第09讲 空间几何体的表面积和体积
空间几何体的表面积和体积课件-ppt

空间几何体的表面积 与体积
柱体、锥体、台体 的表面积与体积
什么是面积?
面积:平面图形所占平面的大小
b
S=ab
a A
ch
S 1 ah 1 ac sin B 22
Ba C
b Aa
S a ha b hb
absin A
a
S 1 (a b)h
3
作业
已知正方体的八个顶点都在球O的球面上,且正方体 的棱长为a,求球O的表面积和体积.
解答:正方体的一条对
角线是球的一条直径,
所以球的半径为 R
3a
2
C′
o
A
感谢阅读
根据台体的特征,如何求台体的体积? 圆台(棱台)是由圆锥(棱锥)截成的
V 1 (S' S'S S)h 3 A
P
A
D
S
C
B
h
D
S C
B
V 1 h[Sh (S S' )
S' ]
3
S S'
思考6:在台体的体积公式中,若S′=S, S′=0,则公式分别变形为什么?
S′=S
S′=0
例3.有一堆规格相同的铁制六角螺帽共重 5.8kg(铁的密度是7.8g/cm3),已知螺帽的底 面是正六边形,边长为12mm,内孔直径为10mm, 高为10mm,问这堆螺帽大约有多少个?
RS2
1 3
RS3
V球
4
3
R3
1 3
RS球面
球的体积和表面积
例1 如图,圆柱的底面直径与高都等于球的直 径,求证:(1)球的体积等于圆柱体积的 2 ;
几何体的表面积与体积

几何体的表面积与体积几何体是指在三维空间中有一定形状的立体物体。
几何体的表面积和体积是几何体的两个重要属性,它们可以帮助我们了解几何体的大小和形状。
本文将探讨几何体的表面积和体积的计算方法,并介绍一些常见几何体的表面积和体积公式。
一、表面积的计算方法表面积是指几何体外部各个平面的总面积。
不同几何体的表面积计算方法也不同。
1. 立方体的表面积计算公式:立方体是一种六个面都是正方形的几何体,因此它的表面积等于六个面的面积之和。
假设立方体的边长为a,则立方体的表面积S等于6a²。
2. 正方体的表面积计算公式:与立方体类似,正方体也有六个面,但是它们的边长相等,因此正方体的表面积等于六个面的面积之和。
假设正方体的边长为a,则正方体的表面积S等于6a²。
3. 圆柱体的表面积计算公式:圆柱体是由两个平行圆底和连接两个底面的侧面组成的,因此它的表面积等于两个底面的面积和侧面的面积之和。
假设圆柱体的底面半径为r,高度为h,则圆柱体的表面积S等于2πr²+2πrh。
4. 圆锥体的表面积计算公式:圆锥体由一个圆锥底面和连接圆锥顶点与底面所有点的侧面组成,因此它的表面积等于底面的面积和侧面的面积之和。
假设圆锥体的底面半径为r,侧面半径为l(斜高),则圆锥体的表面积S等于πrl+πr²。
5. 球体的表面积计算公式:球体是一个完全由曲面组成且所有点到球心的距离相等的几何体,因此它的表面积可以通过其半径计算得出。
假设球体的半径为r,则球体的表面积S等于4πr²。
二、体积的计算方法体积是指几何体所占据空间的容量大小。
不同几何体的体积计算方法也不同。
1. 立方体的体积计算公式:立方体的体积等于边长的立方。
假设立方体的边长为a,则立方体的体积V等于a³。
2. 正方体的体积计算公式:正方体也是由边长决定其体积的。
假设正方体的边长为a,则正方体的体积V等于a³。
3. 圆柱体的体积计算公式:圆柱体的体积等于底面面积乘以高度。
空间几何体的表面积和体积

空间几何体的表面积和体积在数学中,空间几何体的表面积和体积是重要的概念,它们用于描述和计算各种三维物体的特性。
本文将深入探讨空间几何体的表面积和体积,并介绍如何计算它们,以及它们在实际生活中的应用。
一、立方体的表面积和体积首先,让我们从最简单的三维几何体开始:立方体。
立方体是一个拥有六个相等的正方形面的空间几何体。
要计算立方体的表面积,我们可以使用以下公式:**表面积 = 6 * 边长^2**其中,边长代表正方形的一边的长度。
而立方体的体积计算则非常简单:**体积 = 边长^3**这两个公式可以帮助我们计算立方体的表面积和体积。
例如,如果一个立方体的边长是3单位,那么它的表面积为6 * 3^2 = 54平方单位,而体积为3^3 = 27立方单位。
二、球体的表面积和体积接下来,我们来考虑球体,球体是一个没有棱角的三维几何体。
要计算球体的表面积和体积,我们使用以下公式:**表面积= 4πr^2****体积= (4/3)πr^3**这里,r代表球体的半径,而π(圆周率)的值约为3.14159。
这两个公式可以用来计算球体的表面积和体积。
举例来说,如果一个球体的半径是2单位,那么它的表面积为4π(2^2) ≈ 50.27平方单位,而体积为(4/3)π(2^3) ≈ 33.51立方单位。
三、长方体的表面积和体积长方体是另一个常见的三维几何体,它拥有6个矩形面。
要计算长方体的表面积和体积,我们可以使用以下公式:**表面积 = 2lw + 2lh + 2wh****体积 = lwh**其中,l代表长方体的长度,w代表宽度,h代表高度。
这些公式允许我们计算长方体的表面积和体积。
举例来说,如果一个长方体的长度是4单位,宽度是3单位,高度是2单位,那么它的表面积为2(4*3) + 2(4*2) + 2(3*2) = 52平方单位,而体积为4*3*2 = 24立方单位。
四、圆柱体的表面积和体积圆柱体是一个具有两个平行圆形底面的三维几何体。
空间几何体的表面积与体积

空间几何体的表面积与体积在几何学中,空间几何体是指由点、线、面在三维空间中组成的立体物体。
每个空间几何体都有其独特的特征,其中包括表面积和体积。
表面积是指几何体外部覆盖的总面积,而体积则是指几何体所包含的最大空间。
不同类型的空间几何体有不同的表面积和体积计算公式。
下面我们将介绍几种常见的空间几何体,以及它们的表面积和体积计算方法。
一、球体球体是由一条半径相等的曲线绕着它的直径旋转一周所形成的几何体。
球体的表面积和体积计算公式如下:球体的表面积= 4πr²球体的体积= (4/3)πr³其中,r表示球的半径,π是一个常数,约等于3.14。
二、长方体长方体是由六个矩形面围成的空间几何体,它的所有侧面都是矩形。
长方体的表面积和体积计算公式如下:长方体的表面积 = 2lw + 2lh + 2wh长方体的体积 = lwh其中,l、w、h分别表示长方体的长、宽和高。
三、圆柱体圆柱体是由一个圆形的底面和与底面平行的一个曲面所组成的几何体。
圆柱体的表面积和体积计算公式如下:圆柱体的表面积= 2πr² + 2πrh圆柱体的体积= πr²h其中,r表示圆柱体的底面半径,h表示圆柱体的高。
四、圆锥体圆锥体是由一个圆锥面和一个圆形底面所组成的几何体。
圆锥体的表面积和体积计算公式如下:圆锥体的表面积= πr² + πrl圆锥体的体积= (1/3)πr²h其中,r表示圆锥体的底面半径,l表示圆锥体的斜高,h表示圆锥体的高。
五、正方体正方体又称为立方体,是由六个相等的正方形面围成的空间几何体。
正方体的表面积和体积计算公式如下:正方体的表面积 = 6a²正方体的体积 = a³其中,a表示正方体的边长。
除了上述所介绍的常见几何体之外,还有一些其他几何体,如圆环、圆球截面、棱锥等,它们的表面积和体积计算方法也略有不同。
总结起来,空间几何体的表面积和体积可以通过特定的公式进行计算。
空间几何体表面积和体积公式

空间几何体表面积和体积公式
空间几何体表面积和体积公式如下:
表面积公式:
S = 2 × (a + b + c)
其中,a、b、c分别表示几何体的长、宽、高。
体积公式:
V = a × b × c
其中,a、b、c分别表示几何体的长、宽、高。
还有一些常用的表面积和体积公式:
1. 如果一个几何体只有一个面是正方形或正多边形,那么它的
表面积和体积都可以用一个简单的公式计算:S = 4a,V = a × b。
2. 如果一个几何体的边长为c,那么它的表面积可以表示为:S = 2 × (c + d),其中d表示几何体的长宽比。
体积可以表示为:V = c ×d。
3. 如果一个几何体是正多边形,且每个内角都相等,那么它的表
面积和体积都可以用一个复杂的公式计算:S = (n-2) × 4a,V = (n-2) × a × b。
其中n表示正多边形的边数。
4. 如果一个几何体只有一个面是矩形或圆形,那么它的表面积
和体积都可以用一个简单的公式计算:S = a + b + c,V = π× r ×(a + b + c)。
其中π是圆周率,r表示几何体的半径。
这些公式只是一些基本的几何公式,实际上还有很多更复杂的公
式可以用于计算几何体的性质。
了解这些基本的公式有助于我们更方
便地计算几何体的面积和体积。
空间几何体的表面积与体积 课件

(R 为下底面圆的半径,r 为上底面圆的半径,l 为圆台的 母线长).
5.球的表面积公式:S 表面=___4_π_R__2 _(R 为球的半径).
[探究] 根据圆柱、圆锥、圆台之间的关系,你能发现三 者的表面积公式之间的关系吗?
2.棱柱的侧面展开图是由平__行__四__边__形__构成的平面图形;棱 锥的侧面展开图是由_三__角__形_____构成的平面图形;棱台的侧面 展开图是由___梯__形_____________构成的平面图形.
3.多面体的表面积,又称全面积,是多面体的底面积与侧 面积的和,也即多面体各个面的面积的和.
为底面面积,h 为柱体的高).
1
2.锥体的体积公式:V 锥体=___3_S_h___________________(S 为底3面.面台积体,的h体为积锥公体式的:高V)台.体=_____13_(_S_′+____S′__S_+__S_)_h___(S′、
S 为上、下底面面积,h 为台体的高). 4.球的体积公式:V 球=_4_._43π __R__3 _(R 为球的半径). [探究] 根据柱体、锥体、台体之间的关系,你能发现三
A.3πa2 B.6πa2 C.12πa2 D.24πa2
[答案] B
2
► 题组二 求几何体的体积 【例题演练】
例 1 已知一个空间几何体的正视图、侧视图和俯视图均为 全等的等腰直角三角形,如果直角三角形的直角边长为 1,那么 这个几何体的体积为( )
A.1
1 B.2
1 C.3
1 D.6
[答案] D
例 2 已知一个底面直径为 20 cm 的装有一部分水的圆柱 形玻璃杯,水中放着一个底面直径为 6 cm,高为 20 cm 的一个 圆锥形铅锤,铅锤完全浸没在水中.当铅锤从中取出后,则杯 里的水将下降(取π=3.14)( )
空间几何体的表面积及体积计算公式

空间几何体的表面积及体积计算公式空间几何体是指在三维坐标系中存在的几何图形,包括立方体、圆锥体、圆柱体、球体等等。
对于这些几何体来说,求其表面积和体积是我们在学习空间几何时需要掌握的核心内容。
下面我们将详细介绍各种空间几何体的表面积及体积的计算公式。
一、立方体立方体是一种六个面都是正方形的几何体,其表面积和体积计算公式如下:表面积 = 6 × a²体积 = a³其中,a为立方体的边长。
二、正方体正方体是一种所有面都是正方形的几何体,其表面积和体积计算公式如下:表面积 = 6 × a²体积 = a³其中,a为正方体的边长。
三、圆锥体圆锥体是一种由一个圆锥顶点和一个底面为圆形的仿射锥面构成的几何体,其表面积和体积计算公式如下:表面积= πr²+πrl体积= 1/3πr²h其中,r为底面圆半径,l为母线长度,h为圆锥体的高。
四、圆柱体圆柱体是一种由平行于固定轴的两个相等且共面的圆面和它们之间的圆柱面所围成的几何体,其表面积和体积计算公式如下:表面积= 2πrh+2πr²体积= πr²h其中,r为底面圆半径,h为圆柱体的高。
五、球体球体是一种由所有到球心的距离等于固定半径的点所组成的几何体,其表面积和体积计算公式如下:表面积= 4πr²体积= 4/3πr³其中,r为球体的半径。
以上就是五种常见空间几何体的表面积及体积计算公式,希望能够对大家在学习空间几何时有所帮助。
同时,我们也需要关注其实际应用,在工程建设和生活中经常会涉及到这些几何体的计算,因此深化这些知识点的学习,将对我们未来的发展产生积极的影响。
空间几何体的表面积与体积

空间几何体的表面积与体积在我们的日常生活中,从简单的水杯、盒子,到宏伟的建筑、雕塑,空间几何体无处不在。
而了解空间几何体的表面积与体积,不仅在数学学习中至关重要,对于实际生活中的设计、制造和计算成本等方面也具有重要意义。
首先,让我们来谈谈空间几何体的表面积。
表面积是指几何体表面的总面积。
对于常见的几何体,如棱柱、棱锥、圆柱、圆锥和球,它们的表面积计算方法各有不同。
棱柱是由两个平行且全等的多边形底面和若干个矩形侧面组成的。
计算棱柱的表面积,就是要把两个底面的面积和侧面的面积相加。
假设棱柱的底面是一个边长为 a 的正 n 边形,高为 h,侧棱长为 l,那么底面的面积就是 n 乘以(1/2)乘以 a 乘以 l(其中 l 是从多边形中心到边的距离),侧面的面积就是 n 乘以 a 乘以 h 。
棱锥则有一个多边形底面和若干个三角形侧面。
以正棱锥为例,如果底面是一个边长为 a 的正 n 边形,棱锥的高为 h,斜高为 h' ,那么底面面积的计算方法和正棱柱底面相同,侧面三角形的面积就是(1/2)乘以 a 乘以 h' 。
圆柱是由两个平行且相等的圆底面和一个侧面组成。
底面圆的面积大家都很熟悉,就是πr² (r 是底面圆的半径),侧面展开是一个矩形,其面积是2πr 乘以 h (h 是圆柱的高),所以圆柱的表面积就是2πr² +2πrh 。
圆锥的表面积包括底面圆的面积πr² 和侧面扇形的面积。
侧面扇形的面积计算相对复杂一些,需要用到圆锥的母线长 l ,其公式是πrl 。
再来看看球,球的表面积公式是4πr² ,其中 r 是球的半径。
了解了空间几何体的表面积,接下来谈谈体积。
体积是指几何体所占空间的大小。
棱柱的体积等于底面积乘以高。
如果底面面积是 S ,高是 h ,那么体积就是 V = Sh 。
棱锥的体积是棱柱体积的三分之一,即 V =(1/3)Sh 。
圆柱的体积公式是V =πr²h ,这与棱柱体积的计算思路是一致的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
普通高中课程标准实验教科书—数学[人教版]高三新数学第一轮复习教案(讲座9)—空间几何体的表面积和体积一.课标要求:了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。
二.命题走向近些年来在高考中不仅有直接求多面体、旋转体的面积和体积问题,也有已知面积或体积求某些元素的量或元素间的位置关系问题。
即使考查空间线面的位置关系问题,也常以几何体为依托.因而要熟练掌握多面体与旋转体的概念、性质以及它们的求积公式.同时也要学会运用等价转化思想,会把组合体求积问题转化为基本几何体的求积问题,会等体积转化求解问题,会把立体问题转化为平面问题求解,会运用“割补法”等求解。
由于本讲公式多反映在考题上,预测008年高考有以下特色:(1)用选择、填空题考查本章的基本性质和求积公式;(2)考题可能为:与多面体和旋转体的面积、体积有关的计算问题;与多面体和旋转体中某些元素有关的计算问题;三.要点精讲1.多面体的面积和体积公式表中S表示面积,c′、c分别表示上、下底面周长,h表斜高,h′表示斜高,l表示侧棱长。
2.旋转体的面积和体积公式表中l 、h 分别表示母线、高,r 表示圆柱、圆锥与球冠的底半径,r 1、r 2分别表示圆台 上、下底面半径,R 表示半径。
四.典例解析题型1:柱体的体积和表面积例1.一个长方体全面积是20cm 2,所有棱长的和是24cm ,求长方体的对角线长. 解:设长方体的长、宽、高、对角线长分别为xcm 、ycm 、zcm 、lcm依题意得:⎩⎨⎧=++=++24)(420)(2z y x zx yz xy )2()1(由(2)2得:x 2+y 2+z 2+2xy+2yz+2xz=36(3)由(3)-(1)得x 2+y 2+z 2=16 即l 2=16所以l =4(cm)。
点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考察。
我们平常的学习中要多建立一些重要的几何要素(对角线、内切)与面积、体积之间的关系。
例2.如图1所示,在平行六面体ABCD —A 1B 1C 1D 1中,已知AB=5,AD=4,AA 1=3,AB ⊥AD ,∠A 1AB=∠A 1AD=3π。
(1)求证:顶点A 1在底面ABCD 上的射影O 在∠BAD 的平分线上; (2)求这个平行六面体的体积。
图1 图2 解析:(1)如图2,连结A 1O ,则A 1O ⊥底面ABCD 。
作OM ⊥AB 交AB 于M ,作ON ⊥AD 交AD 于N ,连结A 1M ,A 1N 。
由三垂线定得得A 1M ⊥AB ,A 1N ⊥AD 。
∵∠A 1AM=∠A 1AN ,∴Rt △A 1NA ≌Rt △A 1MA,∴A 1M=A 1N , 从而OM=ON 。
∴点O 在∠BAD 的平分线上。
(2)∵AM=AA 1cos3π=3×21=23∴AO=4cosπAM =223。
又在Rt △AOA 1中,A 1O 2=AA 12 – AO 2=9-29=29, ∴A 1O=223,平行六面体的体积为22345⨯⨯=V 230=。
题型2:柱体的表面积、体积综合问题例3.(2000全国,3)一个长方体共一顶点的三个面的面积分别是6,3,2,这个长方体对角线的长是( ) A .23B .32C .6D .6解析:设长方体共一顶点的三边长分别为a =1,b =2,c =3,则对角线l 的长为l =6222=++c b a ;答案D 。
点评:解题思路是将三个面的面积转化为解棱柱面积、体积的几何要素—棱长。
例4.如图,三棱柱ABC —A 1B 1C 1中,若E 、F 分别为AB 、AC 的中点,平面EB 1C 1将三棱柱分成体积为V 1、V 2的两部分,那么V 1∶V 2= ____ _。
解:设三棱柱的高为h ,上下底的面积为S ,体积为V ,则V=V 1+V 2=Sh 。
∵E 、F 分别为AB 、AC 的中点,∴S △AEF =41S, V 1=31h(S+41S+41⋅S )=127Sh V 2=Sh-V 1=125Sh , ∴V 1∶V 2=7∶5。
点评:解题的关键是棱柱、棱台间的转化关系,建立起求解体积的几何元素之间的对应关系。
最后用统一的量建立比值得到结论即可。
题型3:锥体的体积和表面积PACDOE 例5.(2006上海,19)在四棱锥P -ABCD 中,底面是边长为2的菱形,∠DAB =60,对角线AC 与BD 相交于点O ,PO ⊥平面ABCD ,PB 与平面ABCD 所成的角为60,求四棱锥P -ABCD 的体积? 解:(1)在四棱锥P-ABCD 中,由PO ⊥平面ABCD,得∠PBO 是PB 与平面ABCD 所成的角,∠PBO=60°。
在Rt △AOB 中BO=ABsin30°=1, 由PO ⊥BO ,于是PO=BOtan60°=3,而底面菱形的面积为23。
∴四棱锥P -ABCD 的体积V=31×23×3=2。
点评:本小题重点考查线面垂直、面面垂直、二面角及其平面角、棱锥的体积。
在能力方面主要考查空间想象能力。
例6.(2002京皖春文,19)在三棱锥S —ABC 中,∠SAB =∠SAC =∠ACB =90°,且AC =BC =5,SB =55。
(如图所示) (Ⅰ)证明:SC ⊥BC ;(Ⅱ)求侧面SBC 与底面ABC 所成二面角的大小; (Ⅲ)求三棱锥的体积V S -AB C 。
解析:(Ⅰ)证明:∵∠SAB =∠SAC =90°, ∴SA ⊥AB ,SA ⊥A C 。
又AB ∩AC =A , ∴SA ⊥平面AB C 。
由于∠ACB =90°,即BC ⊥AC ,由三垂线定理,得SC ⊥BC 。
(Ⅱ)解:∵BC ⊥AC ,SC ⊥BC 。
∴∠SCA 是侧面SCB 与底面ABC 所成二面角的平面角。
在Rt △SCB 中,BC =5,SB =55,得SC =22BC SB -=10。
在Rt △SAC 中AC =5,SC =10,cos SCA =21105==SC AC , ∴∠SCA =60°,即侧面SBC 与底面ABC 所成的二面角的大小为60°。
(Ⅲ)解:在Rt △SAC 中,∵SA =755102222=-=-AC SC ,S △ABC =21·AC ·BC =21×5×5=225, ∴V S -ABC =31·S △ACB ·SA =631257522531=⨯⨯。
点评:本题比较全面地考查了空间点、线、面的位置关系。
要求对图形必须具备一定的洞察力,并进行一定的逻辑推理。
题型4:锥体体积、表面积综合问题例7.ABCD 是边长为4的正方形,E 、F 分别是AB 、AD 的中点,GB 垂直于正方形ABCD 所在的平面,且GC =2,求点B 到平面EFC 的距离?解:如图,取EF 的中点O ,连接GB 、GO 、CD 、FB 构造三棱锥B -EFG 。
设点B 到平面EFG 的距离为h ,BD =42,EF =22,CO =344232×=。
GO CO GC =+=+=+=222232218422()。
而GC ⊥平面ABCD ,且GC =2。
由V V B EFG G EFB --=,得16EF GO h ··=13S EFB △· 点评:该问题主要的求解思路是将点面的距离问题转化为体积问题来求解。
构造以点B 为顶点,△EFG 为底面的三棱锥是解此题的关键,利用同一个三棱锥的体积的唯一性列方程是解这类题的方法,从而简化了运算。
例8.(2006江西理,12)如图,在四面体ABCD中,截面AEF 经过四面体的内切球(与四个面都相切的球)球心O ,且与BC ,DC 分别截于E 、F ,如果截面将四面体分成体积相等的两部分,设四棱锥A -BEFD 与三棱锥A -EFC 的表面积分别是S 1,S 2,则必有( )A .S 1<S 2B .S 1>S 2C .S 1=S 2D .S 1,S 2的大小关系不能确定解:连OA 、OB 、OC 、OD ,则V A -BEFD =V O -ABD +V O -ABE +V O -BEFDCV A -EFC =V O -ADC +V O -AEC +V O -EFC 又V A -BEFD =V A -EFC ,而每个三棱锥的高都是原四面体的内切球的半径,故S ABD +S ABE +S BEFD =S ADC +S AEC +S EFC 又面AEF 公共,故选C点评:该题通过复合平面图形的分割过程,增加了题目处理的难度,求解棱锥的体积、表面积首先要转化好平面图形与空间几何体之间元素间的对应关系。
题型5:棱台的体积、面积及其综合问题例9.(2002北京理,18)如图9—24,在多面体ABCD —A 1B 1C 1D 1中,上、下底面平行且均为矩形,相对的侧面与同一底面所成的二面角大小相等,侧棱延长后相交于E ,F 两点,上、下底面矩形的长、宽分别为c ,d 与a ,b ,且a >c ,b >d ,两底面间的距离为h 。
(Ⅰ)求侧面ABB 1A 1与底面ABCD 所成二面角的大小; (Ⅱ)证明:EF ∥面ABCD ;(Ⅲ)在估测该多面体的体积时,经常运用近似公式V 估=S 中截面·h 来计算.已知它的体积公式是V =6h(S 上底面+4S 中截面+S 下底面),试判断V 估与V 的大小关系,并加以证明。
(注:与两个底面平行,且到两个底面距离相等的截面称为该多面体的中截面) (Ⅰ)解:过B 1C 1作底面ABCD 的垂直平面,交底面于PQ ,过B 1作B 1G ⊥PQ ,垂足为G 。
如图所示:∵平面ABCD ∥平面A 1B 1C 1D 1,∠A 1B 1C 1=90°, ∴AB ⊥PQ ,AB ⊥B 1P .∴∠B 1PG 为所求二面角的平面角.过C 1作C 1H ⊥PQ ,垂足为H .由于相对侧面与底面所成二面角的大小相等,故四边形B 1PQC 1为等腰梯形。
∴PG =21(b -d ),又B 1G =h ,∴tan B 1PG =db h -2(b >d ), ∴∠B 1PG =arctand b h -2,即所求二面角的大小为arctan db h-2. (Ⅱ)证明:∵AB ,CD 是矩形ABCD 的一组对边,有AB ∥CD ,又CD 是面ABCD 与面CDEF 的交线, ∴AB ∥面CDEF 。
∵EF 是面ABFE 与面CDEF 的交线, ∴AB ∥EF 。