信号调理电路的原理功能
信号调理电路工作原理

信号调理电路工作原理信号调理电路工作原理信号调理电路是一种用于优化和改善信号质量的电路,它在电子设备中起到至关重要的作用。
在本文中,我们将深入探讨信号调理电路的工作原理。
什么是信号调理电路?信号调理电路是一种用于处理传感器信号、放大信号、滤波信号等的电路。
它可以帮助我们从原始信号中提取所需的信息,并减少噪音和失真。
信号调理电路的组成信号调理电路由多个组件组成,包括:1.放大器:用于放大输入信号的电压或电流。
放大器可以增加信号的幅度,提高信噪比。
2.滤波器:用于去除信号中的杂散噪声和不必要的频率成分。
滤波器根据信号频率特性,通过滤波器形成期望的输出信号。
3.转换器:用于将输入信号从一种形式转换为另一种形式,例如模数转换器将模拟信号转换为数字信号,或者数字模数转换器将数字信号转换为模拟信号。
4.压缩器:用于压缩信号的动态范围,以适应特定应用的需求。
压缩器能够对信号进行动态范围的调整,使得信号在不同场景下得到最佳的表现。
5.校准电路:用于调整和校准传感器输出的电路。
校准电路能够对传感器输出的信号进行校准,以保证准确性和可靠性。
信号调理电路的工作原理信号调理电路的工作原理主要包括以下几个步骤:1.采集信号:首先,信号调理电路会采集传感器或其他信号源发出的原始信号。
这个原始信号可能被噪音、失真等干扰所影响。
2.放大信号:接下来,信号调理电路会使用放大器放大输入信号的幅度。
这样做可以增加信号的强度,提高信噪比,并将信号范围调整到合适的水平。
3.滤波信号:信号调理电路还会使用滤波器来滤除干扰信号和不必要的频率成分。
这可以帮助提取我们所需的特定信号,并减少对后续处理环节的影响。
4.转换信号:根据应用需求,信号调理电路可能会将信号从一种形式转换为另一种形式。
例如,模数转换器可以将模拟信号转换为数字信号,以便进行后续数字处理。
5.压缩信号:如果信号的动态范围太大,信号调理电路可能会使用压缩器来压缩信号的幅度范围。
这样可以确保信号在不同场景下得到适当的展示和处理。
什么是信号调理电路它在仪器仪表中的应用有哪些

什么是信号调理电路它在仪器仪表中的应用有哪些信号调理电路是指将待测信号进行放大、滤波、调节等处理,并将其转换为适合模拟或数字处理的形式的电路。
在仪器仪表中,信号调理电路起着至关重要的作用,可以有效地提取和处理信号,确保测量结果的准确性和可靠性。
本文将从信号调理电路的定义、原理、分类和在仪器仪表中的应用等方面进行探讨。
一、信号调理电路的定义信号调理电路是一种专门用于放大、滤波、调节信号的电路。
它可以对原始信号进行采样、放大、滤波、线性化等处理,以使信号具备更好的稳定性、准确性和可靠性。
二、信号调理电路的原理信号调理电路的原理基于电子元器件的特性和电路设计的原则。
其中,放大电路利用放大器放大信号的幅值,使得信号能够足够强大以便于后续处理;滤波电路通过选择性地通过或阻断不同频率的信号,去除噪声和无用的信号成分;调节电路通过改变电压、电流或其他信号的特性,使得信号适应处理的要求。
这些原理的综合运用,能够有效地处理各种类型的信号。
三、信号调理电路的分类根据信号的性质和处理要求,信号调理电路可分为放大电路、滤波电路和调节电路等多种类型。
1. 放大电路:放大电路主要用于增加信号的幅值,使得信号能够达到合适的水平以便于后续处理。
常见的放大电路包括电压放大电路、电流放大电路和功率放大电路等。
2. 滤波电路:滤波电路用于去除信号中的噪声和无用成分,以保留所需的信号。
根据滤波特性的不同,滤波电路可以分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。
3. 调节电路:调节电路根据需要改变信号的某些特性,例如调节电压、频率、相位等。
它可以用于校准、线性化和调整信号的参数等。
四、信号调理电路在仪器仪表中的应用信号调理电路广泛应用于各种仪器仪表中,以提高测量系统的性能并满足特定的应用要求。
以下列举几个典型的应用案例:1. 传感器信号调理:传感器常常输出微弱的信号,容易受到噪声和干扰的影响。
通过对传感器信号进行放大、滤波和线性化等处理,可以提高信号质量,减小误差并增强测量系统的稳定性。
简述信号调理与转换电路的作用。

简述信号调理与转换电路的作用。
信号调理与转换电路是一种电子电路,用于对输入信号进行处理和转换,以满足特定的需求和要求。
它在各种电子设备和系统中起着至关重要的作用。
信号调理与转换电路可以对输入信号进行放大或衰减。
在很多应用中,输入信号的幅值可能过小或过大,需要经过调整才能适应后续的处理或传输。
通过信号调理与转换电路中的放大器或衰减器,可以对信号进行合适的调整,使其达到适当的幅值范围。
信号调理与转换电路可以对输入信号进行滤波处理。
在实际应用中,输入信号中常常存在各种噪声和干扰。
为了提取出有效的信号和数据,需要对输入信号进行滤波,去除不需要的频率成分或干扰。
通过信号调理与转换电路中的滤波器,可以对输入信号进行低通、高通、带通或带阻滤波,以满足特定的应用需求。
信号调理与转换电路还可以实现信号的变换和处理。
在某些应用中,需要对输入信号进行特定的数学运算或变换,以提取出有用的信息或实现特定的功能。
通过信号调理与转换电路中的运算器、比较器、积分器等模块,可以对输入信号进行加减乘除、积分微分、比较判断等处理,以实现特定的信号处理功能。
信号调理与转换电路还可以实现信号的接口转换。
在不同的电子设备和系统之间,常常存在着不同的信号接口和电平标准。
为了实现它们之间的互联互通,需要进行信号的接口转换。
通过信号调理与转换电路中的电平转换器、隔离器、驱动器等模块,可以将输入信号的电平转换为适应目标设备或系统的电平,实现不同信号接口之间的连接和通信。
信号调理与转换电路还可以实现信号的增强和优化。
在某些应用中,为了提高信号的质量和性能,需要对输入信号进行增强和优化。
通过信号调理与转换电路中的增强器、修正器、优化器等模块,可以对输入信号进行增强、修正和优化,以提高信号的清晰度、准确性和稳定性。
信号调理与转换电路在电子设备和系统中起着至关重要的作用。
它可以对输入信号进行放大、衰减、滤波、变换、接口转换、增强和优化,以适应特定的应用需求。
信号转换器原理

信号转换器原理信号转换器,又称信号调理器或信号调理设备,是一种电子设备,其主要功能是将一种类型的信号转换为另一种类型,以便于信号的传输、处理、记录或显示。
信号转换器广泛应用于各种电子系统和仪器中,如通信系统、测量仪器、控制系统等。
本文将详细介绍信号转换器的原理,包括信号转换的必要性、信号转换器的类型和工作原理。
一、信号转换的必要性在电子系统中,信号往往需要在不同的电路或设备之间传输。
由于不同电路或设备的电气特性、信号幅度、阻抗等可能存在差异,直接连接可能导致信号失真、衰减或无法传输。
此外,信号处理、记录和显示设备往往对输入信号有一定的要求,如幅度范围、阻抗匹配等。
因此,为了实现信号在不同电路或设备之间的有效传输和满足后续处理要求,需要对信号进行转换。
二、信号转换器的类型信号转换器可根据转换的信号类型和转换原理进行分类。
常见的信号类型包括电压信号、电流信号、频率信号、数字信号等。
以下是一些常见的信号转换器类型:1. 电压-电流转换器(V/I转换器):将电压信号转换为电流信号。
这种转换器常用于长距离传输,因为电流信号对线路电阻和干扰的敏感性较低。
2. 电流-电压转换器(I/V转换器):将电流信号转换为电压信号。
这种转换器常用于将传感器的电流输出转换为电压信号,以便于后续处理和显示。
3. 频率-电压转换器(F/V转换器):将频率信号转换为电压信号。
这种转换器常用于测量和控制系统中,将频率变化转换为电压变化以反映物理量的变化。
4. 模拟-数字转换器(ADC):将模拟信号转换为数字信号。
ADC广泛应用于各种电子系统中,如数字音频、数字图像处理等,以实现模拟信号的数字化处理和存储。
三、信号转换器的工作原理不同类型的信号转换器具有不同的工作原理。
以下是一些常见信号转换器的工作原理简介:1. 电压-电流转换器(V/I转换器):V/I转换器通常采用运算放大器和反馈电阻构成。
输入电压信号通过运算放大器放大后,驱动反馈电阻产生输出电流。
电子电路中的信号调理与滤波技术

电子电路中的信号调理与滤波技术一、引言在电子电路中,信号调理与滤波技术是至关重要的。
它们可以帮助我们处理和改善各种类型的信号,以确保信号的稳定性和质量。
本文将介绍信号调理和滤波技术的基本概念和原理,并探讨其在电子电路中的应用。
二、信号调理技术1. 零漂校准在电子电路中,零漂是指传感器输出在无信号输入时的偏移。
零漂校准是一种信号调理技术,用于消除传感器零偏误差。
通过对传感器的输出进行校准,可以确保准确测量到输入信号的变化。
2. 放大放大是信号调理中常用的技术之一。
通过放大电路可以增加信号的幅值,使其更容易被其他电子设备或系统处理。
放大电路通常包括放大器和电源,可以根据需要选择不同的放大倍数和频率响应。
3. 滤波滤波是信号调理的关键步骤之一。
它可以通过消除或降低输入信号中的噪声、杂散信号或不需要的频率成分来改善信号质量。
常见的滤波器类型包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
三、滤波器的类型与应用1. 低通滤波器低通滤波器是一种能够通过允许低频信号通过并阻断高频信号的电路。
低通滤波器常用于音频信号处理、通信系统、功率放大器等应用中,以消除高频噪声和杂散信号。
2. 高通滤波器高通滤波器是一种能够通过允许高频信号通过并阻断低频信号的电路。
高通滤波器常用于音频信号处理、生物医学传感器、图像处理等领域,以消除低频噪声和干扰。
3. 带通滤波器带通滤波器是一种能够通过允许一定范围内的频率信号通过并阻断其他频率信号的电路。
带通滤波器常用于无线通信、雷达系统、音频信号分析等领域,以过滤特定频率范围内的信号。
4. 带阻滤波器带阻滤波器是一种能够阻断一定范围内的频率信号通过并允许其他频率信号通过的电路。
带阻滤波器常用于陷波器、抗干扰系统、信号处理等领域,以屏蔽或抑制特定频率的干扰信号。
四、常见的信号调理与滤波器电路1. 差分放大器差分放大器是一种常用的信号调理电路,用于增加信号的幅度并抑制共模干扰。
它由两个输入端和一个输出端组成,可以通过差分放大和抵消共模信号来提高信号质量。
信号调理电路基础知识教案

信号调理电路基础知识教案一、引言本教案旨在介绍信号调理电路的基础知识。
信号调理电路是一种用于加工、放大和滤波传感器或传输线上的信号的电路。
它起着将原始信号转换为更易处理、更适合输入到数据采集、控制或通信系统的形式的作用。
本教案将重点介绍信号调理电路的基本概念、常见的调理电路类型以及它们在不同领域的应用。
二、信号调理电路的概述1. 信号调理电路的定义信号调理电路是一种电路系统,通过它可以对原始信号进行放大、过滤、线性化、增益控制等处理,以便满足特定的应用需求。
2. 信号调理电路的作用信号调理电路在信号处理系统中起着重要作用,它能够提高信号质量、抑制噪声、调整信号幅度和频率等,使得信号更适合被后续的数据采集、控制或通信系统使用。
三、常见的信号调理电路类型及其原理1. 放大电路放大电路是信号调理电路中最常见的类型之一,它可以将传感器输出的微弱信号放大到适合后续电路处理的级别。
常见的放大电路包括运算放大器放大电路、差分放大电路等。
2. 滤波电路滤波电路用于去除原始信号中带有的不需要的频率成分,例如高频噪声或低频干扰等。
常见的滤波电路包括低通滤波器、高通滤波器、带通滤波器等。
3. 线性化电路线性化电路用于将非线性传感器输出的信号进行线性化处理,使得输出信号与输入量之间满足线性关系。
例如,使用二次特性校正电路可以将非线性传感器输出的信号近似线性化。
4. 增益控制电路增益控制电路用于调整信号的幅度,以适应不同的应用需求。
通过增益控制电路可以灵活地调节信号的大小,以满足后续电路的输入要求。
四、信号调理电路的应用案例1. 工业控制系统中的应用信号调理电路在工业控制系统中广泛应用。
例如,在温度控制系统中,信号调理电路可以将传感器输出的温度信号放大并线性化,以便送入后续的控制器进行控制。
2. 医疗仪器中的应用在医疗仪器中,信号调理电路可以用于放大、滤波和线性化生理信号,如心电图、血压信号等,以便医生进行诊断和治疗。
3. 通信系统中的应用信号调理电路在通信系统中起到重要作用。
信号调理电路

信号调理电路信号调理电路就是信号处理电路,把模拟信号变换为用于数据采集、控制过程、执行计算显示读出或其他目的的数字信号。
是指利用内部的电路,如滤波器、转换器、放大器等来改变输入的讯号类型并输出。
在实际应用中工业信号有些是高压,过流,浪涌等,不能被系统正确识别,必须调整理清。
信号调理电路原理信号调理电路往往是把来自传感器的模拟信号变换为用于数据采集、控制过程、执行计算显示读出和其他目的的数字信号。
模拟传感器可测量很多物理量,如温度、压力、力、流量、运动、位置、PH、光强等。
但是传感器信号不能直接转换为数字数据,因为传感器输出是相当小的电压、电流或变化,因此,在变换为数字数据之前必须进行调理。
调理就是放大,缓冲或定标模拟信号,使其适合于模/数转换器(ADC)的输入。
然后,ADC对模拟信号进行数字化,并把数字信号送到微控制器或其他数字器件,以便用于系统的数据处理。
信号调理电路技术1.放大放大器提高输入信号电平以更好地匹配模拟-数字转换器(ADC)的范围,从而提高测量精度和灵敏度。
此外,使用放置在更接近信号源或转换器的外部信号调理装置,可以通过在信号被环境噪声影响之前提高信号电平来提高测量的信号-噪声比。
2.衰减衰减,即与放大相反的过程,在电压(即将被数字化的)超过数字化仪输入范围时是十分必要的。
这种形式的信号调理降低了输入信号的幅度,从而经调理的信号处于ADC范围之内。
衰减对于测量高电压是十分必要的。
3.隔离隔离的信号调理设备通过使用变压器、光或电容性的耦合技术,无需物理连接即可将信号从它的源传输至测量设备。
除了切断接地回路之外,隔离也阻隔了高电压浪涌以及较高的共模电压,从而既保护了操作人员也保护了昂贵的测量设备。
4.多路复用通过多路复用技术,一个测量系统可以不间断地将多路信号传输至一个单一的数字化仪,从而提供了一种节省成本的方式来极大地扩大系统通道数量。
多路复用对于任何高通道数的应用是十分必要的。
5.过滤滤波器在一定的频率范围内去处不希望的噪声。
什么是电路中的信号调理

什么是电路中的信号调理电路中的信号调理(Signal Conditioning),是指对输入的原始信号进行处理和调整,使其适应于目标设备或系统的工作要求。
在电子领域中,信号调理是实现电路或系统中准确、稳定地传输和处理信号的重要环节。
一、信号调理的作用信号调理在电路和系统中扮演着至关重要的角色。
其主要作用包括:1. 放大信号:通过信号调理可以放大输入信号的幅度,以提高其强度和可靠性。
在许多应用中,输入信号往往非常微弱,需要经过放大才能达到目标设备的工作范围。
2. 滤波:信号调理可以去除输入信号中的噪音和干扰,提高信号的纯度和稳定性。
滤波器的使用可以选择性地通过特定频率范围的信号,同时阻止其他频率范围的信号。
3. 线性化:对于非线性信号,信号调理可以通过一定的算法或函数将其转换为线性信号,简化信号的处理和分析过程,提高系统的准确性和可靠性。
4. 偏置和校准:信号调理可以对输入信号进行偏置和校准,使其适应目标设备或系统的工作要求。
通过对信号的偏置和校准,可以消除由于传感器不精确或环境变化等因素引起的误差。
5. 传输和接口:信号调理可以将信号从一个设备传输到另一个设备,或将信号与其他设备进行接口连接。
适当的信号调理可以确保信号的传输质量和可靠性,同时避免信号在传输过程中的降噪和衰减。
二、常见的信号调理技术1. 放大器:放大器是最常见的信号调理元件之一,可用于增加信号的幅度。
根据应用的需要,可以选择不同类型的放大器,如运算放大器(Operational Amplifier)和差分放大器(Differential Amplifier)等。
2. 滤波器:滤波器用于去除输入信号中的噪音和干扰。
常见的滤波器包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。
3. 数字转模拟转换器(DAC)和模拟转数字转换器(ADC):DAC 和ADC用于模拟信号和数字信号之间的转换。
DAC将数字信号转换为模拟信号,而ADC则将模拟信号转换为数字信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
什么就是信号调理?信号调理电路的原理,信号调理模块的功能[导读] 信号调理电路往往就是把来自传感器的模拟信号变换为用于数据采集、控制过程、执行计算显示读出与其她目的的数字信号。
模拟传感器可测量很多物理量,如温度、压力、力、流量、运动、位置、PH、光强等。
但就是传感器信号不能直接转换为数字数据,因为传感器输出就是相当小的电压、电流或变化,因此,在变换为数字数据之前必须进行调理。
信号调理电路原理信号调理电路往往就是把来自传感器的模拟信号变换为用于数据采集、控制过程、执行计算显示读出与其她目的的数字信号。
模拟传感器可测量很多物理量,如温度、压力、力、流量、运动、位置、PH、光强等。
但就是传感器信号不能直接转换为数字数据,因为传感器输出就是相当小的电压、电流或变化,因此,在变换为数字数据之前必须进行调理。
调理就就是放大,缓冲或定标模拟信号,使其适合于模/数转换器(ADC)的输入。
然后,ADC对模拟信号进行数字化,并把数字信号送到微控制器或其她数字器件,以便用于系统的数据处理。
信号调理电路技术1、放大放大器提高输入信号电平以更好地匹配模拟-数字转换器(ADC)的范围,从而提高测量精度与灵敏度。
此外,使用放置在更接近信号源或转换器的外部信号调理装置,可以通过在信号被环境噪声影响之前提高信号电平来提高测量的信号-噪声比。
2、衰减衰减,即与放大相反的过程,在电压(即将被数字化的)超过数字化仪输入范围时就是十分必要的。
这种形式的信号调理降低了输入信号的幅度,从而经调理的信号处于ADC范围之内。
衰减对于测量高电压就是十分必要的。
3、隔离隔离的信号调理设备通过使用变压器、光或电容性的耦合技术,无需物理连接即可将信号从它的源传输至测量设备。
除了切断接地回路之外,隔离也阻隔了高电压浪涌以及较高的共模电压,从而既保护了操作人员也保护了昂贵的测量设备。
4、多路复用通过多路复用技术,一个测量系统可以不间断地将多路信号传输至一个单一的数字化仪,从而提供了一种节省成本的方式来极大地扩大系统通道数量。
多路复用对于任何高通道数的应用就是十分必要的。
5、过滤滤波器在一定的频率范围内去处不希望的噪声。
几乎所有的数据采集应用都会受到一定程度的50Hz或60Hz的噪声(来自于电线或机械设备)。
大部分信号调理装置都包括了为最大程度上抑制50Hz或60Hz噪声而专门设计的低通滤波器。
6、激励激励对于一些转换器就是必需的。
例如,应变计,电热调节器,与RTD需要外部电压或电流激励信号。
通常RTD 与电热调节器测量都就是使用一个电流源来完成,这个电流源将电阻的变化转换成一个可测量的电压。
应变计,一个超低电阻的设备,通常利用一个电压激励源来用于惠斯登(Wheatstone)电桥配置。
7、冷端补偿冷端补偿就是一种用于精确热电偶测量的技术。
任何时候,一个热电偶连接至一个数据采集系统时,您必须知道在连接点的温度(因为这个连接点代表测量路径上另一个“热电偶”并且通常在您的测量中引入一个偏移)来计算热电偶正在测量的真实温度。
信号调理电路设计实例1、硬件设计信号调理电路单路输入的硬件结构,包括信号输入、放大、单片机控制等几大部分。
信号输入电路由精密基准电源MAX872、光继电器AQW212E、运放4502 及精密仪表开关电容模块LTC1043 等组成。
其中精密基准电源的使用一方面提升输入信号的电位, 避免低电位测量时的干扰误差;另一方面作为一路检测电路, 其测量结果可以修正其它回路的检测结果, 实现系统的在线自校正。
MAX872 具有较宽的电压输入范围(2、7~20V),输出精度可达2、500V ± 0、2%。
LTC1043CN 就是双精密仪表开关电容,电容外接, 多用于精密仪表放大电路、压频转换电路与采样保持电路等。
当内部开关频率被设定在额定值300Hz时, LTC1043CN 的传输精确度最高, 此时电容器CS 与CH大小均为 1 μ F。
LTC1043CN 与运放LT1013 组成差分单端放大器,采用LTC1043CN为差分输入的电压采样值, 电压保持在电容器CS 上并送到接地参考电容器CH 中, 而CH 的电压送到LT1013 的非反相输入端放大。
LTC1043CN就是通过电容完成电压的传输, 使电压由差分输入变为单端输入, 并起到了很好的信号隔离作用, 在本设计中双电容的巧妙接法解决了热电阻的三线制输入问题。
放大电路由运放L T 1 0 1 3 与数字电位器X9241M 组成, 放大增益由数字电位器X9241 中三个数字电位器决定, 使输入信号经过放大后均变为0~500mV的电压信号, 满足模数转换器允许的电压输入范围。
本部分电路仅完成信号输入, 就是我们研制网络化智能仪表的一部分, 对于输入信号模数转换、数据处理、显示则由其它模块完成。
S4、S5、S6 就是控制一路输入的光继电器, 采集该路信号时同时合上, 其她电路就是所有通道信号输入的公共电路, 只就是根据输入信号的不同, 单片机改变其余光继电器的状态, 形成不同的输入电路。
具体可分为以下几种情况:(1) 采集1~5V 电压信号时: 继电器CH 合上,P11、SI、P37 断开, 通过电阻R2、R4 实现分压后变为0、25~1、25V的电压信号加在数字电位器X9241的0号电位器V0的两端, 经过软件实现对该电位器的调节, 令其滑动端的数值为25, 按25J63(电位器内共有63个电阻单元组成的阵列)这样比例继续分压变为约100~500mV信号, 加LTC1043CN 的电容CS 上,此时数字电位器X9241的其它3个电位器形成的放大倍数应为1, 才能保证在运放L T 1 0 1 3 的输出端最大电压不超过500mV; 具体如何设置这3个电位器滑动端的数值见后面软件部分。
(2) 采集热电阻信号时: 继电器SI、P11合上,CH、P37 断开。
热电阻采用的就是三线制接法,消除了长距离传输时传输导线的电阻带来的误差。
采集过来的电阻值接在IN1、IN2 两端,IN2、IN3被三线制接法后短接,2、5V基准电压此时加在热电阻及R8、R9 上,变为毫伏级电压信号输入。
当为Pt100输入390、26Ω时转换为约290mV左右的电压输出。
(3) 采集每个通道信号前还要采集两个不同的基准电压, 实现仪表在测量中的自校正功能。
电路中精密基准电源MAX872 输出的2、5V 电压经精密电阻R1(66kΩ)、R3(192kΩ)分压后,将约为640mV 左右加在X9241 的0 号电位器分压。
此时继电器S4、S5、S6 断开,继电器P37 合上。
2、软件设计软件部分所要完成的工作就就是控制各光继电器的状态及设定数字电位器X9241 中各数字电位器滑动端的位置。
本模块采用单片机控制, 可与其它模块单片机或上位机进行通信。
信号类型的设定, 也可通过扫描键盘或IC卡完成。
确定了各路的信号类型后, 对应不同的输入信号, 数字电位器X9241内部的4个电位器滑动端的数值不同, 其中决定放大倍数的电位器RW1,RW2, RW3 的数值n1, n2, n3 可用下面计算方法得到, 使得当信号输入为上限值时, 在LT1013的输出端得到约为500mV 的输出电压。
算法为令n1=63ViH500, n2=n1+1 则得到电阻RW3两端的电压V3=500H63(mV)由Vi=(V3H63)n3+(500H63)n1 得到n3=( 63 ×63H500)·Vi- 63n1其中Vi 为信号输入上限值时对应的LT1013输出电压值。
若采集8个通道, 则需将24个字节数据的电位器RW1, RW2, RW3 的数值n1, n2,n3顺序保存在本模块的中, 另外还要保存8个字节的通道信号类型。
当巡回采集0~7八个通道时,根据不同的通道号, 一方面从EEPROM 中取出X9241滑动端相应的数值通过总线写入X9241数据寄存器中, 数据寄存器的内容可传输到滑动计数寄存器WCR 以设置滑动端的位置; 另一方面从EEPROM 中取出该通道的信号类型, 根据信号类型控制各光继电器AQW212E 的开合状态, 并将X9241 的0 号电位器RW 置上合适的数值, 实现信号的正确输入及调理。
信号调理模块的功能对于绝大多数数据采集与控制系统来说,信号调理就是非常重要的。
典型的系统一般都需要信号调理硬件,用于将原始信号以及传感器的输出接口到数据采集板或模块上。
通过信号调理的各种功能,如信号的放大、隔离、滤波、多路转换以及直接变送器调理等,使得数据采集系统的可*性及性能得到极大地改善。
具体来说,信号调理模块主要具有以下几点功能:1、传感器驱动:包括为无源传感器提供所需的电压源或电流源,为有源传感器提供其运转所需的特殊电路结构。
2、信号放大:为了提高模拟信号转换成数字信号时的精度,我们希望输入的模拟信号的最大值刚好等于A/D 转换设备输入范围。
大多数传感器的输出范围在mV级,而A/D 转换设备输入范围为Volt级。
因此我们需要使用信号调理模块对传感器的信号放大。
3、隔离在测量高电压信号时,隔离电路可以保护您的后端设备被意外的高电压输入损坏。
常用的有光隔离与磁隔离。
隔离放大电路的缺点就是有可能引入噪声。
4、信号滤波:模拟信号在数字化前必须进行低通滤波,以消除噪声与防止混叠现象。
同时也可以使用信号调理模块滤除50-60Hz的工频噪声。
5、扩展通道数:有些信号调理模块具有多路转换器或矩阵变换电路的功能,可以把通道信号通道扩展至上千路。
6、其她功能:信号调理模块还可以实现信号衰减、采样同步、频率-电压的转换等功能。