,()L x 取得最大值为510(5)a e -. ②当45a <≤时,353136a <+≤,令()0L x '=,得31x a =+, 当[]35,31x a ∈+时,()0,()L x L x '>在[]35,31a +上单调递增; 当(]31,41x a ∈+时,()0,()L x L x '<在(]31,41a +上单调递减. 所以当31x a =+时,()L x 取得最大值为910a e -.综上,当24a ≤≤时,每枚徽章的售价为35元时,该商店的日利润()L x 最大,5max ()10(5)L x a e =-; 当45a <≤时,每枚徽章的售价为(31a +)元时,该商店的日利润()L x 最大,9max ()10a L x e -= . 18. (1)易得22211,a b c a⎧+=⎪⎪⎨⎪=⎪⎩且222c a b =-,解得224 2 a b ⎧=⎪⎨=⎪⎩,,所以,椭圆E 的方程为22142x y +=;所以,12(A F F ,所以,直线:AB y x =:AC y x =- 将y x =230x +=,所以(B,同理可得C , 所以直线BO 为14y x =,联立12y xy x ⎧=⎪⎨⎪=-+⎩,得交点D ,所以,88,53AD AC ==,即:3:5AD AC =所以,:3:5ABDABCSS=;(2)设0(2 )M y ,,11( )P x y ,, 易得直线1MA 的方程为0042y yy x =+, 代入椭圆22142x y +=,得()2222000140822y y y x x +++-=,由()201204828y x y --=+得,()20120288y x y --=+,从而012088y y y =+, 所以()()2220000022220000284888 (2 )48888y y y y OP OM y y y y y ----⎛⎫⋅=⋅=+= ⎪++++⎝⎭,,. 19. (1)因为1()f x ax x'=+,所以(1)1f a '=+, 由(1)(1)2f g '=--可得a =b-3. 又因为()f x在x =处取得极值,所以0f '=, 所以a = -2,b =1 . 所以2()ln h x x x x =-++,其定义域为(0,+∞)2121(21)(1)()21=x x x x h x x x x x-++-+-'=-++=令()0h x '=得121,12x x =-=,当x ∈(0,1)时,()>0h x ',当x ∈(1,+∞)()<0h x ',所以函数h (x )在区间(0,1)上单调增;在区间(1,+∞)上单调减. (2)当0a =时,()ln h x x bx =+,其定义域为(0,+∞). ①由()0h x =得ln -x b x =,记ln ()x x x ϕ=-,则2ln 1()x x x ϕ-'=, 所以ln ()xx xϕ=-在(0,)e 单调减,在(,)e +∞单调增, 所以当x e =时ln ()x x x ϕ=-取得最小值1e-. 又(1)0ϕ=,所以(0,1)x ∈时()0x ϕ>,而(1,)x ∈+∞时()0x ϕ<,所以b 的取值范围是(1e -,0).②由题意得1122ln 0,ln 0x bx x bx +=+=,所以12122121ln ()0,ln ln ()0x x b x x x x b x x ++=-+-=, 所以12122121ln ln ln x x x x x x x x +=--,不妨设x 1<x 2,要证212x x e > , 只需要证12122121ln (ln ln )2x x x x x x x x +=->-.即证2121212()ln ln x x x x x x -->+,设21(1)xt t x =>,则2(1)4()ln ln 211t F t t t t t -=-=+-++, 所以22214(1)()0(1)(1)t F t t t t t -'=-=>++, 所以函数()F t 在(1,+∞)上单调增,而(1)0F =, 所以()0F t >即2(1)ln 1t t t ->+, 所以212x x e > .20. (1)设公比为q ,则3411414161(1)21a a q a a q q s q ⎧==⎧⎪⎪⇒⎨⎨-==⎪⎪⎩-⎩, 所以51322n n s -=-.(32s =532(22n n --+4223222n -≤+214411)322n n S +--=-=.且513232.2n n S -=-<即存在常数32,所以,数列{}n S 是“和谐数列” . (2)充分性设等比数列{}n a 的公比q ,且0 1.q << 则1111(1)1111n n n a q a a q aS q q q q-==-<----. 令11a M q=-,则.n S M < 因为222222112()(1)(1)()(1)11n n n n n n n a aS S q q q q q q q ++++=--=--+--21222122111()(12)()(1)11n n n n a aq q q S q q++++<-+=-=-- 所以{}n S 是“和谐数列” 必要性等比数列{}n a 各项为正,且n S 是“和谐数列”.C因为0.n a > 所以,0.q >下面用反证法证明,1q <(1)当1,q =则1,n S na =因为10,a >所以,不存在M ,使1na M <对1n N -∈恒成立;当1q >,则111(1)111n n n a q a a S q q q q -==---- 所以,对于给定的正数M ,若11,11n a a q M q q ->-- 因为,1q >,所以,11log (1).q q n M a ->+ 即当11log (1)q q n M a ->+时,有n S M >. 所以,不存在常数M ,使.n S M ≤ 所以,0 1.q <<综上,数列{}n S 是“和谐数列”的充要条件为其公比为01q <<.第Ⅱ卷(附加题,共40分)21. A. 连结OD ,BD ,因为AB 是圆O 的直径,所以902ADB AB OB ∠==o ,.由AB = 2 BC ,所以,AB OC =,因为DC 是圆O 的切线,所以90CDO ∠=o .于是△ADB ≅△CDO ,所以,AD DC =所以,A C ∠=∠.B .由条件可知233115a b ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,所以233,315a b ⨯-=⎧⎨-=⎩, 则3,2a b ==.矩阵的特征多项式为223()(2)(1)(2)(3)3421f λλλλλλλ--==-----=---- 令()0f λ=,得两个特征值分别为121,4λλ=-=.C. 将1C 化为直角坐标方程为4380x y --=将2C 化为直角坐标方程为22y x =将直线方程代入22y x =可得22380y y --=解之可得1232y y +=,124y y =-,所以,2212124128y y x x ++== 所以,中点坐标为341,416⎛⎫ ⎪⎝⎭D. 由柯西不等式,得()2222111(236)()236b c d b c d ++++++≥, 即()2222236b c d b c d ++++≥.由条件,得()2253a a --≥,解得12a ≤≤== 时等号成立, 代入111,,36b c d ===时,max 2a =;211,,33b c d ===时,min 1a =, 所以a 的取值范围是[1,2].22. (1)抛掷硬币正面向上、反面向上的概率都为12, ()323511156222216P X C ⎛⎫⎛⎫==⨯⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭ (2)X 的分布列为:所以,1155934567.84161616EX =⨯+⨯+⨯+⨯= 23. (1)设等差数列的通项公式为0n a a nd =+,其中d 为公差则()0n i i n i a C ==∑12012n n n n n a a C a C a C ++++01120()(2)n n n n n n n n a C C C d C C nC =++++++因为11k k n n kC nC --=所以122n nn n C C nC ++011111()n n n n n C C C ----=+++ 所以()0n i i n i a C ==∑1022n n a nd -⋅+⋅=12n n a -⋅.注:第(1)问也可以用倒序相加法证明.(2)令1x =,则223202(14)22222421n n n n i i a =-=++++==⋅--∑ 令1x =-,则20[(1)]0ni i i a =-=∑,所以20n n i i b a ==∑1(242)412n n =⋅-=- 根据已知条件可知,012233(41)(41)(41)(1)(41)n n n n n n n n nd C C C C C =--+---++-- 01223301234[(4)(4)(4)(4)][(1)]1n n n n n n n n n n n n n n n C C C C C C C C C C C =+-+-+-++---+-+++-+(14)(11)1(3)n n n =---+=-+,所以(3)1n n d =-+将41n n b =-、(3)1n n d =-+代入不等式(1)n n t d b ⋅-≤得,(3)41n n t ⋅-≤-当n 为偶数时,41()()33n n t ≤-,所以22415()()333t ≤-=; 当n 为奇数,41[()()]33n n t ≥--,所以1141[()()]133t ≥--=-; 综上所述,所以实数t 的取值范围是5[1,]3-.。
高三数学-2015届高三3月综合测试数学试题

2015届高三3月综合测试数学试题一、填空题:本大题共14个小题,每小题5分,共70分.1.设复数122i ,i z z m =-=+(m ∈R ,i 为虚数单位),若12z z ⋅为实数,则m 的值为 ▲ . 【答案】2 【解析】试题分析:12(2i )(i)=(2m+1)+(2-m)i z z m ⋅=-+为实数,所以20, 2.m m -== 考点:复数概念,复数运算2.已知集合{2}A a =+,{1,1,3}B =-,且A B ⊆,则实数a 的值是 ▲ . 【答案】1 【解析】试题分析:由题意得:2,21,32,23,1a a a a ===或,解得1a = 考点:集合包含关系3.某林场有树苗3000棵,其中松树苗400棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的棵数为 ▲ . 【答案】20 【解析】试题分析:松树苗的棵数为400150=203000⨯ 考点:分层抽样4.在ABC ∆的边AB 上随机取一点P , 记CAP ∆和CBP ∆的面积分别为1S 和2S ,则122S S >的概率是 ▲ . 【答案】13【解析】试题分析:当12=2S S 时,点P 为边AB 三等分点M (靠近B 点),所以122S S >的概率是13BM AB = 考点:几何概型概率5.已知双曲线22221x y a b-=的一条渐近线方程为20x y -=,则该双曲线的离心率为 ▲【解析】试题分析:双曲线22221x y a b -=的渐近线方程为22220x y by x a b a-==±,,所以2,,a b c e ===考点:双曲线的离心率,双曲线渐近线6.右图是一个算法流程图,则输出S 的值是 ▲ .【答案】25 【解析】试题分析:第一次循环: 1,3S n ==,第二次循环: 4,5S n ==,第三次循环: 9,7S n ==,第四次循环: 16,9S n ==,第五次循环: 25,1110S n ==>,结束循环,输出25S = 考点:循环结构流程图7.函数()lg(23)x x f x =-的定义域为 ▲ . 【答案】(,0)-∞ 【解析】试题分析:由题意得230,23,0x x x x x ->><,所以定义域为(,0)-∞ 考点:函数定义域8.1,则此三棱锥的体积为 ▲ . 【答案】16【解析】,体积为21136=考点:三棱锥的体积9.在△ABC 中,已知3AB =,o 120A =,且ABC ∆的面积为,则BC 边长为 ▲ . 【答案】7 【解析】1sin 153,52bc A bc c b =⨯⨯⇒=⇒==,由余弦定理得22212cos 25930()49,7.2a b c bc A a =+-=+-⨯-==考点:余弦定理,三角形面积10.已知函数()2f x x x =-,则不等式)(1)f x f ≤的解集为 ▲ . 【答案】[)1,-+∞ 【解析】试题分析:由题意得:()f x 在(,1)-∞上单调递增,在(1,2)上单调递减,在(2,)+∞上单调递增,且1)(1)1f f ==,所以)(1)11f x f x x -⇔-+⇔≥-≤,即解集为[)1,-+∞考点:利用函数性质解不等式11.已知函数()2sin(2)(0)4f x x ωωπ=->的最大值与最小正周期相同,则函数()f x 在[11]-,上的单调增区间为 ▲ .【答案】13[,]44-【解析】试题分析:由题意得:2222T ππωω==⇒=,所以22()242k x k k Z ππππππ-≤-≤+∈,即1322()44k x k k Z -≤≤+∈,又[11]x ∈-,,所以1344x -≤≤,即单调增区间为13[,]44- 考点:三角函数性质12.设等比数列{}n a 的前n 项和为n S ,若435a a a ,,成等差数列,且33k S =,163k S +=-,其中k *∈N ,则2k S +的值为 ▲ . 【答案】129【解析】试题分析:由题意得:23452=+21(),2a a a q q q q ⇒=+⇒==-舍,由33k S =,163k S +=-得112196192k k k k k a S S a a q ++++=-=-==,,所以263+192=129k S +=-考点:等比数列性质13.在平面四边形ABCD 中,已知3AB =,2DC =,点,E F 分别在边,AD BC 上,且3AD AE = ,3BC BF = .若向量AB 与DC 的夹角为60,则AB EF ⋅ 的值为 ▲ .【答案】7 【解析】试题分析:因为,EF EA AB BF EF ED DC CF =++=++ ,所以32EF AB DC =+,从而1293222733AB DC AB EF AB ⨯+⨯⨯+⋅=⋅== 考点:向量数量积14.在平面直角坐标系xOy 中,若动点(,)P a b 到两直线1l :y x =和2l :2y x =-+的距离之和为22a b +的最大值为 ▲ . 【答案】18 【解析】=|||2|4a b a b -++-=,其图像为一个正方形,四个顶点分别为(1,1),(1,3),(3,1),(3,3)A B C D ----, 而22a b +表示到原点距离的平方,所以22a b +的最大值为218OD = 考点:线性规划求最值二、解答题 (本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.) 15.(本小题满分14分)已知向量(cos ,sin )θθ=a ,(2,1)=-b . (1)若⊥a b ,求sin cos sin cos θθθθ-+的值;(2)若2-=a b ,(0,)2θπ∈,求sin()4θπ+的值.【答案】(1) 13【解析】试题分析:(1)先由向量垂直得到等量关系:sin 2cos θθ=,再代入式子化简即可:sin cos 2cos cos 1sin cos 2cos cos 3θθθθθθθθ--==++ (2)先由2-=a b得-ab 2=,化简得12cos sin 0θθ-+=,再根据平方关系22cos sin 1θθ+=解得3sin 54cos 5θθ⎧=⎪⎪⎨⎪=⎪⎩,所以34sin()cos )()455θθθπ+=+=+=试题解析:(2)由(cos 2,sin 1)θθ-=-+a b 可得,-ab 2=,即12cos sin 0θθ-+=, ① ………………………………………10分 又22cos sin 1θθ+=,且(0,)2θπ∈ ②,由① ②可解得,3sin 54cos 5θθ⎧=⎪⎪⎨⎪=⎪⎩,……12分所以34sin()cos )()455θθθπ+=+=+=. ……………………14分考点:向量垂直,同角三角函数关系16.(本小题满分14分)如图,在三棱锥P ABC -中,点,E F 分别是棱,PC AC 的中点.(1)求证:PA //平面BEF ;(2)若平面PAB ⊥平面ABC ,PB BC ⊥,求证:BC PA ⊥.【答案】(1) 详见解析(2)详见解析 【解析】试题分析:(1)证明线面平行,一般利用其判定定理,即从线线平行出发,利用中位线性质得到//PA EF ,再结合线面平行判定定理条件进行论证,(2)先将面面垂直条件转化为线面垂直,过点P 作PD AB ⊥,则PD ⊥平面ABC ,从而PD BC ⊥,又P B B C ⊥,从而BC ⊥平面PAB ,因此BC PA ⊥试题解析:(1)在PAC ∆中,E 、F 分别是PC 、AC 的中点,所以//PA EF , 又PA ⊄平面BEF ,EF ⊂平面BEF ,所以//PA 平面BEF .……………………………………6分 (2)在平面PAB 内过点P 作PD AB ⊥,垂足为D . 因为平面PAB ⊥平面ABC ,平面PAB 平面ABC AB =,PD ⊂平面PAB ,所以PD ⊥平面ABC ,………………8分又BC ⊂平面ABC ,所以PD BC ⊥,…………………………10分考点:线面平行判定定理,面面垂直性质定理17.(本小题满分14分)某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点O为圆心的两个同心圆弧和延长后通过点O 的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为x 米,圆心角为θ(弧度).(1)求θ关于x 的函数关系式;(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为y ,求y 关于x 的函数关系式,并求出x 为何值时,y 取得最大值?【答案】(1) 10210xxθ+=+ (2) 1x = 【解析】试题分析:(1)将扇环面的两段弧长和直线段长分别用θ与x 表示后,利用其和为30列式,再解出θ即可;(2)将花坛的面积和装饰总费用分别用θ与x 表示,再利用第(1)问的结果消去x ,从而可得到y 关于x 函数,然后可利用导数或基本等式求其最小值,并确定y 取最小值时x 的值.试题解析:(1)设扇环的圆心角为 ,则()30102(10)x x θ=++-, 所以10210xxθ+=+,…………………………………4分 (2) 花坛的面积为2221(10)(5)(10)550,(010)2x x x x x x θ-=+-=-++<<.…………7分装饰总费用为()9108(10)17010x x x θ++-=+, ……………………9分 所以花坛的面积与装饰总费用的比22550550==1701010(17)x x x x y x x -++---++, …11分令17t x =+,则3913243()101010y t t =-+≤,当且仅当t=18时取等号,此时121,11x θ==.答:当1x =时,花坛的面积与装饰总费用的比最大.…………………14分 (注:对y 也可以通过求导,研究单调性求最值,同样给分) 考点:函数在实际问题中的应用,基本不等式的应用. 18.(本小题满分16分)已知ABC ∆的三个顶点(1,0)A -,(1,0)B ,(3,2)C ,其外接圆为H . (1)若直线l 过点C ,且被H 截得的弦长为2,求直线l 的方程;(2)对于线段BH 上的任意一点P ,若在以C 为圆心的圆上都存在不同的两点,M N ,使得点M 是线段PN 的中点,求C 的半径r 的取值范围.【答案】(1) 3x =或4360x y --=. (2) 【解析】试题分析:(1)求ABC ∆的外接圆方程可用待定系数法或利用两边垂直平分线的交点先求出圆心,再利用两点之间距离公式求出半径,求出圆的方程后再利用待定系数法求出直线的方程,此时要注意分直线斜率存在和不存在两种情况讨论;(2)可设出点,P N 的坐标,再把点M 的坐标用其表示,把点,M N 的坐标代入圆的方程,利用方程组恒有解去考察半径的取值范围,但要注意,,P N M 三点不能重合,即圆和线段BH 无公共点.试题解析:(1)线段AB 的垂直平分线方程为0x =,线段BC 的垂直平分线方程为30x y +-=,所以外接圆圆心(0,3)H,H 的方程为22(3)10x y +-=.………………4分设圆心H 到直线l 的距离为d ,因为直线l 被H 截得的弦长为2,所以3d =. 当直线l 垂直于x 轴时,显然符合题意,即3x =为所求;…………………………6分 当直线l 不垂直于x 轴时,设直线方程为2(3)y k x -=-3=,解得43k =, 综上,直线l 的方程为3x =或4360x y --=. ……………………………………8分 (2) 直线BH 的方程为330x y +-=,设(,)(01),(,)P m n m N x y ≤≤, 因为点M 是点P ,N 的中点,所以(,)22m x n yM ++,又,M N 都在半径为r 的C 上, 所以222222(3)(2),(3)(2).22x y r m x n y r ⎧-+-=⎪⎨++-+-=⎪⎩即222222(3)(2),(6)(4)4.x y r x m y n r ⎧-+-=⎪⎨+-++-=⎪⎩……………10分 因为该关于,x y 的方程组有解,即以(3,2)为圆心r 为半径的圆与以(6,4)m n --为圆心2r 为半径的圆有公共点,所以2222(2)(36)(24)(2)r r m n r r -≤-++-+≤+, …12分 又330m n +=-,所以2221012109r m m r +-≤≤对[01]m ∀∈,]成立. 而()2101210f m m m =+-在上的值域为[325,10],故2325r ≤且2r 10≤9. 15分又线段BH 与圆C 无公共点,所以222(3)(332)m m r -+-->对[01]m ∀∈,成立,即2325r <.故C 的半径r的取值范围为. ……………………………16分 考点:圆的方程,直线与圆的位置关系,圆与圆的位置关系.19.(本小题满分16分)已知函数325()2f x x x ax b =+++(,a b 为常数),其图象是曲线C .(1)当2a =-时,求函数()f x 的单调减区间;(2)设函数()f x 的导函数为()f x ',若存在唯一的实数0x ,使得00()f x x =与0()0f x ='同时成立,求实数b 的取值范围;(3)已知点A 为曲线C 上的动点,在点A 处作曲线C 的切线1l 与曲线C 交于另一点B ,在点B 处作曲线C 的切线2l ,设切线12,l l 的斜率分别为12,k k .问:是否存在常数λ,使得21k k λ=?若存在,求出λ的值;若不存在,请说明理由.【答案】 (1)1(2,)3-;(2)71(,)(,)548-∞--+∞ ;(3)当2512a =时,存在常数4λ=,使214k k =;当2512a ≠时,不存在常数λ,使21k k λ=. 【解析】(3) 设00(,())A x f x ,则点A 处切线方程为000()()()y f x f x x x '-=-,与曲线C :()y f x =联立方程组,得000()()()()f x f x f x x x '-=-,即2005()[(2)]02x x x x -++=,所以B 点的横坐标05(2)2B x x =-+. (12)分由题意知,21000()35k f x x x a '==++,22000525(2)122024k f x x x a '=--=+++,若存在常数λ,使得21k k λ=,则220000251220(35)4x x a x x a λ+++=++, 即常数λ,使得20025(4)(35)(1)4x x a λλ-+=--, 所以常数λ,使得40,25(1)0.4a λλ-=⎧⎪⎨--=⎪⎩解得常数λ,使得4λ=,2512a =. ………15分故当2512a =时,存在常数4λ=,使214k k =;当2512a ≠时,不存在常数λ,使21k k λ=.16分考点:函数与方程、导数的综合应用. 20.(本小题满分16分)已知数列{}n a 满足1a x =,23a x =,2*1132(2,)n n n S S S n n n +-++=+∈N ≥,n S 是数列{}n a 的前n 项和.(1)若数列{}n a 为等差数列. (ⅰ)求数列的通项n a ;(ⅱ)若数列{}n b 满足2n a n b =,数列{}n c 满足221n n n n c t b tb b ++=--,试比较数列{}n b 前n 项和n B 与{}n c 前n 项和n C 的大小;(2)若对任意*n ∈N ,1n n a a +<恒成立,求实数x 的取值范围. 【答案】(1)(ⅰ)21n a n =-;(ⅱ)详见解析;(2)137,156⎛⎫⎪⎝⎭.【解析】试题分析:(1)(ⅰ)由12,a a 可得12,S S ,在递推关系式2*1132(2,)n n n S S S n n n +-++=+∈N ≥中,由12,S S 可求3S ,进而求出3a ,于是可利用{}n a 是等差数列求出x 的值,最后可求出{}n a 的通项公式,(ⅱ)易知()21641n n C t t B =--,所以要比较n C 和n B 的大小,只需确定n B 的符号和21641t t --和1的大小关系问题,前者易知为正,后者作差后判断符号即可;(2)本题可由递推关系式21132n n n S S S n +-++=+通过变形得出36(2)n n a a n +-=≥,于是可以看出任意*n ∈N ,1n n a a +<恒成立,须且只需12345a a a a a <<<<,从而可以求出x 的取值范围. 试题解析:(1)(ⅰ)因为21132(2,*)n n n S S S n n n +-++=+∈N ≥,所以32114S S S ++=,即3212314a a a ++=,又12,3a x a x ==,所以3149a x =-, ……………………2分 又因为数列{}n a 成等差数列,所以2132a a a =+,即()6149x x x =+-,解得1x =, 所以()()()1111221*n a a n d n n n =+-=+-⨯=-∈N ; ……………………4分 (ⅱ)因为()21*n a n n =-∈N ,所以21220n a n n b -==>,其前n 项和0n B >,又因为()22211641n n n n n c t b tb b t t b ++=--=--, …………………………………5分 所以其前n 项和()21641n n C t t B =--,所以()22821n n n C B t t B -=--, ……7分当14t <-或12t >时,n n C B >;当14t =-或12t =时,n n C B =;当1142t -<<时,n n C B <.…………………………………………………………9分(2)由21132(2,*)n n n S S S n n n +-++=+∈N ≥知()221312(*)n n n S S S n n ++++=++∈N ,两式作差,得2163(2,*)n n n a a a n n n ++++=+∈N ≥, ……………………10分 所以()321613(*)n n n a a a n n +++++=++∈N ,再作差得36(2,*)n n a a n n +-=∈N ≥,………………………………………………11分 所以,当1n =时,.1n a a x ==;当31n k =-时,().31216366234n k a a a k x k n x -==+-⨯=+-=+-; 当3n k =时,().331614966298n k a a a k x k n x ==+-⨯=-+-=-+;当31n k =+时,().314161666267n k a a a k x k n x +==+-⨯=++-=+-;……14分 因为对任意*n ∈N ,1n n a a +<恒成立,所以12a a <且3133132k k k k a a a a -++<<<, 所以363669869866566563x xk x k x k x k x k x k x<⎧⎪+-<-+⎪⎨-+<+-⎪⎪+-<+⎩,解得,137156x <<,故实数x 的取值范围为137,156⎛⎫⎪⎝⎭.…………………………………………………16分考点:等差数列、等比数列与函数、不等式的综合运用.附加题21.B (选修4—2:矩阵与变换)(本小题满分10分)设矩阵00a b ⎡⎤=⎢⎥⎣⎦M (其中00a b >,>),若曲线C :221x y +=在矩阵M 所对应的变换作用下得到曲线2214x C y '+=:,求a b +的值.【答案】3.【解析】试题分析:本题可先求出曲线C 在矩阵M 所对应的变换作用下得到曲线C '的方程再与方程2214x y +=加以比较得出a b ,的值,也可在曲线C 上取两特殊点经阵M 所对应的变换作用下得到点在曲线C '上,代入C '方程,求出a b ,的值. 试题解析:设曲线C :221x y +=上任意一点(,)P x y ,在矩阵M 所对应的变换作用下得到点111(,)P x y ,则1100x a x b y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即11ax x by y =⎧⎨=⎩. …………………………………………………………5分又点111(,)P x y 在曲线2214x C y '+=:上,所以221114x y +=,则2214ax by +=为曲线C 的方程. 又曲线C 的方程为221x y +=,故24a =,21b =,因为00a b >,>,所以3a b +=. …………………………………………………………10分考点:矩阵与变换.21.C (选修4—4:坐标系与参数方程)(本小题满分10分)在平面直角坐标系xOy 中,已知直线l的参数方程是x y ⎧⎪⎪⎨⎪+⎪⎩,(t 为参数);以O 为极点,x 轴正半轴为极轴的极坐标系中,圆C 的极坐标方程为2cos()4ρθπ=+.由直线l 上的点向圆C 引切线,求切线长的最小值. 【答案】62. 【解析】试题分析:先将圆C 的极坐标方程化为直角坐标方程,再把直线上的点的坐标(含参数)代入,化为求函数的最值问题,也可将直线l 的参数方程化为普通方程,根据勾股定理转化为求圆心到直线上最小值的问题试题解析:因为圆C 的极坐标方程为θθρsin 2cos 2-=,所以θρθρρsin 2cos 22-=,所以圆C 的直角坐标方程为02222=+-+y x y x ,圆心为⎪⎪⎭⎫⎝⎛-22,22,半径为1,…4分因为直线l的参数方程为,x y ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数), 所以直线l上的点P +⎝向圆C 引切线长是所以直线l 上的点向圆C 引的切线长的最小值是62. ……………………………………10分考点:直线的参数方程和圆的极坐标方程,圆的切线长. 22.(本小题满分10分)某品牌汽车4S 店经销,,A B C 三种排量的汽车,其中,,A B C 三种排量的汽车依次有5,4,3款不同车型.某单位计划购买3辆不同车型的汽车,且购买每款车型等可能. (1)求该单位购买的3辆汽车均为B 种排量汽车的概率;(2)记该单位购买的3辆汽车的排量种数为X ,求X 的分布列及数学期望. 【答案】(1)155;(2)详见解析. 【解析】试题分析:(1)这是一个古典概型问题,先求出从15款车型中任买3辆共有多少种可能,再求出购买3辆车都为B 种车有多少种可能,即可求出结果;(2)X 的所有可能取值为1,2,3,对每种情况要准确分类,求出各种情况下有多少种可能,就可求出X 各种取值的概率,然后再求数学期望.试题解析:(1)设该单位购买的3辆汽车均为B 种排量汽车为事件M ,则343121().55C P M C ==所以该单位购买的3辆汽车均为B 种排量汽车的概率为155. ………………………………4分 (2)随机变量X 的所有可能取值为1,2,3.则3335433123(1),44C C C P X C ++===1115433123(3)11C C C P X C ===, 29(2)1(1)(3)44P X P X P X ==-=-==. 所以X 的分布列为……………………………8分数学期望329397()12344441144E X =⨯+⨯+⨯=.………………………………………………10分 考点:随机变量的概率分布. 23.(本小题满分10分)已知点(1,0)A -,(1,0)F ,动点P 满足2||AP AF FP ⋅=. (1)求动点P 的轨迹C 的方程;(2)在直线l :22y x =+上取一点Q ,过点Q 作轨迹C 的两条切线,切点分别为,M N .问:是否存在点Q ,使得直线MN //l ?若存在,求出点Q 的坐标;若不存在,请说明理由.【答案】(1)24y x =;(2)1(,1)2Q -.考点:曲线与方程.。
2015年高三三模试卷理科数学附答案

O ππ3π6112015年高三三模试卷理科数学一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题意要求的.)1、设复数11221,2,z z i z ai z =+=+若为纯虚数,则实数a =( )A .-2B .2C .-1D .12、 已知命题x x R x p lg 2,:>-∈∃,命题:1,ln(1)x q x e x ∀>->+,则( ) A.命题q p ∨是假命题 B.命题q p ∧是真命题 C.命题)(q p ⌝∧是真命题 D.命题)(q p ⌝∨是假命题3、已知某随机变量X 的概率密度函数为P (x )=⎩⎨⎧>≤-0,0,0x e x x ,则随机变量X 在区间(1,2)内的概率为( )A .e 2+eB .21e e + C .e 2-e D .21ee - 4.下列命题中正确的是( )A.如果两条直线都平行于同一个平面,那么这两条直线互相平行B.过已知平面的一条斜线有且只有一个平面与已知平面垂直C.平面α不垂直平面β,但平面α内存在直线垂直于平面βD.若直线l 不垂直于平面α,则在平面α内不存在与l 垂直的直线 5.设0>ω,函数)sin(ϕω+=x y )(πϕπ<<-的图象向左平移3π个单位后,得到下面的图像,则ϕω,的值为( )(A )32,1πϕω== (B )32,2πϕω== (C )3,1πϕω-== (D )3,2πϕω-==6、ABCDEF 6个同学和1个数学老师站成一排合影留念,数学老师穿白色文化衫,A,B 和C,D 同学分别穿着白色和黑色文化衫,E 和F 分别穿着红色和橙色的文化衫.若老师站中间,穿着白色文化衫的不相邻,则不同的站法种数为( )A.72B.192C. 112D.1607、 设函数)(x f 的导函数为)(x f ',对任意∈x R 都有)()(x f x f >'成立,则( )A .3(ln 2)2(ln3)f f > B.3(ln 2)2(ln 3)f f =C .3(ln 2)2(ln3)f f < D.3(ln 2)2(ln3)f f 与的大小不确定8、过双曲线2222x y a b-=1(a >0,b >0)的左焦点F 引圆x 2+y 2=a 2的切线,切点为T ,延长FT 交双曲线右支于点P ,若T 为线段FP 的中点,则该双曲线的渐近线方程为( ) A .x ±y =0B .2x ±y =0C .4x ±y =0D .x ±2y =09、已知,40,tan 12sin sin 22πθθθθ<<=++k 则)4sin(πθ-的值( ) A .随着k 的增大而增大 B .有时随着k 的增大而增大,有时随着k 的增大而减小 C .随着k 的增大而减小 D .是一个与k 无关的常数10、已知符号函数1,0sgn()0,01,0x x x x >⎧⎪==⎨⎪-<⎩,则函数1()sgn(ln )(23)x f x x -=--的零点个数为( ) A.1 B.2 C.3 D.411、平面α、β、γ两两互相垂直,点A ∈α,点A 到β、γ的距离都是3,P 是α内的动点,P 到β的距离是到点A 距离的2倍,则点P 的轨迹上的点到γ的距离的最小值是( ) A . 3- 3B .3+ 3C .1D .312、定义在R 上的函数)(x f y = 是增函数,且函数)3(-=x f y 的图像关于(3,0)成中心对称,若t s ,满足不等式22(2)(2)0f s s f t t -+-≥,则当14s ≤≤时,3t s +的取值范围是( ) A .]10,2[- B .[4,16] C .]10,4[ D .]16,2[-第II 卷二、填空题(本大题共4小题,每小题5分,共20分).13、右面程序框图中,已知f 0(x)=xe x ,则输出的结果是___ __;14、已知{x 1, x 2, x3, x 4}⊆{x >0|(x -3)sinπx =1}, 则x 1+x 2+x 3+x 4的最小值为___ __;15、ABC ∆内接于以O 为圆心,1为半径的圆,且3450OA OB OC ++=,则该ABC ∆的面积___ __;16、某几何体的三视图如图,若该几何体的各顶点都在一个球面上,则此球的表面积为___ __;(2sin aR A=,其中R 为三角形外接圆半径)三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.) 17、(本小题满分12分)在各项均为正数的等比数列{}n a 中, 已知3212+=a a , 且23a ,4a ,35a 成等差数列.(1)求数列{}n a 的通项公式; (2)设n n a b 3log =,求数列{}n n b a 的前n 项和n S .18.(本小题满分12分)已知某几何体直观图和三视图如下图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形,60°3388主视图侧视图(1)求证:BN 11C B N ⊥平面; (2)11sin C N CNB θθ设为直线与平面所成的角,求的值; (3)设M 为AB 中点,在BC 边上找一点P ,使MP //平面1CNB 并求BPPC的值 19、(本小题满分12分)一个盒子装有六张卡片,上面分别写着如下六个函数:31()f x x =,2()5xf x =,3()2f x =,421()21x xf x -=+,5()sin()2f x x π=+,6()cos f x x x =. (Ⅰ)从中任意拿取2张卡片,若其中有一张卡片上写着的函数为奇函数。
江苏省南通市2015届高三高考密卷(五)(数学学科基地命题)数学试题Word版含解析

2015年高考模拟试卷(5) 南通市数学学科基地命题 第Ⅰ卷(共160分)一、填空题:本大题共14个小题,每小题5分,共70分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数y =2sin(3x +π6)的最小正周期为 .【答案】2π3【解析】试题分析:根据函数()sin()f x A x ωϕ=+的最小正周期是2T πω=可得.考点:三角函数的周期.2.设复数z 满足z (1+2i )=2-i ,则|z |= . 【答案】1 【解析】试题分析:由已知得(12)2z i i +=-,122z i i ⋅+=-,z =1z =. 考点:复数的运算.3.集合{x |-1≤log 1x10<-12,x ∈N *}的真子集的个数是 .【答案】290-1 【解析】 试题分析:111log 102x -≤≤-11log 102x ⇒-≤-≤-1log 1012x ⇒≤≤121010x x ≥⎧⎪⇒⎨⎪≤⎩10100x ⇒≤≤,因此集合11{|1log 10,*}2xx x N -≤≤-∈{|10100,*}x x x N =≤≤∈有90个元素,真子集有9021-个.考点:解对数不等式,子集.4.从{1,2,3,…,18}中任取两个不同的数,则其中一个数恰好是另一个数的3倍的概率为.【答案】251【解析】试题分析:从题中18个数里任取两个数方法数为218153C=,“其中一个数恰好是另一个数的3倍”只有(1,3),(2,6),(3,9),(4,12),(5,15),(6,18)共6种取法,因此概率为62 15351=.考点:古典概型.5.运行如图的算法,则输出的结果是.【答案】36【解析】试题分析:第一次循环后x的值为4,第二次循环后x值为36,这里循环结束,输出为36. 考点:循环结构与算法.6.某校从参加高三年级期中考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段后得到如图的频率分布直方图,请你根据频率分布直方图中的信息,估计出本次考试数学成绩的平均分为.【答案】71【解析】试题分析:第5题(450.01550.015650.015750.03850.025950.005)1071⨯+⨯+⨯+⨯+⨯+⨯⨯=.考点:频率分布直方图,用样本估计总体.7.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1-EDF 的体积为 .【答案】16【解析】试题分析:111111113326D EDF F D ED D DE V V S AB --∆==⋅=⋅⋅=. 考点:几何体的体积.8.已知圆C 过点(1,0),且圆心在x 轴的正半轴上.直线l :y =x -1被圆C 所截得的弦长为22,则过圆心且与直线l 垂直的直线的方程为 . 【答案】x +y -3=0 【解析】试题分析:设圆心为(,0)M a (0)a >,如图,作MN l ⊥,垂足为N ,由于直线l 的倾斜角为4π,所以MN CN ===3a =,因此所求直线方程为(3)y x =--,即30x y +-=.考点:直线和圆的位置关系,直线方程.9.已知等比数列{a n }的前n 项和为S n ,并且对任意正整数n 均有S n +2=4S n +3.则a 2= .【答案】2或6. 【解析】试题分析:由S n +1=qS n +a 1.得S n +2=q (qS n +a 1)+ a 1=q 2S n +a 1(q +1),与已知条件比较得,q 2=4,a 1(q +1)=3.从而,(q ,a 1)=(2,1),或(q ,a 1)=(-2,-3).考点:等比数列的前n 项和.10.已知集合A ={x |x 2+2x -8>0},B ={x |x 2-2ax +4≤0}.若a >0,且A ∩B 中恰有1个整数,则a 的取值范围是 .【答案】[136,52).【解析】试题分析:A ={x |x <-4,或x >2}.设f (x )=x 2-2ax +4,则f (x )的对称轴x =a >0,由f (-4)=20+8a >0,知B ∩{x |x <-4}= .因此,A ∩B 中恰有一个整数为3.故f (3)≤0,f (4)>0.即[136,52).考点:集合的运算,解一元二次不等式.11.已知点A (1,-1),B (4,0),C (2,2).平面区域D 由所有满足AP →=λAB →+μAC →(1<λ≤a ,1<μ≤b )的点P (x ,y )组成的区域.若区域D 的面积为8,则a +b 的最小值为 . 【答案】4 【解析】试题分析:由条件可知D 是为平行四边形,其面积为8,又以,AB AC 为邻边的平行四边形的面积为8,故得(a -1)(b -1)=1,故a +b ≥4. 考点:向量的运算,基本不等式.12.设函数f (x )=ax +12sinx+ 32cos x 的图象上存在两条切线垂直,则a 的值是 .【答案】0 【解析】试题分析:f (x )=ax +sin(x +π3),f ′(x )=a +cos(x +π3)由题设可知存在x 1,x 2使(a +cos(x 1+π3))(a +cos(x 2+π3))=-1,不妨设-cos(x 1+π3)<-cos(x 2+π3),则(a +cos(x 1+π3))(a +cos(x 2+π3))=-1<0得,-cos(x 1+π3)<a <-cos(x 2+π3),所以-1=(a +cos(x 1+π3))(a +cos(x 2+π3))≥(a +1)(a -1)=a 2-1.故a =0.考点:导数与切线.13.实数x 、y 、z 满足0≤x ≤y ≤z ≤4.如果它们的平方成公差为2的等差数列,则|x -y |+|y -z |的最小可能值 .【答案】4-2 3 【解析】试题分析:|x -y |+|y -z |=z -x =z 2-x 2z +x =4z +x =4z + z 2-4≥22+ 3=4-2 3.考点:等差数列,函数的最值.14.若实数x , y 满足x -4y =2x -y ,则x 的取值范围是 . 【答案】{0} .考点:换元法,数形结合思想.二、解答题 (本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.)15.(本小题满分14分)已知△ABC 的内角A 的大小为120(1)若AB =,求△ABC 的另外两条边长;(2)设O 为△ABC 的外心,当BC =AO BC ⋅uuu r uu u r的值.【答案】(1)AC BC =(2)152± 【解析】试题分析:(1)本题是解三角形问题,从已知条件出发,首先利用三角形面积公式1sin 2S bc A =得4bc =,而c =b =a ;(2)同样由余弦定理可得4(1)b c ==或1(4)b c ==,对于AO BC ⋅uuu r uu u r,我们取BC 边中点D ,则有OD BC ⊥,AO BC ⋅uuu r uu u r()AD DO BC AD BC DO BC =+⋅=⋅+⋅2222111()()()()222AB AC AC AB AC AB b c =+⋅-=-=-. 试题解析:(1)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,1sin 2bc A =,所以bc =4.因为c AB ==b CA =由余弦定理得BC a = (2)由BC =22421b c ++=,即2216170b b +-=,解得1b =或4. 设BC 的中点为D ,则AO AD DO =+uuu r uuu r uuu r, 因为O 为△ABC 的外心,所以0DO BC ⋅=uuu r uu u r,于是()()22122b c AO BC AD BC AB AC AC AB -⋅=⋅=+⋅-=uuu r uu u r uuu r uu u r uu u r uuu r uuu r uu u r .所以当1b =时,4c =,221522b c AO BC -⋅==-uuu r uu u r ;当4b =时,1c =,221522b c AO BC -⋅==uuu r uu u r .考点:(1)解三角形,余弦定理,三角形面积;(2)向量的数量积,向量的运算.16.(本小题满分14分)已知直三棱柱111ABC A B C -中,,D E 分别为11,AA CC 的中点,AC BE ⊥,点F 在线段AB 上,且4AB AF =. ⑴求证:1BC C D ⊥;⑵若M 为线段BE 上一点,试确定M 在线段BE 上的位置, 使得1//C D 平面1B FM .【答案】(1)见解析;(2)BE=4ME 【解析】试题分析:(1)要证明线线垂直,根据线面的性质,可先证明线面垂直,从图中可看出就是要证BC ⊥面11ACC A ,直三棱柱中易刘1BC CC ⊥,因此要证BC AC ⊥,而相应地为了证明BC AC ⊥,从已知出发可证明AC ⊥面11BCC B 即可;(2)由已知1//C D AE ,假设有第16题A BC1B1A1CD E F1//C D 平面1B MF ,则有//AE 平面1B MF ,于是有//AE MF ,而反之只要有//AE MF ,就可得//AE 平面1B MF ,也即1//C D 平面1B MF ,由此可知M 点必须满足4BE ME =. 试题解析:⑴由直三棱柱可知1CC ⊥平面ABC ,所以1CC AC ⊥, 又因为1,AC BE CC BE E ⊥=,AC ⊥面BCE ,故AC BC ⊥, 又在直三棱柱中,11,CC BC ACCC C ⊥=,故BC ⊥面11,ACC C D 在平面1ACC 内,所以1BC C D ⊥⑵连结AE ,在BE 上取点M ,使BE=4ME, 连结FM ,1B M ,F 1B ,在BEA ∆中,由BE=4ME ,AB=4AF 所以MF//AE , 又在面AA 1C 1C 中,易证C 1D//AE ,所以1//C D 平面1B FM . 考点:线线垂直与线面垂直,线面平行.17.(本小题满分14分)汽车从刹车开始到完全静止所用的时间叫做刹车时间;所经过的距离叫做刹车距离.某型汽车的刹车距离s(单位米)与时间t(单位秒)的关系为32510s t k t t =-⋅++,其中k 是一个与汽车的速度以及路面状况等情况有关的量.(1)当k =8时,且刹车时间少于1秒,求汽车刹车距离;(2)要使汽车的刹车时间不小于1秒钟,且不超过2秒钟,求k 的取值范围. 【答案】(1)6752210米;(2)⎥⎦⎤⎢⎣⎡∈461,8k . 【解析】试题分析:(1)要求车刹车距离,就要求得刹车时间,即求刹车开始到速度为零时的时间t ,ABC1B1A1CD E F M由已知求导有2'15161v s t t ==-+,令'0s =,解得115t =或1t =(舍去),即刹车时间为115秒,代入可得刹车距离;(2)21521v t kt =-+,题意说明方程21521v t kt =-+0=在区间[1,2]上有解,可转化为求1215k t t=+[1,2]t ∈时的取值范围.试题解析:(1)当8k =时,325810s t t t =-++, 这时汽车的瞬时速度为V='215161s t t =-+, 令'0s =,解得1t =(舍)或115t =, 当115t =时,6752210=s , 所以汽车的刹车距离是6752210米. (2)汽车的瞬时速度为'v s =,所以21521v t kt =-+ 汽车静止时0v =,故问题转化为215210t kt -+=在[]1,2内有解又21511215t k t t t+==+,115t t+≥Q ,当且仅当115,t t t ==Q []1,2t =,∴记1()15f t t t=+, '21()15f t t =-,[1,2]t ∈,'21()150f t t ∴=->,()f t ∴单调递增, ⎥⎦⎤⎢⎣⎡∈∴261,16)(t f ,⎥⎦⎤⎢⎣⎡∈261,162k ,即⎥⎦⎤⎢⎣⎡∈461,8k ,故k 的取值范围为⎥⎦⎤⎢⎣⎡∈461,8k . 考点:导数的物理意义,方程有解问题.18.(本小题满分16分)在平面直角坐标系xOy 中,设椭圆T 的中心在坐标原点,一条准线方程为2y =,且经过点(1,0).(1)求椭圆T 的方程;(2)设四边形ABCD 是矩形,且四条边都与椭圆T 相切.求证:满足条件的所有矩形的顶点在一个定圆上.【答案】(1)2212y x +=;(2)见解析. 【解析】试题分析:(1)一条准线方程为2y =说明椭圆的焦点在y 轴上,因此可设方程为22221(0)y x a b a b+=>>,再根据椭圆的性质求解;(2)四边形是椭圆的外切矩形,当矩形的边与坐标轴平行时,四个顶点在圆22223x y a b +=+=上,当矩形的边与坐标轴不平行时,可设一组边所在直线方程为y kx m =+,利用它与椭圆相切可得m =即直线方程为y kx -=ky x +=标为方程组y kx ky x ⎧-=⎪⎨+=⎪⎩k 得223x y +=,这说明矩形的顶点在圆223x y +=上.由此得证.试题解析:(1)因为椭圆T 的中心在坐标原点,一条准线方程为y =2,所以椭圆T 的焦点在y 轴上,于是可设椭圆T 的方程22221(0)y x a b a b+=>>.因为椭圆T 经过点(1,0),所以2222011ab =⎪+=⎪⎩,, 解得2221a b ⎧=⎪⎨=⎪⎩,.故椭圆T 的方程为221y x +=.(2)由题意知,矩形ABCD 是椭圆2212y x +=的外切矩形,(i)若矩形ABCD 的边与坐标轴不平行,则可设一组对边所在直线的方程为(0)y kx m k =+≠,则由221y x y kx m ⎧⎪+=⎨⎪=+⎩,消去y 得222(2)220k x kmx m +++-=, 于是222244(2)(2)0k m k m ∆=-+-=,化简得m =所以矩形ABCD的一组对边所在直线的方程为y kx =y kx -=则另一组对边所在直线的方程为ky x +=于是矩形顶点坐标(x ,y )满足2222()()(2)(12)y kx ky x k k -++=+++, 即2222(1)()3(1)k x y k ++=+,亦即223x y +=.(ii)若矩形ABCD的边与坐标轴平行,则四个顶点(1±±,显然满足223x y +=. 故满足条件的所有矩形的顶点在定圆223x y +=上. 考点:椭圆的标准方程,直线与椭圆的位置关系.19.(本小题满分16分) 已知函数2()21(),()()f x x ax a f x f x '=++∈R 是的导函数. (1)若[2,1]x ∈--,不等式()()f x f x '≤恒成立,求a 的取值范围; (2)解关于x 的方程()|()|f x f x '=;(3)设函数(),()()()(),()()f x f x f xg x f x f x f x ''⎧=⎨'<⎩≥,求()[2,4]g x x ∈在时的最小值. 【答案】(1)32a ≥;(2)①当1a <-时,1x =-或x =12a -;②当11a -≤≤时,1x =±或x =12a -或(12)x a =-+;③当1a >时,1x =或(12)x a =-+;(3)()2min817, 4,1, 42145, 22124, 2a a a a g x a a a a +-⎧⎪--<<-⎪⎪⎡⎤=⎨+-<-⎣⎦⎪⎪+-⎪⎩≤≤≥.【解析】试题分析:(1)不等式()'()f x f x ≤为22122x ax x a ++≤+,即2(1)2(1)x a x -≤-,由于[2,1]x ∈--,我们可以采用分离参数法求a 的范围,即2(1)12(1)2x xa x --≥=-恒成立,下面只要求出12x-在[2,1]x ∈--时的最大值即可;(2)方程()()f x f x '=为2212x ax x a ++=+,转化为22()210x a x a a +-++-=,解得1x a a +=+或1x a a +=-,下面利用绝对值的定义解这两个方程;(3)本题实质是考查分类讨论的国数学思想,关键是把()g x 具体化,因此首先要比较()f x '()f x 的大小,由于()'()(1)((12))f x f x x x a -=---,因此当12a ≥-时,122a -≤,因此当[2,4]x ∈时()'()f x f x ≥,这样()'()22g x f x x a ==+,当32a <-时,124a ->,当[2,4]x ∈时()'()f x f x <,因此2()()21g x f x x ax ==++,这样问题转化为二次函数在给定区间上的最值问题,分类的标准是对称轴与给定区间的关系,当3122a -<-≤,则[]2,4x ∈时,221,[2,12)()22,[12,4]x ax x a g x x a x a ⎧++∈-=⎨+∈-⎩,这是一个分段函数,要求它的最小值,必须在两段上分别求出,然后比较两个最小值的大小.最终把上面的讨论综合起来可得结论.试题解析:(1)因为()()f x f x '≤,所以2212(1)x x a x -+-≤,又因为21x --≤≤,所以2212(1)x x a x -+-≥在[2,1]x ∈--时恒成立,因为221132(1)22x x x x -+-=-≤, 所以32a ≥.⑵ 因为()()f x f x '=,所以2212x ax x a ++=+,所以22()210x a x a a +-++-=,则1x a a +=+或1x a a +=-. ①当1a <-时,1x a a +=-,所以1x =-或x =12a -; ②当11a -≤≤时,1x a a +=-或1x a a +=+, 所以1x =±或x =12a -或(12)x a =-+;③当1a >时,1x a a +=+,所以1x =或(12)x a =-+.⑶ 因为()()(1)[(12)]f x f x x x a '-=---,(),()(),()(),()(),f x f x f x g x f x f x f x ''⎧=⎨'<⎩≥① 若12a -≥,则[]2,4x ∈时,()()f x f x '≥,所以()()22g x f x x a '==+, 从而()g x 的最小值为(2)24g a =+;②若32a <-,则[]2,4x ∈时,()()f x f x '<,所以2()()21g x f x x ax ==++,当322a -<-≤时,()g x 的最小值为(2)45g a =+, 当42a -<<-时,()g x 的最小值为2()1g a a -=-, 当4a -≤时,()g x 的最小值为(4)817g a =+.③若3122a -<-≤,则[]2,4x ∈时,221,[2,12)()22,[12,4]x ax x a g x x a x a ⎧++∈-=⎨+∈-⎩当[2,12)x a ∈-时,()g x 最小值为(2)45g a =+; 当[12,4]x a ∈-时,()g x 最小值为(12)22g a a -=-. 因为3122a -<-≤,(45)(22)630a a a +--=+<,所以()g x 最小值为45a +.综上所述,()2min817, 4,1, 42145, 22124, 2a a a a g x a a a a +-⎧⎪--<<-⎪⎪⎡⎤=⎨+-<-⎣⎦⎪⎪+-⎪⎩≤≤≥.考点:不等式恒成立问题,解绝对值方程,函数的最值,分类讨论.20.(本小题满分16分) 已知数列{a n }满足a 1=a (a >0,a ∈N *),a 1+a 2+…+a n -pa n +1=0(p ≠0,p ≠-1,n ∈N *). (1)求数列{a n }的通项公式a n ;(2)若对每一个正整数k ,若将a k +1,a k +2,a k +3按从小到大的顺序排列后,此三项均能构成等差数列,且公差为d k .①求p 的值及对应的数列{d k }.②记S k 为数列{d k }的前k 项和,问是否存在a ,使得S k <30对任意正整数k 恒成立?若存在,求出a 的最大值;若不存在,请说明理由.【答案】(1)a n =⎩⎪⎨⎪⎧a n =,a p ⎝ ⎛⎭⎪⎫p +1p n -2n ;(2)①p =-13,d k =9a ·2k -1或p =-23,d k =9a 8·⎝ ⎛⎭⎪⎫12k -1;②存在,且最大正整数a =13.【解析】试题分析:(1)这题类似于已知n S 求n a 的问题,由a 1+a 2+…+a n -pa n +1=0,得n ≥2时,a 1+a 2+…+a n -1-pa n =0,两式相减就可得到a n +1a n =p +1p(n ≥2),这说明数列{a n }从第二项起是公比为p +1p的等比数列,其通项可求;(2)①由于123,,k k k a a a +++的大小关系不确定,因此我们分别就各项为等差中项来讨论求得p 和k d ,p =-13,d k =9a ·2k -1或p =-23,d k =9a 8·⎝ ⎛⎭⎪⎫12k -1;②首先求出k S ,这是等比数列的前n 和,当p =-13时,S k =9a (2k-1).则由S k <30,得a <10k -恒成立,当k ≥3时,10k -<1,因此必定有a <1,故不存在这样的最大正整数.当p =-23时,S k =9a 4⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12k ,则由S k <30,得a <403⎣⎢⎡1-⎝ ⎛⎭⎪⎫12k]恒成立,由于403⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12k >403,所以a =13时满足S k <30恒成立;当a =14时,存在k =5,使得a >403⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12k ,即S k <30,从而满足题意的最大正整数a =13.试题解析:(1)因为a 1+a 2+…+a n -pa n +1=0,所以n ≥2时,a 1+a 2+…+a n -1-pa n =0,两式相减,得a n +1a n =p +1p (n ≥2),故数列{a n }从第二项起是公比为p +1p的等比数列,又当n =1时,a 1-pa 2=0,解得a 2=ap ,从而a n =⎩⎪⎨⎪⎧a n =,a p ⎝ ⎛⎭⎪⎫p +1p n -2n(2)①由(1)得a k +1=a p ⎝ ⎛⎭⎪⎫p +1p k -1,a k +2=a p ⎝ ⎛⎭⎪⎫p +1p k ,a k +3=a p ⎝ ⎛⎭⎪⎫p +1p k +1,若a k +1为等差中项,则2a k +1=a k +2+a k +3, 即p +1p =1或p +1p =-2,解得p =-13; 此时a k +1=-3a (-2)k -1,a k +2=-3a (-2)k,所以d k =|a k +1-a k +2|=9a ·2k -1,若a k +2为等差中项,则2a k +2=a k +1+a k +3, 即p +1p=1,此时无解; 若a k +3为等差中项,则2a k +3=a k +1+a k +2, 即p +1p =1或p +1p =-12,解得p =-23, 此时a k +1=-3a 2⎝ ⎛⎭⎪⎫-12k -1,a k +3=-3a 2⎝ ⎛⎭⎪⎫-12k +1,所以d k =|a k +1-a k +3|=9a 8·⎝ ⎛⎭⎪⎫12k -1,综上所述,p =-13,d k =9a ·2k -1或p =-23,d k =9a 8·⎝ ⎛⎭⎪⎫12k -1.②当p =-13时,S k =9a (2k-1).则由S k <30,得a <10k -,当k ≥3时,10k -<1,所以必定有a <1,所以不存在这样的最大正整数. 当p =-23时,S k =9a 4⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12k ,则由S k <30,得a <403⎣⎢⎡1-⎝ ⎛⎭⎪⎫12k ],因为403⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12k >403,所以a =13满足S k <30恒成立;但当a =14时,存在k =5,使得a >403⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12k 即S k <30,所以此时满足题意的最大正整数a =13.考点:由递推公式求通项公式,等差数列的性质,等比数列的前n 项和,不等式恒成立.第Ⅱ卷(附加题,共40分)21. 本题包括A 、B 、C 、D 四小题,每小题10分;请选定其中两题,并在相应的答题区域内作答..................... A.(选修4-1:几何证明选讲)如图,AB 、CD 是圆的两条平行弦,BE //AC ,BE 交CD 于E 、交圆于F ,过A 点的切线交DC 的延长线于P ,PC =ED =1,PA =2. (1)求AC 的长; (2)求证:BE =EF .【答案】(1)AC =;(2)见解析.考点:切割线定理,相似三角形,相交纺弦定理.B.(选修4-2:矩阵与变换)已知二阶矩阵M 有特征值1λ=-及对应的一个特征向量112⎡⎤=⎢⎥⎣⎦e ,并且矩阵M 对应的变换将点()1,1变换成()0,3-.(1)求矩阵M ;(2)已知向量28⎡⎤=⎢⎥⎣⎦α,求5M α的值. 【答案】(1)1141M -⎡⎤=⎢⎥-⎣⎦;(2)246480-⎡⎤⎢⎥⎣⎦. 【解析】试题分析:(1)要明确特征值与特征向量的关系,那么只要设a b M c d ⎡⎤=⎢⎥⎣⎦,就有1122a b c d -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,从而有2122a b c d +=-⎧⎨+=-⎩,再由1013a b c d ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦得03a b c d +=⎧⎨+=-⎩,联立可解得,,,a b c d ,即矩阵M ;(2)由已知已经知道M 的一个特征值11λ=-和特征向量112e ⎡⎤=⎢⎥⎣⎦,因此关键是求出另一个特征值和特征向量,利用特征多项式可求得另一个特征值为23λ=,相应特征向量为212e -⎡⎤=⎢⎥⎣⎦,然后把α表示为12m n =+αe e ,那么计算5M α5551212(3)3()M M M =+=+e e e e 5511223()λλ=+e e .试题解析:(1)设a b M c d ⎡⎤=⎢⎥⎣⎦,则1122a b c d -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,故2122a b c d +=-⎧⎨+=-⎩ . 1013ab c d ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,故03a b c d +=⎧⎨+=-⎩ . 联立以上方程组解得1,1,4,1a b c d ==-=-=,故1141M -⎡⎤=⎢⎥-⎣⎦. (2)由(1)知 1141M -⎡⎤=⎢⎥-⎣⎦则矩阵M 的特征多项式为2211()(1)42341f λλλλλλ-==--=--- 令0)(=λf ,得矩阵M 另一个特征值为3. 设矩阵M 的另一个特征向量是2x y ⎡⎤=⎢⎥⎣⎦e , 则2343x yx M x y y -⎡⎤⎡⎤==⎢⎥⎢⎥-+⎣⎦⎣⎦e ,解得20x y +=,故212-⎡⎤=⎢⎥⎣⎦e . 由12m n =+αe e ,得24m n m n -=⎧⎨+=⎩,得3,1m n == .∴5A α5551212(3)3()M M M =+=+e e e e 55551122112463()3(1)322480λλ--⎡⎤⎡⎤⎡⎤=+=⨯-+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦e e .考点:矩阵变换,特征值与特征向量.C.(选修4-4:坐标系与参数方程)已知直线l 的参数方程是)(242222是参数t t y t x ⎪⎪⎩⎪⎪⎨⎧+==,圆C 的极坐标方程为)4cos(2πθρ+=.(1)求圆心C 的直角坐标;(2)由直线l 上的点向圆C 引切线,求切线长的最小值. 【答案】(1)()22-;(2)【解析】试题分析:(1)由公式cos sin x y ρθρθ=⎧⎨=⎩可把极坐标方程化为直角坐标方程;(2)可用参数方程形式,设直线l 上任一点P坐标为(,22+,然后求得P 到圆的切线长,再求出切线长函数的最小值即可,也可把直线参数方程化为普通方程0x y -+=,过圆心作直线的垂线,由这个垂足所作切线的长为最小值. 试题解析:(1)θθρsin 2cos 2-= ,θρθρρsin 2cos 22-=∴, 02222=+-+∴y x y x C 的直角坐标方程为圆,即1)22()22(22=++-y x,∴圆心直角坐标为(22-. (2)方法1:直线l 上的点向圆C 引切线长是6224)4(4081)242222()2222(2222≥++=++=-+++-t t t t t , ∴直线l 上的点向圆C 引的切线长的最小值是62 方法2:直线的普通方程为0x y -+=圆心C 到l 直线距离是52|242222|=++,∴直线l 上的点向圆C 引的切线长的最小值是621522=-.考点:极坐标方程与直角坐标方程的互化,切线长定理,参数方程与普通方程的互化. D.(选修4-5:不等式选讲)已知函数()12f x x x =-+-. 若不等式()a b a b a f x ≥++-),,0(R b a a ∈≠恒成立,求实数x 的范围.【答案】1522x ≤≤【解析】试题分析:不等式()a b a b a f x ≥++-恒成立,我们采取分离参数法,把待求范围的变量x 与另两个变量,a b 分离为||||()||a b a b f x a ++-≥,这样()f x 要小于或等于||||||a b a b a ++-的最小值,由绝对值的性质有||||||2||||a b a b a b a b a a ++-++-=≥,故我们只要解不等式()2f x ≤即能求得x 的范围.试题解析:由()a b a b a f x ≥++-|,且0a ≠,得||||()a b a b f x ++-≥又因为||||||2||||a b a b a b a b a a ++-++-=≥,则有2()f x ≥解不等式122x x -+-≤,得1522x ≤≤考点:不等式恒成立,绝对值的性质,绝对值不等式. 【必做题】第22题、第23题,每题10分,共计20分.22.(本小题满分10分)某学生在校举行的环保知识大奖赛中,答对每道题的概率都是13, 答错每道题的概率都是23,答对一道题积5分,答错一道题积-5分,答完n 道题后的总积分记为n S .(1)答完2道题后,求同时满足S 1=5且20S ≥的概率; (2)答完5道题后,设5||S ξ=,求ξ的分布列及其数学期望. 【答案】(1)13; (2)ξ的分布列为:92581E ξ=【解析】试题分析:(1)题意“S 1=5且20S ≥”表示“答完2道题后,第一题答对,第二题正确或者错误都可以”,因此其概率为13P =;(2)答完5道题,结果可能是答对0道,此时525S =-,25ξ=;答对1道,此时515S =-,15ξ=;答对2道,此时55,5S ξ=-=;答对3道,此时55,5S ξ==;答对4道,此时515,15S ξ==;答对5道,此时525,25S ξ==,故ξ的取值只能是5,15,25. 试题解析:(1)由题意“S 1=5且20S ≥”表示:“答完2题,第一题答对,第二题答错;或第一题答对,第二题也答对” 此时概率1211133333P =⨯+⨯= .(2)因为答完5道题,结果可能是:答对0道,此时525S =-,25ξ=;答对1道,此时515S =-,15ξ=; 答对2道,此时55,5S ξ=-=;答对3道,此时55,5S ξ==;答对4道,此时515,15S ξ==;答对5道,此时525,25S ξ==, ∴ξ的取值只能是5,15,25因此23233255211240(5)()()()()333381P C C ξ==⨯+⨯=, 144455211210(15)()()333327P C C ξ==⨯+⨯=, 0555552111(25)()()3381P C C ξ==+=∴ξ的分布列为:∴92581E ξ=考点:随机变量的分布列,数学期望.23.(本小题满分10分)一个非空集合中的各个元素之和是3的倍数,则称该集合为“好集”.记集合 {1,2,3,…,3n }的子集中所有“好集”的个数为f (n ). (1)求f (1),f (2)的值; (2)求f (n )的表达式.【答案】(1)f (1)=3,f (2)=23;(2)f (n )=2n(4n-1)3+2n -1.【解析】试题分析:(1)求(1)f 和(2)f 可用列举法,(1)f 即集合{1,2,3}的子集中“好集”个数3,而(2)f 为集合{1,2,3,4,5,6}的子集中“好集”个数,可分类,一元集,二元集,三元集,四元集,五元集,六元集,最终求得(2)23f =;(2)为了求()f n ,我们尝试研究出(1)f n +与()f n 的关系.集合{1,2,3,…,3n ,3n +1,3n +2,3n +3}在集合{1,2,3,…,3n }中加入3个元素3n +1,3n +2,3n +3.因此f (n +1)的组成有以下几部分:①原有的f (n )个集合;②只含有元素3n +1的“好集”是{1,2, 3,…,3n }中各元素之和被3除余2的集合,只含有元素3n +2的“好集”是{1,2,3,…,3n }中各元素之和被3除余1的集合,只含有元素3n +3的“好集”是{1,2,3,…,3n }中各元素之和被3除余0的集合,合计是23n;③含有元素3n +1与3n +2的“好集”是{1,2,3,…,3n }中各元素之和被3除余0的集合,含有元素是3n +2与3n +3的“好集”是{1,2,3,…,3n }中各元素之和被3除余1的集合,含有元素是3n +1与3n +3的“好集”是{1,2,3,…,3n }中各元素之和被3除余2的集合,合计是23n;④含有元素是3n +1,3n +2,3n +3的“好集”是{1,2,3,…,3n }中“好集”与它的并,再加上{3n +1,3n +2,3n +3}.于是有f (n +1)=2 f (n )+2×23n+1,这个等式两边同除以12n 后可求得()f n .试题解析:(1)易得f (1)=3;当n =2时,集合{1,2,3,4,5,6}的子集中是“好集”的有:单元集:{3},{6}共2个,双元集{1,2},{1,5},{2,4},{4,5},{3,6}共5个,三元集有:{1,2,3},{1,2,6},{1,3,5},{1,5,6},{4,2,3},{4,2,6},{4,3,5},{4,5,6}共8个,四元集有{3,4,5,6},{2,3,4,6}, {1,3,5,6},{1,2,3,6},{1,2,4 ,5}共五个,五元集{1,2,4,5,6},{1,2,3,4,5}共2个,还有一个全集. 故f (2)=1+(2+5)×2+8=23. (2)首先考虑f (n +1)与f (n )的关系.集合{1,2,3,…,3n ,3n +1,3n +2,3n +3}在集合{1,2,3,…,3n }中加入3个元素3n +1,3n +2,3n +3.故f (n +1)的组成有以下几部分:①原有的f (n )个集合;②含有元素3n +1的“好集”是{1,2,3,…,3n }中各元素之和被3除余2的集合,含有元素是3n +2的“好集”是{1,2,3,…,3n }中各元素之和被3除余1的集合,含有元素是3n +,3的“好集”是{1,2,3,…,3n }中各元素之和被3除余0的集合,合计是23n;③含有元素是3n +1与3n +2的“好集”是{1,2,3,…,3n }中各元素之和被3除余0的集合,含有元素是3n +2与3n +3的“好集”是{1,2,3,…,3n }中各元素之和被3除余1的集合,含有元素是3n +1与3n +3的“好集”是{1,2,3,…,3n }中各元素之和被3除余2的集合,合计是23n;④含有元素是3n +1,3n +2,3n +3的“好集”是{1,2,3,…,3n }中“好集”与它的并,再加上{3n +1,3n +2,3n +3}. 所以,f (n +1)=2 f (n )+2×23n+1. 两边同除以2n +1,得f (n +1)2n +1-f (n )2n=4n+12n +1,所以 f (n )2n =4n -1+4n -2+…+4+12n +12n -1+…+122+32=4n -13+1-12n , 即f (n )=2n (4n -1)3+2n -1. 考点:新定义,子集,归纳推理.。
江苏省南通市2015届高三高考密卷(五)(数学学科基地命题)数学试题 含解析

2015年高考模拟试卷(5)南通市数学学科基地命题第Ⅰ卷(共160分)一、填空题:本大题共14个小题,每小题5分,共70分.在每小题给出的四个选项中,只有一项 是符合题目要求的。
1.函数y =2sin (3x +错误!)的最小正周期为 . 【答案】错误! 【解析】试题分析:根据函数()sin()f x A x ωϕ=+的最小正周期是2T πω=可得。
考点:三角函数的周期.2。
设复数z 满足z (1+2i )=2-i ,则|z |= . 【答案】1 【解析】试题分析:由已知得(12)2z i i +=-,122z i i ⋅+=-,55z =1z =.考点:复数的运算.3.集合{x |-1≤log 错误!10〈-错误!,x ∈N *}的真子集的个数是 . 【答案】290-1 【解析】试题分析:111log 102x -≤≤-11log 102x ⇒-≤-≤-1log 1012x ⇒≤≤121010x x ≥⎧⎪⇒⎨⎪≤⎩10100x ⇒≤≤,因此集合11{|1log10,*}2xx x N -≤≤-∈{|10100,*}x x x N =≤≤∈有90个元素,真子集有9021-个。
考点:解对数不等式,子集.4.从{1,2,3,…,18}中任取两个不同的数,则其中一个数恰好是另一个数的3倍的概率为.【答案】错误!【解析】试题分析:从题中18个数里任取两个数方法数为218153C=,“其中一个数恰好是另一个数的3倍”只有(1,3),(2,6),(3,9),(4,12),(5,15),(6,18)共6种取法,因此概率为6215351=。
考点:古典概型。
5.运行如图的算法,则输出的结果是.【答案】36【解析】试题分析:第一次循环后x的值为4,第二次循环后x值为36,这里循环结束,输出为36.考点:循环结构与算法.6。
某校从参加高三年级期中考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段后得到如图的频率分布直方图,第5题请你根据频率分布直方图中的信息,估计出本次考试数学成绩的平均分为 .【答案】71 【解析】试题分析:(450.01550.015650.015750.03850.025950.005)1071⨯+⨯+⨯+⨯+⨯+⨯⨯=. 考点:频率分布直方图,用样本估计总体.7.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1-EDF 的体积为 .【答案】错误! 【解析】 试题分析:111111113326D EDFF D ED D DE VV S AB --∆==⋅=⋅⋅=。
江苏省南通市2015届高三第二次调研测试数学学科(含评分建议)

南通市2015届高三第二次调研测试数学学科参考答案及评分建议一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上......... 1.命题“x ∃∈R ,20x >”的否定是“ ▲ ”.【答案】x ∀∈R ,20x ≤2.设1i i 1ia b +=+-(i 为虚数单位,a ,b ∈R ),则ab 的值为 ▲ .【答案】03.设集合{}11 0 3 A =-,,,,{}2 1B x x =≥,则AB = ▲ .【答案】{}1 3-,4.执行如图所示的伪代码,则输出的结果为 ▲ .【答案】115.一种水稻试验品种连续5年的平均单位面积产量(单位:t/hm 2)如下:9.8,9.9,10.1,10,10.2,则该组数据的方差为 ▲ . 【答案】0.026.若函数()π()2sin 3f x x ω=+(0)ω>的图象与x 轴相邻两个交点间的距离为2,则实数ω的值为▲ .【答案】π27.在平面直角坐标系xOy 中,若曲线ln y x =在e x =(e 为自然对数的底数)处的切线与直线30ax y -+=垂直,则实数a 的值为 ▲ .【答案】e -8.如图,在长方体1111ABCD A B C D -中,AB =3 cm ,AD =2 cm ,1AA =1 cm ,则三棱锥11B ABD -的体积为 ▲ cm 3. 【答案】19.已知等差数列{}n a 的首项为4,公差为2,前n 项和为n S . 若544k k S a +-=(k *∈N ),则k 的值为 ▲ .【答案】710.设32()4(3)f x x mx m x n =++-+(m n ∈R ,)是R 上的单调增函数,则m 的值为 ▲ .AA 1B不CB 1不C 1不D 1不D(第8题)I ← 1While I < 7 S ← 2 I + 1 I ← I + 2 End While Print S(第4题)【答案】611.在平行四边形ABCD 中,AC AD AC BD ⋅=⋅3=,则线段AC 的长为 ▲ .解1:()3a b a +=,()()3a b a b +-=,(1)×2-(2解2:AC BD ⋅-0AC AD ⋅=,得()0AC BD AD ⋅-=,即0AC BA ⋅=,射影得AC AD ⋅=2AC =3,AC =.12.如图,在△ABC 中,3AB =,2AC =,4BC =,点D在边BC 上,BAD ∠=45°,则tan CAD ∠的值为 ▲ .13.设x ,y ,z 均为大于1的实数,且z 为x 和y 的等比中项,则lg lg 4lg lg z zx y+的最小值为 ▲ . 【答案】9814.在平面直角坐标系xOy 中,圆1C :22(1)(6)25x y ++-=,圆2C :222(17)(30)x y r -+-=.若圆2C 上存在一点P ,使得过点P 可作一条射线与圆1C 交于点A ,B ,满足2PA AB =,则半径r 的取值范围是 ▲ . 【答案】[]5 55,设00(,)P x y ,11(,)A x y ,22(,)B x y . 则由2PA AB =得10232x x x -=,10232y y y -=. 将A ,B 坐标代入圆1C 的方程,得222112220011(1)(6)5,21210()()().333x y x y x y ⎧++-=⎪⎨-+-+-=⎪⎩此方程组有解等价于两方程对应的两圆有公共点,于是10105533-≤≤+,整理得525≤≤有解.令d=525d ≤≤有解.BDC(第12题)A当点1C 在圆2C 外时,min 30d r =-,max 30d r =+; 当点1C 在圆2C 内时,min 30d r =-,max 30d r =+. 于是305r +≥,|30|25r -≤,解得555r ≤≤.二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答.解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)如图,在四面体ABCD 中,平面BAD ⊥平面CAD ,BAD ∠=90°.M ,N ,Q 分别为棱AD ,BD ,AC 的中点.(1)求证://CD 平面MNQ ; (2)求证:平面MNQ ⊥平面CAD .证明:(1)因为M ,Q 分别为棱AD ,AC 的中点,所以//MQ CD . ……2分 又CD ⊄平面MNQ ,MQ ⊂平面MNQ ,故//CD 平面MNQ . ……6分 (2)因为M ,N 分别为棱AD ,BD 的中点,所以//MN AB .又90BAD ∠=°,故MN AD ⊥. ……8分 因为平面BAD ⊥平面CAD ,平面BAD平面CAD AD =,且MN ⊂平面ABD ,所以MN ⊥平面ACD . ……11分又MN ⊂平面MNQ ,平面MNQ ⊥平面CAD . ……14分(注:若使用真命题“如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面”证明“MN ⊥平面ACD ”,扣1分.)16.(本小题满分14分)体育测试成绩分为四个等级:优、良、中、不及格.某班50名学生参加测试的结果如下:(1)从该班任意抽取1名学生,求这名学生的测试成绩为“良”或“中”的概率;(2)测试成绩为“优”的3名男生记为1a ,2a ,3a ,2名女生记为1b ,2b .现从这5人中任选2人参加学校的某项体育比赛. ①写出所有等可能的基本事件;A BCDMNQ(第15题)②求参赛学生中恰有1名女生的概率.解:(1)记“测试成绩为良或中”为事件A ,“测试成绩为良”为事件1A ,“测试成绩为中”为事件2A ,事件1A ,2A 是互斥的. ……2分由已知,有121923()()5050P A P A ==,. ……4分因为当事件1A ,2A 之一发生时,事件A 发生, 所以由互斥事件的概率公式,得1212192321()()()()505025P A P A A P A P A =+=+=+=. ……6分(2)①有10个基本事件:12()a a ,,13()a a ,,11()a b ,,12()a b ,,23()a a ,,21()a b ,,22()a b ,,31()a b ,,32()a b ,,12()b b ,. ……9分②记“参赛学生中恰好有1名女生”为事件B .在上述等可能的10个基本事件中,事件B包含了11()a b ,,12()a b ,,21()a b ,,22()a b ,,31()a b ,,32()a b ,.故所求的概率为63()105P B ==.答:(1)这名学生的测试成绩为“良”或“中”的概率为2125;(2)参赛学生中恰有1名女生的概率为35. ……14分(注:不指明互斥事件扣1分;不记事件扣1分,不重复扣分;不答扣1分.事件B 包含的6种基本事件不枚举、运算结果未化简本次阅卷不扣分.)17.(本小题满分14分)在平面直角坐标系xOy 中,已知向量=a (1,0),=b (0,2).设向量=+x a (1cos θ-)b ,k =-y a 1θ+b ,其中0πθ<<.(1)若4k =,π6θ=,求x ⋅y 的值;(2)若x //y ,求实数k 的最大值,并求取最大值时θ的值.解:(1)(方法1)当4k =,π6θ=时,(12=,x ,=y (44-,), ……2分则⋅=x y (1(4)244⨯-+-⨯=- ……6分(方法2)依题意,0⋅=a b , ……2分则⋅=x y (()(22142421⎡⎤+-⋅-+=-+⨯⎢⎥⎣⎦a b a b a b(421443=-+⨯⨯=. ……6分 (2)依题意,()122cos θ=-,x ,()2sin k θ=-,y , 因为x //y ,所以2(22cos )k θθ=--,整理得,()1sin cos 1kθθ=-, ……9分令()()sin cos 1f θθθ=-,则()()cos cos 1sin (sin )f θθθθθ'=-+-22c o s c o s 1θθ=-- ()()2cos 1cos 1θθ=+-. ……11分令()0f θ'=,得1cos 2θ=-或cos 1θ=,又0πθ<<,故2π3θ=.列表:故当2π3θ=时,min ()f θ=,此时实数k 取最大值 ……14分(注:第(2)小问中,得到()122cos θ=-,x ,()2sin k θ=-,y ,及k 与θ的等式,各1分)18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆2222 1 ( 0 )y x a b a b+=>>的左顶点为A ,右焦点为(0)F c ,.00( )P x y ,为椭圆上一点,且PA PF ⊥.(1)若3a =,b 0x 的值; (2)若00x =,求椭圆的离心率;(3)求证:以F 为圆心,FP 为半径的圆与椭圆的右准线2a x c=相切. 解:(1)因为3a =,b =2224c a b =-=,即2c =. 由PA PF ⊥得,0000132y y x x ⋅=-+-,即22006y x x =--+. ……3分 又22001x y +=,所以204990x x +-=, 解得034x =或03x =-(舍去). ……5分(2)当00x =时,220y b =, 由PA PF ⊥得,001y y a c⋅=--,即2b ac =,故22a c ac -=, ……8分 所以210e e +-=,解得e . ……10分(3)依题意,椭圆右焦点到直线2a x c =的距离为2a c c -,且2200221x y a b+=.① 由PA PF ⊥得,00001y y x a x c⋅=-+-,即2200()y x c a x ca =-+-+. ② 由①②得,22000()()()0x a b x a a x c ⎡⎤+---=⎣⎦,解得()2202a a ac c x c --=-(0x a =-舍去). ……13分所以PF ==0c a x a =-()222a a ac c c a a c --=+⋅2a c c =-,所以以F 为圆心,FP 为半径的圆与右准线2a x c=相切. ……16分(注:第(3)小问中,得到椭圆右焦点到直线2a x c =的距离为2a c c-,得1分;直接使用焦半径(第18题)公式扣1分)19.(本小题满分16分)设a ∈R ,函数()f x x x a a =--. (1)若()f x 为奇函数,求a 的值;(2)若对任意的[2 3]x ∈,,()0f x ≥恒成立,求a 的取值范围; (3)当4a >时,求函数()()y f f x a =+零点的个数.解:(1)若()f x 为奇函数,则()()f x f x -=-, 令0x =得,(0)(0)f f =-,即(0)0f =,所以0a =,此时()f x x x =为奇函数. ……4分(2)因为对任意的[2 3]x ∈,,()0f x ≥恒成立,所以min ()0f x ≥. 当0a ≤时,对任意的[2 3]x ∈,,()0f x x x a a =--≥恒成立,所以0a ≤;……6分 当0a >时,易得22 () x ax a x a f x x ax a x a ⎧-+-<⎪=⎨--⎪⎩,,,≥在(2a ⎤-∞⎥⎦,上是单调增函数,在 a a ⎡⎤⎢⎥⎣⎦,上是单调减函数,在[) a +∞,上是单调增函数. 当02a <<时,min ()(2)2(2)0f x f a a ==--≥,解得43a ≤,所以43a ≤;当23a ≤≤时,min ()()0f x f a a ==-≥,解得0a ≤,所以此时a 不存在; 当3a >时,{}{}min ()min (2)(3)min 2(2)3(3)0f x f f a a a a ==----,,≥, 解得92a ≥,所以92a ≥;综上得,43a ≤或92a ≥. ……10分(3)设[]()()F x f f x a =+.令()t f x a x x a =+=-,则()y f t ==t t a a --,4a >.第一步,()0f t =t t a a ⇔-=,所以,当t a <时,20t at a -+=,判别式(4)0a a ∆=->,解得1t =2t =;当t a ≥时,由()0f t =得,即()t t a a -=,解得3t 第二步,易得12302a t t a t <<<<<,且24a a <. ①若1x x a t -=,其中2104a t <<, 当x a <时,210x ax t -+=,记21()p x x ax t =-+,因为对称轴2a x a =<,1()0p a t =>,且21140a t ∆=->,所以方程210t at t -+=有2个不同的实根; 当x a ≥时,210x ax t --=,记21()q x x ax t =--,因为对称轴a x a =<,1()0q a t =-<,且22140a t ∆=+>,所以方程210x ax t --=有1个实根, 从而方程1x x a t -=有3个不同的实根;②若2x x a t -=,其中2204a t <<,由①知,方程2x x a t -=有3个不同的实根;③若3x x a t -=,当x a >时,230x ax t --=,记23()r x x ax t =--,因为对称轴2a x a =<,3()0r a t =-<,且23340a t ∆=+>,所以方程230x ax t --=有1个实根; 当x a ≤时,230x ax t -+=,记23()s x x ax t =--,因为对称轴2a x a =<,3()0s a t =>,且2334a t ∆=-,2340a t ->⇔324160a a -->, ……14分记32()416m a a a =--,则()(38)0m a a a '=->,故()m a 为(4 )+∞,上增函数,且(4)160m =-<,(5)90m =>, 所以()0m a =有唯一解,不妨记为0a ,且0(45)a ∈,, 若04a a <<,即30∆<,方程230x ax t -+=有0个实根; 若0a a =,即30∆=,方程230x ax t -+=有1个实根; 若0a a >,即30∆>,方程230x ax t -+=有2个实根.所以,当04a a <<时,方程3x x a t -=有1个实根; 当0a a =时,方程3x x a t -=有2个实根; 当0a a >时,方程3x x a t -=有3个实根.综上,当04a a <<时,函数[]()y f f x a =+的零点个数为7; 当0a a =时,函数[]()y f f x a =+的零点个数为8;当0a a >时,函数[]()y f f x a =+的零点个数为9. ……16分 (注:第(1)小问中,求得0a =后不验证()f x 为奇函数,不扣分;第(2)小问中利用分离参数法参照参考答案给分;第(3)小问中使用数形结合,但缺少代数过程的只给结果分)20.(本小题满分16分)设{}n a 是公差为d 的等差数列,{}n b 是公比为q (1q ≠)的等比数列.记n n n c a b =+. (1)求证:数列{}1n n c c d +--为等比数列; (2)已知数列{}n c 的前4项分别为4,10,19,34. ①求数列{}n a 和{}n b 的通项公式;②是否存在元素均为正整数的集合A ={1n ,2n ,…,} k n (4k ≥,k *∈N ),使得数列1n c ,2n c ,…,k n c 为等差数列?证明你的结论.解:(1)依题意,()()111n n n n n n c c d a b a b d +++--=+-+-()()11n n n n a a d b b ++=--+-(1)0n b q =-≠, ……3分 从而2111(1)(1)n n n n n n c c d b q q c c d b q ++++---==---,所以{}1n n c c d +--是首项为1(1)b q -,公比为q 的等比数列. ……5分(2)①法1:因数列{}n c 的前4项分别为4,10,19,34,故{}1n n c c d +--的前3项为6d -,9d -,15d -, 由(1)得,{}1n n c c d +--是等比数列,则()29d -=()()615d d --,解得3d =,从而2q =, ……7分 且11114 3210 a b a b +=⎧⎨++=⎩,,解得11a =,13b =,所以32n a n =-,132n n b -=⋅. ……10分法2:依题意,得1111211311410219334a b a d b q a d b q a d b q +=⎧⎪++=⎪⎨++=⎪⎪++=⎩,,,, ……7分消去1a ,得1121132116915d b q b d b q b q d b q b q +-=⎧⎪+-=⎨⎪+-=⎩,,,消去d ,得2111321112326b q b q b b q b q b q ⎧-+=⎪⎨-+=⎪⎩,, 消去1b ,得2q =,从而可解得,11a =,13b =,3d =,所以32n a n =-,132n n b -=⋅. ……10分 ②假设存在满足题意的集合A ,不妨设l ,m ,p ,r A ∈()l m p r <<<, 且l c ,m c ,p c ,r c 成等差数列,则2m p l c c c =+, 因为0l c >,所以2m p c c >, (*) 若1p m >+,则2p m +≥,结合(*)得,112(32)32(32)32m p m p --⎡⎤-+⋅>-+⋅⎣⎦13(2)232m m ++-+⋅≥, 化简得,8203m m -<-<, (**)因为2m ≥,m *∈N ,不难知20m m ->,这与(**)矛盾, 所以只能1p m =+. 同理,1r p =+.所以m c ,p c ,r c 为数列{}n c 的连续三项,从而122m m m c c c ++=+, 即()11222m m m m m m a b a b a b +++++=+++,故122m m m b b b ++=+, 由132n n b -=⋅得45=,矛盾,所以假设不成立,从而不存在满足题意的集合A . ……16分(注:第(2)小问②中,在正确解答①的基础上,写出结论“不存在”,就给1分)南通市2015届高三第二次调研测试数学Ⅱ(附加题)A .[选修4-1:几何证明选讲](本小题满分10分) 如图,从圆O 外一点P 引圆的切线PC 及割线PAB ,C 为切点.求证:AP BC AC CP ⋅=⋅. 证明:因为PC 为圆O 的切线,所以PCA CBP ∠=∠, ……3分 又CPA CPB ∠=∠,故△CAP ∽△BC P , ……7分 所以AC AP =,即AP BC AC CP ⋅=⋅. ……10分B .[选修4-2:矩阵与变换](本小题满分10分)设23⎡⎤⎢⎥⎣⎦是矩阵232a ⎡⎤=⎢⎥⎣⎦M 的一个特征向量,求实数a 的值. 解:设23⎡⎤⎢⎥⎣⎦是矩阵M 属于特征值λ的一个特征向量,则232a ⎡⎤⎢⎥⎣⎦23λ⎡⎤=⎢⎥⎣⎦23⎡⎤⎢⎥⎣⎦, ……5分 故262 123 a λλ+=⎧⎨=⎩,,解得4 1. a λ⎧⎨=⎩=,……10分C .[选修4-4:坐标系与参数方程](本小题满分10分)在极坐标系中,设直线π3θ=与曲线210cos 40ρρθ-+=相交于A ,B 两点,求线段AB 中点的极坐标.解:(方法1)将直线π3θ=化为普通方程得,y =,将曲线210cos 40ρρθ-+=化为普通方程得,221040x y x +-+=, ……4分联立221040y x y x ⎧=⎪⎨+-+=⎪⎩,并消去y 得,22520x x -+=,解得112x =,22x =,P(第21 - A 题)所以AB 中点的横坐标为12524x x +=……8分 化为极坐标为()5π 23,. ……10分(方法2)联立直线l 与曲线C 的方程组2π310cos 40θρρθ⎧=⎪⎨⎪-+=⎩,,……2分 消去θ,得2540ρρ-+=,解得11ρ=,24ρ=, ……6分 所以线段AB 中点的极坐标为()12π 23ρρ+,,即()5π 23,. ……10分(注:将线段AB 中点的极坐标写成()5π 2π ()23k k +∈Z ,的不扣分)D .[选修4-5:不等式选讲](本小题满分10分)设实数a ,b ,c 满足234a b c ++=,求证:2228a b c ++≥.证明:由柯西不等式,得()()222222123a b c ++++≥()223a b c ++, ……6分 因为234a b c ++=,故22287a b c ++≥, ……8分当且仅当123a b c ==,即27a =,47b =,67c =时取“=”. ……10分【必做题】第22题、第23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,在平面直角坐标系xOy 中,点(84)A -,,(2)P t ,(0)t <在抛物线22y px =(0)p >上. (1)求p ,t 的值;(2)过点P 作PM 垂直于x 轴,M 为垂足,直线AM 与抛物线的另一交点为B ,点C 在直线AM 上.若PA ,PB ,PC 的斜率分别为1k ,2k ,3k ,且1232k k k +=,求点C 的坐标. 解:(1)将点(84)A -,代入22y px =,得1p =, ……2分 将点(2)P t ,代入22y x =,得2t =±,因为0t <,所以2t =-. ……4分 (2)依题意,M 的坐标为(20),, 直线AM 的方程为2433y x =-+,(第22题)联立224332y x y x⎧=-+⎪⎨⎪=⎩,并解得B ()112,, ……6分所以113k =-,22k =-,代入1232k k k +=得,376k =-, ……8分从而直线PC 的方程为7163y x =-+,联立24337163y x y x ⎧=-+⎪⎨⎪=-+⎩,并解得C ()823-,. ……10分23.(本小题满分10分)设A ,B 均为非空集合,且AB =∅,AB ={ 123,,,…,}n (n ≥3,n *∈N ).记A ,B 中元素的个数分别为a ,b ,所有满足“a ∈B ,且b A ∈”的集合对(A ,B )的个数为n a . (1)求a 3,a 4的值; (2)求n a 的表达式.解:(1)当n =3时,AB ={1,2,3},且AB =∅.若a =1,b =2,则1B ∈,2A ∈,共01C 种;若a =2,b =1,则2B ∈,1A ∈,共11C 种.所以a 3=01C 11+ C 2=; ……2分当n =4时,A B ={1,2,3,4},且A B =∅.若a =1,b =3,则1B ∈,3A ∈,共02C 种; 若a =2,b =2,则2B ∈,2A ∈,这与AB =∅矛盾;若a =3,b =1,则3B ∈,1A ∈,共22C 种.所以a 4=02C 22+ C 2=. ……4分(2)当n 为偶数时,A B ={1,2,3,…,n },且A B =∅.若a =1,b 1n =-,则1B ∈,1n -A ∈,共02C n -(考虑A )种;若a =2,b 2n =-,则2B ∈,2n -A ∈,共12C n -(考虑A )种; ……若a =12n -,b 12n =+,则12n -B ∈,12n +A ∈,共22C nn --(考虑A )种; 若a =2n ,b 2n =,则2n B ∈,2n A ∈,这与AB =∅矛盾;若a 12n =+,b 12n =-,则12n +B ∈,12n -A ∈,共22C nn -(考虑A )种; ……若a =1n -,b 1=,则1n -B ∈,1A ∈,共(考虑A )22C n n --种.所以a n =02Cn -+12Cn -+…+222C n n --+22Cn n -+…+122222C2Cn n n n n -----=-. ……8分当n 为奇数时,同理得,a n =02C n -+12C n -+…+222C 2n n n ---=. 综上得,122222C 2 .n n n n n n a n ----⎧⎪-=⎨⎪⎩,为偶数,,为奇数 ……10分。
2015年江苏高考南通密卷(全十份带答案)(南通市数学学科基地命题)

C. (选修4-4:坐标系与参数方程) 的图象在点 处的切线平行于 轴.
3 在极坐标系中,设圆 C 经过点 P ,圆心是直线 sin( ) 与极轴的交点,求圆 C 的 ( 3, ) 3 2 6
极坐标方程.
,求证:
.
D. (选修4-5:不等式选讲) 设 a, b, c 均为正数, abc 1 .求证:
D
C
B
23. (本小题满分 10 分) 如图,已知点 F (0, p) ,直线 l : y p(其中p为常数且p 0) , M 为平面内的动点,过 M 作 l 的垂线,垂 uuu u r uuu r uuur uuu r 足为 N ,且 NM NF FM FN . ( 1)求动点 M 的轨迹 C 的方程; ( 2)设 Q 是 l 上的任意一点,过 Q 作轨迹 C 的切线,切点为 A 、 B . ①求证: A 、 Q 、 B 三点的横坐标成等差数列; y ②若 Q(4, p) , AB 20 ,求 p 的值. M
n 3 1 1 1 2 2 , n 22. (本小题满分 10 分) 已知数列 an 满足 a1 1 , an 1
(3n 3)an 4n 6 ,n N* . n
是等差数列,求
( 2) 当 C 0 时,若数列 求实数 的取值范围.
A B M
N C
第 4 题图
第 16 题 17. ( 本小题满分 14 分 ) 图 某商场为促销要准备一些正三棱锥形状的装饰品,用半径为 10cm 的圆形包装纸包装.要求如下:正三 棱锥的底面中心与包装纸的圆心重合,包装纸不能裁剪,沿底边向上翻折,其边缘恰好达到三棱锥的顶
点,如图所示.设正三棱锥的底面边长为 xcm ,体积为 Vcm3 . . ( 1)求 V 关于 x 的函数关系式; ( 2)在所有能用这种包装纸包装的正三棱锥装饰品中, V 的最大值是多少?并求此时 x 的值.
南通市届高三三模数学试题含答案

(第10题)ABCD EF(第11题)P (第5题) 开始 输入x y ←5 x <4y ←x 22x +2输出y 结束 YN(第4题)时间(小时) 频率 组距50 75 100 125 150 南通市2015届高三第三次调研测试一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1. 设集合A {3,m },B {3m ,3},且A B ,则实数m 的值是 ▲ .2. 已知复数z(1i)(12i)+-(i 为虚数单位),则z 的实部为 ▲ .3. 已知实数x ,y 满足条件||1||1x y ⎧⎨⎩≤≤,,则z 2x +y 的最小值是 ▲ .4. 为了解学生课外阅读的情况,随机统计了n 名学生的课外阅读时间,所得数据都在[50,150]中,其频率分布直方图如图所示.已知在[50 75),中的频数为100,则n 的值为 ▲ .5. 在如图所示的算法流程图中,若输出的y 的值为26,则输入的x 的值为 ▲ .6. 从集合{1,2,3,4,5,6,7,8,9}中任取一个数记为x ,则log 2x 为整数的概率为 ▲ . 7. 在平面直角坐标系xOy 中,点F 为抛物线x28y 的焦点,则F 到双曲线2219y x -=的渐近线的距离为▲ .8. 在等差数列{a n }中,若a n +a n +24n +6(n ∈N *),则该数列的通项公式a n ▲ .9. 给出下列三个命题: ①“a >b ”是“3a>3b”的充分不必要条件;②“α>β”是“cos α<cos β”的必要不充分条件; ③“a 0”是“函数f (x )x 3+ax 2(x ∈R )为奇函数”的充要条件.其中正确命题的序号为 ▲ .10.已知一个空间几何体的所有棱长均为1 cm ,其表面展开图如图所示,则该空间几何体的体积V ▲ cm 3.11.如图,已知正方形ABCD 的边长为2,点E 为AB 的中点.以A 为圆心,AE 为半径,作弧交AD 于点F .若P 为劣弧»EF 上的动点,则PC PD u u u r u u u rg 的最小值为 ▲ . 12.已知函数322301()5 1x x m x f x mx x ⎧++=⎨+⎩≤≤,,,>.若函数f (x )的图象与x 轴有且只有两个不同的交点,则实数m 的取值范围为 ▲ .13.在平面直角坐标系xOy 中,过点P (5,a )作圆x 2+y22ax +2y 10的两条切线,切点分别为M (x 1,y 1),N (x 2,y 2),且2112211220y y x x x x y y -+-+=-+,则实数a 的值为 ▲ . 14.已知正实数x ,y 满足24310x y x y+++=,则xy 的取值范围为 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答.解答时应写出文字说明、 证明过程或演算步骤. 15.(本小题满分14分) 如图,在三棱柱ABC A 1B 1C 1中,B 1C ⊥AB ,侧面BCC 1B 1为菱形. (1)求证:平面ABC 1⊥平面BCC 1B 1;(2)如果点D ,E 分别为A 1C 1,BB 1的中点,求证:DE ∥平面ABC 1.16.(本小题满分14分)已知函数()sin()f x A x ωϕ=+(其中A ,ω,ϕ为常数,且A >0,ω>0,22ϕππ-<<)的部分图象如图所示.(1)求函数f (x )的解析式; (2)若3()2f α=,求sin(2)6απ+的值.CDA 1B 1C 1(第15题)ExyO2 2(第16题)3π-32π17.(本小题满分14分)如图,在平面直角坐标系xOy中,椭圆22221x ya b+=(a>b>0)的两焦点分别为F1(3-,0),F2(3,0),且经过点(3,12 ).(1)求椭圆的方程及离心率;(2)设点B,C,D是椭圆上不同于椭圆顶点的三点,点B与点D关于原点O对称.设直线CD,CB,OB,OC的斜率分别为k1,k2,k3,k4,且k1k2k3k4.①求k1k2的值;②求OB2+OC2的值.18.(本小题满分16分)为丰富市民的文化生活,市政府计划在一块半径为200 m,圆心角为120°的扇形地上建造市民广场.规划设计如图:内接梯形ABCD区域为运动休闲区,其中A,B分别在半径OP,OQ上,C,D在圆弧»PQ上,CD∥AB;△OAB区域为文化展示区,AB长为503m;其余空地为绿化区域,且CD长不得超过....200 m.(1)试确定A,B的位置,使△OAB的周长最大(2)当△OAB的周长最大时,设∠DOC=2θ,试将运动休闲区ABCD的面积S表示为θ的函数,并求出S的最大值.19.(本小题满分16分)ABCDPQ(第18题)OyxOF1F2BC(第17题)D已知数列{a n },{b n }中,a 1=1,22111(1)n n n n a b a a ++=-⋅,n ∈N ,数列{b n }的前n 项和为S n .(1)若12n n a -=,求S n ;(2)是否存在等比数列{a n },使2n n b S +=对任意n ∈N *恒成立若存在,求出所有满足条件的数列{a n }的通项公式;若不存在,说明理由;(3)若a 1≤a 2≤…≤a n ≤…,求证:0≤S n <2.20.(本小题满分16分) 已知函数1()ln f x a x x=--(a ∈R ). (1)若a =2,求函数()f x 在(1,e 2)上的零点个数(e 为自然对数的底数); (2)若()f x 恰有一个零点,求a 的取值集合;(3)若()f x 有两零点x 1,x 2(x 1<x 2),求证:2<x 1+x 2<13e a -1.21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答.................... 若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修41:几何证明选讲](本小题满分10分)如图,BC 为圆O 的直径,A 为圆O 上一点,过点A 作圆O 的切线交BC 的延长线于点P ,AH ⊥PB 于H . 求证:PA ·AH PC ·HB .B .[选修42:矩阵与变换](本小题满分10分)CBO(第21(A )题)H在平面直角坐标系xOy 中,已知点A (0,0),B (2,0),C (1,2),矩阵01102⎡⎤⎢⎥=⎢⎥-⎣⎦M ,点A ,B ,C 在矩阵M 对应的变换作用下得到的点分别为A ',B ',C ',求△A B C '''的面积.C .[选修44:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy 中,曲线C 的参数方程为cos sin x r y r αα=⎧⎨=⎩,,(α为参数,r 为常数,r >0).以原点O为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2cos()204ρθπ++=.若直线l与曲线C 交于A ,B 两点,且22AB =,求r 的值.D .[选修45:不等式选讲](本小题满分10分) 已知实数a ,b ,c ,d 满足a >b >c >d ,求证:14936a b b c c d a d++----≥.【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,正四棱柱ABCD A 1B 1C 1D 1中,12AA AB . (1)求1AD 与面11BB D D 所成角的正弦值;(2)点E 在侧棱1AA 上,若二面角E BD C 13, 求1AEAA 的值.23.(本小题满分10分)袋中共有8个球,其中有3个白球,5个黑球,这些球除颜色外完全相同.从袋中随机取出一球,如果取出白球,则把它放回袋中;如果取出黑球,则该黑球不再放回,并且另补一个白球放入袋中.重复上述过程n 次后,袋中白球的个数记为X n .(1)求随机变量X 2的概率分布及数学期望E (X 2); (2)求随机变量X n 的数学期望E (X n )关于n 的表达式.A BCDA 1B 1C 1D 1(第22题)南通市2015届高三第三次调研测试 数学学科参考答案及评分建议一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.【答案】0 2.【答案】3 3.【答案】 3 4.【答案】1000 5.【答案】46.【答案】497.【答案】105 8.【答案】2n +1 9.【答案】③ 10.【答案】216+11.【答案】525- 12.【答案】(5,0) 13.【答案】3或 14.【答案】[1,83]二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答.解答时应写出文字说明、 证明过程或演算步骤. 15.(本小题满分14分) 如图,在三棱柱ABC A 1B 1C 1中,B 1C ⊥AB ,侧面BCC 1B 1为菱形. (1)求证:平面ABC 1⊥平面BCC 1B 1;(2)如果点D ,E 分别为A 1C 1,BB 1的中点,求证:DE ∥平面ABC 1.解:(1)因三棱柱ABC A 1B 1C 1的侧面BCC 1B 1为菱形, 故B 1C ⊥BC 1.……………………………………………………………………… 2分又B 1C ⊥AB ,且AB ,BC 1为平面ABC 1内的两条相交直线,故B 1C ⊥平面ABC 1. 5分因B 1C ⊂平面BCC 1B 1,故平面ABC 1⊥平面BCC 1B 1. 7分(2)如图,取AA 1的中点F ,连DF ,FE . 又D 为A 1C 1的中点,故DF ∥AC 1,EF ∥AB .因DF ⊄平面ABC 1,AC 1⊂平面ABC 1,故DF ∥面ABC 1. ………………… 10分 同理,EF ∥面ABC 1.因DF ,EF 为平面DEF 内的两条相交直线,故平面DEF ∥面ABC 1.……………………………………………………………… 12分 因DE ⊂平面DEF ,故DE ∥面ABC 1.……………………………………………………………………14分CD A 1 B 1C 1(第15题答图)E FB CDA 1B 1C 1(第15题)E16.(本小题满分14分)已知函数()sin()f x A x ωϕ=+(其中A ,ω,ϕ为常数,且A >0,ω>0,22ϕππ-<<)的部分图象如图所示.(1)求函数f (x )的解析式; (2)若3()2f α=,求sin(2)6απ+的值.解:(1)由图可知,A 2,…………………………………………………………… 2分T 2π,故1ω=,所以,f (x ) 2sin()x ϕ+.…………………………………… 4分又22()2sin()233f ϕππ=+=,且22ϕππ-<<,故6ϕπ=-. 于是,f (x ) 2sin()6x π-.………………………………………………………… 7分(2)由3()2f α=,得3sin()64απ-=.…………………………………………9分所以,sin(2)sin 2()cos 2()6626αααππππ⎡⎤⎡⎤+=-+=-⎢⎥⎢⎥⎣⎦⎣⎦…………………………12分=2112sin ()68απ--=-.……………………………………14分17.(本小题满分14分)如图,在平面直角坐标系xOy 中,椭圆22221x y a b +=(a >b >0)的两焦点分别为F 1(3-,0),F 2(3,0),且经过点(3,12).(1)求椭圆的方程及离心率;(2)设点B ,C ,D 是椭圆上不同于椭圆顶点的三点,点B 与点D 关于原点O 对称.设直线CD ,CB ,OB ,OC 的斜率分别为k 1,k 2,k 3,k 4,且k 1k 2k 3k 4.①求k 1k 2的值; ②求OB 2+OC 2的值.解:(1)方法一依题意,c3,a2b 2+3,……………………………………………………… 2分xyO2 2(第16题)3π-32πyxOF 1F 2BC (第17题)D由2213413b b+=+,解得b 21(b234-,不合,舍去),从而a 24. 故所求椭圆方程为:2214x y +=.离心率e 32.…………………………………………………………………… 5分方法二由椭圆的定义知,2a222211(33)(0)(33)(0)22--+-+-+-4,即a 2.…………………………………………………………………………… 2分又因c3,故b21.下略.(2)①设B (x 1,y 1),C (x 2,y 2),则D (x 1,y 1),于是k 1k 221212121y y y y x x x x -+⋅-+12222221y y x x --22212221(1)(1)44x x x x ----14-.………………… 8分 ②方法一由①知,k 3k 4k 1k 214-,故x 1x 2124y y -.所以,(x 1x 2)2(4y 1y 2)2,即(x 1x 2)2221216(1)(1)44x x --22221212164()x x x x -++,所以,2212x x +4.…………………………………………………………………… 11分又222221212()()44x x y y +++222212124x x y y +++,故22121y y +=. 所以,OB 2+OC 222221122x y x y +++5.………………………………………… 14分方法二 由①知,k 3k 4k 1k 214-.将直线y k 3x 方程代入椭圆2214x y +=中,得2123414x k =+.…………………… 9分同理,2224414x k =+.所以,22122234441414x x k k +=+++22334411414()4k k +++-4.…………………… 11分下同方法一.18.(本小题满分16分)为丰富市民的文化生活,市政府计划在一块半径为200 m ,圆心角为120°的扇形地上建造市民广场.规划设计如图:内接梯形ABCD 区域为运动休闲区,其中A ,B 分别在半径OP ,OQ 上,C ,D 在圆弧»PQ上,CD ∥AB ;△OAB 区域为文化展示区,AB 长为503m ;其余空地为绿化区域,且CD 长不得超过....200 m .(1)试确定A ,B 的位置,使△OAB 的周长最大(2)当△OAB 的周长最大时,设∠DOC =2θ,试将运动休闲区ABCD 的面积S 表示为θ的函数,并求出S 的最大值.解:(1)设(0200]OA m OB n m n ==∈,,,,, 在△OAB 中,22222cos 3AB OA OB OA OB π=+-⋅⋅,即222(503)m n mn =++,…………………………………………………… 2分 所以,22222()3(503)()()()44m n m n mn m n m n +=+-+-=+≥,…………4分所以100m n +≤,当且仅当m =n =50时,m n +取得最大值,此时△OAB 周长取得最大值. 答:当OA OB 、都为50 m 时,△OAB 的周长最大. 6分(2)当△AOB 的周长最大时,梯形ACBD 为等腰梯形. 过O 作OF ⊥CD 交CD 于F ,交AB 于E , 则E F 、分别为AB ,CD 的中点,所以DOE θ∠=,由CD 200≤,得(0]6θπ∈,.8分在△ODF 中,200sin 200cos DF OF θθ==,. 又在△AOE 中,cos253OE OA π==,故200cos 25EF θ=-. 10分所以,1(503400sin )(200cos 25)2S θθ=+-625(38sin )(8cos 1)θθ-625(838sin 64sin cos 3)θθθθ=-+,(0]6θπ∈,.…………12分(一直没有交代范围扣2分)令()838sin 64sin cos 3f θθθθθ=-+-,(0]6θπ∈,,()83sin 8cos 64cos216sin()64cos26f θθθθθθπ'=--+=-++,(0]6θπ∈,,又y =16sin()6πθ-+及y =cos2θ在(0]6θπ∈,上均为单调递减函数,ABCDPQ(第18题)O A BCDPQ(第18题答图)OEF故()f θ'在(0]6θπ∈,上为单调递减函数.因31()16(4)622f π'=--⨯>0,故()f θ'>0在(0]6θπ∈,上恒成立,于是,()f θ在(0]6θπ∈,上为单调递增函数.……… 14分所以当6θπ=时,()f θ有最大值,此时S 有最大值为625(8153)+. 答:当6θπ=时,梯形ABCD 面积有最大值,且最大值为625(8153)+ m 2.… 16分19.(本小题满分16分) 已知数列{a n },{b n }中,a 1=1,22111(1)n n n n a b a a ++=-⋅,n ∈N ,数列{b n }的前n 项和为S n .(1)若12n n a -=,求S n ;(2)是否存在等比数列{a n },使2n n b S +=对任意n ∈N *恒成立若存在,求出所有满足条件的数列{a n }的通项公式;若不存在,说明理由;(3)若a 1≤a 2≤…≤a n ≤…,求证:0≤S n <2.解:(1)当a n 12n -时,b n11(1)42n-⋅232n +.……………………………………… 2分所以,S n1231133(1)82242n n -++++=-L .……………………………………… 4分(2)满足条件的数列{a n }存在且只有两个,其通项公式为a n =1和a n =1(1)n --. 证明:在2n n b S +=中,令n =1,得b 3=b 1. 设a n =1n q -,则b n =211(1)nq q -.………………………………………………… 6分由b 3=b 1,得2321111(1)(1)q q q q-=-. 若q =1±,则b n =0,满足题设条件.此时a n =1和a n =1(1)n --.………………… 8分若q 1≠±,则311q q=,即q 2=1,矛盾. 综上,满足条件的数列{a n }存在,且只有两个,一是a n =1,另一是a n =1(1)n --. 10分(3)因1=a 1≤a 2≤…≤a n ≤…,故0n a >,0<1nn a a +≤1,于是0<221n n a a +≤1.所以,22111(1)n n n n a b a a ++=-⋅≥0,n1,2,3,….所以,S n b 1+b 2+…+b n ≥0.………………………………………………………… 13分又,22111(1)n n n n a b a a ++=-⋅1111(1)(1)n n n n n a a a a a ++++-⋅11111(1)()n n n n n n a a a a a a ++++-⋅≤1112()n n a a +-. 故,S n b 1+b 2+…+b n ≤122311111112()2()2()n n a a a a a a +-+-++-L 11112()n a a +-112(1)n a +-<2. 所以,0≤S n <2.………………………………………………………………… 16分20.(本小题满分16分) 已知函数1()ln f x a x x=--(a ∈R ). (1)若a =2,求函数()f x 在(1,e 2)上的零点个数(e 为自然对数的底数); (2)若()f x 恰有一个零点,求a 的取值集合;(3)若()f x 有两零点x 1,x 2(x 1<x 2),求证:2<x 1+x 2<13e a -1.解:(1)由题设,()f x '21x x -,故()f x 在(1,e 2)上单调递减.…………………… 2分 所以()f x 在(1,e 2)上至多只有一个零点. 又221(1)(e )1()ef f =⨯-<0,故函数()f x 在(1,e 2)上只有一个零点.…………… 4分 (2)()f x '21xx -,令()f x '0,得x 1.当x >1时,()f x '<0,()f x 在(1 )+∞,上单调递减; 当0<x <1时,()f x '>0,()f x 在(0,1)上单调递增, 故max [()]f x f (1)a 1.………………………………………………………6分 ①当max[()]f x 0,即a 1时,因最大值点唯一,故符合题设;……………8分②当max [()]f x <0,即a <1时,f (x )<0恒成立,不合题设; ③当max [()]f x >0,即a >1时,一方面,e a ∃>1,1(e )ea a f =-<0; 另一方面,e a -∃<1,(e )2e a a f a -=-≤2a e a <0(易证:e x≥e x ), 于是,f (x )有两零点,不合题设.综上,a 的取值集合为{1}.………………………………………………………… 10分(3)证:先证x 1+x 2>2.依题设,有a 111ln x x +221ln x x +,于是212121ln x x x x x x -=. 记21x x t ,t >1,则11ln t t tx -=,故11ln t x t t-=. 于是,x 1+x 2x 1(t +1)21ln t t t-,x 1+x 22212(ln )2ln t t t t--. 记函数g (x )21ln 2x x x--,x >1. 因22(1)()2x g x x -'=>0,故g (x )在(1 )+∞,上单调递增.于是,t >1时,g (t )>g (1)0.又ln t >0,所以,x 1+x 2>2.…………………………………………………………… 13分 再证x 1+x 2<13e a -1.因f (x )0⇔h (x )ax 1x ln x 0,故x 1,x 2也是h (x )的两零点.由()h x 'a 1ln x 0,得x 1e a -(记p 1e a -).仿(1)知,p 是h (x )的唯一最大值点,故有12()0.h p x p x ⎧⎨⎩<>,<作函数h (x )2()ln ln x p x p x p---+,则22()()()x p h x x x p -'=+≥0,故h (x )单调递增. 故,当x >p 时,h (x )>h (p )0;当0<x <p 时,h (x )<0.于是,ax 11x 1ln x 1<11112()ln x x p x p x p-++.整理,得211(2ln )(2ln 1)p a x p ap p p x p +--+--+>0, 即,21111(3e 1)e a a x x ----+>0.同理,21122(3e 1)e a a x x ----+<0. 故,21122(3e 1)e a a x x ----+<21111(3e 1)e a a x x ----+, 1212121()()(3e 1)()a x x x x x x -+---<, 于是,1123e 1a x x -+-<.综上,2<x 1+x 2<13e a -1.………………………………………………………16分21.【选做题】本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答....................若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修41:几何证明选讲](本小题满分10分)如图,BC为圆O的直径,A为圆O上一点,过点A作圆O的切线交BC的延长线于点P,AH⊥PB于H.求证:PA·AH PC·HB.证:连AC,AB.因BC为圆O的直径,故AC⊥AB.又AH⊥PB,故AH 2CH·HB ,即AH HBCH AH=.………………………………5分因PA为圆O的切线,故∠PAC∠B .在Rt△ABC中,∠B+∠ACB0°.在Rt△ACH中,∠CAH+∠ACB0°.所以,∠HAC∠B.所以,∠PAC∠CAH,所以,PC PACH AH=,即AH PACH PC=.所以,PA HBPC AH=,即PA·AH PC·HB.…………………………………………10分B.[选修42:矩阵与变换](本小题满分10分)在平面直角坐标系xOy中,已知点A(0,0),B(2,0),C(1,2),矩阵0112⎡⎤⎢⎥=⎢⎥-⎣⎦M,点A,B,C在矩阵M对应的变换作用下得到的点分别为A',B',C',求△A B C'''的面积.解:因0000⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦M,2001⎡⎤⎡⎤=⎢⎥⎢⎥-⎣⎦⎣⎦M,21122⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦⎣⎦M,即1(00)(01)(2)2A B C'''--,,,,,.……………………………………………………6分故1212S A B''=⨯⨯=.………………………………………………………………10分CBO(第21(A)题答图)HCABO(第21(A)题)HC .[选修44:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy 中,曲线C 的参数方程为cos sin x r y r αα=⎧⎨=⎩,,(α为参数,r 为常数,r >0).以原点O为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2cos()204ρθπ++=.若直线l与曲线C 交于A ,B 两点,且22AB =,求r 的值.解:由2cos()204ρθπ++=,得cos sin 20ρθρθ-+=,即直线l 的方程为20x y -+=.…………………………………………………… 3分由cos sin x r y r αα=⎧⎨=⎩,,得曲线C 的普通方程为222x y r +=,圆心坐标为(0,0),……… 6分所以,圆心到直线的距离2d =,由222AB r d =-,则2r =.……………… 10分D .[选修45:不等式选讲](本小题满分10分) 已知实数a ,b ,c ,d 满足a >b >c >d ,求证:14936a b b c c d a d++----≥.证:因a >b >c >d ,故a b >0,b c >0,c d >0. 故2149[()()()](123)36a b b c c d a b b c c d ⎛⎫-+-+-++++= ⎪---⎝⎭≥,…………… 6分所以,14936a b b c c d a d++----≥.………………………………………………… 10分【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出 文字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,正四棱柱ABCD A 1B 1C 1D 1中,12AA AB =. (1)求1AD 与面11BB D D 所成角的正弦值;(2)点E 在侧棱1AA 上,若二面角E BD C 13, 求1AEAA 的值. A BCDA 1B 1C 1D 1(第22题)解:(1)以D 为原点,DA ,DC ,DD 1分别为x 轴,y 轴,z 轴, 建立如图所示空间直角坐标系D xyz . 设1AB =,则D (0,0,0),A (1,0,0),B (1,1,0),C (0,1,0),D 1(0,0,2),A 1(1,0,2),B 1(1,1,2),C 1(0,1,2).2分(1)设1AD 与面11BB D D 所成角的大小为θ, 1(102)AD =-u u u u r,,,设平面11BB D D 的法向量为n(x ,y ,z ),(1,1,0)DB =u u u r ,1(0,0,2)DD =u u u u r ,则10,0DB DD ⋅=⋅=u u u r u u u u rn n ,即0,0x y z +==.令1x =,则1y =-,所以(110) =-,,n ,11110sin |cos ,|||||||AD AD AD θ⋅=<>==u u u u ru u u u r u u u ur n n n , 所以1AD 与平面11BB D D 所成角的正弦值为10.………………………… 6分(2)设E (1,0,λ),0≤λ≤2.设平面EBD 的法向量为n 1(x 1,y 1,z 1),平面1BDC 的法向量为n 2(x 2,y 2,z 2), (110)(10)DB DE λ==u u u r u u u r ,,,,,,由1100DB DE ⋅=⋅=u u u r u u u r,n n ,得11110,0x y x z λ+=+=, 令11z =,则11,x y λλ=-=,1(,,1)λλ=-n ,1(0,1,2)DC =u u u u r,由22100DB DC ⋅=⋅=u u u r u u u u r,n n ,得2222020x y y z +=+=,,令z 2=1,则x 2=2,y 2=2,2(2,2,1)=-n ,1212212cos ,||||321λ⋅<>=+n n n n n n ,23||321λ=+,得1λ=.所以112AE AA =.……………………………10分23.(本小题满分10分)袋中共有8个球,其中有3个白球,5个黑球,这些球除颜色外完全相同.从袋中随机取出一球,如果取出白球,则把它放回袋中;如果取出黑球,则该黑球不再放回,并且另补一个白球放入袋中.重复上述过程n 次后,袋中白球的个数记为X n .(1)求随机变量X 2的概率分布及数学期望E (X 2);ABC DA 1B 1C 1D 1xyz(2)求随机变量X n 的数学期望E (X n )关于n 的表达式.解:(1)由题意可知X 23,4,5.当X 23时,即二次摸球均摸到白球,其概率是P (X 23)11331188C C C C ⨯964; 当X 24时,即二次摸球恰好摸到一白,一黑球,其概率是P (X 24)1111355411118888C C C C C C C C +3564; 当X 25时,即二次摸球均摸到黑球,其概率是P (X 25)11541188C C C C 516.…… 3分 所以随机变量X 2的概率分布如下表:X 23 4 5 P964 3564 516(一个概率得一分 不列表不扣分) 数学期望E (X 2)935526734564641664⨯+⨯+⨯=.……………………………… 5分(2)设P (X n 3+k )p k ,k 0,1,2,3,4,5.则p 0+p 1+p 2+p 3+p 4+p 51,E (X n )3p 0+4p 1+5p 2+6p 3+7p 4+8p 5.P (X n +13)038p ,P (X n +14)58p 0+48p 1,P (X n +15)48p 1+58p 2,P (X n +16)38p 2+68p 3, P (X n +17)28p 3+78p 4,P (X n +18)18p 4+88p 5,……………………… 7分所以,E (X n +1)3×38p 0+4×(58p 0+48p 1)+5×(48p 1+58p 2)+6×(38p 2+68p 3)+7×(28p 3+78p 4)+8×(18p 4+88p 5)298p 0+368p 1+438p 2+508p 3+578p 4+648p 5 78(3p 0+4p 1+5p 2+6p 3+7p 4+8p 5)+ p 0+p 1+p 2+p 3+p 4+p 5 78E (X n )+1. …………………9分 由此可知,E (X n +1)878(E (X n )8).又E (X 1)8358-,所以E (X n )13578()88n --.…………………………… 10分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(第10题)C(第11题)(第5题)(第4题)南通市2015届高三第三次调研测试一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1. 设集合A ={3,m },B ={3m ,3},且A =B ,则实数m 的值是 ▲ . 2. 已知复数z =(1i)(12i)+-(i 为虚数单位),则z 的实部为 ▲ . 3. 已知实数x ,y 满足条件||1||1x y ⎧⎨⎩≤≤,,则z =2x +y 的最小值是 ▲ .4. 为了解学生课外阅读的情况,随机统计了n 名学生的课外阅读时间,所得数据都在[50,150]中,其频率分布直方图如图所示.已知在[50 75),中的频数为5. 在如图所示的算法流程图中,若输出的y 的值为26,则输入的x 的值为 ▲ .6. 从集合{1,2,3,4,5,6,7,8,9}中任取一个数记为x ,则log 2x 为整数的概率为 ▲ .7. 在平面直角坐标系xOy 中,点F 为抛物线x 2=8y 的焦点,则F 到双曲线2219y x -=的渐近线的距离为▲ .8. 在等差数列{a n }中,若a n +a n +2=4n +6(n ∈N *),则该数列的通项公式a n = ▲ . 9. 给出下列三个命题: ①“a >b ”是“3a >3b ”的充分不必要条件; ②“α>β”是“cos α<cos β”的必要不充分条件;③“a =0”是“函数f (x ) = x 3+ax 2(x ∈R )为奇函数”的充要条件.其中正确命题的序号为 ▲ .10.已知一个空间几何体的所有棱长均为1 cm ,其表面展开图如图所示,则该空间几何体的体积V = ▲ cm 3.11. 如图,已知正方形ABCD 的边长为2,点E 为AB 的中点.以A 为圆心,AE 为半径,作弧交AD 于点F .若P 为劣弧 EF 上的动点,则PC PD的最小值为 ▲ . 12. 已知函数322301()5 1x x m x f x mx x ⎧++=⎨+⎩≤≤,,,>.若函数f (x )的图象与x 轴有且只有两个不同的交点,则实数m的取值范围为 ▲ .13.在平面直角坐标系xOy 中,过点P (-5,a )作圆x 2+y 2-2ax +2y -1=0的两条切线,切点分别为M (x 1,y 1),N (x 2,y 2),且2112211220y y x x x x y y -+-+=-+,则实数a 的值为 ▲ . 14.已知正实数x ,y 满足24310x y x y+++=,则xy 的取值范围为 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答.解答时应写出文字说明、 证明过程或演算步骤. 15.(本小题满分14分) 如图,在三棱柱ABC -A 1B 1C 1中,B 1C ⊥AB ,侧面BCC 1B 1为菱形. (1)求证:平面ABC 1⊥平面BCC 1B 1;(2)如果点D ,E 分别为A 1C 1,BB 1的中点,求证:DE ∥平面ABC 1.16.(本小题满分14分)已知函数()sin()f x A x ωϕ=+(其中A ,ω,ϕ为常数,且A >0,ω>0,22ϕππ-<<)的部分图象如图所示.(1)求函数f (x )的解析式; (2)若3()2f α=,求sin(2)6απ+的值.1(第15题)如图,在平面直角坐标系xOy 中,椭圆22221x y a b+=(a >b >0)的两焦点分别为F 1(0),F 20),且经过点12).(1)求椭圆的方程及离心率;(2)设点B ,C ,D 是椭圆上不同于椭圆顶点的三点,点B 与点D 关于原点O 对称.设直线CD ,CB ,OB ,OC 的斜率分别为k 1,k 2,k 3,k 4,且k 1k 2=k 3k 4. ①求k 1k 2的值; ②求OB 2+OC 2的值.18.(本小题满分16分)为丰富市民的文化生活,市政府计划在一块半径为200 m ,圆心角为120°的扇形地上建造市民广场.规划设计如图:内接梯形ABCD 区域为运动休闲区,其中A ,B 分别在半径OP ,OQ 上,C ,D 在圆弧 PQ 上,CD ∥AB ;△OAB 区域为文化展示区,AB长为m ;其余空地为绿化区域,且CD 长不得超过....200 m . (1)试确定A ,B 的位置,使△OAB 的周长最大?(2)当△OAB 的周长最大时,设∠DOC =2θ,试将运动休闲区ABCD 的面积S 表示为θ的函数,并求出S 的最大值.B CDQ(第18题)O(第17题)已知数列{a n },{b n }中,a 1=1,22111(1)n n n n a b a a ++=-⋅,n ∈N *,数列{b n }的前n 项和为S n .(1)若12n n a -=,求S n ;(2)是否存在等比数列{a n },使2n n b S +=对任意n ∈N *恒成立?若存在,求出所有满足条件的数列{a n }的通项公式;若不存在,说明理由;(3)若a 1≤a 2≤…≤a n ≤…,求证:0≤S n <2.20.(本小题满分16分) 已知函数1()ln f x a x x=--(a ∈R ). (1)若a =2,求函数()f x 在(1,e 2)上的零点个数(e 为自然对数的底数); (2)若()f x 恰有一个零点,求a 的取值集合;(3)若()f x 有两零点x 1,x 2(x 1<x 2),求证:2<x 1+x 2<13e a --1.21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答.................... 若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修4-1:几何证明选讲](本小题满分10分) 如图,BC 为圆O 的直径,A 为圆O 上一点,过点A 作圆O 的切线交BC 的延长线于点P ,AH ⊥PB 于H . 求证:P A ·AH =PC ·HB .(第21(A )题)B.[选修4-2:矩阵与变换](本小题满分10分)在平面直角坐标系xOy中,已知点A(0,0),B(2,0),C(1,2),矩阵0112⎡⎤⎢⎥=⎢⎥-⎣⎦M,点A,B,C在矩阵M对应的变换作用下得到的点分别为A',B',C',求△A B C'''的面积.C.[选修4-4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy中,曲线C的参数方程为cossinx ry rαα=⎧⎨=⎩,,(α为参数,r为常数,r>0).以原点O为极点,x轴的正半轴为极轴建立极坐标系,直线lcos()204θπ++=.若直线l与曲线C交于A,B两点,且AB=,求r的值.D.[选修4-5:不等式选讲](本小题满分10分)已知实数a,b,c,d满足a>b>c>d,求证:14936a b b c c d a d++----≥.【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出 文字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,正四棱柱ABCD -A 1B 1C 1D 1中,12AA AB =. (1)求1AD 与面11BB D D 所成角的正弦值;(2)点E 在侧棱1AA 上,若二面角E -BD -C 1, 求1AEAA 的值.23.(本小题满分10分)袋中共有8个球,其中有3个白球,5个黑球,这些球除颜色外完全相同.从袋中随机取出一球,如果取出白球,则把它放回袋中;如果取出黑球,则该黑球不再放回,并且另补一个白球放入袋中.重复上述过程n 次后,袋中白球的个数记为X n . (1)求随机变量X 2的概率分布及数学期望E (X 2); (2)求随机变量X n 的数学期望E (X n )关于n 的表达式.A B CDA 1B 1C 1D 1(第22题)南通市2015届高三第三次调研测试 数学学科参考答案及评分建议一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.【答案】0 2.【答案】3 3.【答案】-3 4.【答案】1000 5.【答案】-4 6.【答案】497.【答案8.【答案】2n +1 9.【答案】③ 10.【答案】1+11. 【答案】5- 12.【答案】(-5,0) 13.【答案】3或-2 14.【答案】[1,83]二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答.解答时应写出文字说明、 证明过程或演算步骤. 15.(本小题满分14分) 如图,在三棱柱ABC -A 1B 1C 1中,B 1C ⊥AB ,侧面BCC 1B 1为菱形. (1)求证:平面ABC 1⊥平面BCC 1B 1;(2)如果点D ,E 分别为A 1C 1,BB 1的中点,求证:DE ∥平面ABC 1.解:(1)因三棱柱ABC -A 1B 1C 1的侧面BCC 1B 1为菱形, 故B 1C ⊥BC 1.……………………………………………………………………… 2分又B 1C ⊥AB ,且AB ,BC 1为平面ABC 1内的两条相交直线,故B 1C ⊥平面ABC 1.5分因B 1C ⊂平面BCC 1B 1,故平面ABC 1⊥平面BCC 1B 1. 7分(2)如图,取AA 1的中点F ,连DF ,FE . 又D 为A 1C 1的中点,故DF ∥AC 1,EF ∥AB .因DF ⊄平面ABC 1,AC 1⊂平面ABC 1,故DF ∥面ABC 1. ………………… 10分 同理,EF ∥面ABC 1.因DF ,EF 为平面DEF 内的两条相交直线,故平面DEF ∥面ABC 1.……………………………………………………………… 12分 因DE ⊂平面DEF ,故DE ∥面ABC 1.…………………………………………………………………… 14分1 (第15题答图)1(第15题)16.(本小题满分14分)已知函数()sin()f x A x ωϕ=+(其中A ,ω,ϕ为常数,且A >0,ω>0,22ϕππ-<<)的部分图象如图所示.(1)求函数f (x )的解析式; (2)若3()2f α=,求sin(2)6απ+的值.解:(1)由图可知,A =2,…………………………………………………………… 2分 T =2π,故1ω=,所以,f (x ) =2sin()x ϕ+.…………………………………… 4分又22()2sin()233f ϕππ=+=,且22ϕππ-<<,故6ϕπ=-. 于是,f (x ) =2sin()6x π-.…………………………………………………………7分 (2)由3()2f α=,得3sin()64απ-=.…………………………………………9分 所以,sin(2)sin 2()cos 2()6626αααππππ⎡⎤⎡⎤+=-+=-⎢⎥⎢⎥⎣⎦⎣⎦…………………………12分=2112sin ()68απ--=-.……………………………………14分17.(本小题满分14分)如图,在平面直角坐标系xOy 中,椭圆22221x y a b+=(a >b >0)的两焦点分别为F 1(0),F 20),且经过点12).(1)求椭圆的方程及离心率;(2)设点B ,C ,D 是椭圆上不同于椭圆顶点的三点,点B 与点D 关于原点O 对称.设直线CD ,CB ,OB ,OC 的斜率分别为k 1,k 2,k 3,k 4,且k 1k 2=k 3k 4. ①求k 1k 2的值; ②求OB 2+OC 2的值.解:(1)方法一依题意,ca 2=b 2+3,……………………………………………………… 2分由2213413b b +=+,解得b 2=1(b 2=34-,不合,舍去),从而a 2=4.(第17题)故所求椭圆方程为:2214x y +=.离心率e.…………………………………………………………………… 5分方法二由椭圆的定义知,2a4,即a =2.…………………………………………………………………………… 2分又因cb 2=1.下略.(2)①设B (x 1,y 1),C (x 2,y 2),则D (-x 1,-y 1),于是k 1k 2=21212121y y y y x x x x -+⋅-+=12222221y y x x --=22212221(1)(1)44x x x x ----=14-.………………… 8分②方法一由①知,k 3k 4=k 1k 2=14-,故x 1x 2=124y y -.所以,(x 1x 2)2=(-4y 1y 2)2,即(x 1x 2)2=221216(1)(1)44x x --=22221212164()x x x x -++,所以,2212x x +=4.…………………………………………………………………… 11分又2=22221212()()44x x y y +++=222212124x x y y +++,故22121y y +=. 所以,OB 2+OC 2 =22221122x y x y +++=5.………………………………………… 14分方法二由①知,k 3k 4=k 1k 2=14-.将直线y =k 3x 方程代入椭圆2214x y +=中,得2123414x k =+.…………………… 9分同理,2224414x k =+.所以,22122234441414x x k k +=+++=22334411414()4k k +++-=4.…………………… 11分 下同方法一.18.(本小题满分16分)为丰富市民的文化生活,市政府计划在一块半径为200 m ,圆心角为120°的扇形地上建造市民广场.规划设计如图:内接梯形ABCD 区域为运动休闲区,其中A ,B 分别在半径OP ,OQ 上,C ,D 在圆弧 PQ 上,CD ∥AB ;△OAB 区域为文化展示区,AB长为m ;其余空地为绿化区域,且CD 长不得超过....200 m . (1)试确定A ,B 的位置,使△OAB 的周长最大?(2)当△OAB 的周长最大时,设∠DOC =2θ,试将运动休闲区ABCD 的面积S 表示为θ的函数,并求出S 的最大值.解:(1)设(0200]OA m OB n m n ==∈,,,,, 在△OAB 中,22222cos3AB OA OB OA OB π=+-⋅⋅,即222m n mn =++,…………………………………………………… 2分所以,22222()3()()()44m n m n mn m n m n +=+-+-=+≥,…………4分所以100m n +≤,当且仅当m =n =50时,m n +取得最大值,此时△OAB 周长取得最大值. 答:当OA OB 、都为50 m 时,△OAB 的周长最大. 6分(2)当△AOB 的周长最大时,梯形ACBD为等腰梯形. 过O 作OF ⊥CD 交CD 于F ,交AB 于E , 则E F 、分别为AB ,CD 的中点,所以DOE θ∠=,由CD 200≤,得(0]6 θπ∈,.8分在△ODF 中,200sin 200cos DF OF θθ==,. 又在△AOE 中,cos253OE OA π==,故200cos 25EF θ=-. 10分所以,1400sin )(200cos 25)2S θθ=-=8sin )(8cos 1)θθ-8sin 64sin cos θθθθ=-+,(0]6θπ∈,.…………12分(一直没有交代范围扣2分)令()8sin 64sin cos f θθθθθ=-+(0]6θπ∈,,()8cos 64cos216sin()64cos26f θθθθθθπ'=--+=-++,(0]6θπ∈,,BCDQ(第18题)O BCDQ(第18题答图)OEF又y =16sin()6πθ-+及y =cos 2θ在(0]6θπ∈,上均为单调递减函数,故()f θ'在(0]6θπ∈,上为单调递减函数.因1()4)62f π'=--⨯>0,故()f θ'>0在(0]6θπ∈,上恒成立,于是,()f θ在(0]6θπ∈,上为单调递增函数.……… 14分所以当6θπ=时,()f θ有最大值,此时S有最大值为625(8+. 答:当6θπ=时,梯形ABCD面积有最大值,且最大值为625(8+ m 2.… 16分19.(本小题满分16分) 已知数列{a n },{b n }中,a 1=1,22111(1)n n n n a b a a ++=-⋅,n ∈N *,数列{b n }的前n 项和为S n .(1)若12n n a -=,求S n ;(2)是否存在等比数列{a n },使2n n b S +=对任意n ∈N *恒成立?若存在,求出所有满足条件的数列{a n }的通项公式;若不存在,说明理由;(3)若a 1≤a 2≤…≤a n ≤…,求证:0≤S n <2.解:(1)当a n =12n -时,b n =11(1)42n -⋅=232n +.………………………………………2分 所以,S n =1231133(1)82242n n -++++=- .………………………………………4分(2)满足条件的数列{a n }存在且只有两个,其通项公式为a n =1和a n =1(1)n --. 证明:在2n n b S +=中,令n =1,得b 3=b 1. 设a n =1n q -,则b n =211(1)nq q -.………………………………………………… 6分由b 3=b 1,得2321111(1)(1)q q q q-=-. 若q =1±,则b n =0,满足题设条件.此时a n =1和a n =1(1)n --.………………… 8分 若q 1≠±,则311q q=,即q 2 =1,矛盾. 综上,满足条件的数列{a n }存在,且只有两个,一是a n =1,另一是a n =1(1)n --. 10分(3)因1=a 1≤a 2≤…≤a n ≤…,故0n a >,0<1n n a a +≤1,于是0<221nn a a +≤1.所以,22111(1)n n n n a b a a ++=-⋅≥0,n =1,2,3,….所以,S n =b 1+b 2+…+b n ≥0.………………………………………………………… 13分又,22111(1)n n n n a b a a ++=-⋅=1111(1)(1)n n n n n a a a a a ++++-⋅=11111(1)()n n n n n n a a a a a a ++++-⋅≤1112()n n a a +-. 故,S n =b 1+b 2+…+b n ≤122311111112()2()2()n n a a a a a a +-+-++- =11112()n a a +-=112(1)n a +-<2. 所以,0≤S n <2.…………………………………………………………………16分20.(本小题满分16分) 已知函数1()ln f x a x x=--(a ∈R ). (1)若a =2,求函数()f x 在(1,e 2)上的零点个数(e 为自然对数的底数); (2)若()f x 恰有一个零点,求a 的取值集合;(3)若()f x 有两零点x 1,x 2(x 1<x 2),求证:2<x 1+x 2<13e a --1.解:(1)由题设,()f x '=21x x -,故()f x 在(1,e 2)上单调递减.……………………2分所以()f x 在(1,e 2)上至多只有一个零点. 又221(1)(e )1()ef f =⨯-<0,故函数()f x 在(1,e 2)上只有一个零点.…………… 4分 (2)()f x '=21xx-,令()f x '=0,得x =1. 当x >1时,()f x '<0,()f x 在(1 )+∞,上单调递减; 当0<x <1时,()f x '>0,()f x 在(0,1)上单调递增,故max [()]f x =f (1)=a -1.……………………………………………………… 6分 ①当max [()]f x =0,即a =1时,因最大值点唯一,故符合题设;…………… 8分②当max [()]f x <0,即a <1时,f (x )<0恒成立,不合题设; ③当max [()]f x >0,即a >1时,一方面,e a ∃>1,1(e )e a af =-<0; 另一方面,e a -∃<1,(e )2e a a f a -=-≤2a -e a <0(易证:e x ≥e x ),于是,f (x )有两零点,不合题设.综上,a 的取值集合为{1}.………………………………………………………… 10分 (3)证:先证x 1+x 2>2. 依题设,有a =111ln x x +=221ln x x +,于是212121ln x x x x x x -=.记21x x =t ,t >1,则11ln t t tx -=,故11ln t x t t-=. 于是,x 1+x 2=x 1(t +1)=21ln t t t-,x 1+x 2-2=212(ln )2ln t t t t --.记函数g (x )=21ln 2x x x--,x >1.因22(1)()2x g x x -'=>0,故g (x )在(1 )+∞,上单调递增. 于是,t >1时,g (t )>g (1)=0.又ln t >0,所以,x 1+x 2>2.…………………………………………………………… 13分 再证x 1+x 2<13e a --1.因f (x )=0⇔h (x )=ax -1-x ln x =0,故x 1,x 2也是h (x )的两零点. 由()h x '=a -1-ln x =0,得x =1e a -(记p =1e a -).仿(1)知,p 是h (x )的唯一最大值点,故有12()0.h p x p x ⎧⎨⎩<>,<作函数h (x )=2()ln ln x p x p x p ---+,则22()()()x p h x x x p -'=+≥0,故h (x )单调递增. 故,当x >p 时,h (x )>h (p )=0;当0<x <p 时,h (x )<0. 于是,ax 1-1=x 1ln x 1<11112()ln x x p x p x p-++.整理,得211(2ln )(2ln 1)p a x p ap p p x p +--+--+>0, 即,21111(3e 1)e a a x x ----+>0.同理,21122(3e 1)e a a x x ----+<0. 故,21122(3e 1)e a a x x ----+<21111(3e 1)e a a x x ----+, 1212121()()(3e 1)()a x x x x x x -+---<,于是,1123e 1a x x -+-<.综上,2<x 1+x 2<13e a --1.………………………………………………………16分21.【选做题】本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答....................若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-1:几何证明选讲](本小题满分10分)如图,BC为圆O的直径,A为圆O上一点,过点A作圆O的切线交BC的延长线于点P,AH⊥PB于H.求证:P A·AH=PC·HB.证:连AC,AB.因BC为圆O的直径,故AC⊥AB.又AH⊥PB,故AH2=CH·HB,即AH HBCH AH=.………………………………5分因P A为圆O的切线,故∠P AC=∠B.在Rt△ABC中,∠B+∠ACB=90°.在Rt△ACH中,∠CAH+∠ACB=90°.所以,∠HAC=∠B.所以,∠P AC=∠CAH,所以,PC PACH AH=,即AH PACH PC=.所以,PA HBPC AH=,即P A·AH=PC·HB.…………………………………………10分B.[选修4-2:矩阵与变换](本小题满分10分)在平面直角坐标系xOy中,已知点A(0,0),B(2,0),C(1,2),矩阵0112⎡⎤⎢⎥=⎢⎥-⎣⎦M,点A,B,C在矩阵M对应的变换作用下得到的点分别为A',B',C',求△A B C'''的面积.解:因0000⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦M,2001⎡⎤⎡⎤=⎢⎥⎢⎥-⎣⎦⎣⎦M,21122⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦⎣⎦M,即1(00)(01)(2)2A B C'''--,,,,,.……………………………………………………6分故1212S A B''=⨯⨯=.………………………………………………………………10分(第21(A)题答图)(第21(A)题)C .[选修4-4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy 中,曲线C 的参数方程为cos sin x r y r αα=⎧⎨=⎩,,(α为参数,r 为常数,r >0).以原点O为极点,x 轴的正半轴为极轴建立极坐标系,直线lcos()204θπ++=.若直线l与曲线C 交于A ,B两点,且AB =,求r 的值.解cos()204θπ++=,得cos sin 20ρθρθ-+=,即直线l 的方程为20x y -+=.…………………………………………………… 3分由cos sin x r y r αα=⎧⎨=⎩,,得曲线C 的普通方程为222x y r +=,圆心坐标为(0,0),……… 6分所以,圆心到直线的距离d =AB =,则2r =.……………… 10分D .[选修4-5:不等式选讲](本小题满分10分) 已知实数a ,b ,c ,d 满足a >b >c >d ,求证:14936a b b c c d a d++----≥.证:因a >b >c >d ,故a -b >0,b -c >0,c -d >0. 故2149[()()()](123)36a b b c c d a b b c c d ⎛⎫-+-+-++++= ⎪---⎝⎭≥,…………… 6分 所以,14936a b b c c d a d++----≥.………………………………………………… 10分【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出 文字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,正四棱柱ABCD -A 1B 1C 1D 1中,12AA AB =. (1)求1AD 与面11BB D D 所成角的正弦值;(2)点E 在侧棱1AA 上,若二面角E -BD -C 1, 求1AEAA 的值. A B CDA 1B 1C 1D 1(第22题)解:(1)以D 为原点,DA ,DC ,DD 1分别为x 轴,y 轴,z 轴, 建立如图所示空间直角坐标系D -xyz . 设1AB =,则D (0,0,0),A (1,0,0), B (1,1,0),C (0,1,0),D 1(0,0,2),A 1(1,0,2),B 1(1,1,2),C 1(0,1,2).2分(1)设1AD 与面11BB D D 所成角的大小为θ,1(102)AD =-,,,设平面11BB D D 的法向量为n =(x ,y ,z ),(1,1,0)DB = ,1(0,0,2)DD = ,则10,0DB DD ⋅=⋅=n n ,即0,0x y z +==.令1x =,则1y =-,所以(110) =-,,n ,111sin |cos ,|||||||AD AD AD θ⋅=<>=n n n ,所以1AD 与平面11BB D D .………………………… 6分(2)设E (1,0,λ),0≤λ≤2.设平面EBD 的法向量为n 1=(x 1,y 1,z 1),平面1BDC 的法向量为n 2=(x 2,y 2,z 2),(110)(10)DB DE λ== ,,,,,,由1100DB DE ⋅=⋅=,n n ,得11110,0x y x z λ+=+=, 令11z =,则11,x y λλ=-=,1(,,1)λλ=-n ,1(0,1,2)DC =,由22100DB DC ⋅=⋅=,n n ,得2222020x y y z +=+=,, 令z 2=1,则x 2=2,y 2=-2,2(2,2,1)=-n ,121212cos ,||||⋅<>==n n n n n n ,||=,得1λ=.所以112AE AA =.…………………………… 10分23.(本小题满分10分)袋中共有8个球,其中有3个白球,5个黑球,这些球除颜色外完全相同.从袋中随机取出一球,如果取出白球,则把它放回袋中;如果取出黑球,则该黑球不再放回,并且另补一个白球放入袋中.重复上述过程n 次后,袋中白球的个数记为X n .(1)求随机变量X 2的概率分布及数学期望E (X 2);(2)求随机变量X n 的数学期望E (X n )关于n 的表达式.解:(1)由题意可知X 2=3,4,5. 当X 2=3时,即二次摸球均摸到白球,其概率是P (X 2=3)=11331188C C C C ⨯=964;当X 2=4时,即二次摸球恰好摸到一白,一黑球,其概率是P (X 2=4)=1111355411118888C C C C C C C C +=3564;当X 2=5时,即二次摸球均摸到黑球,其概率是P (X 2=5)=11541188C C C C =516.……3分所以随机变量X 2的概率分布如下表:数学期望E (X 2)=935526734564641664⨯+⨯+⨯=.……………………………… 5分(2)设P (X n =3+k )=p k ,k =0,1,2,3,4,5.则p 0+p 1+p 2+p 3+p 4+p 5=1,E (X n )=3p 0+4p 1+5p 2+6p 3+7p 4+8p 5.P (X n +1=3)=038p ,P (X n +1=4)=58p 0+48p 1,P (X n +1=5)=48p 1+58p 2,P (X n +1=6)=38p 2+68p 3,P (X n +1=7)=28p 3+78p 4,P (X n +1=8)=18p 4+88p 5,……………………… 7分所以,E (X n +1)=3×38p 0+4×(58p 0+48p 1)+5×(48p 1+58p 2)+6×(38p 2+68p 3)+7×(28p 3+78p 4)+8×(18p 4+88p 5)=298p 0+368p 1+438p 2+508p 3+578p 4+648p 5 =78(3p 0+4p 1+5p 2+6p 3+7p 4+8p 5)+ p 0+p 1+p 2+p 3+p 4+p 5 =78E (X n )+1. …………………9分 由此可知,E (X n +1)-8=78(E (X n )-8).又E (X 1)-8=358-,所以E (X n )=13578()88n --.…………………………… 10分。