小学奥数(认识简单数列)

合集下载

二年级数学 奥数讲座 认识简单数列

二年级数学 奥数讲座 认识简单数列

二年级认识简单数列我们把按一定规律排列起来的一列数叫数列。

在这一讲里,我们要认识一些重要的简单数列,还要学习找出数列的生成规律;学会把数列中缺少的数写出来,最后还要学习解答一些生活中涉及数列知识的实际问题。

例1 找出下面各数列的规律,并填空。

(1)1,2,3,4,5,□,□,8,9,10。

(2)1,3,5,7,9,□,□,15,17,19。

(3)2,4,6,8,10,□,□,16,18,20。

(4)1,4,7,10,□,□,19,22,25。

(5) 5,10,15,20,□,□,35,40,45。

注意:自然数列、奇数列、偶数列也是等差数列。

例2 找出下面的数列的规律并填空。

1,1,2,3,5,8,13,□,□,55,89。

解:这叫斐波那契数列,从第三个数起,每个数都是它前面的两个数之和。

这是个有重要用途的数列。

8+13=21,13+21=34。

所以:空处依次填:例3 找出下面数列的生成规律并填空。

1,2,4,8,16,□,□,128,256。

解:它叫等比数列,它的后一个数是前一个数的2倍。

16×2=32,32×2=64,所以空处依次填:例4 找出下面数列的规律,并填空。

1,2,4,7,11,□,□,29,37。

解:这数列规律是:后一个数减前一个数的差是逐渐变大的,这些差是个自然数列:例5 找出下面数列的规律,并填空:1,3,7,15,31,□,□,255,511。

解:规律是:后一个数减前一个数的差是逐渐变大的,差的变化规律是个等比数列,后一个差是前一个差的2倍。

另外,原数列的规律也可以这样看:后一个数等于前一个数乘以2再加1,即后一个数=前一个数×2+1。

例6 找出下面数列的生成规律,并填空。

1,4,9,16,25,□,□,64,81,100。

解:这是自然数平方数列,它的每一个数都是自然数的自乘积。

如:1=1×1,4=2×2,9=3×3,16=4×4,25=5×5,36=6×6,47=7×7,64=8×8,81=9×9,100=10×10。

小学奥数《认识简单数列》教案、知识点及练习题

小学奥数《认识简单数列》教案、知识点及练习题

学校奥数《认识简约数列》教案、知识点及练习题1.学校奥数《认识简约数列》教案一、教材分析1、教材的地位和作用:《等差数列》是人教版新课标教材《数学》必修5第二章第二节的内容。

数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。

一方面,数列作为一种特别的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好预备。

而等差数列是在同学学习了数列的有关概念和给出数列的两种方法――通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。

同时等差数列也为今后学习等比数列提供了学习对比的依据。

2、教学目标依据教学大纲的要求和同学的实际水平,确定了本次课的教学目标a、知识与技能:理解并掌控等差数列的概念;了解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。

培育同学观测、分析、归纳、推理的技能;在领悟函数与数列关系的前提下,把争辩函数的方法迁移来争辩数列,培育同学的知识、方法迁移技能;通过阶梯性练习,提高同学分析问题和解决问题的技能,b、过程与方法:在教学过程中我采用争辩式、启发式的方法使同学深刻的理解不完全归纳法。

c、情感立场与价值观:通过对等差数列的争辩,培育同学主动探究、勇于发觉的求知精神;养成细心观测、专注分析、擅长总结的良好思维习惯。

3、教学重点和难点重点:①等差数列的’概念。

②等差数列的通项公式的推导过程及应用。

难点:①等差数列的通项公式的推导②用数学思想解决实际问题二、学情教法分析:对于高一同学,知识阅历已较为丰富,具备了确定的抽象思维技能和演绎推理技能,所以我本节课我采用启发式、争辩式以及讲练结合的教学方法,通过问题激发同学求知欲,使同学主动参与数学实践活动,以独立思考和相互沟通的形式,在老师的指导下发觉、分析和解决问题。

同学在中学时只是简约的接触过等差数列,具体的公式还不会用,因些在公式应用上加强同学的理解三、学法分析:在引导分析时,留出同学的思考空间,让同学去联想、探究,同时鼓舞同学大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。

小学六年级奥数题认识简单数列、上楼梯问题、平均数问题

小学六年级奥数题认识简单数列、上楼梯问题、平均数问题

小学六年级奥数题认识简单数列、上楼梯问题、平均数问题1.小学六年级奥数题认识简单数列篇一1、如果把1到999这些自然数按照从小到大的顺序排成一排,这样就组成了一个多位数:12345678910111213……996997998999。

那么在这个多位数里,从左到右的第2000个数字是多少?2、标有A,B,C,D,E,F,G记号的7盏灯顺次排成一行,每盏灯各安装着一个开关。

现在A,C,D,G这4盏灯亮着,其余3盏灯是灭的。

小方先拉一下A开关,然后拉B,C,……,直到G的开关各一次,接下去再按从A到G顺序拉动开关,并依此循环下去。

他这样拉动了1990次后,亮着的灯是哪几盏?3、在1,2两数之间,第一次写上3;第二次在1,3之间和3,2之间分别写上4,5,得到14352。

以后每一次都在已写上的两个相邻数之间,再写上这两个相邻数之和。

这样的过程共重复了8次,那么所有数的和是多少?4、有一列数:1,1989,1988,1,1987,……。

从第三个数起,每一个数都是它前面两个数中大数减小数的差。

那么第1989个数是多少?5、在1,9,8,9后面顺次写出一串数字,使得每个数字都等于它前面两个数之和的个位数字,即得到1,9,8,9,7,6,3,9,2,1,3,4…那么这个数串的前398个数字的和是多少?2.小学六年级奥数题上楼梯问题篇二1、有一幢楼房高17层,相邻两层之间都有17级台阶,某人从1层走到11层,一共要登多少级台阶?解:从1层走到11层共走:11-1=10(个)从1层走到11层一共要走:17×10=170(级)答:从1层走到11层,一共要登170级台阶。

2、从1楼走到4楼共要走48级台阶,如果每上一层楼的台阶数都相同,那么从1楼到6楼共要走多少级台阶?解:每一层楼梯的台阶数为:48÷(4-1)=16(级)从1楼到6楼共走:6-1=5(个)楼梯从1楼到6楼共走:16×5=80(级)台阶答:从1楼到6楼共走80级台阶。

小学奥数(认识简单数列学生版)

小学奥数(认识简单数列学生版)

认识简单数列知识点梳理: 我们把按一定规律排列起来的一列数叫数列.在这一讲里,我们要认识一些重要的简单数列,还要学习找出数列的生成规律;学会把数列中缺少的数写出来,最后还要学习解答一些生活中涉及数列知识的实际问题.例1找出下面各数列的规律,并填空.(1)1,2,3,4,5,□,□,8,9,10.(2)1,3,5,7,9,□,□,15,17,19.(3)2,4,6,8,10,□,□,16,18,20.(4)1,4,7,10,□,□,19,22,25.(5) 5,10,15,20,□,□,35,40,45.注意:自然数列、奇数列、偶数列也是等差数列.例2 找出下面的数列的规律并填空.1,1,2,3,5,8,13,□,□,55,89.例3找出下面数列的生成规律并填空. 1,2,4,8,16,□,□,128,256.例4如下图所示。

商店的货架上堆放着一堆火腿肠。

你能很快地算出它的总数有多少根吗?例5 如果全体自然数如下表排列,请问:(1)数20在哪个字母下面?(2) 数27在哪个字母下面?(3) 数70在哪个字母下面?(4) 数71在哪个字母下面?例6 找出下面数列的生成规律,并填空.1,4,9,16,25,□,□,64,81,100.例7 一辆公共汽车有28个座位,空车出发.第一站上1位乘客,第二站上2位,第三站上3位,依此下去,多少站以后,车上坐满乘客?例8 如果第一个数是3,以后每隔6个数写出一个数,得到一列数:3,10,17,……,38.这里3叫第一项,10叫第二项,17叫第三项,试求38是第几项?例9一天,爸爸给小明买了一包糖,数一数刚好100块.爸爸灵机一动,又拿来了10个纸盒,接着说:“小明,现在你把糖往盒子里放,我要求你在第一个盒子里放2块,第二个盒子里放4块,第三个盒子里放8块,第四个盒子里放16块,……照这样一直放下去.要放满这10个盒,你说这100块糖够不够?”小朋友,请你帮小明想一想?例10小青每年都和家长一起参加植树节劳动。

简单奥数题及答案

简单奥数题及答案

简单奥数题及答案题目1:小明有3个苹果,小红有5个苹果,如果他们决定平均分配苹果,那么每个人将得到多少个苹果?答案:小明和小红一共有3+5=8个苹果。

如果他们平均分配,那么每个人将得到8÷2=4个苹果。

题目2:一个班级有40名学生,如果每5名学生组成一个小组,那么可以组成多少个小组?答案:40名学生每5人一组,可以组成40÷5=8个小组。

题目3:一个长方形的长是12厘米,宽是8厘米,求这个长方形的周长。

答案:长方形的周长等于两倍的长加上两倍的宽,即2×(12+8)=2×20=40厘米。

题目4:一个数列的前三项是2, 4, 6,这个数列的下一个数是多少?答案:这是一个等差数列,公差是2。

所以下一个数是6+2=8。

题目5:一个水池可以以每小时5升的速度被填满,如果同时打开一个排水口以每小时3升的速度排水,那么水池被填满需要多长时间?答案:实际每小时的填充速度是5-3=2升。

假设水池的容量是V升,那么V÷2小时可以填满水池。

但是题目没有给出水池的具体容量,所以无法给出具体时间。

题目6:一个圆形花坛的直径是20米,求这个花坛的面积。

答案:圆形花坛的面积可以用公式A=πr²计算,其中r是半径。

半径是直径的一半,即10米。

所以面积是π×10²=100π平方米。

题目7:一个班级有20名学生,如果每3名学生组成一个小组,那么可以组成多少个小组?答案:20名学生每3人一组,可以组成20÷3=6...2。

这意味着可以组成6个完整的小组,还剩下2名学生。

题目8:一个数的3倍加上5等于这个数的5倍减去7,求这个数。

答案:设这个数为x,根据题意,我们有3x+5=5x-7。

解这个方程,我们得到2x=12,所以x=6。

题目9:一个正方形的边长增加了2厘米,面积增加了12平方厘米,求原来的边长。

答案:设原来的边长为x厘米。

原来的面积是x²,增加后的面积是(x+2)²。

小二奥数第四讲认识简单数列

小二奥数第四讲认识简单数列

第四讲认识简单数列我们把按一定规律排列起来的一列数叫数列.在这一讲里,我们要认识一些重要的简单数列,还要学习找出数列的生成规律;学会把数列中缺少的数写出来,最后还要学习解答一些生活中涉及数列知识的实际问题.例1 找出下面各数列的规律,并填空.(1)1,2,3,4,5,□,□,8,9,10.(2)1,3,5,7,9,□,□,15,17,19.(3)2,4,6,8,10,□,□,16,18,20.(4)1,4,7,10,□,□,19,22,25.(5) 5,10,15,20,□,□,35,40,45.注意:自然数列、奇数列、偶数列也是等差数列.例2 找出下面的数列的规律并填空.1,1,2,3,5,8,13,□,□,55,89.解:这叫斐波那契数列,从第三个数起,每个数都是它前面的两个数之和.这是个有重要用途的数列.8+13=21,13+21=34.所以:空处依次填:例3 找出下面数列的生成规律并填空.1,2,4,8,16,□,□,128,256.解:它叫等比数列,它的后一个数是前一个数的2倍.16×2=32,32×2=64,所以空处依次填:例4 找出下面数列的规律,并填空.1,2,4,7,11,□,□,29,37.解:这数列规律是:后一个数减前一个数的差是逐渐变大的,这些差是个自然数列:例5 找出下面数列的规律,并填空:1,3,7,15,31,□,□,255,511.解:规律是:后一个数减前一个数的差是逐渐变大的,差的变化规律是个等比数列,后一个差是前一个差的2倍.另外,原数列的规律也可以这样看:后一个数等于前一个数乘以2再加1,即后一个数=前一个数×2+1.例6 找出下面数列的生成规律,并填空.1,4,9,16,25,□,□,64,81,100.解:这是自然数平方数列,它的每一个数都是自然数的自乘积.如:1=1×1,4=2×2,9=3×3,16=4×4,25=5×5,,64=8×8,81=9×9,100=10×10.若写成下面对应起来的形式,就看得更清楚.自然数列: 1 2 3 4 5 6 7 8 9 10↓↓↓↓↓↓↓↓↓↓自然数平方数列:1 4 9 16 25 36 49 64 81 100例7 一辆公共汽车有78个座位,空车出发.第一站上1位乘客,第二站上2位,第三站上3位,依此下去,多少站以后,车上坐满乘客?(假定在坐满以前,无乘客下车,见表四(1))方法2:由上表可知,车上的人数是自1开始的连续自然数相加之和,到第几站后,就加到几,所以只要加到出现78时,就可知道是到多少站了,1+2+3+4+5+6+7+8+9+10+11+12=78(人)可见第12站以后,车上坐满乘客.例8 如果第一个数是3,以后每隔6个数写出一个数,得到一列数:3,10,17,……,73.这里3叫第一项,10叫第二项,17叫第三项,试求73是第几项?解:从第1项开始,把各项依次写出来,一直写到73出现为止(见表四(2)).可见73是第11项.例9 一天,爸爸给小明买了一包糖,数一数刚好100块.爸爸灵机一动,又拿来了10个纸盒,接着说:“小明,现在你把糖往盒子里放,我要求你在第一个盒子里放2块,第二个盒子里放4块,第三个盒子里放8块,第四个盒子里放16块,……照这样一直放下去.要放满这10个盒,你说这100块糖够不够?”小朋友,请你帮小明想一想?解:小朋友,你是不是以为100块糖肯定能够放满这10个纸盒的了!下面让我们算一算,看你想得对不对(见表四(3)).表四(3)放满10个盒所需要的糖块总数:可见100块糖是远远不够的,还差1946块呢!这可能是你没有想到的吧!其实,数学中还有很多很多奇妙无比的故事呢.习题1.从1开始,每隔两个数写出一个自然数,共写出十个数来.2.从1开始,每隔六个数写出一个自然数,共写出十个数来.3.在习题一和习题二中,按题目要求写出的两个数列中,除1以外出现的最小的相同的数是几?4.自2开始,隔两个数写一个数:2,5,8, (101)可以看出,2是这列数的第一项,5是第二项,8是第三项,等等.问101是第几个数?5.如图4-1所示,“阶梯形”的最高处是4个正方形叠起来的高度,而且整个图形包括了10个小正方形.如果这个“阶梯形”的高度变为12个小正方形叠起来那样高,那么,整个图形应包括多少个小正方形?6.如图4-2所示,把小立方体叠起来成为“宝塔”,求这个小宝塔共包括多少个小立方体?7.开学的第一个星期,小明准备发起成立一个趣味数学小组,这时只有他一个人.他决定第二个星期吸收两名新组员,而每个新组员要在进入小组后的下一个星期再吸收两名新组员,求开学4个星期后,这个小组共有多少组员?8.图4-3所示为细胞的增长方式.就是说一个分裂为两个,再次分裂变为4个,第三次分裂为8个,……照这样下去,问经过10次分裂,一个细胞变成几个?9.图4-4所示是一串“黑”、“白”两色的珠子,其中有一些珠子在盒子里,问(1)盒子里有多少珠子?(2)这串珠子共有多少个?习题解答1.解:可以先写出从1开始的自然数列,再按题目要求删去那些不应该出现的数,就得到答案了:即1,4,7,10,13,16,19,22,25,28可以看出,这是一个等差数列,后面一个数比前面一个数大3.2.解:仿习题1,先写前面的几个数如下:可以看出,1,8,15,22,……也是一个等差数列,后面的一个数比前面的一个数大7.按照这个规律,可以写出所有的10个数:1,8,15,22,29,36,43,50,57,64.3. 解:观察习题一和习题二两个数列:可见两个数列中最小的相同数是22.4.解:经仔细观察后可以看出,这是一个等差数列,后一个数比前一个数大3,即公差是3.下面再多写出几项,以便从中发现规律:(表四(4))再仔细观察可知:第二项=第一项+1×公差,即5=2+1×3;第三项=第一项+2×公差,即8=2+2×3;第四项=第一项+3×公差,即11=2+3×3;第五项=第一项+4×公差,即14=2+4×3;…………由于101=2+33×3;可见,101是第34项,即第34个数.5.解:仔细观察可发现,这个“阶梯形”图形最高处是4个小正方形时,它就有4个台阶,整个图形包括的小正方形数为:1+2+3+4=10.所以最高处是12个小正方形时,它必有12个台阶,整个图形包括的小正方形数为:1+2+3+4+5+6+7+8+9+10+11+12=78(个).6.解:从上往下数,小宝塔共有六层.仔细观察可发现如下规律(表四(5)):所以六层小立方体的总数为:1+3+6+10+15+21=56(个).7.解:列表如下:4个星期后小组的总人数:1+2+4+8=15(人).8.解:列表如下:一个细胞经过10次分裂变为1024个.9.解:仔细观察可知,这串珠子的排列规律是:白黑白黑白黑白黑白黑白黑白黑白1, 1,1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1,①在盒子里有:4+1+4=9(个).②这一串珠子总数是:1+1+1+2+1+3+1+4+1+5+1+6+1+7+1=1+2+3+4+5+6+7+(1+1+1+1+1+1+1+1)=28+8=36(个).。

小学奥数简单的数列

小学奥数简单的数列

1 第五讲 简单的数列
一、等差数列
数列: 若干个数按一定规律排成一列,称为数列。

首项:数列中的每一个数称为一项,其中第一项称为首项
末项:最后一项称为末项。

项数:数列中数的个数称为项数。

等差数列:从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。

例如:等差数列:3、6、9、…、96,这是一个首项为3,
练习题:
1、有一个数列:4、7、10、13、…、25,这个数列共有多少项?
2、2008-1-2-3-4-...-56-57-58
3、4+10+16+22+...+64
4、在等差数列1,5,9,13,17,…,中第101项是多少?
5、15个连续奇数的和是1995,其中最大的奇数是多少?
6、31个连续奇数的和是1891,其中最大的奇数是多少?最小的求奇数又是多少?
注:规律公式:n n q q q q q ++++=⨯⨯⨯...321321.....
1、∆=⨯⨯⨯⨯99...999134321,求∆的值。

小学奥数(认识简单数列)

小学奥数(认识简单数列)

认识简单数列知识点梳理我们把按一定规律排列起来的一列数叫数列.在这一讲里,我们要认识一些重要的简单数列,还要学习找出数列的生成规律;学会把数列中缺少的数写出来,最后还要学习解答一些生活中涉及数列知识的实际问题.例1找出下面各数列的规律,并填空.(1)1,2,3,4,5,□,□,8,9,10.(2)1,3,5,7,9,□,□,15,17,19.(3)2,4,6,8,10,□,□,16,18,20.(4)1,4,7,10,□,□,19,22,25.(5) 5,10,15,20,□,□,35,40,45.注意:自然数列、奇数列、偶数列也是等差数列.例2 找出下面的数列的规律并填空.1,1,2,3,5,8,13,□,□,55,89.解:这叫斐波那契数列,从第三个数起,每个数都是它前面的两个数之和.这是个有重要用途的数列.8+13=21,13+21=34.所以:空处依次填:例3找出下面数列的生成规律并填空.1,2,4,8,16,□,□,128,256.解:它叫等比数列,它的后一个数是前一个数的2倍.16×2=32,32×2=64,所以空处依次填:例4找出下面数列的规律,并填空.1,2,4,7,11,□,□,29,37.解:这数列规律是:后一个数减前一个数的差是逐渐变大的,这些差是个自然数列:例5找出下面数列的规律,并填空:1,3,7,15,31,□,□,255,511.解:规律是:后一个数减前一个数的差是逐渐变大的,差的变化规律是个等比数列,后一个差是前一个差的2倍.另外,原数列的规律也可以这样看:后一个数等于前一个数乘以2再加1,即后一个数=前一个数×2+1.例6找出下面数列的生成规律,并填空.1,4,9,16,25,□,□,64,81,100.解:这是自然数平方数列,它的每一个数都是自然数的自乘积.如:1=1×1,4=2×2,9=3×3,16=4×4,25=5×5,,64=8×8,81=9×9,100=10×10.若写成下面对应起来的形式,就看得更清楚.自然数列: 1 2 3 4 5 6 7 8 9 10↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓自然数平方数列:1 4 9 16 25 36 49 64 81 100例7一辆公共汽车有78个座位,空车出发.第一站上1位乘客,第二站上2位,第三站上3位,依此下去,多少站以后,车上坐满乘客?(假定在坐满以前,无乘客下车,见表四(1))方法2:由上表可知,车上的人数是自1开始的连续自然数相加之和,到第几站后,就加到几,所以只要加到出现78时,就可知道是到多少站了,1+2+3+4+5+6+7+8+9+10+11+12=78(人)可见第12站以后,车上坐满乘客.例8 如果第一个数是3,以后每隔6个数写出一个数,得到一列数:3,10,17, (73)这里3叫第一项,10叫第二项,17叫第三项,试求73是第几项?.解:从第1项开始,把各项依次写出来,一直写到73出现为止(见表四(2))仔细、认真、不粗心例9一天,爸爸给小明买了一包糖,数一数刚好100块.爸爸灵机一动,又拿来了10个纸盒,接着说:“小明,现在你把糖往盒子里放,我要求你在第一个盒子里放2块,第二个盒子里放4块,第三个盒子里放8块,第四个盒子里放16块,……照这样一直放下去.要放满这10个盒,你说这100块糖够不够?”小朋友,请你帮小明想一想?解:小朋友,你是不是以为100块糖肯定能够放满这10个纸盒的了!下面让我们算一算,看你想得对不对(见表四(3)).表四(3)放满10个盒所需要的糖块总数:可见100块糖是远远不够的,还差1946块呢!这可能是你没有想到的吧!其实,数学中还有很多很多奇妙无比的故事呢.课堂过手训练1、从1开始,每隔两个数写出一个自然数,共写出十个数来.解:可以先写出从1开始的自然数列,再按题目要求删去那些不应该出现的数,就得到答案了:即1,4,7,10,13,16,19,22,25,28可以看出,这是一个等差数列,后面一个数比前面一个数大3.2.从1开始,每隔六个数写出一个自然数,共写出十个数来.解:仿习题1,先写前面的几个数如下:可以看出,1,8,15,22,……也是一个等差数列,后面的一个数比前面的一个数大7.按照这个规律,可以写出所有的10个数:1,8,15,22,29,36,43,50,57,64.3.如图4-2所示,把小立方体叠起来成为“宝塔”,求这个小宝塔共包括多少个小立方体?解:从上往下数,小宝塔共有六层.仔细观察可发现如下规律(表四(5)):所以六层小立方体的总数为:1+3+6+10+15+21=56(个).家庭作业1.在课堂作业一、二题中,按题目要求写出的两个数列中,除1以外出现的最小的相同的数是几?仔细、认真、不粗心解:观察习题一和习题二两个数列:可见两个数列中最小的相同数是22.2.自2开始,隔两个数写一个数:2,5,8, (101)可以看出,2是这列数的第一项,5是第二项,8是第三项,等等.问101是第几个数?解:经仔细观察后可以看出,这是一个等差数列,后一个数比前一个数大3,即公差是3.下面再多写出几项,以便从中发现规律:(表四(4))再仔细观察可知:第二项=第一项+1×公差,即5=2+1×3;第三项=第一项+2×公差,即8=2+2×3;第四项=第一项+3×公差,即11=2+3×3;第五项=第一项+4×公差,即14=2+4×3;…………由于101=2+33×3;可见,101是第34项,即第34个数.3.如图4-1所示,“阶梯形”的最高处是4个正方形叠起来的高度,而且整个图形包括了10个小正方形.如果这个“阶梯形”的高度变为12个小正方形叠起来那样高,那么,整个图形应包括多少个小正方形?解:仔细观察可发现,这个“阶梯形”图形最高处是4个小正方形时,它就有4个台阶,整个图形包括的小正方形数为:1+2+3+4=10.所以最高处是12个小正方形时,它必有12个台阶,整个图形包括的小正方形数为:1+2+3+4+5+6+7+8+9+10+11+12=78(个).4.开学的第一个星期,小明准备发起成立一个趣味数学小组,这时只有他一个人.他决定第二个星期吸收两名新组员,而每个新组员要在进入小组后的下一个星期再吸收两名新组员,求开学4个星期后,这个小组共有多少组员?解:列表如下:4个星期后小组的总人数:仔细、认真、不粗心。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

认识简单数列
知识点梳理
我们把按一定规律排列起来的一列数叫数列.
在这一讲里,我们要认识一些重要的简单数列,还要学习找出数列的生成规律;学会把数列中缺少的数写出来,最后还要学习解答一些生活中涉及数列知识的实际问题.
例1找出下面各数列的规律,并填空.
(1)1,2,3,4,5,□,□,8,9,10.
(2)1,3,5,7,9,□,□,15,17,19.
(3)2,4,6,8,10,□,□,16,18,20.
(4)1,4,7,10,□,□,19,22,25.
(5) 5,10,15,20,□,□,35,40,45.
注意:自然数列、奇数列、偶数列也是等差数列.
例2 找出下面的数列的规律并填空.
1,1,2,3,5,8,13,□,□,55,89.
解:这叫斐波那契数列,从第三个数起,每个数都是它前面的两个数之和.这是个有重要用途的数列.8+13=21,13+21=34.所以:
空处依次填:
例3找出下面数列的生成规律并填空.
1,2,4,8,16,□,□,128,256.
解:它叫等比数列,它的后一个数是前一个数的2倍.16×2=32,32×2=64,所以空处依次填:
例4找出下面数列的规律,并填空.
1,2,4,7,11,□,□,29,37.
解:这数列规律是:后一个数减前一个数的差是逐渐变大的,这些差是个自然数列:
例5找出下面数列的规律,并填空:
1,3,7,15,31,□,□,255,511.
解:规律是:后一个数减前一个数的差是逐渐变大的,差的变化规律是个等比数列,后一个差是前一个差的2倍.
另外,原数列的规律也可以这样看:后一个数等于前一个数乘以2再加1,即后一个数=前一个数×2+1.
例6找出下面数列的生成规律,并填空.
1,4,9,16,25,□,□,64,81,100.
解:这是自然数平方数列,它的每一个数都是自然数的自乘积.如:1=1×1,4=2×2,
9=3×3,16=4×4,25=5×5,,64=8×8,81=9×9,100=10×10.
若写成下面对应起来的形式,就看得更清楚.
自然数列: 1 2 3 4 5 6 7 8 9 10
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
自然数平方数列:1 4 9 16 25 36 49 64 81 100
例7一辆公共汽车有78个座位,空车出发.第一站上1位乘客,第二站上2位,第三站上3位,依此下去,多少站以后,车上坐满乘客?(假定在坐满以前,无乘客下车,见表四(1))
方法2:由上表可知,车上的人数是自1开始的连续自然数相加之和,到第几站后,就加到几,所以只要加到出现78时,就可知道是到多少站了,
1+2+3+4+5+6+7+8+9+10+11+12=78(人)
可见第12站以后,车上坐满乘客.
例8 如果第一个数是3,以后每隔6个数写出一个数,得到一列数:3,10,17, (73)
这里3叫第一项,10叫第二项,17叫第三项,试求73是第几项?
解:从第1项开始,把各项依次写出来,一直写到73出现为止(见表四(2)).
可见73是第11项.
例9一天,爸爸给小明买了一包糖,数一数刚好100块.爸爸灵机一动,又拿来了10个纸盒,接着说:“小明,现在你把糖往盒子里放,我要求你在第一个盒子里放2块,第二个盒子里放4块,第三个盒子里放8块,第四个盒子里放16块,……照这样一直放下去.要放满这10个盒,你说这100块糖够不够?”小朋友,请你帮小明想一想?
解:小朋友,你是不是以为100块糖肯定能够放满这10个纸盒的了!下面让我们算一算,看你想得对不对(见表四(3)).表四(3)
放满10个盒所需要的糖块总数:
可见100块糖是远远不够的,还差1946块呢!这可能是你没有想到的吧!其实,数学中还有很多很多奇妙无比的故事呢.
课堂过手训练
1、从1开始,每隔两个数写出一个自然数,共写出十个数来.
解:可以先写出从1开始的自然数列,再按题目要求删去那些不应该出现的数,就得到答案了:
即1,4,7,10,13,16,19,22,25,28
可以看出,这是一个等差数列,后面一个数比前面一个数大3.
2.从1开始,每隔六个数写出一个自然数,共写出十个数来.
解:仿习题1,先写前面的几个数如下:
可以看出,1,8,15,22,……也是一个等差数列,后面的一个数比前面的一个数大7.按照这个规律,可以写出所有的10个数:
1,8,15,22,29,36,43,50,57,64.
3.如图4-2所示,把小立方体叠起来成为“宝塔”,求这个小宝塔共包括多少个小立方体?解:从上往下数,小宝塔共有六层.仔细观察可发现如下规律(表四(5)):
所以六层小立方体的总数为:
1+3+6+10+15+21=56(个).
家庭作业
1.在课堂作业一、二题中,按题目要求写出的两个数列中,除1以外出现的最小的相同的数是几?
解:观察习题一和习题二两个数列:
可见两个数列中最小的相同数是22.
2.自2开始,隔两个数写一个数:2,5,8, (101)
可以看出,2是这列数的第一项,5是第二项,8是第三项,等等.问101是第几个数?解:经仔细观察后可以看出,这是一个等差数列,后一个数比前一个数大3,即公差是3.下面再多写出几项,以便从中发现规律:(表四(4))
再仔细观察可知:
第二项=第一项+1×公差,即5=2+1×3;
第三项=第一项+2×公差,即8=2+2×3;
第四项=第一项+3×公差,即11=2+3×3;
第五项=第一项+4×公差,即14=2+4×3;
…………
由于101=2+33×3;
可见,101是第34项,即第34个数.
3.如图4-1所示,“阶梯形”的最高处是4个正方形叠起来的高度,而且整个图形包括了10个小正方形.如果这个“阶梯形”的高度变为12个小正方形叠起来那样高,那么,整个图形应包括多少个小正方形?
解:仔细观察可发现,这个“阶梯形”图形最高处是4个小正方形时,它就有4个台阶,整个图形包括的小正方形数为:
1+2+3+4=10.
所以最高处是12个小正方形时,它必有12个台阶,整个图形包括的小正方形数为:
1+2+3+4+5+6+7+8+9+10+11+12=78(个).
4.开学的第一个星期,小明准备发起成立一个趣味数学小组,这时只有他一个人.他决定第二个星期吸收两名新组员,而每个新组员要在进入小组后的下一个星期再吸收两名新组员,求开学4个星期后,这个小组共有多少组员?
解:列表如下:
4个星期后小组的总人数:。

相关文档
最新文档