2017年秋季学期新版新人教版七年级数学上学期3.2、解一元一次方程(一)----合并同类项与移项教案10

合集下载

人教版数学七年级上册一元一次方程

人教版数学七年级上册一元一次方程

人教版数学七年级上册一元一次方程1. 引言一元一次方程是数学中非常重要的一个概念,也是数学学习中的基础。

在数学七年级上册中,我们将学习一元一次方程的概念、解法以及应用。

本文档将详细介绍一元一次方程的相关内容。

2. 一元一次方程的定义一元一次方程是指方程中只含有一个未知数,并且该未知数的最高次幂为一的方程。

一元一次方程通常可以表示为: ax+ b = 0,其中a、b为已知数,a ≠ 0。

3. 一元一次方程的解法解一元一次方程的一般步骤如下: 1. 移项:将方程中的项重新排列,使得未知数项与常数项在不同侧。

2. 合并同类项:合并方程两侧相同的项,得到简化形式的方程。

3. 消元:通过逆运算,将未知数项的系数化为1,得到最简形式的方程。

4. 求解:根据最简形式的方程,通过逆运算求得未知数的值。

5. 验证:将求得的未知数代入原方程,验证方程是否成立。

4. 一元一次方程的解的性质一元一次方程的解具有以下性质:- 方程有且仅有一个解。

- 方程无解。

- 方程有无限多解。

5. 一元一次方程的应用一元一次方程在生活中有许多实际应用,例如: - 商业应用:利润、成本和售价之间的关系可以通过一元一次方程来表示和解决。

- 几何应用:通过解一元一次方程,可以求得几何图形的边长、面积等。

- 动力学应用:物体运动过程中的速度、距离和时间之间的关系可以通过一元一次方程来描述。

6. 总结一元一次方程是数学学习中的重要内容,通过本文档的介绍,我们了解了一元一次方程的定义、解法、解的性质以及应用。

掌握一元一次方程的解法和应用,对于未来的学习和生活中的问题解决都具有重要意义。

提示:在撰写文档时,可以结合具体的例子和问题来说明一元一次方程的概念和解法,以增加文档的可读性和实用性。

人教版初一数学上册解一元一次方程

人教版初一数学上册解一元一次方程
4、收集错例白板展示,提醒学生注意。
5、总结解一元一次方程的一般步骤
小组讨论交流并回到老师提出的问题
学生再次认识解一元一次方程的方法,归纳步骤,进一步体会化归思想,在讨论中互相补充不严密,不完善的地方,加深对去分母的理解和认识。
3、例题示范
解方程:
在教师的引导下师生共同完成骤学生板演
课后反思
(包括教学反思、教学资源应用反思)
教学流程
教学过程
教学内容及教师活动
学生活动
资源选择、媒体使用及分析
一、创设情境
1、展示古埃及纸草书并介绍历史,最后提出问题:
一个数,它的二分之一,它的三分之一,它的四分之一,加起来总共是10,求这个数.
2、列出方程后,通过两种不同解法的对比引出新课
在教师的引导下学生独立完成
方法1:通分
方法2:去分母
白板展示纸草书图片,引出带有分数系数的一元一次方程,进而讨论去分母解方程,这样的选材可以起到介绍悠久历史的作用,利用方程思想解决实际问题,能在一次让学生感受到方程的使用价值。
2、 新科探究
1、出示方程
2、教师设问:方程有何特点?与前面的方程有何不同?你认为应该怎样解这个方程?
3、讨论后教师进一步追问你的方法是否唯一?
基于交互式电子白板的课堂教学设计
课题
3.3解一元一次方程(去分母)
课时安排
1
教材简析
本节是初中数学新人教版教材第三章《一元一次方程》中第三节《解一元一次方程》的第二节。本节内容主要内容是含有分数系数的一元一次方程的解法,归纳解一元一次方程的基本步骤,用方程模型解决实际问题.去分母是解方程、不等式时常有的步骤之一,通过去分母可以使方程转化为整数系数的方程,从而使方程形式简化.

2023-2024学年人教版七年级数学上学期:解一元一次方程(一)合并同类项与移项

2023-2024学年人教版七年级数学上学期:解一元一次方程(一)合并同类项与移项
2023-2024学年人教版七年级数学上学期3.2解一元一次方程(一)合并同类项与移项
一.选择题(共5小题)
1.方程x﹣2=2﹣x的解是( )
A.x=1B.x=﹣1C.x=2D.x=0
2.方程3x+6=2x﹣8移项后,正确的是( )
A.3x+2x=6﹣8B.3x﹣2x=﹣8+6C.3x﹣2x=﹣6﹣8D.3x﹣2x=8﹣6
3.解方程3x+4=4x﹣5时,移项正确的是( )
A.3x﹣4x=﹣5﹣4B.3x+4x=4﹣5C.3x+4x=4+5D.3x﹣4x=﹣5+4
4.下列变形属于移项的是( )
A.由3x+2﹣2x=5,得3x﹣2x+2=5
B.由3x+2x=1,得5x=1
C.由2(x﹣1)=3,得2x﹣2=3
D.由9x+5=﹣3,得9x=﹣3﹣5
(2)当x取何值时,A比B大4?
10. z z .
2023-2024学年人教版七年级数学上学期3.2解一元一次方程(一)合并同类项与移项
参考答案与试题解析
一.选择题(共5小题)
1.方程x﹣2=2﹣x的解是( )
A.x=1B.x=﹣1C.x=2D.x=0
【解答】解:移项得:x+x=2+2
即2x=4
∴x=2.
【解答】解:根据题意得:2x+1+5x﹣8=0,
移项合并得:7x=7,
解得:x=1,
故答案为:1
三.解答题(共2小题)
9.已知A=3x+2,B=4﹣x,解答下列问题:
(1)当x取何值时,A=B?
(2)当x取何值时,A比B大4?
【解答】解:(1)把A=3x+2,B=4﹣x代入A=B得:3x+2=4﹣x,

数学人教版七年级上册移项解方程

数学人教版七年级上册移项解方程

3.2解一元一次方程(移项)教材分析:1、本节课是数学人教版七年级上册第三章第二节第二小节的内容。

2、本节课主要内容是解一元一次方程的重要步骤移项。

是学生学习解一元一次方程的基础,这一部分内容在方程中占有很重要的地位,在解方程、解一元一次不等式、解一元二次不等式中都要用到。

学情分析:针对初一年级学生学习热情高,但观察、分析、概括能力较弱的特点,本节从实际问题入手,让学生通过自己思考、动手,激发学生的求知欲,提高学生学习的兴趣与积极性。

在课堂教学中,学生主要采取讨论、思考、观察的学习方式,使学生真正成为课堂的主人,逐步培养学生观察、概括、归纳的能力。

教学策略:1)、自主探索策略:通过分组讨论,学生通过观察、分析发现结论,归纳概括。

(2)、师生交流:通过教师引导,让学生学会学习数学的方法和数学思想。

生生交流:学生分组讨论问题,在讨论的过程中相互交流,发表个人的见解,对问题进行探讨,互相学习。

教学目标:理解移项法,并知道移项法的依据,会用移项法则解方程。

教学重点:运用方程解决实际问题,会用移项法则解方程。

教学难点:找相等关系列方程,正确地移项解一元一次方程复习回顾回忆一下上节课我们学的什么内容呀?合并同类项解一元一次方程。

说到解方程,那么到目前为止你总共学了几种解一元一次方程的方法了?两种(除了合并同类项还有利用等式的性质)解方程并说出解方程的依据(让学生自己在练习本上做再一起对答案)(1)2x-2=4(2)5x-2x=9上面的这两个方程第一个是利用等式的性质来解的;第二个是利用合并同类项的方法来解的一、创设情境,引出问题好现在我们来看一个实际问题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?现在来看一下下面的3个小问题,先独立思考再找学生回答1.如果我设这个班有x名学生,请完成下列填空每人分3本,共分出-3x--本,加上剩余的20本,这批书共—(3x+20)本每人分4本,需要-4x-本,减去缺少的25本,这批书共--(4x-25)--本2.很明显这批书有2种分法,他们之间友存在怎样的关系呢?由于这批书的总数是一个定值所以由这两种分法得出的表示这批书总数的两个代数式是相等的。

人教版初中七年级上册数学《3.2 解一元一次方程(一)》课件

人教版初中七年级上册数学《3.2 解一元一次方程(一)》课件

课堂检测
基础巩固题
1. 以下方程合并同类项正确的选项是D 〔 〕 A. 由 3x-x=-1+3,得 2x =4 B. 由 2x+x=-7-4,得 3x =-3 C. 由 15-2=-2x+ x,得 3=x D. 由 6x-2-4x+2=0,得 2x=0
课堂检测
基础巩固题
2. 假如2x与x-3的值互为相反数,那么x等于〔B 〕
〔1〕 -41x5-15 = 9

“-15〞这一项
4x = 9 +15

从方程的左边移到了方程的右边.
“-15〞这项挪动后, 符号由“-〞变“+〞
探究新知
〔2〕 2x = 5x -21.
〔2〕 2x5=x 5x -21 ③
解:两边都减5x,得
2x- 5x = -21 ④
2x-5x= 5x-21 -5x
移项
ax-cx=d-b
合并同类项
〔a-c〕x=d-b
系数化为1
巩固练习
1. 解以下方程:
〔1〕 5x-7=2x-10; 解:移项,得
A.-1 B.1
C.-3
D.3
3. 某中学七年级〔5〕班共有学生56人,该班男生的
人数是女生人数的2倍少1人.设该班有女生有x人, 可列方程为__2_x_-_1_+_x_=_5_6___.
课堂检测
能力提升题
解方程: 〔1〕-3x+0.5x=10.
解:合并同类项得 -2.5x=10,
系数化为1,得 x=-4.
x+2x+14x=25500, 解得x=1500, 那么2x=3000,14x=21000.
答:方案消费Ⅰ型洗衣机1500台,Ⅱ型洗衣机3000台,Ⅲ型 洗衣机21000台.

人教版七年级数学上《一元一次方程》知识全解

人教版七年级数学上《一元一次方程》知识全解

《一元一次方程》知识全解
课标要求
理解一元一次方程的概念,会判别一个方程是不是一元一次方程,会解一元一次方程。

知识结构
从实际问题入手,利用学生身边的问题提出质疑,引出方程,一元一次方程的概念,增强了学生的数学学习兴趣,和应用数学思想解决实际问题的意识,然后通过猜测,寻找一元一次方程的解.
内容解析
方程是含有未知数的等式,一元一次方程是方程中最基本的类型,是只含有一个未知数,未知数的指数为1的方程,方程的解就是使方程两边相等的未知数的值.
重点难点
本节内容的重点是理解方程的有关概念,会根据已知的条件,设未知数,列出简单的一元一次方程.本节的难点是通过对实际问题的分析,找出问题中的数量关系,列出一元一次方程,理解方程解的意义并会检验一个数是否是方程的解.
教法导引
从实际问题引入,除教科书提供的实例外,教师还可根据学生已有的知识选择一些学生身边的数学问题.生活问题如年龄问题、调配问题,调动学生的学习积极性以利于树立方程意识.
学法建议
思考和观察生活中的问题,把生活中的实际问题转化为数学问题.。

2017年秋季学期新版新人教版七年级数学上学期3.1.1、一元一次方程教案15

2017年秋季学期新版新人教版七年级数学上学期3.1.1、一元一次方程教案15

课 外 作 业
课本第 80 页练习第 1、2、3、4 题。
3.1.1《一元一次方程》 板 书 设 计 1、含有未知数的等式,叫做方程。 2、使方程中等号左右两边相等未知数的值是方程的解。 3、求出这个值的过程就是解方程。
一元一次方程
项目 课题 教学 目标 设计内容 3.1.1《一元一次方程》 1、了解一元一次方程及方程的解、解方程的概念。 2、掌握检验某个值是不是方程的解的方法。 3、培养学生根据问题寻找相等关系、根据相等关系列出方程的能力。 备注
重点 难点 使用 多媒 体 教学 过程
一元一次方程的概念及方程的解。 会寻找实际问题中的相等关系列出方程。 多媒体课件
x
k 1
21 0
是一元一次方
程,则 k=_
x|k| 21 0
k=_
是 一元一次方程则
(k 1) x|k | 己解题,如果不懂再讲 解方法。 这节课我们学习了什么知识? 课 堂 小 结 1、一元一次方程及方程的解、解 方程的概念。 2、检验某个值是不是方程的解的 方法。 3、根据问题寻找相等关系、根据 相等关系列出方程。
由学生观察式子、讨论、归 纳得出结论 归纳:含有未知数的等式, 叫做方程。
注意:列方程时,要先设字母表示表示 未知数,然后根据问题中的相等关系, 二、观察例题,同桌间讨论, 写出含有未知数的等式,这个等式就叫 设未知数并列出方程。 (个别学生 做方程。 板演,其余同学自己完成。 ) 二、自主探究: 出 示 例 题 ( 课 本 P79 例 1 ) 例 1、 根据下列问题,设未知数并列出 方程。 1、用一根长 24cm 的铁丝围成一个 正方形,正方形的边长是多少? 2、一台计算机已使用 1700 小时, 预计每月再使用 150 小时,经过多少月 这台计算机的使用时间达到规定的修 检时间 2450 小时? 3、某校女生占全体学生的 52%,比 男生多 80 人,这个学校有多少学生? 1、解:设正方形的边长为 xcm 列方程 4X=24 2、解:设 x 月后这台计算机的使 用时间达到 2450 小时,那么在 x 月后使用了 150x 小时。 列方程: 1700+150x=2450 3、解:设这个学校的学生为 x, 那么女生数为 0.52x ,男生数为 (1-0.52)x。 列方程: 0.52x- ( 1-0.52 ) x=80 三、观察上面所列方程 ,看看它们 三、观察题目,听清要领, 具有什么共同特点 与老师互动学习,讨论方法。 4x=24 , 1700+150x=2450 , 1、上面各方程只含有一个未知 0.52x-(1-0.52)x=80 。 数(元) (有练习见课件)由学生独立完 2、未知数的次数都是 1(次) 成。 3、等号两边都是整式 四、归纳 实际问题分析过程可以表示如下: 试着解题,讨论方法。 设未知数 列方程 4、上面各方程只含有一个未知 实际问题 一元一次方程 数(元) ,未知数的次数都是 1 分析实际问题中的数量关系,利用 (次) ,等号两边都是整式,这样 其中的相等关系列出方程,是用数学解 的方程叫做一元一次方程。 决实际问题的一种方法。 四、由学生自我归纳出: 五、列方程是解决问题的重要方 利用其中的相等关系列出方

3.2 解一元一次方程(一)—合并同类项与移项 教案-人教版七年级数学上册

3.2  解一元一次方程(一)—合并同类项与移项 教案-人教版七年级数学上册

3.2 解一元一次方程(一)——合并同类项与移项第1课时 用合并同类项的方法解一元一次方程学习目标:1.学会运用合并同类项解形如ax +bx = c 类型的一元一次方程,进一步体会方程中的“化归”思想.2. 能够根据题意找出实际问题中的相等关系,列出方程求解.重点:用合并同类项的方法解一元一次方程.难点:能够通过自主分析,找出实际问题中的等量关系.教学过程:要点探究探究点1:利用合并同类项解简单的一元一次方程合作探究:试一试:把一元一次方程x +2x +4x = 140转化为x = m 的形式.依据:______________ 依据:_________________归纳:解方程中“合并”起了化简作用,把含有未知数的项合并为一项,从而达到把方程转化为ax = b 的形式,其中a,b 是常数,“合并”的依据是逆用分配律.典例精析例1 解下列方程:(1) 1115;24x x x --= 221(2)423.32x x x -++=-⨯+.方法总结:合并同类项解方程的一般步骤如下:(1)合并同类项;(2)系数化为1.针对训练:解下列方程:(1) 5x -2x = 9; (2) 72321=+x x .\探究点2:根据“总量=各部分量的和”列方程解决问题例2 足球表面是由若干个黑色五边形和白色六边形皮块围成的,黑、白皮块数目的比为3:5,一个足球表面一共有32个皮块,黑色皮块和白色皮块各有多少个?方法总结:方法归纳:当题目中出现比例时,一般可通过间接设元,设其中的每一份为,然后用含x的代数式表示各数量,根据等量关系,列方程求解.例3 有一列数,按一定规律排列成1,-3,9,-27,81,-243 ,···. 其中某三个相邻数的和是-1701,这三个数各是多少?检测:1.下列方程合并同类项正确的是( )A. 由3x-x=-1+3,得2x=4B. 由2x+x=-7-4,得3x=-3C. 由15-2=-2x+x,得3=xD. 由6x-2-4x+2=0,得2x=02.如果2x与x-3的值互为相反数,那么x等于()A.-1 B.1 C.-3 D.33.某中学七年级(5)班共有学生56人,该班男生的人数是女生人数的2倍少1人.设该班有女生有x人,可列方程为_____________.4.解下列方程:(1) -3x + 0.5x =10;(2) 6m-1.5m-2.5m =3;(3) 3y-4y =-25-20.5.某洗衣厂2016年计划生产洗衣机25500台,其中Ⅰ型、Ⅱ型、Ⅲ型三种洗衣机的数量之比为1:2:14,这三种洗衣机计划各生产多少台?二、课堂小结1. 解形如“ax + bx + ···+ mx = p”的一元一次方程的步骤.2. 用方程解决实际问题的步骤.3.2 解一元一次方程(一)——合并同类项与移项第2课时用移项的方法解一元一次方程学习目标:1. 理解移项的意义,掌握移项的方法.2. 学会运用移项解形如“ax+b=cx+d”的一元一次方程.3. 能够抓住实际问题中的数量关系列一元一次方程解决实际问题.重点:理解移项法则,会用移项的方法解一元一次方程.难点:能够通过自主分析,找出实际问题中的等量关系,并能正确运用移项的方法进行解答.教学过程:一.要点探究探究点1:用移项解一元一次方程合作探究:请运用等式的性质解下列方程:(1) 4x-15 = 9①;(2) 2x = 5x-21③.两边同时_______,得两边同时_______,得②________________; ④________________;合并同类项,合并同类项,得________________; ________________;系数化为1,得系数化为1,得________________; ________________;比一比:从方程①到方程②,从方程③到方程④,有哪些项发生了变化,它们是如何变化的?说一说:利用移项解一元一次方程的步骤:__________ ____________ ______________.例1解下列方程:(1)5x-7=2x-10;(2)-0.3x+3=9+1.2x .要点归纳:移项得目的是为了把所有含有未知数的项移到方程的左边,把所有常数项移到方程的右边,使得一元一次方程更接近“x = a”的形式.针对训练由方程3x-5=2x-4变形得3x-2x=-4+5,那么这是根据()变形的.A.合并同类项法则B.乘法分配律C.移项D.等式性质22.若代数式y-7与2y-1的值相等,则y的值是.3.利用移项的方法解下列方程:(1) 3x=2x+2; (2) 4x=-x+25.探究点2:列方程解决问题例2我区期末考试一次数学阅卷中,阅B卷第28题(简称B28)的教师人数是阅A卷第18题(简称A18)教师人数的3倍,在阅卷过程中,由于情况变化,需要从阅B28题中调12人到A18阅卷,调动后阅B28剩下的人数比原先阅A18人数的一半还多3人,求阅B28题和阅A18题的原有教师人数各为多少?方法总结:列方程解决含有多个未知量的实际问题中,一般先根据题意找出这些未知量之间存在的数量关系,然后设合适的未知数列方程求解.针对训练:下面是两种移动电话计费方式:问:一个月内,通话时间是多少分钟时,两种移动电话计费方式的费用一样?解形如“ax +b = cx + d ”的方程的一般步骤:(1)移项;(2)合并同类项;(3)化未知数的系数为1.1. 通过移项将下列方程变形,正确的是 ( )A. 由5x -7=2,得5x =2-7B. 由6x -3=x +4,得3-6x =4+xC. 由8-x =x -5,得-x -x =-5-8D. 由x +9=3x -1,得3x -x =-1+92. 已知 2m -3=3n +1,则 2m -3n = .3. 如果415+m 与41+m 互为相反数,则m 的值为 . 4. 当x =_____时,式子2x -1的值比式子5x +6的值小1.5. 解下列一元一次方程:(1) 7-2x =3-4x ; (2) 1.8t =30+0.3t ;(3)x x +=+3121; (4) .383113435-=+x x6. 小明和小刚每天早晨坚持跑步,小明每秒跑4米,小刚每秒跑6米. 若小明站在百米起点处,小刚站在他前面10米处,两人同时同向起跑,几秒后小明追上小刚?课堂小结 (1) 一般地,把方程中的某些项改变符号后,从方程的一边移到另一边,这种变形叫做移项.(2) 移项的依据是等式的性质1.3.3 解一元一次方程(二)——去括号与去分母第1课时利用去括号解一元一次方程学习目标:1.了解“去括号”是解方程的重要步骤.2.准确而熟练地运用去括号法则解带有括号的一元一次方程.重点:能正确运用去括号法则解一元一次方程.难点:能够较为灵活、熟练地运用去括号法则解一元一次方程.教学过程:一,要点探究探究点1:利用去括号解一元一次方程合作探究:观察下面的方程,结合去括号法则,你能求得它的解吗?6x+ 6 ( x-2000 ) = 150000解:去括号,得_______________.移项,得____________.合并同类项,得_______________.系数化为1,得_____________.典例精析例1解下列方程:(1)x-2(x-2) = 3x+5(x-1); (2)312 71423x x x ⎛⎫⎛⎫--⎪ ⎪⎝⎭⎝⎭+8=3-6要点归纳:解含有括号的一元一次方程的一般步骤:去括号→移项→合并同类项→系数化为1.针对训练1.解方程3-5(x+2)=x去括号正确的是()A.3-x+2=x B.3-5x-10=x C.3-5x+10=x D.3-x-2=x2.若2(x+3)的值与4(1-x)的值相等,则x的值为.3.解下列方程:(1) 6x=-2 (3x-5) +10;(2)-2 (x+5) = 3 (x-5)-6 .探究点2:去括号解方程的应用例2一架飞机在两城之间航行,风速为24 km/h,顺风飞行要2小时50分,逆风飞行要3小时,求两城距离.方法总结:涉及水流或风速的行程问题,需要找准路程、时间、速度间的等量关系,且要注意顺流(风)和逆流(风)时的速度不同.例3 为鼓励居民节约用电,某地对居民用户用电收费标准作如下规定:每户每月用电如果不超过100度,那么每度按0.50元收费;如果超过100度不超过200度,那么超过部分每度按0.65元收费;如果超过20度,那么超过部分每度按0.75元收费.若某户居民在9月份缴纳电费310元,那么他这个月用电多少度?方法总结:对于此类阶梯收费的题目,需要弄清楚各阶段的收费标准,以及各节点的费用.然后根据缴纳费用的金额,判断其处于哪个阶段,然后列方程求解即可. 针对训练1.某市出租车的收费标准是:起步价7元(行驶距离不超过3km ,都需付7元车费),超过3km每增加1km ,加收1.2元,小陈乘出租车到达目的地后共支付车费19元,那么小陈坐车可行驶的路最远是( )A .12km B.13km C .14km D .15km2.一艘轮船在A 、B 两港口之间行驶,顺水航行需要5h ,逆水航行需要7h ,水流的速度是5km/h ,则轮船在静水中航行的速度为 ,A 、B 两港口之间的路程是 .3.水浒中学要把420元奖学金分给22名获一、二等奖的学生,一等奖每人50元,二等奖每人10元.求获得一、二等奖的人数分别是多少?1. 对于方程 2( 2x -1 )-( x -3 ) =1 去括号正确的是 ( )A. 4x -1-x -3=1B. 4x -1-x +3=1C. 4x -2-x -3=1D. 4x -2-x +3=1 2. 若关于x 的方程 3x + ( 2a +1 ) = x -( 3a +2 ) 的解为x = 0,则a 的值等于 __3.爷爷现在的年龄是孙子的5倍,12年后,爷爷的年龄是孙子的3倍,现在孙子的年龄是___岁.4. 解下列方程: (1) 3x -5(x -3) = 9-(x +4); (2).12165326⎪⎭⎫ ⎝⎛+-=-⎪⎭⎫ ⎝⎛-x x x5. 某羽毛球协会组织一些会员到现场观看羽毛球比赛.已知该协会购买了每张300元和每张400元的两种门票共8张,总费用为2700元.请问该协会购买了这两种门票各多少张?6. 当x 为何值时,代数式2(x 2-1)-x 2的值比代数式x 2+3x -2的值大6.二、课堂小结1. 解一元一次方程的步骤:去括号→移项→合并同类项→系数化为1.2. 若括号外的因数是负数,去括号时,原括号内各项的符号要改变.3.3 解一元一次方程(二)——去括号与去分母第2课时 利用去分母解一元一次方程学习目标:1.掌握含有分数系数的一元一次方程的解法.2. 熟练利用解一元一次方程的步骤解各种类型的方程.重点:利用去分母解一元一次方程.难点:熟练利用解一元一次方程的步骤解各种类型的方程.教学过程:一、要点探究探究点1:解含分母的一元一次方程合作探究:1.解方程:()()13128231-=-x x . 方法一: 方法二解:去括号,得 解:方程两边同时乘3, ________________________ ________________________移项,得 去括号,得________________________ ________________________合并同类项,得 移项,得________________________ ________________________合并同类项,得____________2.对比方法一与方法二,想一想如何解含分母的方程更简便?3.用你认为更简便的方法解方程:.5210232213x x x --=-+要点归纳: 解含分母的一元一次方程的一般步骤:去分母→去括号→移项→合并同类项→系数化为1. 观察与思考:下列方程的解法对不对?如果不对,你能找出错在哪里吗? 解方程:.122312=+--x x 解:去分母,得4x -1-3x + 6 = 1,移项,合并同类项,得x =4.如果上述解法错误,你能写出正确解法吗?典例精析例1 解下列方程:(1)121163x x -+-=; (2) 490.30.25.50.32x x x ++--=解法:_______(填“对”或“错”) 错误原因:_________________ _________________________________________________________________________________要点归纳:1. 去分母时,应在方程的左右两边乘以分母的 ;2. 去分母的依据是 ,去分母时不能漏乘 ;3. 去分母与去括号这两步分开写,不要跳步,防止忘记变号.针对训练:A .3(x+1)-2x-3=6B .3(x+1)-2x-3=1C .3(x+1)-(2x-3)=12D .3(x+1)-(2x-3)=6(1);34= (2) 1.32x +=-探究点2:去分母解方程的应用例2 火车用26秒的时间通过一个长256米的隧道(即从车头进入入口到车尾离开出口),这列火车又以16秒的时间通过了长96米的隧道,求火车的长度.方法总结:火车过桥问题中,火车行驶的路程等于桥的长度加上火车的长度.针对训练清人徐子云《算法大成》中有一首诗:巍巍古寺在山林,不知寺中几多僧.三百六十四只碗,众僧刚好都用尽.三人共食一碗饭,四人共吃一碗羹.请问先生名算者,算来寺内几多增?诗的意思:3个僧人吃一碗饭,四个僧人吃一碗羹,刚好用了364只碗,请问寺内有多少僧人?1. 方程4172753+-=+-x x 去分母正确的是 ( ) A. 3-2(5x +7) = -(x +17) B. 12-2(5x +7) = -x +17C. 12-2(5x +7) = -(x +17)D. 12-10x +14 = -(x +17)2. 若代数式21-x 与56的值互为倒数,则x = . 3. 解下列方程: (1)154353+=--x x ; (2).1255241345--=-++y y y4. 某单位计划“五一”期间组织职工到东江湖旅游,如果单独租用40座的客车若干辆刚好坐满;如果租用50座的客车则可以少租一辆,并且有40个剩余座位.该单位参加旅游的职工有多少人?5. 有一人问老师,他所教的班级有多少学生,老师说:“一半学生在学数学,四分之一的学生在学音乐,七分之一的学生在学外语,还剩六位学生正在操场踢足球.”你知道这个班有多少学生吗?趣味拓展“坟中安葬着丢番图,多么令人惊讶,它忠实地记录了所经历的道路.上帝给予的童年占六分之一.又过十二分之一,两颊长胡.再过七分之一,点燃结婚的蜡烛.五年之后天赐贵子,可怜迟到的宁馨儿,享年仅及其父之半,便进入冰冷的墓.悲伤只有用数论的研究去弥补,又过四年,他也走完了人生的旅途.”你知道丢番图去世时的年龄吗?请你列出方程来算一算.二、课堂小结:3.4 实际问题与一元一次方程第1课时产品配套问题和工程问题学习目标:1. 理解配套问题、工程问题的背景.2. 分清有关数量关系,能正确找出作为列方程依据的主要等量关系.3. 掌握用一元一次方程解决实际问题的基本过程.重点:掌握用一元一次方程解决实际问题的基本过程.难点:能够准确找出实际问题中的等量关系,并建立模型解决问题.教学过程:二、要点探究:探究点1:产品配套问题填一填:1.某厂欲制作一些方桌和椅子,1张方桌与4把椅子刚好配成一套,为了使桌椅刚好配套,商家应制作椅子的数量是桌子数量的倍. 方桌与椅子的数量之比是.2.一个油桶由两个圆形铁片和一个长方形铁片相配套.某车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.设安排x名工人生产圆形铁片,可使圆形铁片和长方形铁片刚好配套,请填写下表:等量关系:(1)每小时生产的圆形铁片=_____×每小时生产的长方形铁片.(2)生产的套数相等.方法总结:生产调配问题通常从调配后各量之间的倍、分关系寻找相等关系,建立方程.解决配套问题的思路:1.利用配套问题中物品之间具有的数量关系作为列方程的依据;2.利用配套问题中的套数不变作为列方程的依据.典例精析例1 如图,足球是由32块黑白相间的牛皮缝制而成的,黑皮可看作正五边形,白皮可看作正六边形,求白皮,黑皮各多少块?针对训练1.某车间有30名工人生产螺栓和螺母,每人每天平均生产螺栓12个或螺母18个,现有一部分工人生产螺栓,其他部分工人生产螺母,恰好每天生产的螺栓螺母:按1:3配套.若每天每天生产的螺栓螺母刚好配套,设安排x人生产螺栓,可列方程为.2.一套仪器由一个A部件和三个B部件构成. 用1立方米钢材可做40个A部件或240个B部件. 现要用6立方米钢材制作这种仪器,应用多少钢材做A部件,多少钢材做B部件,才能恰好配成这种仪器?共配成多少套?人数每小时生产铁片的数量生产的套数生产圆形铁片x生产长方形铁片探究点2:工程问题填一填:一件工作,甲独做需要6天完成,乙独做需要5天完成.(1)若把工作总量设为1,则甲的工作效率(甲一天完成的工作量)是,乙的工作效率是.(2)甲做x天完成的工作量是,乙做x天完成的工作量是,甲乙合做x天完成的工作量是.议一议工程问题中,涉及哪些量?它们之间有什么数量关系?(1)工程问题中,涉及的量有工作量、_________________________________________;(2)请写出这些量之间存在的数量关系:___________________________________________________________________________________________ _______________________________________________________________.典例精析例2加工某种工件,甲单独作要20天完成,乙只要10就能完成任务,现在要求二人在12天内完成任务.问乙需工作几天后甲再继续加工才可正好按期完成任务?【提示:可运用表格列出题中存在的各种量.】工作效率工作时间工作量甲乙想一想:若要求二人在8天内完成任务,乙先加工几天后,甲加入合作加工,恰好能如期完成任务?要点归纳:解决工程问题的基本思路:1.三个基本量:工作量、工作效率、工作时间. 它们之间的关系是:工作量= 工作效率×工作时间;合作的工作效率=工作效率之和.2.相等关系:工作总量=各部分工作量之和=合作的工作效率×工作时间.3. 通常在没有具体数值的情况下,把工作总量看作1.针对训练一条地下管线由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天. 如果由这两个工程队从两端同时施工,要多少天可以铺好这条管线?1. 某人一天能加工甲种零件50个或加工乙种零件20个,1个甲种零件与2个乙种零件配成一套,30天制作最多的成套产品,若设x 天制作甲种零件,则可列方程为 . 2. 一项工作,甲独做需18天,乙独做需24天,如果两人合做8天后,余下的工作再由 甲独做x 天完成,那么所列方程为 .3. 某家具厂生产一种方桌,1立方米的木材可做50个桌面或300条桌腿,现有10立方 米的木材,怎样分配生产桌面和桌腿使用的木材,才能使桌面、桌腿刚好配套,共可 生产多少张方桌?(一张方桌有1个桌面,4条桌腿)4. 一件工作,甲单独做20小时完成,乙单独做12小时完成,现在先由甲单独做4小时,剩下的部分由甲、乙合做. 剩下的部分需要几小时完成?5. 一个道路工程,甲队单独施工9天完成,乙队单独做24天完成.现在甲乙两队共同施工3天,因甲另有任务,剩下的工程由乙队完成,问乙队还需几天才能完成?二、课堂小结用一元一次方程解决实际问题的基本过程如下:实际问题实际问题的答案 一元一次方程的解(x =a )设未知数,列方程检验3.4 实际问题与一元一次方程第2课时 销售中的盈亏学习目标:1. 理解商品销售中的相关概念及数量关系.2. 根据商品销售中的数量关系列一元一次方程解决与打折销售有关的实际 问题,并掌握解此类问题的一般思路.重点:掌握商品销售中成本(进价)、售价(卖价)、标价(原价)、利润、利润率、折 扣等量之间的数量关系,知道销售中的盈亏取决于售价与成本之差.难点:能够通过自主分析,建立一元一次方程模型解决同类型问题,并掌握解此类问题 的一般思路. 教学过程:三、要点探究:探究点:销售中的盈亏合作探究:连一连:正确理解销售问题中的几个重要概念进价 也称成交价,是商店销售商品时的销售价格. 标价 商店销售商品时所赚的钱. 售价 商店购进商品时的价格.利润 商店销售商品时标出的价格,也称定价. 填一填1. 商品原价200元,九折出售,卖价是 元.2. 商品进价是150元,售价是180元,则利润是 元,利润率是_____.3. 某商品原来每件零售价是a 元,现在每件降价10%,降价后每件零售价是 元.4. 某种品牌的彩电降价20%以后,每台售价为a 元,则该品牌彩电每台原价应为 元.5. 某商品按定价的八折出售,售价是12.8元,则原定售价是 元. 想一想:以上问题中有哪些量?你能说出它们之间的关系吗?要点归纳:销售问题中的常用数量关系:●售价、进价、利润的关系:商品利润= 商品售价-商品进价; ●进价、利润、利润率的关系:利润率=%商品进价商品利润100 ;●标价、折扣数、商品售价的关系:商品售价=标价×10折扣数; ●商品售价、进价、利润率的关系:商品售价=商品进价×(1+利润率). 议一议:销售中存在盈亏,说一说销售盈亏中存在哪几种可能情况,并分别说明在该种情况下,售价与进价的大小. (1)盈利:售价 进价(填“>”、“小于”或“=”),此时,利润 0(填“>”、“小 于”或“=”);(2)亏损:售价 进价(填“>”、“小于”或“=”),此时,利润 0(填“>”、“小 于”或“=”);(3)不盈不亏:售价 进价(填“>”、“小于”或“=”),此时,利润 0(填“>”、 “小于”或“=”).典例精析例1一商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?要点归纳:销售的盈亏取决于总售价与总成本之间的关系:总售价>总成本时,盈利;总售价<总成本时,亏损;总售价=总成本时,不盈不亏.针对训练1.某琴行同时卖出两台钢琴,每台售价为960元. 其中一台盈利20%,另一台亏损20%.这次琴行是盈利还是亏损,或是不盈不亏?2.某文具店有两个进价不同的计算器都卖64元,其中一个盈利60%,另一个亏本20%.这次交易中的盈亏情况?例2某商品的零售价是900元,为适应竞争,商店按零售价打9折(即原价的90%),并再让利40元销售,仍可获利10%,求该商品的进价.方法归纳:利用一元一次方程解决销售问题时,熟练、准确地运用销售问题中常用的等量关系是解题关键.针对训练1. 某商场把进价为1980元的商品按标价的八折出售,仍获利10%,则该商品的标价为 元.2. 我国政府为解决老百姓看病难的问题,决定下调药品的价格,某种药品在2005年涨 价30%后,2007降价70%至a 元,则这种药品在2005年涨价前价格为 元.20元,则这种商品的原价是( )A .500元B .400元C .300元D .200元4.某商品的进价是1000元,售价是1500元,由于销售情况不好,商店决定降价出售, 但又要保证利润率不低于5%,那么商店最多可打几折出售此商品?5.据了解个体商店销售中售价只要高出进价的20% 便可盈利,但老板们常以高出进价 50%~100% 标价,假若你准备买一双标价为600元的运动鞋,应在什么范围内还价?二、课堂小结●售价、进价、利润的关系:商品利润= 商品售价-商品进价●进价、利润、利润率的关系:利润率=%商品进价商品利润100 ●标价、折扣数、商品售价的关系:商品售价=标价×10折扣数●商品售价、进价、利润率的关系:商品售价=商品进价×(1+利润率)3.4 实际问题与一元一次方程第3课时球赛积分表问题学习目标:1. 通过对实际问题的探究,认识到生活中数据信息传递形式的多样性.2. 会阅读、理解表格,并从表格中提取关键信息.3. 掌握解决“球赛积分表问题”的一般思路,并会根据方程的解的情况对实际问题作出判断.重点:能够阅读和理解表格中的信息.难点:能够通过自主分析,从表格中提取关键信息进行解题,并掌握解决“球赛积分表问题”的一般思路.教学过程:四、要点探究:探究点:比赛积分问题互动探究:某次篮球联赛积分榜如下:问题1你能从表格中了解到哪些信息?问题2你能从表格中看出负一场积多少分吗?问题3你能进一步算出胜一场积多少分吗?提示:设胜一场积x分,根据表中其他任何一行可以列方程求解.问题4怎样用式子表示总积分与胜、负场数之间的关系?问题5某队胜场总积分能等于它负场总积分吗?例某次篮球联赛共有十支队伍参赛,部分积分表如下:根据表格提供的信息,你能求出胜一场、负一场各积多少分吗?【提示:先观察C队的得分,可知胜场得分+负场得分=_____,然后再设未知数列方程求解】想一想:某队的胜场总积分能等于它的负场总积分吗?针对训练:某赛季篮球甲A 联赛部分球队积分榜如下:(1) 列式表示积分与胜、负场数之间的数量关系;(2) 某队的胜场总积分能等于它的负场总积分吗?为什么?1. 某球队参加比赛,开局9场保持不败,积21分,比赛规则:胜一场得3分,平一场得1分,则该队共胜( )A. 4场B. 5场C. 6场D. 7场2.中国男篮CBA职业联赛的积分办法是:胜一场积2分,负一场积1分,某支球队参加了12场比赛,总积分恰是所胜场数的4倍,则该球队共胜____场.3. 某次知识竞赛共20道题,每答对一题得8分,答错或不答要扣3分. 某选手在这次竞赛中共得116 分,那么他答对几道题?4.把互动探究中积分榜的最后一行删去(如下表),如何求出胜一场积几分,负一场积几分.二、课堂小结1. 解决有关表格的问题时,首先要根据表格中给出的相关信息,找出数量间的关系,然后再运用数学知识解决问题.2. 用方程解决实际问题时,要注意检验方程的解是否正确,且符合问题的实际意义.3.4 实际问题与一元一次方程第4课时 电话计费问题学习目标:1. 体会分类思想和方程思想在解决问题中的作用,能够根据已知条件选择 分类关键点对“电话计费问题”进行整体分析,从而得出整体选择方案. 2. 进一步深化对数学建模方法的体验,增强应用方程模型解决问题的意识和 能力.重点:能够理解题目信息,建立方程模型解决电话计费问题. 难点:关键点的选择,整体方案的确定.五、要点探究:探究点1:电话计费问题:下表中有两种移动电话计费方式:想一想 你觉得哪种计费方式更省钱?填填下面的表格,你有什么发现?问题1 设一个月内移动电话主叫为t min (t 是正整数),列表说明:当t 在不同时间范围内取值时,按方式一和方式二如何计费.想一想:计费多少是与__________有关;计费时,首先主要关注的是________________; 考虑t 值时,不同时间范围的划分点为_____________、___________________ 列表如下: 主叫时间t/min 方式一计费/元 方式二计费/元问题2 观察你的列表,你能从中发现如何根据主叫时间选择省钱的计费方式吗?通过计算验证你的看法.结论:当t________________时,选择方式一省钱;当t________________时,两种方式费用相同; 当t________________时,选择方式二省钱. 想一想:(1)回顾问题的解决过程,谈谈你的收获.月使用 费/元 主叫限定 时间/分 主叫超时 费/(元/分) 被叫 方式一 58 150 0.25 免费方式二 88 350 0.19 免费主叫时间(分) 100 150 250 300 350 450 方式一计费(元)方式二计费(元)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.2 解一元一次方程(一)──合并同类项与移项
教学目标
1.知识与技能
会利用合并同类项解一元一次方程.
2.过程与方法
通过对实例的分析,体会一元一次方程作为实际问题的数学模型的作用.
3.情感态度与价值观
开展探究性学习,发展学习能力.
重、难点与关键
1.重点:会列一元一次方程解决实际问题,•并会合并同类项解一元一次方程. 2.难点:会列一元一次方程解决实际问题.
3.关键:抓住实际问题中的数量关系建立方程模型.
教具准备
投影仪.
教学过程
一、复习提问
1.叙述等式的两条性质.
2.解方程:4(x-2
3
)=2.
解法1:根据等式性质2,两边同除以4,得:
x-2
3
=
1
2
两边都加2
3
,得x=
7
6

解法2:利用乘法分配律,去掉括号,得:
4x-8
3
=2
两边同加8
3
,得4x=
14
3
两边同除以4,得x=7
6

二、新授
公元825年左右,中亚细亚数学家阿尔、花拉子米写了一本代数书,•重点论述怎样解方程.这本书的拉丁文译本取名为《对消与还原》.“对消”与“还原”是什么意思呢?让我们先讨论下面内容,然后再回答这个问题.
问题1:某校三年级共购买计算机140台,去年购买数量是前年的2倍,•今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机?
分析:设前年这个学校购买了x台计算机,已知去年购买数量是前年的2倍,那么去年购买2x台,又知今年购买数量是去年的2倍,则今年购买了2×2x(即4x)台.题目中的相等关系为:三年共购买计算机140台,即
前年购买量+去年购买量+今年购买量=140
列方程:x+2x+4x=140
如何解这个方程呢?
2x表示2×x,4x表示4×x,x表示1×x.
根据分配律,x+2x+4x=(1+2+4)x=7x.
这样就可以把含x的项合并为一项,合并时要注意x的系数是1,不是0.
下面的框图表示了解这个方程的具体过程:
x+2x+4x=140
↓合并
7x=140
↓系数化为1
x=20
由上可知,前年这个学校购买了20台计算机.
上面解方程中“合并”起了化简作用,把含有未知数的项合并为一项,从而达到把方程转化为ax=b的形式,其中a、b是常数.
例:某班学生共60分,外出参加种树活动,根据任何的不同,要分成三个小组且使甲、乙、丙三个小组人数之比是2:3:5,求各小组人数.
分析:这里甲、乙、丙三个小组人数之比是2:3:5,就是说把总数60•人分成10份,甲组人数占2份,乙组人数占3份,丙组人数占5份,如果知道每一份是多少,•那么甲、乙、丙各组人数都可以求得,所以本题应设每一份为x人.
问:本题中相等关系是什么?
答:甲组人数+乙组人数+丙组人数=60.
解:设每一份为x人,则甲组人数为2x人,乙组人数为3x人,丙组为5x人,•列方程:
2x+3x+5x=60
合并,得10x=60
系数化为1,得x=6
所以2x=12,3x=18,5x=30
答:甲组12人,乙组18人,丙组30人.
请同学们检验一下,答案是否合理,即这三组人数的比是否是2:3:5,•且这三组人数之和是否等于60.
三、巩固练习
1.课本第89页练习.
(1)x=3.
(2)可以先合并,也可以先把方程两边同乘以2.
具体解法如下:
解法1:合并,得(1
2
+
3
2
)x=7
即 2x=7
系数化为1,得x=7 2
解法2:两边同乘以2,得x+3x=14 合并,得 4x=14
系数化为1,得 x=7 2
(3)合并,得-2.5x=10
系数化为1,得x=-4
2.补充练习.
(1)足球的表面是由若干个黑色五边形和白色六边形皮块围成的,黑白皮块的数目比为3:5,一个足球的表面一共有32个皮块,黑色皮块和白色皮块各有多少?
(2)某学生读一本书,第一天读了全书的多2页,第二天读了全书的少1•页,•还剩23页没读,问全书共有多少页?(设未知数,列方程,不求解)
解:(1)设每份为x个,则黑色皮块有3x个,白色皮块有5x个.
列方程 3x+2x=32
合并,得 8x=32
系数化为1,得 x=4
黑色皮块为4×3=12(个),白色皮块有5×4=20(个).
(2)设全书共有x 页,那么第一天读了(13x+2)页,第二天读了(12
x-1)页. 本问题的相等关系是:第一天读的量+第二天读的量+还剩23页=全书页数. 列方程:13x+2+12
x-1+23=x . 四、课堂小结
初学用代数方法解应用题,感到不习惯,但一定要克服困难,掌握这种方法,掌握列一元一次方程解决实际问题的一般步骤,其中找等量关系是关键也是难点,本节课的两个问题的相等关系都是:“总量=各部分量的和”.这是一个基本的相等关系.
合并就是把类型相同的项系数相加合并为一项,也就是逆用乘法分配律,合并时,注意x 或-x 的系数分别是1,-1,而不是0.
五、作业布置
1.课本第93页习题3.2第1、3(1)、(2)、4、5题.
2.选用课时作业设计.
第一课时作业设计
一、解方程.
1.(1)3x+3-2x=7; (2)
14x+12
x=3; (3)5x-2-7x=8; (4)12y-3-5y=14
; (5)2x -3x =5; (6)0.6x-13x-3=0. 二、解答题.
2.育红小学现有学生320人,比1995年学生人数的
23
少150人,问育红小学1995年学生人数是多少?
3.甲、乙两地相距460千米,A 、B 两车分别从甲、乙两地开出,•A•车每小时行驶60千米,B 车每小时行驶48千米.
(1)两车同时出发,相向而行,出发多少小时两车相遇?
(2)两车相向而行,A 车提前半小时出发,则在B 车出发后多少小时两车相遇?相遇地点距离甲地多远?
4.甲、乙二人从A 地去B 地,甲步行每小时走4千米,乙骑车每小时比甲多走8千米,甲出发半小时后乙出发,恰好二人同时到达B 地,求A 、B 两地之间的距离.
5.一条环形跑道长400米,甲练习骑自行车,平均每分钟行驶550米;乙练习长跑,平均每分钟跑250米,两人同时、同地、同向出发,经过多少时间,两人首次相遇?
答案:
一、1.(1)x=4 (2)x=4 (3)x=-5 (4)x=-
1318 (5)x=30 (6)x=1114
二、2.705人,设育红小学1995年学生人数为x 人,列方程320=23
x-150. 3.(1)4727
小时,设出发后x 小时相遇,列方程60x+48x=460. (2)35154
小时,设B 车开出后x 小时两车相遇,列方程60×12+60x+48x=460. 4.3千米,设A 、B 两地间的距离为x 千米,4x -12x =12
. 5.113分钟,设经过x 分钟两人首次相遇,列方程550x-250x=400.。

相关文档
最新文档