三年级上-奥数-简单数列求和

合集下载

三年级奥数全册教材

三年级奥数全册教材
能刚好配对,还留下一个数,要弄清这个数是几;有时,一串数虽然个数是双数,但为了计
算简便,往往把其中两个或者几个数放在一旁,将其余数配对,使每对中两数的和恰好是整
十或整百数。
第二讲 加减法中的简便运算
【技巧归纳】
★ 同级运算,括号外面是减号的,添上或去掉括号,括号里的加减号要改变:加号要变成
减号、减号要变成加号;
解 11+12+13+14+15+16+17+18+19 =(11+19)+(12+18)+(13+17)+(14+16)+15 =30×4+15 =135 例【3】 计算:101+102+103+104+105+106+107+108+109+110
分析 此题中每个数里都包含了一个 100,可以把这 10 个 100 分离出来,转化为例 【1】
1
南头镇文艺培训中心——博艺教育 三年级奥数教材
=10×4+5+10 =55 例【2】 计算:11+12+13+14+15+16+17+18+19 分析 将 11 与 19、12 与 18、13 与 17、14 与 16 配成 4 对,再加 15。
11 12 13 14 15 16 17 18 19
★ 当所有括号都去掉后,可以将数与前面的符号一起移动,第一个数前面为加号,可省略;
★ 常用的简便运算方法:
加法:(1)交换律:A+B=B+A ;
(2)结合律:(A+B)+C=A+(B+C)
减法:(1)A-B-C=A-(B+C)
(2)A-B+C=A-(B-C)
【课堂演练】
【例 1】运用加法中的凑整,计算:
2、99999×7+11111×37
【经典例题 4】计算:125×56

小学三年级奥数精品讲义1-34讲全

小学三年级奥数精品讲义1-34讲全

小学三年级奥数精品讲义目录第一讲加减法的巧算(一)第二讲加减法的巧算(二)第三讲乘法的巧算第四讲配对求和第五讲找简单的数列规律第六讲图形的排列规律第七讲数图形第八讲分类枚举第九讲填符号组算式第十讲填数游戏第十一讲算式谜(一)第十二讲算式谜(二)第十三讲火柴棒游戏(一)第十四讲火柴棒游戏(二)第十五讲从数量的变化中找规律第十六讲数阵中的规律第十七讲时间与日期第十八讲推理第十九讲循环第二十讲最大和最小第二十一讲最短路线第二十二讲图形的分与合第二十三讲格点与面积第二十四讲一笔画第二十五讲移多补少与求平均数第二十六讲上楼梯与植树第二十七讲简单的倍数问题第二十八讲年龄问题第二十九讲鸡兔同笼问题第三十讲盈亏问题第三十一讲还原问题第三十二讲周长的计算第三十三讲等量代换第三十四讲一题多解第三十五讲总复习第一讲加减法的巧算森林王国的歌舞比赛进行得既紧张又激烈。

选手们为争夺冠军,都在舞台上发挥着自己的最好水平。

台下的工作人员小熊和小白兔正在统计着最后的得分。

由于他们对每个选手分数的及时通报,台下的观众频频为选手取得的好成绩而热烈鼓掌,同时,观众也带着更浓厚的兴趣边看边猜测谁能拿到冠军。

观众的情绪也影响着两位分数统计者。

只见分数一到小白兔手中,就像变魔术般地得出了答案。

等小熊满头大汗地算出来时,小白兔已欣赏了一阵比赛,结果每次小熊算得结果和小白兔是一样的。

小熊不禁问:“白兔弟弟,你这么快就算出了答案,有什么决窍吗?”小白兔说:“比如2号选手是93、95、98、96、88、89、87、91、93、91,去掉最高分98,去掉最低分87,剩下的都接近90为基准数,超过90的表示成90+‘零头数’,不足90的表示成90-‘零头数’。

于是(93+95+96+88+89+91+93+91)÷8=90+(3+5+6―2―1+1+3+1)÷8=90+2=92。

你可以试一试。

”小熊照着小白兔说的去做,果然既快又对。

三年级奥数--简单数列求和

三年级奥数--简单数列求和

Yi03010第十讲简单数列求和⑴1+5+9+13+…+2001⑵4000-(50+48+46+ (2)⑶(1000+995+990+...+5)+(4+8+12+ (996)⑷2+10+6+15+10+20+…+398+505⑸2002-1+2-3+4-5+…+1948-1949⑹1+2-3+4+5-6+7+8-9+…+97+98-99例2学校举行数学竞赛,规定前15名可以获奖。

比赛结果第一名1人,第二名并列2人,第三名并列3人……第十五名并列15人。

用最简便方法计算出得奖的一共有多少人?例3在1949,1950,1951…1997,1998这五十个正整数中,所有双数之和比所有单数之和大多少?例4在1~200这二百个数中能被9整除的数的和是多少?例539个连续单数的和是1989,其中最大的一个单数是多少?例6有一列数:1,1993,1992,1,1991,1990,1……从第三个数起,每一个数都是它前面两个数中大数减小数的差,从第1个到第1993个数这些数的和是多少?1.计算题⑴1001+1002+1003+…+9999⑵199+193+187+181+…+103⑶5000-(1+2+3+ (68)⑷(101+103+105+...+457)-(97+99+101+ (439)⑸1000-1001+1002-1003+…+2000-2001+20022.星际影院的第一放映厅有15排座位,后一排比前一排多2个座位,最后一排有56个座位,这个剧院一共有多少个座位?3.霄霄从七月一日开始写毛笔字,第一天写了6个,以后每天比前一天多写相同数量的毛笔字,结果全月共写1116个毛笔字,霄霄每天比前一天多写几个大字?。

三年级奥数等差数列求和习题及标准答案

三年级奥数等差数列求和习题及标准答案

三年级奥数等差数列求和习题及答案————————————————————————————————作者:————————————————————————————————日期:计算(三)等差数列求和知识精讲一、定义:一个数列的前n 项的和为这个数列的和。

二、表达方式:常用n S 来表示 。

三:求和公式:和=(首项+末项)⨯项数2÷,1()2n n s a a n =+⨯÷。

对于这个公式的得到可以从两个方面入手:(思路1)1239899100++++++11002993985051=++++++++共50个101()()()() 101505050=⨯= (思路2)这道题目,还可以这样理解:23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和 即,和 (1001)100 2 10150 5050=+⨯÷=⨯=。

四、中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数。

譬如:① 48123236436922091800+++++=+⨯÷=⨯=(),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯;② 65636153116533233331089++++++=+⨯÷=⨯=(),题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯。

例题精讲:例1:求和:(1)1+2+3+4+5+6 = (2)1+4+7+11+13=(3)1+4+7+11+13+ (85)分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和。

例如(3)式项数=(85-1)÷3+1=29和=(1+85)×29÷2=1247答案:(1)21 (2)36 (3)1247例2:求下列各等差数列的和。

(完整)三年级奥数等差数列求和习题及答案

(完整)三年级奥数等差数列求和习题及答案

计算(三)等差数列求和知识精讲一、定义:一个数列的前n 项的和为这个数列的和。

二、表达方式:常用n S 来表示 。

三:求和公式:和=(首项+末项)⨯项数2÷,1()2n n s a a n =+⨯÷。

对于这个公式的得到可以从两个方面入手:(思路1)1239899100++++++11002993985051=++++++++共50个101()()()() 101505050=⨯= (思路2)这道题目,还可以这样理解:23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和即,和 (1001)100 2 10150 5050=+⨯÷=⨯=。

四、中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数。

譬如:① 48123236436922091800+++++=+⨯÷=⨯=(),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯; ② 65636153116533233331089++++++=+⨯÷=⨯=(),题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯。

例题精讲:例1:求和:(1)1+2+3+4+5+6 = (2)1+4+7+11+13=(3)1+4+7+11+13+ (85)分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和。

例如(3)式项数=(85-1)÷3+1=29和=(1+85)×29÷2=1247答案:(1)21 (2)36 (3)1247例2:求下列各等差数列的和。

(1)1+2+3+4+…+199(2)2+4+6+…+78(3)3+7+11+15+…+207分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和。

高斯小学奥数含答案三年级(上)第21讲等差数列求和

高斯小学奥数含答案三年级(上)第21讲等差数列求和

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -对于一个等差数列而言,除了它的首项、公差、项数和末项很重要之外,数列中所有数之和也是非常重要的.在进行等差数列求和时,最常用的方法就是分组法.以123456789++++++++为例:把上下两行相加,注意上下对齐,不难发现每一对上下对齐的数之和都等于首项加末项()19+,而且共有项数()9那么多对,所以所有数之和等于:首项末项项数因为我们把原来的等差数列写了2遍,所以所有数之和就等于原来等差数列之和的2倍,于是可以+ + + + + + + + 1 23456789+ + + + + + + + 987654321+先把数列正着写一遍:再把数列反着写一遍:第二十一讲等差数列求和得到等差数列求和公式:2和首项末项项数- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题1计算下列各题:(1)36912151821242730+++++++++;(2)4137332925211713951++++++++++.分析:试着用公式进行一下计算,首项、末项、项数分别是多少?练习1计算:61116212631364146++++++++.例题2计算下列各题:(1)511177783+++++L ;(2)827772127.分析:要用等差数列求和公式,需要知道整个数列的首项、末项和项数,现在还缺哪些?试着把未知的那些算出来.练习2计算:100928412L.例题3计算下列各题:(1)10121824共项+++L 14444444244444443;(2)131********共项+++L 1444444442444444443.分析:要用等差数列求和公式,需要知道整个数列的首项、末项和项数,现在还缺哪些?试着把未知的那些算出来.练习3计算:12101316共项+++L 14444444244444443.例题4萱萱读一本课外书,第一天读了15页,以后每天都比前一天多读3页,最后一天读了36页,刚好把书读完.请问:萱萱一共读了多少天?这本课外书共有多少页?分析:萱萱每天读书的页数构成了一个等差数列,这个等差数列的首项、末项、项数分别是多少?练习4暑假里,小高练习游泳,第一天他游了200米,以后每一天都比前一天多游50米,最后一天游了600米,请问:小高这些天里一共游了多少米?例题5小华把一些珠子放在桌子上的15个盒子中,已知盒子中的珠子数按盒子从左往右的顺序成一个等差数列,并且从左数第8个盒子中有24颗珠子,请问:这15个盒子中一共有多少颗珠子?分析:奇数项等差数列求和公式?中间数是几?项数有几项?例题6小明从1开始计算若干连续自然数的和,他因为把其中一个数多加了一遍,得到了一个错误的结果2007.小刚也从1开始计算若干连续自然数的和,他因为漏加了其中的一个自然数,也得到了错误结果2007.请问被重复计算和漏掉的两个数之和是多少?分析:等差数列求和接近2007时,这个等差数列的最后一项是几?作业1.计算:.2.计算:.3.计算:.31581114L 144424443共项111825102++++L 7067646158555249+++++++课堂内外高斯是一对普通夫妇的儿子.他的母亲是一个贫穷石匠的女儿,虽然十分聪明,但却没有接受过教育,近似于文盲.在她成为高斯父亲的第二个妻子之前,她从事女佣工作.他的父亲曾做过园丁,工头,商人的助手和一个小保险公司的评估师.高斯三岁时便能够纠正他父亲的借债账目的事情,已经成为一个轶事流传至今.他曾说,他在麦仙翁堆上学会计算.能够在头脑中进行复杂的计算,是上帝赐予他一生的天赋.高斯用很短的时间计算出了小学老师布置的任务:对自然数从1到100的求和.他所使用的方法是:对50对构造成和101的数列求和(1+100,2+99,3+98……),同时得到结果:5050.这一年,高斯9岁.父亲格尔恰尔德·迪德里赫对高斯要求极为严厉,甚至有些过分,常常喜欢凭自己的经验为年幼的高斯规划人生.高斯尊重他的父亲,并且秉承了其父诚实、谨慎的性格.在成长过程中,幼年的高斯主要得力于母亲和舅舅:高斯的母亲罗捷雅、舅舅弗利德里希(Friederich ).弗利德里希富有智慧,为人热情而又聪明能干,投身于纺织贸易颇有成就.他发现姐姐的儿子聪明伶俐,因此他就把一部分精力花在这位小天才身上,用生动活泼的方式开发高斯的智力.若干年后,已成年并成就显赫的高斯回想起舅舅为他所做的一切,深感对他成才之重要,他想到舅舅多产的思想,不无伤感地说,舅舅去世使“我们失去了一位天才”.正是由于弗利德里希慧眼识英才,经常劝导姐夫让孩子向学者方面发展,才使得高斯没有成为园丁或者泥瓦匠.在数学史上,很少有人像高斯一样很幸运地有一位鼎力支持他成才的母亲.罗捷雅直到34岁才出嫁,生下高斯时已有35岁了.她性格坚强、聪明贤慧、富有幽默感.高斯一生下来,就对一切现象和事物十分好奇,而且决心弄个水落石出,这已经超出了一个孩子能被许可的范围.当丈夫为此训斥孩子时,她总是支持高斯,坚决反对顽固的丈夫想把儿子变得跟他一样无知.高斯的故事4.一个等差数列的首项是21,从第二项起每一项都比前一项大2,它的前20项之和是多少?5.馋嘴猴特别爱吃香蕉,它每周吃的香蕉数量成等差数列,已知它第5周吃了18根香蕉.馋嘴猴前9周一共吃了多少根香蕉?第二十一讲等差数列求和1.例题 1答案:(1)165;(2)231详解:(1)()36912151821242730330102165+++++++++=+锤=.(2)()4137332925211713951411112231++++++++++=+锤=.2.例题 2答案:(1)616;(2)712 详解:(1)先求项数=()8356114-?=,再求和:()583142616原式=+锤=.(2)先求项数=()8275116-?=,827162712原式.3.例题 3答案:(1)390;(2)2041详解:(1)先求末项=()12101666+-?,()1218661266102390原式=+++=+锤=L .(2)先求末项=()1931316121--?,()1931871211931211322041原式=+++=+锤=L .4.例题 4答案:(1)8天;(2)204页详解:先求项数,即多少天=()3615318-?=天,()151********2204++鬃?=+锤=,即共有204页.5.例题 5 答案:360颗详解:利用中间数×项数,共有1524360?颗.6.例题 6 答案:63详解:123621953++++=L ,123632016++++=L ,则多加的数为2007195354-=,则漏加的数为201620079-=,则被重复计算和漏掉的两数之和为54963+=.7.练习 1 答案:234简答:()6111621263136414664692234++++++++=+锤=.8.练习 2 答案:672简答:先求项数=()100128112-?=,10012122672原式.9.练习 3 答案:318简答:先求末项=()10121343+-?,()121013161043122318+++=+锤=L 14444444244444443共项.10.练习 4答案:3600米简答:先求项数,有()6002005019-?=天,()200250600200600923600++鬃?=+锤=,即共游了3600米.11.作业 1答案:476简答:首项为70,末项为49,项数为8.(7049)82476原式.12.作业 2答案:791简答:项数为(10211)7114,和为(10211)142791.13.作业 3答案:1550简答:末项为530395,和为(595)3121550.14.作业 4答案:800简答:公差为2,第20项为2119259,和为(2159)202800.15.作业 5答案:162根简答:前9项的中间项是第5项.所以前9项和为189162.。

小学奥数-简单数列求和

小学奥数-简单数列求和
例2 判断下面的数列中哪些是等差数列?
0 1 1,3,5,7,10,
13,16
0 4 1,2,7,11,
16,……
标题
11,12,13,14, 0 2
15……
1,5,9,13,17, 0 3
21,23
练一练
2.判断下列数列中哪些是等差数列。
0,2,6,12,20, 30,42
6,12,18,24, 30,36,42
算 :

7+7× 2+7× 3+……+7× 50 0
(解



=7×
1+2+3+……+500
) )

=7× [ 1+500 × 500÷ 2]
=876750
小课堂
○○○○ ○○○○○ ○○○○○○
…………………
○○○
○○○
共 10 层
话说唐僧师徒四人还在去西天取经的路 上。一天猪八戒又
偷懒了。孙悟空为了教训一下猪八戒, 变出许多金箍棒压在猪八戒身上。猪八 戒直嚷:“猴哥,你饶了我吧,下次我 再也不敢了。”孙悟空笑着说:“只要 你算出压在你身上的金箍棒一共有多少 根,我就放了你。”这下猪八戒可傻眼 了:他最怕做算术题了。压在猪八戒身 上的金箍棒如图所示,你能帮帮猪八戒 吗?
思考:高斯是怎么算出来的呢?
公式推导
我们先来看看当时的高斯是怎么回答的。 高斯说:“老师, 1加 至 100 可以排两行,第一行顺 着排,第二行倒过来排。”我们来看一下
1 + 2 + 3 + 4 + 5 +……+ 97 + 98 + 99 + 100 100 + 99 + 98 + 97 + 96 +……+ 4 + 3 + 2 + 1

2019年奥数小学三年级精讲与测试第3讲简单数列求和

2019年奥数小学三年级精讲与测试第3讲简单数列求和

2019年奥数小学三年级精讲与测试第3讲简单数列求和知识点、重点、难点当一列数的规律是相邻两项的差是一个固定的数,这样的数列就称为等差数列.其中固定的差用d表示,和用S表示,项数用n表示,其中第n项用a n表示.等差数列有以下几个通项公式:S=(a1+a n)×n÷2,n=(a n-a1)÷d+1(当a1<a n),a n=a1+(n-1)×d.例题精讲例1 1+2+3+4+5+6+7+8+9解原式=(1+9)×9÷2=10×9÷2=45例2 (1)1+5+9+13+…+解项数=(+1)÷4+1=501S=(1+)×501÷2=1001×501=501501(2)4000-(50+48+46+ (2)解原式=4000-(50+2)×25÷2=4000-26×25=3350例3 在1949、1950、1951…1997、1998这五十个正整数中,所有双数之和比所有单数之和大多少?解 (1950+1952+1954+...+1998)-(1949+1951+1953+ (1997)=(1950+1998)×25÷2-(1949+1997)×25÷2=(1950+1998-1949-1997)×25÷2=2×25÷2=25 例 4 在1~200这二百个数中能被9整除的数的和是多少?分析:在1~200这二百个数中能被9整除的数构成了一个以9为首项,公差为9的等差数列:9,18,27,36,…,189,198.解项数=(198-9)÷2+1=22.S=(9+198)×22÷2==207×22÷2=2277.例 5 39个连续单数的和是1989,其中最大的一个单数是多少?分析:39个连续单数之和为1989,所以中间一个数是这39个数的平均数,然后再找出其中最大的一个单数.解 1989÷39=51,51+19×2=89.例 6 有一列数:1,1993,1992,1,1991,1990,1,...,从第三个数起,每一个数都是它前面两个数中大数减小数的差,从第1个到第1993个数这些数多的和是多少?分析:仔细观察这一数列,如果把1拿出,正好成为一个等差数列:1993,1992,1991,1990,...,在原数列中三个数一组出现一个1.1993÷3=664...1,可分为664组一个1,即665个1,其余是1993到666,共664×2=1328个数.解 1×665+(666+1993)×1328÷2=665+2659×1328÷2=665+1765576=1766241.水平测试 3A 卷一、填空题1.1+2+3+4+5+6+7=________2.2+4+6++8+10=_________3.1+3+5+7+9+11+13+15+17=__________4.25+27+29+31+33=________5.+++++=________6.15+20+25+30+35+40=_________7.11-12+13-14+15-16+17-18+19=_________8.(+++...+3+1)-(++1998+...+4+2)=_________9.27+31+35+39+43+47=_________10.121+134+127+130+133+136+139=_________11.101+103+105+...+139=_________二、解答题12.计算:10+13+16+19+...+295+298.13.求200以内的双数之和.14.等差数列7、10、13...的第20项数是几?15.肖肖从七月一日开始写毛笔字,第一天写了6个,以后每天比前一天多写相同数量的毛笔字,结果全月共写了1116个毛笔字,肖肖每天比前一天多写了几个毛笔字?B 卷一、填空题1.57+67+77+...+217+227=________2.11+12-13-14+15+16-17-18+...+31+32-33-34+35+36=_______3.1+3++5+7+...+151+153+155=_________4.96+97+98+...+293+294+295=________5.从37到111的所有单数之和是________6.所有三位数的和为_________7.1+4+7+10+...+292+295+298=_________8.1+2+3+...+59+60+59+...+3+2+1=________二、解答题9.计算:(2+4+6+...+100)-(1+2+3+...+50).10.把一堆苹果分给8个小朋友,要使每个小朋友都能拿到苹果,而且每个人拿到苹果个数都不同的话,这堆苹果至少应该有多少个?11.小红读一本书,第一天读30页,从第二天起,每天读的页数都必须比前一天多4页,最后一天读了70页刚好读完,这本书共有几页?12.小文从5岁开始存钱,5岁时他有了30元,以后每年比前一年多存10元,那么到他18岁时他共存了多少钱?13.求100以内所有7的倍数之和.C 卷一、填空题1.25个连续的正整数之和是750,则第13个数是_______,第一个数是_______2.一串钥匙30把,对应30把锁,若不小心搞乱了,那么至多需要试_______次.3.若在第2题中只要找出8把锁所对应的钥匙,那么至多需要试______次4.1+4+5+8+9+12+...+48+49+52=________5.321+320+319+...+124+123+124+...+319+320+321=________6.所有三位数中被26除余5的数之和是________7.学校礼堂共有30排座位,已知第一排是15个座位,以后每排比前一排多2个座位,那么共有______个座位.8.1+3+7+13+15+19+25+27+31+...+121+123+127=________二、解答题9.小华看一本书,第一天看了3页,以后每一天比前一天多看的页数相同.第20天看了79页,刚好看完,问这本书共多少页?每天比前一天多看多少页?10.求两位数中所有含有数字5的数之和.11.如图,每个最小的等边三角形的面积是1平方厘米,边长是一根火柴棒,问最大的三角形的面积是多少平方厘米?整个图形由几根火柴棒摆成?12.有10个盒子,44只乒乓球.把这44只乒乓球放到盒子中,能不能使每个盒中的球数都不相同(每个盒子中至少要放一个球)?13.已知数列2,7,5,5,3,2,7,5,5,3,2,7,5,5,3,...,这个数列的第40项是哪个数字?前36项之和是多少?简单数列求和答案:A 卷1.28 原式=(1+7)×7÷2=282.30 原式=(2+10)×5÷2=303.81 原式=(1+17)×9÷2=814.145 原式=(25+33)×5÷2=1455.12042 原式=(+)×6÷2=120426.165 原式=(15+40)×6÷2=1657.15 原式=11+(13-12)+(15-14)+(17-16)+(19-18)=15.8.1002 原式=(-)+(-)+...+(3-2)+1=10021001对9.222 原式=(27+47)×6÷2=22210.910 原式=(121+139)×7÷2=91011.2400 原式=(101+139)×[(139-101)÷2+1]÷2=240012.14938 原式=(10+298)×[(298-10)÷3+1]÷2=308×(96+1)÷2=154×97=1493813.200以内所有双数之和等于10100 2+4+6+...+198+200=(2+200)×100÷2=1010014.64 a n=a1+(n-1)×d=7+(20-1)×3=6415.最后一天写了1116×2÷31-6=66(个),(66-6)÷(31-1)=2(个)B 卷1.2556 由于共有(227-57)÷10+1=18项,原式=(57+227)×18÷2=25562.47 原式=(36-34)+(35-33)+(32-30)+(31-29)+...+(16-14)+(15-13)+11+12=24+23=47. 其中每个括号内两项之差为2,所以除11,12外所有和等于项数,即36-13+1=24.3.6084 原式=(1+155)×78÷2=6084,其中项数78=(155-1)÷2+1.4.39100.项数为(295-96)÷1+1=200,原式=(96+295)×200÷2=39100.5.2812.项数为(111-37)÷2+1=38,原式=(37+111)×38÷2=2812.6.494550 100+101+102+103+...+999=(100+999)×900÷2=4945507.14950.项数为(298-1)÷3+1=100,原式=(1+298)×100÷2=14950.8.3600. 原式=(1+59)×59÷2×2+60=3600.9.原式=(2-1)+(4-2)+(6-3)+...+(100-50)=1+2+3+...+50=(1+50)×50÷2=1275.10.36个 1+2+3+4+5+6+7+8=(1+8)×8÷2=36(个).11.550页. 先求小红看了几天,(70-30)÷4+1=11(天).再求这本书的总页数,(30+70)×11÷2=550(页).12.当他18岁时,他共存了1330元.(30+10×(18-5)+30)×(18-5+1)÷2=(30+130+30)×(14÷2)=190×7=1330(元).13.100以内所有7的倍数之和为735.7+14+21+...+98=7×(1+14)×14÷2=735.C 卷1.30,18第13项是中间项,对等差数列中间项等于数列平均数,即750÷25=30;第一个数为30-(13-1)×1=182.464第一把最多试30次,第二把锁最多试29次,...第29把最多试2次,所以共30+29+...+2=(30+2)×29÷2=464(次)3.212第一把锁最多试了30次,第二把锁最多试29次,...第八把最多试23次,所以最多须试30+29+...+23=(30+23)×8÷2=212(次).4.689原式=(1+5+9+...+49)+(4+8+12+...+52)=(1+49)×((49-1)÷4+1)÷2+4×(1+2+...+13)=50×13÷2+4×(1+13)×13÷2=325+364=689.5.88233.原式=(321+124)×((321-124)+1)÷2×2+123=445×198+123=88233.6.19285.原式=26×4+5+26×5+5+...+26×38+5=26×(4+5+...+38)+5×(38-4+1)=19285.7.1320.最后一排座位数为15+2×(30-1)=73,由(15+73)×30÷2=1320(个).8.2101.原式=(1+13+25+...+121)+(3+15+27+...+123)+(7+19+31+...+127)=(1+121)×11÷2+(3+123)×11÷2+(7+127)×11÷2=2101.9.全书共有820页,小华每天比前一天多看4页.(3+79)×20÷2=820(页),(79-3)÷(20-1)=4(页).10.两位数中所有含数字5的数之和为985.(15+25+...+95)+(50+51+...59)-55=(15+95)×9÷2+(50+59)×10÷2-55=495+545-55=985.11.45平方厘米,45根.每层小三角形个数分别是1.3.5.7.9.所以面积是(1+9)×9÷2=45(平方厘米).每层火柴棒根数分别是3.6.9.12.15,所以总根数是(3+15)×5÷2=45(根).12.不能.每个盒子中的乒乓球个数都不相同,所以球的个数有1+2+...+10=55(个).44个乒乓球是不能这样放的.13.这个数列第40项的数字是3,前36项之和为156.由于这个数列每5个重复一次,而40÷5=8,所以第40项就等于前5项中最后一项,即数字为3.由于36÷5=7...1,所以前36之和为(2+7+5+5+3)×7+2=156.附送:A 3 A 1 O A 2 A 4 A 5A 7 A 6 A 8 A 9 A 10 A 11 A 122019年奥数试卷五年级图形的计算及答案班级_____姓名_____得分_____一、填空题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简单数列求和
当一列数的规律是相邻两项的差是一个固定的数,这样的数列就称为等差数列。

其中固定的差用d 表示,和用S 表示,项数用n 表示,其中第n 项用n a 表示。

等差数列有以下几个通项公式:
S=(n a a +1)× n ÷ 2
n=(1a a n -)÷d+1(当 1a < n a ),
)1(1-+=n a a n ×d
例1 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 =
例2 (1)1 + 5 + 9 + 13 +…+ 2001 =
(2)4000 -( 50 + 48 + 46 +…+ 2)=
例3 在1949、1950、1951…1997、1998这五十个正整数中,所有双数之和比所有单数之和大多少?
例4 在1 ~ 200这二百个数中能被9整除的数的和是多少?
例5 39个连续单数的和是1989,其中最大的一个单数是多少?
例6 有一列数:1,1993,1992,1,1991,1990,1,…,从第三个数起,每一个数都是它前面两个数中大数减小数的差,从第一个到第1993个数这些数的和是多少?
1、25个连续的正整数之和是750,则第13个数是,第一个数是。

2、一串钥匙30把,对应30把锁,若不小心搞乱了,那么至多需要试次。

3、若在第二题中只要找出8把锁对应的钥匙,那么至多需要试次。

4、1 + 4 + 5 + 8 + 9 + 12 + ··· + 48 + 49 + 52 = 。

5、321 + 320 + 319 +···+ 124 + 123 + 124 +···+ 319 + 320 + 321 =
6、所有三位数中被26除余5的数之和是多少?
7、学习礼堂共有30排座位,已知第一排是15个座位,以后每排比前一排多2个座位,那么共有多少个座位?
8、1 + 3 + 7 + 13 + 15 + 19 + 25 + 27 + 31 +···+ 121 + 123 + 127 =
9、小华看一本书,第一天看了3页,以后每一天比前一天多看的页数相同。

第20天看了79页,刚好看完,问这本书共多少页?每天比前一天多看多少页?
10、求两位数中所有含有数字5的数之和。

11、有10 个盒子,44只乒乓球。

把这44只乒乓球放到盒子里,能不能使每个盒中的球数都不相同(每个盒子中至少要放一个球)?
12、已知数列2,7,5,5,3,2,7,5,5,3,2,7,5,5,3,···,这个数列的第40 项是哪个数字?前36项之和是多少?
1、1 + 2 + 3 + 4 + 5 + 6 + 7 =
2、2 + 4 + 6 + 8 + 10 =
3、1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 =
4、25 + 27 + 29 + 31 + 33 =
5、2002 + 2004 + 2006 + 2008 + 2010 + 2012 =
6、15 + 20 + 25 + 30 + 35 + 40 =
7、11 - 12 + 13 - 14 + 15 - 16 + 17 - 18 + 19 =
8、(2003 + 2001 + 1999 +···+ 3 + 1 )-(2002 + 2000 + 1998 +···+ 4 + 2 )=
9、27 + 31 + 35 + 39 + 43 + 47 =
10、121 + 124 + 127 + 130 + 133 + 136 + 139 =
11、101 + 103 + 105 +···+ 139 =
12、计算:10 + 13 + 16 + 19 +···+ 295 + 298 =
13、求200以内的双数之和。

14、等差数列7、10、13、···的第20项数是几?
15、霄霄从7月1日开始写毛笔字,第一天写了6个,以后每天比前一天多写相同数量的毛笔字,结果全月共写1116个毛笔字,霄霄每天比前一天多写几个大字?
1、57 + 67 + 77 +···+ 217 + 227 =
2、11 + 12 - 13 - 14 + 15 + 16 - 17 - 18 +···+ 31 + 32 - 33 - 34 + 35 + 36 =
3、1 + 3 + 5 + 7 +···+ 151 + 153 + 155 =
4、96 + 97 + 98 +···+ 293 + 294 + 295 =
5、从37到111的所有单数之和是多少?
6、所有三位数的和为多少?
7、1 + 4 + 7 + 10 +···+ 292 + 295 + 298 =
8、1 + 2 + 3 +···+ 59 + 60 + 59 +···+ 3 + 2 + 1 =
9、( 2 + 4 + 6 +···+ 100 )-( 1 + 2 + 3 +···+ 50 )=
10、把一堆苹果分给8个小朋友,要使每个小朋友都能拿到苹果,而且每个人拿到苹果个数都不相同的话,这堆苹果至少应该有多少个?
11、小红读一本书,第一天读30页,从第二天起,每天读的页数都必须比前一天多4页,最后一天读了70页刚好读完,这本书共有几页?
12、小文从5岁开始存钱,5岁时他有了30元,以后每年比前一年多存10元,那么到他18岁时他共存了多少钱?
13、求100以内所有7的倍数之和。

学习顾问签字:学科负责人签字:。

相关文档
最新文档