高中物理奥赛必看讲义——静电场
高中物理奥林匹克竞赛专题---静电场能量与能量密度(共13张PPT)

§9. 4 静电场能量与能量密度
·1 ·
Chapter 9. 静电场中的导体与电介质 §9. 4 静电场能量与能量密度
一、静电场能量密度及能量
保持 Q 不变!板间的静电引力:
Fe
0 20
Q
1 2
EQ
Q
缓慢下移A板,外力做功: Q
dW dV
e
E2Q Sddxx
EQ 2S
E
0 0
Q 0S
,
Q S
0E
dWe dV
120E2
若充满电介质 εr ,则:
ddW Ve 12r0E2
Q Q
0 0
固定金属板 B
S
0
dV A
缓 0
F
慢
S
B
E
0 0
F
dx A
·3 ·
Chapter 9. 静电场中的导体与电介质
We
Q2 2C
1 2
QU
1 2
CU
2
☻电容器的能量是指存储在电容器内部的电场能量。
☻当 Q 一定时,We ∝ 1/C ; 当 U 一定时,We ∝ C 。
C 1 C 2
We1 We2
C 1 C2
C2
We1 We2
·10 ·
Chapter 9. 静电场中的导体与电介质 §9. 4 静电场能量与能量密度
归纳
1. 静电场能量密度:
weddW V e 1 2r0E2 E2
高中物理《静电场》知识梳理

高中物理《静电场》知识梳理
1. 静电场的基本概念和性质
静电场指的是由于空间中静止电荷所形成的电场。
其性质包括场强、电势、电势能等。
2. 静电场的电场强度
静电场的电场强度表示了单位正电荷在某一点处所受的电场力,其大小受到电荷量和距离的影响。
电场强度的方向与电荷正负有关。
3. 静电场的电势差和电势
电势差指的是两点之间移动单位电荷所需要做的功,而电势则是在某一点的电势差。
电势差和电势的计算可以利用库仑定律和高斯定理。
4. 静电场的电荷分布
在静电场中,电荷分布对于场强和电势分布都有影响。
主要包括均匀带电球面、均匀带电球体、均匀带电棒、均匀带电平板等情况。
5. 静电场的高斯定理
高斯定理可以用来计算电场强度、电势和电势能。
它表明了通过某一闭合曲面的场线束数与该曲面所包含的电荷量成正比,与曲面的形状无关。
6. 静电场的电势能
电势能指的是静电场中电荷所具有的势能,它的大小与电荷量、
电势差和位置有关。
静电场中的电势能可以用来计算电荷的移动和相互作用。
7. 静电场与导体
静电场中的导体可以影响场强和电势分布。
在外场作用下,导体表面的电荷会分布在表面上,而内部则是均匀的。
在导体内部,电场强度为零,电势分布为恒定值。
物理竞赛-静电场(吴志坚)分析

(电磁学篇P32)
4)均匀带电圆盘盘心处的电势
练.半径为r的均匀带电圆盘,总带电量为Q,求盘心处
的电势。
(电磁学篇P32)
2.电势的叠加原理
在若干场源电荷所激发的电场中任一点的电势,等于
每个场源电荷单独存在时在改点所激发的场强的代数和。
例.三个带电量均为q的点电荷相距无穷远且处于静止状
(电磁学篇P19)
y
o
θ
x
考点二、电场线与高斯定理
1.电场线
1)电场线:又称电力线,是对电场的一种形象的描述。 2)电场线密度:在电场中分布有无限多电场线,为了表示 电场空间中各点的电场强度的大小,引入电场线密度的概念。 过某点取单位面元 Δ S,与该点场强方向垂直。设穿过 Δ S 的电场线又Δ N 条,则Δ N/Δ S 称为该点电场线密度,即通过改 点与电场垂直的单位截面内的电场线条数。 可以规定, 作图时使电场中任一点的电场线的密度与该点场 强大小相等,即 E
荷体密度为ρ的带电物质。求沿厚度方向的空间中电场
强度的分布。
(电磁学篇P15)
x
d /2
o x 2
d /2
3
1
7)电偶极子激发的电场
电偶极子是一对电量相等(同为q)、符号相反、相隔距 离为l的两点电荷组成的系统。 通常,只有在考查远离 此系统中心位置处的电场时,才称这对电荷为电偶极子。
例.q 为点电荷的带电量,l 的大小为两点电荷间的距离,
N 。 S
例.质量为m、带电量为+q的小球在均匀引力场中(竖 直向下)和非均匀静电场中,静电场相对绕竖直轴OZ
转动处对称。 如图表示其中一个平面上电场线。在
高中物理奥赛讲义(静电场)doc第一讲基本知

静电场第一讲基本知识介绍在奥赛考纲中,静电学知识点数目不算多,总数和高考考纲基本相同,但在个别知识点上,奥赛的要求显然更加深化了:如非匀强电场中电势的计算、电容器的连接和静电能计算、电介质的极化等。
在处理物理问题的方法上,对无限分割和叠加原理提出了更高的要求。
如果把静电场的问题分为两部分,那就是电场本身的问题、和对场中带电体的研究,高考考纲比较注重第二部分中带电粒子的运动问题,而奥赛考纲更注重第一部分和第二部分中的静态问题。
也就是说,奥赛关注的是电场中更本质的内容,关注的是纵向的深化和而非横向的综合。
一、电场强度1、实验定律a、库仑定律内容;条件:⑴点电荷,⑵真空,⑶点电荷静止或相对静止。
事实上,条件⑴和⑵均不能视为对库仑定律的限制,因为叠加原理可以将点电荷之间的静电力应用到一般带电体,非真空介质可以通过介电常数将k进行修正(如果介质分布是均匀和“充分宽广”的,一般认为k′= k /ε。
只有条件⑶,它才是静电学的基本前提和出发点(但这一点又是常常被忽视和被不恰当地r)“综合应用”的)。
b、电荷守恒定律c、叠加原理2、电场强度a、电场强度的定义电场的概念;试探电荷(检验电荷);定义意味着一种适用于任何电场的对电场的检测手段;电场线是抽象而直观地描述电场有效工具(电场线的基本属性)。
b 、不同电场中场强的计算决定电场强弱的因素有两个:场源(带电量和带电体的形状)和空间位置。
这可以从不同电场的场强决定式看出——⑴点电荷:E = k 2r Q结合点电荷的场强和叠加原理,我们可以求出任何电场的场强,如——⑵均匀带电环,垂直环面轴线上的某点P :E =2322)R r (kQr +,其中r 和R 的意义见图7-1。
⑶均匀带电球壳 内部:E 内 = 0距离外部:E 外 = k 2r Q ,其中r 指考察点到球心的如果球壳是有厚度的的(内径R 1 、外径R 2),在壳体中(R 1<r <R 2):式子的物理意义可E =2313r R r k 34-πρ ,其中ρ为电荷体密度。
高中物理竞赛讲义 2-1静电场基本定理

dr
U
q
a ●
E
o
q
r
q 4 0
ra
dr q 2 r 4 0 ra
3.电势迭加原理 与一组点电荷相联系的电场在某一点上的电势,等 于与各个点电荷单独联系的电场在该点电势的代数和。
…基本定理 1.4 电势与场强的关系
4. 电势的计算
1.4.2 电势与电势迭加原理
…基本定理 1.3 静电场的环路定理
1.3.2 静电场的环路定理 1.环路定理 推论:当路径为闭合时,静电力做功为零,即
q0
l
E dl q0 q0
b
a c
E dl q0
a
b c
E dl
b
a c
E dl q0
b
a c
E dl 0
q S
ds
r
…基本定理 1.2 高斯定理
● q处于任意闭合曲面内
从 q 发出的电场线根数为 电场线穿出S 必定穿出S。 q
1.2.2 高斯定理
S
E dS
q
0
0
,终止在无限远。
● q处于任意闭合曲面外
q
q
S
S
E dS=0
q
S
S
从 q 发出的电场线根数为
面元的电通量为
1)引入 寻找确定带电体E分布的新途径
d E E dS EdS cos
d E 表示穿过面元 dS 的电场线根数 dN ;
3)直观意义
dN d E EdS cos EdS dS dN dS
高中物理讲义.必修三.第一章:静电场(知识点总结+习题)

电荷【引入】在生活中我们都有这样的经历:拿梳子梳头,却发现发丝被梳子吸引粘连在一起;干燥的冬天脱下毛衣总会发出“噼啪”的声音。
这些其实都是静电现象,不同物体因为相互摩擦带电,或者说带了电荷。
电荷是“电”的基本单元。
一、电荷(一)两种电荷1.正电荷:丝绸摩擦的玻璃棒2.负电荷:毛皮摩擦的橡胶棒3.电荷量(Q或q)表示电荷的多少。
单位:库伦(C)(二)电荷的基本性质1.同种电荷相排斥,异种电荷相吸引2.带电体也会吸引不带电的轻小物体【例】甲乙两个轻质小球相互吸引,甲球带正电,乙带什么电?(负或不带电)二、三种起电方法(一)摩擦起电1.现象不同物质构成的物体,相互摩擦带电2.原理不同原子核(带正电)对电子(带负电)的束缚能力不同,摩擦时电子从一个物体转移到另一个物体。
【判断正误】摩擦起电创造了电荷(X)3.带电情况摩擦起电的两个物体分别带等量的异种电荷。
【思考】玻璃棒和丝绸摩擦后,丝绸带什么电?(二)接触带电1.现象用带电物体接触导体,会使导体也带电。
2.原理电荷向导体发生了转移3.电荷的分配原则【例】现有两个完全相同的金属球A、B(1)A带1C的正电荷,B不带电,接触后怎么分配?(AB平均分配,最后都带0.5C的正电荷)(2)A带1C的正电荷,B带2C的正电荷,接触后怎么分配?(仍然平均分配,最后都带1.5C的正电荷)(3)A带1C的正电荷,B带2C的负电荷,接触后怎么分配?(先中和,剩余的再平均分配,最后都带0.5C的负电荷)结论:能中和先中和,如果两物体完全一样,最后电荷平均分配。
4.中和等量的电荷相接触后,既不显正电,也不显负电,而是成电中性。
5.应用验电器原理:接触带电,同种电荷相排斥张角越大,带电越多。
【拓展】金属导电原因金属原子核外的最外层电子往往会脱离原子核的束缚,可以自由的穿梭于金属内部,这样的电子叫自由电荷。
并且,自由电荷如果定向移动,就形成了电流(三)感应带电(静电感应)1.现象2.原理(1)金属内部有自由电荷,可以在金属内部自由移动。
物理竞赛讲义第八部分 静电场

第八部分 静电场第一讲 基本知识介绍在奥赛考纲中,静电学知识点数目不算多,总数和高考考纲基本相同,但在个别知识点上,奥赛的要求显然更加深化了:如非匀强电场中电势的计算、电容器的连接和静电能计算、电介质的极化等。
在处理物理问题的方法上,对无限分割和叠加原理提出了更高的要求。
如果把静电场的问题分为两部分,那就是电场本身的问题、和对场中带电体的研究,高考考纲比较注重第二部分中带电粒子的运动问题,而奥赛考纲更注重第一部分和第二部分中的静态问题。
也就是说,奥赛关注的是电场中更本质的内容,关注的是纵向的深化和而非横向的综合。
一、电场强度1、实验定律 a 、库仑定律 内容;条件:⑴点电荷,⑵真空,⑶点电荷静止或相对静止。
事实上,条件⑴和⑵均不能视为对库仑定律的限制,因为叠加原理可以将点电荷之间的静电力应用到一般带电体,非真空介质可以通过介电常数将k 进行修正(如果介质分布是均匀和“充分宽广”的,一般认为k ′= k /εr )。
只有条件⑶,它才是静电学的基本前提和出发点(但这一点又是常常被忽视和被不恰当地“综合应用”的)。
b 、电荷守恒定律c 、叠加原理 2、电场强度a 、电场强度的定义电场的概念;试探电荷(检验电荷);定义意味着一种适用于任何电场的对电场的检测手段;电场线是抽象而直观地描述电场有效工具(电场线的基本属性)。
b 、不同电场中场强的计算决定电场强弱的因素有两个:场源(带电量和带电体的形状)和空间位置。
这可以从不同电场的场强决定式看出——⑴点电荷:E = k2r Q 结合点电荷的场强和叠加原理,我们可以求出任何电场的场强,如——⑵均匀带电环,垂直环面轴线上的某点P :E =2322)R r (kQr ,其中r 和R 的意义见图7-1。
⑶均匀带电球壳 内部:E 内 = 0外部:E 外 = k2r Q,其中r 指考察点到球心的距离 如果球壳是有厚度的的(内径R 1 、外径R 2),在壳体中(R 1<r <R 2):E =2313r R r k 34-πρ ,其中ρ为电荷体密度。
高中物理奥赛必看讲义——静电场

静电场第一讲基本知识介绍在奥赛考纲中,静电学知识点数目不算多,总数和高考考纲基本相同,但在个别知识点上,奥赛的要求显然更加深化了:如非匀强电场中电势的计算、电容器的连接和静电能计算、电介质的极化等。
在处理物理问题的方法上,对无限分割和叠加原理提出了更高的要求。
如果把静电场的问题分为两部分,那就是电场本身的问题、和对场中带电体的研究,高考考纲比较注重第二部分中带电粒子的运动问题,而奥赛考纲更注重第一部分和第二部分中的静态问题。
也就是说,奥赛关注的是电场中更本质的内容,关注的是纵向的深化和而非横向的综合。
一、电场强度1、实验定律a、库仑定律内容;条件:⑴点电荷,⑵真空,⑶点电荷静止或相对静止。
事实上,条件⑴和⑵均不能视为对库仑定律的限制,因为叠加原理可以将点电荷之间的静电力应用到一般带电体,非真空介质可以通过介电常数将k进行修正(如果介质分布是均匀和“充分宽广”的,一般认为k′= k /εr)。
只有条件⑶,它才是静电学的基本前提和出发点(但这一点又是常常被忽视和被不恰当地“综合应用”的)。
b、电荷守恒定律c、叠加原理2、电场强度a、电场强度的定义电场的概念;试探电荷(检验电荷);定义意味着一种适用于任何电场的对电场的检测手段;电场线是抽象而直观地描述电场有效工具(电场线的基本属性)。
b、不同电场中场强的计算决定电场强弱的因素有两个:场源(带电量和带电体的形状)和空间位置。
这可以从不同电场的场强决定式看出——⑴点电荷:E = k2rQ结合点电荷的场强和叠加原理,我们可以求出任何电场的场强,如—— ⑵均匀带电环,垂直环面轴线上的某点P :E =2322)R r (kQr +,其中r 和R 的意义见图7-1。
⑶均匀带电球壳 内部:E 内 = 0外部:E 外 = k2rQ ,其中r 指考察点到球心的距离如果球壳是有厚度的的(内径R 1 、外径R 2),在壳体中(R 1<r <R 2):E =2313rR r k34-πρ ,其中ρ为电荷体密度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
静电场第一讲基本知识介绍在奥赛考纲中,静电学知识点数目不算多,总数和高考考纲基本相同,但在个别知识点上,奥赛的要求显然更加深化了:如非匀强电场中电势的计算、电容器的连接和静电能计算、电介质的极化等。
在处理物理问题的方法上,对无限分割和叠加原理提出了更高的要求。
如果把静电场的问题分为两部分,那就是电场本身的问题、和对场中带电体的研究,高考考纲比较注重第二部分中带电粒子的运动问题,而奥赛考纲更注重第一部分和第二部分中的静态问题。
也就是说,奥赛关注的是电场中更本质的内容,关注的是纵向的深化和而非横向的综合。
一、电场强度1、实验定律a、库仑定律内容;条件:⑴点电荷,⑵真空,⑶点电荷静止或相对静止。
事实上,条件⑴和⑵均不能视为对库仑定律的限制,因为叠加原理可以将点电荷之间的静电力应用到一般带电体,非真空介质可以通过介电常数将k进行修正(如果介质分布是均匀和“充分宽广”的,一般认为k′= k /εr)。
只有条件⑶,它才是静电学的基本前提和出发点(但这一点又是常常被忽视和被不恰当地“综合应用”的)。
b、电荷守恒定律c、叠加原理2、电场强度a、电场强度的定义电场的概念;试探电荷(检验电荷);定义意味着一种适用于任何电场的对电场的检测手段;电场线是抽象而直观地描述电场有效工具(电场线的基本属性)。
b、不同电场中场强的计算决定电场强弱的因素有两个:场源(带电量和带电体的形状)和空间位置。
这可以从不同电场的场强决定式看出——⑴点电荷:E = k2r Q 结合点电荷的场强和叠加原理,我们可以求出任何电场的场强,如—— ⑵均匀带电环,垂直环面轴线上的某点P :E = 2322)R r (kQr +,其中r 和R 的意义见图7-1。
⑶均匀带电球壳 内部:E 内 = 0 外部:E 外 = k2r Q,其中r 指考察点到球心的距离 如果球壳是有厚度的的(内径R 1 、外径R 2),在壳体中(R 1<r <R 2):E =2313r R r k 34-πρ ,其中ρ为电荷体密度。
这个式子的物理意义可以参照万有引力定律当中(条件部分)的“剥皮法则”理解〔)R r (3433-πρ即为图7-2中虚线以内部分的总电量…〕。
⑷无限长均匀带电直线(电荷线密度为λ):E =rk 2λ⑸无限大均匀带电平面(电荷面密度为σ):E = 2πk σ 二、电势1、电势:把一电荷从P 点移到参考点P 0时电场力所做的功W 与该电荷电量q 的比值,即U =qW参考点即电势为零的点,通常取无穷远或大地为参考点。
和场强一样,电势是属于场本身的物理量。
W 则为电荷的电势能。
2、典型电场的电势 a 、点电荷以无穷远为参考点,U = k rQ b 、均匀带电球壳以无穷远为参考点,U 外 = k r Q ,U 内 = k R Q 3、电势的叠加由于电势的是标量,所以电势的叠加服从代数加法。
很显然,有了点电荷电势的表达式和叠加原理,我们可以求出任何电场的电势分布。
4、电场力对电荷做功 W AB = q (U A - U B )= qU AB 三、静电场中的导体静电感应→静电平衡(狭义和广义)→静电屏蔽 1、静电平衡的特征可以总结为以下三层含义——a 、导体内部的合场强...为零;表面的合场强...不为零且一般各处不等,表面的合场强...方向总是垂直导体表面。
b 、导体是等势体,表面是等势面。
c 、导体内部没有净电荷;孤立导体的净电荷在表面的分布情况取决于导体表面的曲率。
2、静电屏蔽导体壳(网罩)不接地时,可以实现外部对内部的屏蔽,但不能实现内部对外部的屏蔽;导体壳(网罩)接地后,既可实现外部对内部的屏蔽,也可实现内部对外部的屏蔽。
四、电容1、电容器孤立导体电容器→一般电容器 2、电容 a 、定义式 C =UQb 、决定式。
决定电容器电容的因素是:导体的形状和位置关系、绝缘介质的种类,所以不同电容器有不同的电容⑴平行板电容器 C = kd 4S r πε = dSε ,其中ε为绝对介电常数(真空中ε0 = k 41π ,其它介质中ε=k 41'π),εr 则为相对介电常数,εr = 0εε 。
⑵柱形电容器:C =12r R R lnk 2Lε ⑶球形电容器:C = )R R (k R R 1221r -ε3、电容器的连接 a 、串联C1 = 1C 1+2C 1+3C 1+ … +n C 1b 、并联 C = C 1 + C 2 + C 3 + … + C n4、电容器的能量用图7-3表征电容器的充电过程,“搬运”电荷做功W 就是图中阴影的面积,这也就是电容器的储能E ,所以E = 21q 0U 0 = 21C 20U = 21Cq 2电场的能量。
电容器储存的能量究竟是属于电荷还是属于电场?正确答案是后者,因此,我们可以将电容器的能量用场强E 表示。
对平行板电容器 E 总 =k8Sd πE 2认为电场能均匀分布在电场中,则单位体积的电场储能 w = k81πE 2。
而且,这以结论适用于非匀强电场。
五、电介质的极化1、电介质的极化a 、电介质分为两类:无极分子和有极分子,前者是指在没有外电场时每个分子的正、负电荷“重心”彼此重合(如气态的H 2 、O 2 、N 2和CO 2),后者则反之(如气态的H 2O 、SO 2和液态的水硝基笨)b 、电介质的极化:当介质中存在外电场时,无极分子会变为有极分子,有极分子会由原来的杂乱排列变成规则排列,如图7-4所示。
2、束缚电荷、自由电荷、极化电荷与宏观过剩电荷a 、束缚电荷与自由电荷:在图7-4中,电介质左右两端分别显现负电和正电,但这些电荷并不能自由移动,因此称为束缚电荷,除了电介质,导体中的原子核和内层电子也是束缚电荷;反之,能够自由移动的电荷称为自由电荷。
事实上,导体中存在束缚电荷与自由电荷,绝缘体中也存在束缚电荷和自由电荷,只是它们的比例差异较大而已。
b 、极化电荷是更严格意义上的束缚电荷,就是指图7-4中电介质两端显现的电荷。
而宏观过剩电荷是相对极化电荷来说的,它是指可以自由移动的净电荷。
宏观过剩电荷与极化电荷的重要区别是:前者能够用来冲放电,也能用仪表测量,但后者却不能。
第二讲 重要模型与专题一、场强和电场力【物理情形1】试证明:均匀带电球壳内部任意一点的场强均为零。
【模型分析】这是一个叠加原理应用的基本事例。
如图7-5所示,在球壳内取一点P ,以P 为顶点做两个对顶的、顶角很小的锥体,锥体与球面相交得到球面上的两个面元ΔS 1和ΔS 2 ,设球面的电荷面密度为σ,则这两个面元在P 点激发的场强分别为ΔE 1 = k 211r S ∆σ ΔE 2 = k222r S ∆σ 为了弄清ΔE 1和ΔE 2的大小关系,引进锥体顶部的立体角ΔΩ ,显然211r cos S α∆ = ΔΩ = 222r cos S α∆ 所以 ΔE 1 = kα∆Ωσcos ,ΔE 2 = k α∆Ωσcos ,即:ΔE 1 = ΔE 2 ,而它们的方向是相反的,故在P 点激发的合场强为零。
同理,其它各个相对的面元ΔS 3和ΔS 4 、ΔS 5和ΔS 6 … 激发的合场强均为零。
原命题得证。
【模型变换】半径为R 的均匀带电球面,电荷的面密度为σ,试求球心处的电场强度。
【解析】如图7-6所示,在球面上的P 处取一极小的面元ΔS ,它在球心O 点激发的场强大小为ΔE = k2R S∆σ ,方向由P 指向O 点。
无穷多个这样的面元激发的场强大小和ΔS 激发的完全相同,但方向各不相同,它们矢量合成的效果怎样呢?这里我们要大胆地预见——由于由于在x 方向、y 方向上的对称性,Σix E= Σiy E = 0 ,最后的ΣE = ΣE z ,所以先求ΔE z = ΔEcos θ= k2R cos S θ∆σ ,而且ΔScos θ为面元在xoy 平面的投影,设为ΔS ′所以 ΣE z =2R k σΣΔS ′ 而 ΣΔS ′= πR 2【答案】E = k πσ ,方向垂直边界线所在的平面。
〖学员思考〗如果这个半球面在yoz 平面的两边均匀带有异种电荷,面密度仍为σ,那么,球心处的场强又是多少?〖推荐解法〗将半球面看成4个81球面,每个81球面在x 、y 、z 三个方向上分量均为41 k πσ,能够对称抵消的将是y 、z 两个方向上的分量,因此ΣE = ΣE x …〖答案〗大小为k πσ,方向沿x 轴方向(由带正电的一方指向带负电的一方)。
【物理情形2】有一个均匀的带电球体,球心在O 点,半径为R ,电荷体密度为ρ ,球体内有一个球形空腔,空腔球心在O ′点,半径为R ′,O O '= a ,如图7-7所示,试求空腔中各点的场强。
【模型分析】这里涉及两个知识的应用:一是均匀带电球体的场强定式(它也是来自叠加原理,这里具体用到的是球体内部的结论,即“剥皮法则”),二是填补法。
将球体和空腔看成完整的带正电的大球和带负电(电荷体密度相等)的小球的集合,对于空腔中任意一点P ,设OP = r 1 ,P O ' = r 2 ,则大球激发的场强为E 1 = k 2131r r 34πρ = 34k ρπr 1 ,方向由O 指向P“小球”激发的场强为E 2 = k 2232r r 34πρ = 34k ρπr 2 ,方向由P 指向O ′E 1和E 2的矢量合成遵从平行四边形法则,ΣE 的方向如图。
又由于矢量三角形PE 1ΣE 和空间位置三角形OP O ′是相似的,ΣE 的大小和方向就不难确定了。
【答案】恒为34k ρπa ,方向均沿O → O ′,空腔里的电场是匀强电场。
〖学员思考〗如果在模型2中的OO ′连线上O ′一侧距离O 为b (b >R )的地方放一个电量为q 的点电荷,它受到的电场力将为多大?〖解说〗上面解法的按部就班应用…〖答〗34πk ρq 〔23b R −23)a b (R -'〕。
二、电势、电量与电场力的功【物理情形1】如图7-8所示,半径为R 的圆环均匀带电,电荷线密度为λ,圆心在O 点,过圆心跟环面垂直的轴线上有P 点,PO = r ,以无穷远为参考点,试求P 点的电势U P 。
【模型分析】这是一个电势标量叠加的简单模型。
先在圆环上取一个元段ΔL ,它在P 点形成的电势ΔU = k 22r R L +∆λ环共有LR2∆π段,各段在P 点形成的电势相同,而且它们是标量叠加。
【答案】U P =22rR R k 2+λπ〖思考〗如果上题中知道的是环的总电量Q ,则U P 的结论为多少?如果这个总电量的分布不是均匀的,结论会改变吗?〖答〗U P =22rR kQ + ;结论不会改变。
〖再思考〗将环换成半径为R 的薄球壳,总电量仍为Q ,试问:(1)当电量均匀分布时,球心电势为多少?球内(包括表面)各点电势为多少?(2)当电量不均匀分布时,球心电势为多少?球内(包括表面)各点电势为多少?〖解说〗(1)球心电势的求解从略;球内任一点的求解参看图7-5ΔU 1 = k 11r S ∆σ= k 1r σ·α•∆Ωcos r 21= k σΔΩαcos r1ΔU 2 = k σΔΩαcos r 2它们代数叠加成 ΔU = ΔU 1 + ΔU 2 = k σΔΩα+cos r r 21 而 r 1 + r2 = 2Rcos α 所以 ΔU = 2Rk σΔΩ所有面元形成电势的叠加 ΣU = 2Rk σΣΔΩ注意:一个完整球面的ΣΔΩ = 4π(单位:球面度sr ),但作为对顶的锥角,ΣΔΩ只能是2π ,所以——ΣU = 4πRk σ= kRQ(2)球心电势的求解和〖思考〗相同;球内任一点的电势求解可以从(1)问的求解过程得到结论的反证。