IRPT1057A;中文规格书,Datasheet资料
ATSTK520;中文规格书,Datasheet资料

STK520 .............................................................................................. User GuideSTK520 User Guide 3Table of ContentsSection 1Introduction............................................................................................1-2Section 2Using the STK520 Top Module.............................................................2-42.1Connecting the STK520 to the STK500 Starter Kit..................................2-42.1.1Placing an AT90PWM3 on the STK520.............................................2-42.1.2Placing an AT90PWM2 on the STK520.............................................2-52.2Programming the AVR..............................................................................2-72.2.1In-System Programming....................................................................2-72.2.2High-voltage Programming................................................................2-82.3JTAGICE mkII Connector.........................................................................2-92.4STK520 Jumpers, Leds & Test Points....................................................2-112.5DALI Interface.........................................................................................2-122.6Potentiometer.........................................................................................2-13Section 3Troubleshooting Guide........................................................................3-14Section 4Technical Specifications......................................................................4-16Section 5Technical Support ...............................................................................5-17Section 6Complete Schematics .........................................................................6-20IntroductionSection 1IntroductionThe STK520 board is a top module designed to add AT90PWM family support to theSTK500 development board from Atmel Corporation.The STK520 includes connectors and hardware allowing full utilization of the new fea-tures of the AT90PWM, while the Zero Insertion Force (ZIF) socket allows easy to use ofSO24 & SO32 packages for prototyping.This user guide acts as a general getting started guide as well as a complete technicalreference for advanced users.Notice that in this guide, the word AVR is used to refer to the target component(AT90PWM2, AT90PWM3...)Figure 1-1. STK520 Top Module for STK500Introduction1.1Features STK520 is a New Member of the Successful STK500 Starter Kit Family.Supports the AT90PWM2 & AT90PWM3.DALI Hardware Interface.Supported by AVR Studio® 4.Zero Insertion Force Socket for SO24 & SO32 Packages.High Voltage Parallell Programming.Serial Programming.DALI Peripherals can be Disconnected from the Device.6 Pin Connector for On-chip Debugging using JTAG MKII Emulator.Potentiometer for the Demo Application.Quick Reference to all Switches and Jumpers in the Silk-Screen of the PCB.Using the STK520 Top Module Section 2Using the STK520 Top Module2.1Connecting the STK520 to theSTK500 Starter Kit Connect the STK520 to the STK500 expansion header 0 and 1. It is important that the top module is connected in the correct orientation as shown in Figure 2-1. The EXPAND0 written on the STK520 top module should match the EXPAND0 written beside the expansion header on the STK500 board.Figure 2-1. Connecting STK520 to the STK500 BoardNote:Connecting the STK520 with wrong orientation may damage the board.2.1.1Placing anAT90PWM3 on theSTK520The STK520 contains both a ZIF socket for a SO32 package. Care should be taken so that the device is mounted with the correct orientation. Figure 2-2 shows the location of pin1 for the ZIF socket.Using the STK520 Top ModuleFigure 2-2. Pin1 on ZIF SocketCaution: Do not mount an AT90PWM3 on the STK520 at the same time as an AVR ismounted on the STK500 board or at the same time as an AT90PWM2 is mounted on theSTK520 board. None of the devices might work as intended.2.1.2Placing anAT90PWM2 on theSTK520The STK520 contains both a ZIF socket for a SO24 package. Care should be taken so that the device is mounted with the correct orientation. Figure 2-2 shows the location of pin1 for the ZIF socket.Figure 2-3. Pin1 on ZIF SocketPIN1PIN1Using the STK520 Top Module Caution: Do not mount an AT90PWM2 on the STK520 at the same time as an AVR is mounted on the STK500 board or at the same time as an AT90PWM3 is mounted on the STK520 board. None of the devices might work as intended.Using the STK520 Top Module2.2Programming theAVR The AVR (AT90PWM2, AT90PWM3...) can be programmed using both SPI and High-voltage Parallel Programming. This section will explain how to connect the programming cables to successfully use one of these two modes. The AVR Studio STK500 software is used in the same way as for other AVR partsNote:The AT90PWM3 also support Self Programming, See AVR109 application note for more information on this topic.2.2.1In-SystemProgramming Figure 2-4. In-System ProgrammingTo program the AT90PWM3 using ISP Programming mode, connect the 6-wire cable between the ISP6PIN connector on the STK500 board and the ISP connector on the STK520 board as shown in Figure 2-4. The device can be programmed using the Serial Programming mode in the AVR Studio4 STK500 software.Note:See STK500 User Guide for information on how to use the STK500 front-end software for ISP Programming.Using the STK520 Top Module2.2.2High-voltageProgramming Figure 2-5. High-voltage (Parallel) ProgrammingTo program the AVR using High-voltage (Parallel) Programming, connect the PROGC-TRL to PORTD and PROGDATA to PORTB on the STK500 as shown in Figure 2-5. Make sure that the TOSC-switch is placed in the XTAL position.As described in the STK500 User Guide (jumper settings), mount the BSEL2 jumper in order to High-voltage Program the ATmega devices. This setting also applies to High-voltage Programming of the AVR.The device can now be programmed using the High-voltage Programming mode in AVR Studio STK500 software.Note:See the STK500 User Guide for information on how to use the STK500 front-end software in High-voltage Programming mode.Note:For the High-voltage Programming mode to function correctly, the target voltage must be higher than 4.5V.Using the STK520 Top Module2.3JTAGICE mkIIConnector See the following document :“JTAGICE mkII Quick Start Guide” which purpose is “Connecting to a target board with the AVR JTAGICE mkII”.This note explains which signals are required for ISP and which signals are required for debugWIRE.Figure 2-6 shows how to connect the JTAGICE mkII probe on the STK520 board. Figure 2-6. Connecting JTAG ICE to the STK520The ISP connector is used for the AT90PWM3 built-in debugWire interface. The pin out of the connector is shown in Table 2-1 and is compliant with the pin out of the JTAG ICE available from Atmel. Connecting a JTAG ICE to this connector allows On-chip Debug-ging of the AT90PWM3.More information about the JTAG ICE and On-chip Debugging can be found in the AVR JTAG ICE User Guide, which is available at the Atmel web site, .分销商库存信息: ATMELATSTK520。
SAA1057锁相环集成电路手册

• An in-lock counter detects when the system is in-lock. The digital phase detector is switched-off automatically when an in-lock condition is detected.
Features
• On-chip prescaler with up to 120 MHz input frequency. • On-chip AM and FM input amplifiers with high sensitivity
(30 mV and 10 mV respectively). • Low current drain (typically 16 mA for AM and 20 mA for
Philips Semiconductors
Radio tuning PLL frequency synthesizer
Product specification
SAA1057
Fig.1 Block diagram.
November 1983
3
Philips Semiconductors
Radio tuning PLL frequency synthesizer
INTEGRATED CIRCUITS
DATA SHEET
SAA1057 Radio tuning PLL frequency synthesizer
Product specification File under Integrated Circuits, IC01
APHHS1005PBCA;中文规格书,Datasheet资料

Part Number: APHHS1005PBC/A Blue
ATTENTION
OBSERVE PRECAUTIONS FOR HANDLING ELECTROSTATIC DISCHARGE SENSITIVE DEVICES
Features
DATE: MAY/05/2007 DRAWN: Y.L.LI
PAGE: 3 OF 5 ERP: 1203003812
/
APHHS1005PBC/A
Recommended Soldering Pattern (Units : mm; Tolerance: ± 0.1)
Package Dimensions
Notes: 1. All dimensions are in millimeters (inches). 2. Tolerance is ±0.1(0.004") unless otherwise noted. 3. Specifications are subject to change without notice. 4. The device has a single mounting surface. The device must be mounted according to the specifications.
DATE: MAY/05/2007 DRAWN: Y.L.LI
PAGE: 2 OF 5 ERP: 1203003812
/
Blue
APHHS1005PBC/A
SPEC NO: DSAF3608 APPROVED: WYNEC
REV NO: V.3 CHECKED: Allen Liu
ICS557-01 Datasheet说明书

PCI-EXPRESS CLOCK SOURCEDescriptionThe ICS557-01 is a clock chip designed for use inPCI-Express Cards as a clock source. It provides a pair of differential outputs at 100 MHz in a small 8-pin SOIC package.Using IDT’s patented Phase-Locked Loop (PLL) techniques, the device takes a 25 MHz crystal input and produces HCSL (Host Clock Signal Level) differential outputs at 100 MHz clock frequency. LVDS signal levels can also be supported via an alternative termination scheme.Features•Supports PCI-Express TM HCSL Outputs0.7 V current mode differential pair •Supports LVDS Output Levels•Packaged in 8-pin SOIC•RoHS 5 (green ) or RoHS 6 (green and lead free) compliant packaging•Operating voltage of 3.3 V•Low power consumption•Input frequency of 25 MHz•Short term jitter 100 ps (peak-to-peak)•Output Enable via pin selection•Industrial temperature range availableBlock DiagramPin Assignment Pin DescriptionsPin NumberPinNamePinTypePin Description1OE Input Output Enable signal(H = outputs are enabled, L = outputs are disabled/tristated).Internal pull-up resistor.2X1Input Crystal or clock input. Connect to a 25 MHz crystal or single ended clock. 3X2XO Crystal Connection. Connect to a parallel mode crystal.Leave floating if clock input.4GND Power Connect to ground.5IREF Output A 475Ω precision resistor connected between this pin and groundestablishes the external reference current.6CLK Output HCSL differential complementary clock output.7CLK Output HCSL differential clock output.8VDD Power Connect to +3.3 V.Applications Information External ComponentsA minimum number of external components are required for proper operation.Decoupling CapacitorsDecoupling capacitors of 0.01 μF should be connected between VDD and the ground plane (pin 4) as close to the VDD pin as possible. Do not share ground vias between components. Route power from power source through the capacitor pad and then into IDT pin.CrystalA 25 MHz fundamental mode parallel resonant crystal with C L = 16 pF should be used. This crystal must have less than 300 ppm of error across temperature in order for theICS557-01 to meet PCI Express specifications.Crystal CapacitorsCrystal capacitors are connected from pins X1 to ground and X2 to ground to optimize the accuracy of the output frequency.C L= Crystal’s load capacitance in pFCrystal Capacitors (pF) = (C L- 8) * 2For example, for a crystal with a 16 pF load cap, each external crystal cap would be 16 pF. (16-8)*2=16.Current Source (Iref) Reference Resistor - R RIf board target trace impedance (Z) is 50Ω, then R R = 475Ω(1%), providing IREF of 2.32 mA. The output current (I OH) is equal to 6*IREF.Output TerminationThe PCI-Express differential clock outputs of the ICS557-01 are open source drivers and require an external series resistor and a resistor to ground. These resistor values and their allowable locations are shown in detail in thePCI-Express Layout Guidelines section.The ICS557-01can also be configured for LVDS compatible voltage levels. See the LVDS Compatible Layout Guidelines sectionGeneral PCB Layout RecommendationsFor optimum device performance and lowest output phase noise, the following guidelines should be observed.1. Each 0.01µF decoupling capacitor should be mounted on the component side of the board as close to the VDD pin as possible.2. No vias should be used between decoupling capacitor and VDD pin.3. The PCB trace to VDD pin should be kept as short as possible, as should the PCB trace to the ground via. Distance of the ferrite bead and bulk decoupling from the device is less critical.4. An optimum layout is one with all components on the same side of the board, minimizing vias through other signal layers (any ferrite beads and bulk decoupling capacitors can be mounted on the back). Other signal traces should be routed away from the ICS557-01.This includes signal traces just underneath the device, or on layers adjacent to the ground plane layer used by the device.PCI-Express Layout GuidelinesFigure 1: PCI-Express Device RoutingTypical PCI-Express (HCSL) WaveformLVDS Compatible Layout GuidelinesFigure: LVDS Device RoutingTypical LVDS WaveformAbsolute Maximum RatingsStresses above the ratings listed below can cause permanent damage to the ICS557-01. These ratings are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.DC Electrical CharacteristicsUnless stated otherwise, VDD = 3.3 V ±5%, Ambient Temperature -40 to +85°C1 Single edge is monotonic when transitioning through region.2 Inputs with pull-ups/-downs are not included.ItemRatingSupply Voltage, VDD, VDDA 5.5 VAll Inputs and Outputs-0.5 V to VDD+0.5 V Ambient Operating Temperature (commercial)0 to +70°C Ambient Operating Temperature (industrial)-40 to +85°C Storage Temperature -65 to +150°C Junction Temperature 125°C Soldering Temperature 260°CESD Protection (Input)2000 V min. (HBM)ParameterSymbolConditions Min.Typ.Max.UnitsSupply Voltage V 3.135 3.465Input High Voltage 1V IH 2.0VDD +0.3V Input Low Voltage 1V IL VSS-0.30.8V Input Leakage Current 2I IL 0 < Vin < VDD-55μA Operating Supply Current I DD With 50Ω and 2 pF load 55mA I DDOE OE =Low35mA Input Capacitance C IN Input pin capacitance 7pF Output Capacitance C OUT Output pin capacitance 6pF Pin Inductance L PIN 5nH Output Resistance Rout CLK outputs 3.0k ΩPull-up ResistorR PUPOE60k ΩAC Electrical Characteristics - CLK/CLKUnless stated otherwise, VDD=3.3 V ±5%, Ambient Temperature -40 to +85°C1 Test setup is R L =50 ohms with2 pF , R R = 475Ω (1%).2 Measurement taken from a single-ended waveform.3 Measurement taken from a differential waveform.4Measured at the crossing point where instantaneous voltages of both CLKOUT and CLKOUT are equal.5 CLKOUT pins are tri-stated when OE is low asserted. CLKOUT is driven differential when OE is high.Thermal Characteristics (8-pin SOIC)ParameterSymbolConditions Min.Typ.Max.UnitsInput Frequency 25MHz Output Frequency 100MHzOutput High Voltage 1,2V OH 660700850mV Output Low Voltage 1,2V OL-150027mV Crossing Point Voltage 1,2Absolute250350550mV Crossing Point Voltage 1,2,4Variation over all edges140mV Jitter, Cycle-to-Cycle 1,380ps Rise Time 1,2t OR From 0.175 V to 0.525 V 175332700ps Fall Time 1,2t OFFrom 0.525 V to 0.175 V175344700ps Rise/Fall Time Variation 1,2125ps Duty Cycle 1,34555%Output Enable Time 5All outputs 30µs Output Disable Time 5All outputs30µs Stabilization Time t STABLEFrom power-up VDD=3.3 V3.0ms Spread Change Timet SPREAD Settling period after spread change3.0msParameterSymbolConditionsMin.Typ.Max.UnitsThermal Resistance Junction to AmbientθJA Still air150°C/W θJA 1 m/s air flow 140°C/W θJA 3 m/s air flow120°C/W Thermal Resistance Junction to CaseθJC40°C/WMarking Diagram (ICS557M-01LF) Marking Diagram (ICS557MI-01LF)Notes:1. ###### is the lot code.2. YYWW is the last two digits of the year, and the week number that the part was assembled.3. “L ” designates Pb (lead) free packaging.4. “I” denotes industrial temperature.5. Bottom marking: (orgin). Origin = country of origin if not USA.Package Outline and Package Dimensions (8-pin SOIC, 150 Mil. Narrow Body) Package dimensions are kept current with JEDEC Publication No. 95Ordering InformationPart / Order Number Marking Shipping Packaging Package Temperature 557M-01LF See Page 8Tubes8-pin SOIC0 to +70° C557M-01LFT Tape and Reel8-pin SOIC0 to +70° C557MI-01LF Tubes8-pin SOIC-40 to +85° C557MI-01LFT Tape and Reel8-pin SOIC-40 to +85° C"LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.Corporate HeadquartersIntegrated Device Technology, For Sales800-345-7015408-284-8200Fax: 408-284-2775For Tech Support/go/clockhelpInnovate with IDT and accelerate your future networks. Contact:www.IDT .com。
艾тон电子变频驱动器产品介绍说明书

V/Hz Energy Savings Percentage
Eaton - Active Energy Control Competitor 1 Competitor 2 Competitor 3
35
40
45
50
55
Frequency (Hz)
• Active Energy Control - minimizes energy losses in your motor by dynamically adjusting V/Hz curve to optimize efficiency
• Compare Functionality • PC Control Online Operate
Mode
© 2013 Eaton Corporation. All rights reserved.
13
Energy Saving Functionality
Percentage
10.0% 8.0% 6.0% 4.0% 2.0% 0.0% -2.0% 30 -4.0%
• Easy to Use PC Based Drive Software Configuration Tool
• Provides Parameter Description, Min, Max, and Default Values
• Monitoring and Data Logging Capabilities
© 2013 Eaton Corporation. All rights reserved.
Electrical Wholesalers
End Users Maintenance, Repair, and Operations (MRO) Opportunities
APT7L05电容式触摸传感器数据手册说明书

APT7L05电容式触摸传感器数据手册1概述1.1APT7L05电容触摸传感器简述APT7L05是一款5通道多用途的电容触摸传感器,适合任何形式的触摸按键控制。
APT7L05采用直通形式,可以方便快捷地取替传统机械按键。
1.2特征◆电容触摸按键:5通道(每一通道独立工作);◆抗干扰能力强:可抵抗5W大功率对讲机测试,有效防止水滴;◆灵敏度:适合面板厚度在5mm以内的应用。
灵敏度调节详见参考电路(本手册第10页);◆输出模式:直通模式或锁存翻转模式可选(详见OM端口说明);◆上电后默认输出电平高低可选(详见OL端口说明);◆低功耗:工作电流为45uA@5V◆内置LDO:提高抗噪性能,并减少系统成本;◆工作温度:–40︒C到+85︒C;◆工作电压:2.2V到5.5V;◆封装及型号:QFN16(APT7L05NF)、SOP16(APT7L05SF)、SSOP16(APT7L05VF)。
1.3管脚分配图1-3-2APT7L05管脚分配(SOP16/SSOP16)图1-3-1APT7L05管脚分配(QFN16)1.4管脚功能说明表1-4APT7L05管脚说明管脚名称说明QFN16管脚位SOP16/ SSOP16管脚位C0外部电容:10nF(103)13K<4:0>触摸按键输入(不使用时必须悬空)2-64-8 O<4:0>对应触摸按键K<4:0>的输出7-119-13SS全局灵敏度输入控制脚,默认上拉;当接地时,灵敏度提高。
1214OL 接地时,O<4:0>默认输出高电平,当K<4:0>按下时输出低电平;悬空或接VDD时,O<4:0>默认输出低电平,当K<4:0>按下时输出高电平;1315OM 接地时为锁存翻转模式:当K<4:0>按下时,对应O<4:0>输出电平改变并保持(即使松开按键),当下一次按下时,对应O<4:0>输出电平翻转并保持(即使松开按键);悬空接VDD时为直通模式:当K<4:0>按下时,对应O<4:0>输出电平改变,松开K<4:0>时,对应O<4:0>输出电平恢复默认状态;162V DD芯片电源脚1416 V SS芯片地1512电气特性2.1极限参数表2-1极限参数(TA=25︒C)参数标号对象范围单位电源供电电压VDD––0.3to+6.5V端口输入电压VI所有端口–0.3to VDD+0.3V端口输出电压VO所有端口–0.3to VDD+0.3V高电平输出电流IOH单个口–10mA所有口–40mA低电平输出电流IOL单个口+20(峰值)mA所有口+60(峰值)mA工作温度TA––40to+85°C储藏温度TSTG––65to+150°C 2.2直流电气特性表2-2直流电器特性(TA=–40︒C~85︒C,VDD=2.2V~5.5V)参数标号条件最小典型最大单位工作电压VDD-- 2.2 5.5V 输出高电平VOH IOH=–10mA VDD=2.2to5.5V VDD-1.0-VDD V 输出低电平VOL IOL=20mA VDD=2.2to5.5V–- 1.0V输出高电平漏电流ILOH-VOUT=VDD––1uA输出低电平漏电流ILOL-VOUT=0V–––1uA供电电流IDD1工作模式VDD=2.2to5.5V–4560uA2.3交流电气特性表2-3交流电气特性(TA=–40︒C~85︒C,VDD=2.2V~5.5V)参数符号条件最小值典型值最大值单位输入电容CIN f=1MHz;不测试的管脚接地10pF输出电容COUT I/O口电容CIO3封装尺寸APT7L05采用QFN16,SOP16及SSOP16封装。
IRLML0030TRPBF;中文规格书,Datasheet资料

Thermal Resistance
Symbol
RθJA RθJA
Parameter
e Junction-to-Ambient f Junction-to-Ambient (t<10s)
Max.
30 5.3 4.3 21 1.3 0.8 0.01 ± 20 -55 to + 150
Typ.
––– –––
Fig 2. Typical Output Characteristics
RDS(on) , Drain-to-Source On Resistance (Normalized)
100 VDS = 15V ≤60μs PULSE WIDTH
10
TJ = 150°C 1
TJ = 25°C
2.0 ID = 5.2A VGS = 10V
Input Capacitance
––– 382 –––
VGS = 0V
Coss
Output Capacitance
––– 84 ––– pF VDS = 15V
Crss
Reverse Transfer Capacitance
––– 39 –––
ƒ = 1.0MHz
Source - Drain Ratings and Characteristics
nC
VDS =15V
d VGS = 4.5V d VDD =15V
tr td(off)
Rise Time Turn-Off Delay Time
––– 4.4
–––
ns ID = 1.0A
––– 7.4 –––
RG = 6.8Ω
tf
Fall Time
IRPT 红外测温仪 数据手册说明书

输出模拟输出数字输出 0-20mA,4-20mA,0-5V RS485可调参数发射率激光器控制工作模式响应时间工作电源±0% 500mA24VDC 2防护等级 IP65工作温度 风冷 水冷110 无冷却0-65165℃℃ ℃存储温度 -20-70℃相对湿度10 - 95%, 无结露抗冲击 GB/T2423.1,GB/t2423.2抗扰标准 JB/T9233.11-1999重量 478g外形尺寸L:max138mm; 50mm Φ 重复性精度± 0.2% 温度分辨力 ℃ 0.5 响应时间 ≤5ms发射率调整 0.10 to 1.00 (0.01)IRPT IRPT LED IRPT 0.8~1510m IRPT 是一款通用型红外测温仪。
体积小巧,测量速度快,环境适应能力强。
可以应用于环境恶劣的、粉尘、高温环境热工温度检测。
红外测温仪是工业温度测量的又一理想选择。
通过仪表显示及人工交互面板,实现瞄准激光控制,测量误差校正,测量模式选择,测量速度调整等操作。
高亮显示当前测量值。
调试简单,安装方便。
可以实现远距离测量,当测量距离在米之间变化,测量值不变,所以对于测量距离大于以上的温度测量场合,尤其适用。
该产品在轧钢行业实现对高速移动目标温度准确测量,并组网,配合DIKAI V30 .数据采集软件实现测量及数据记录分析等功能。
适用领域:轧钢、高速线材等高速移动目标;铸造、粉末冶金,化工,玻璃、陶瓷生产,热处理,焦化,热压烧结,焊接等行业,以及无法近距离测量的高危场合。
IRPTL1 45:1 3mm@210mm IRPTL2 45:1 3mm@210mm IRPTL3 120:1 3mm@360mm IRPTH1 200:1 3mm@600mm IRPTH2 200:1 3mm@600mm测量精度IRPTL1,IRPTL2,IRPTL31%(FS)IRPTH1,IRPTH20.5%(FS)±±探测器IRPTL1, IRPTL2 Thermopile 8-14µmIRPTL3 InGaAs 2-2.5µm IRPTH1, IRPTH2 InGaAs 0.7-1.7µm量程范围IRPTL1 -30-650IRPTL2-25-800IRPTL3100-600IRPTH1 500-1400IRPTH2 650-1650℃℃℃℃℃可测最小目标和测量距离参数型号:可测最小目标DS安装支架外形尺寸距离:传感器距目标距离()in 距离:传感器距目标距离()mm 距离:传感器距目标距离()in 距离:传感器距目标距离()mm 距离:传感器距目标距离()in 距离:传感器距目标距离()mm 有偿服务选项可选配件RS232/485转换链接器风冷套/水冷套镜头防尘空气吹扫器耐高温电缆线(并注明长度)显示变送仪表上位机软件用户在购买之前确定以下选项显示变送仪表中国国家计量主管部门出具的校准证书中国国家计量主管部门出具的标定证书。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
IR2132J (see Figure 10)
2500V rms -25°C to 125°C 1 Nm -40°C to 125°C at the pins (.06" from case) pin-to-baseplate, 60 Hz, 1 minute 95% RH max. (non-condensing) M4 screw type
IRPT1057A
2.5 60
RthSA 100% Load (continuous) 10-60 Hz Thermal Resistance (RthSA° C/W)
2
0.75 hp (0.56 kW)
50
40 1.5
Power 150%
1
30
RthSA 150% load (1 min.) 10-60 Hz Power 100%
Figure 3. IRPT1057C
page 2
/
IRPT1057A
Specifications
PARAMETERS Input Power
Voltage Frequency Current IFSM
VALUES
220V AC, -15%, +10%, 3-phase 50/60 Hz 4.6A rms @ nominal output 150A 0 - 230V rms 0.75 hp (0.56 kW) nominal full load power 150% overload for 1 minute 3.3A nominal full load power 4.95A 150% overload for 1 minute 425V maximum 50 kOhms ± 5% 3.1kOhms ± 10% 75mOhms ± 5% 10 µs 18A peak
Figure 1. IRPT1057A Power Module
IRPT1057C
IRPT1057A Power Module IRPT1057D Driver-Plus Board PWM variable frequency output
180-240V 3-phase input
feedback (non-isolated)
Module
Isolation voltage Operating case temperature Mounting torque Storage temperature range
Soldering temperature for 10 sec. 260°C maximum
page 3
/
Protection
IGBT short circuit time Recommended short circuitshutdown current
Gate Drive
QG 34 nC (typical) @ VGE = 15V, refer Figure 5b
Recommended gate driver
PD 6.112 IRPT1057A
PRELIMINARY
IRPT1057A
™
Power Module for 0.75 hp Motor Drives
· 0.75 hp (0.56kW) power output
Industrial rating at 150% overload for 1 minute
/
Total Power Dissipation (Watts)
0.5 hp (0.37 kW)
Total Power Dissipation (Watts)
IRPT1057A
Figure 5a. Typical Capacitance vs Collector-to-Emitter Voltage
25 20 15 10 5 0
1
0.5
0 1 4 8 12 16 20 24
PWM Frequency (kHz) – (Induction Motor Load) Figure 4b. 0.5hp/2.2A output Heat Sink Thermal Resistance and Power Dissipation vs. PWM Frequency
CONDITIONS
TA = 40°C, RthSA = 1.79 °C/W 10ms half-cycle, non-repetitive surge defined by external PWM control V in = 220V, fpwm = 4 kHz, fo = 60 Hz, TA = 40°C, RthSA = 1.79°C/W
The IRPT1057A Power Module
The IRPT1057A Power Module, shown in figure 1, is a chip and wire epoxy encapsulated module. It houses input rectifiers, output inverter, current sense shunts and NTC thermistor. The 3-phase input bridge rectifiers are rated at 800V. The inverter section employs 600V, short circuit rated, ultrafast IGBTs and ultrafast freewheeling diodes. Current sensing is achieved through 75 mΩ low inductance shunts provided in the positive and negative DC bus rail. The NTC thermistor provides temperature sensing capability. The lead spacing on the power module meets UL840 pollution level 3 requirements. The power circuit and layout within the module are carefully designed to minimize inductance in the power path, to reduce noise during inverter operation and to improve the inverter efficiency. The Driver-Plus Board required to run the inverter can be soldered to the power module pins, thus minimizing assembly and alignment. The power module is designed to be mounted to a heat sink with two screw mount positions, in order to insure good thermal contact between the module substrate and the heat sink. The IRPT1057C (Figure 3) provides the complete power conversion function for a 0.75 hp (0.56 kW) variable voltage, variable frequency AC motor controller. The combines the Power Module (IRPT1057A) with a Driver-Plus Board (IRPT1057D).
NOTE: For Figures 4a and 4b: Operating Conditions: Vin = 230Vrms, MI = 1.15, PF = 0.8, TA = 40°C, ZthSA limits ∆ Tc rise during 1 minute overload to 10°C page 4
· · · · · · · · ·
180-240V AC input, 50/60 Hz 3-phase rectifier bridge 3-phase, short circuit rated, ultrafast IGBT inverter HEXFRED ultrafast soft recovery freewheeling diodes Low inductance (current sense) shunts in positive and negative DC rail NTC temperature sensor Pin-to-baseplate isolation 2500V rms Easy-to-mount two-screw package Case temperature range -25°C to 125°C operational
Output Power
Voltage Nominal motor hp (kW) Nominal motor current
DC Link
DC link voltage
Sensor
Temp. sense resistance Current sense @ TNTC = 25°C @ TNTC = 100°C @ TSHUNT = 25°C DC bus = 425V, VGE = 15V, line to line short
Figure 5b. Typical Gate Charge vs Gate-to-Emitter Voltage
Figure 5c. Typical Transfer Characteristics