基本初等函数公式及导数运算法则共24页文档

合集下载

基本初等函数的导数公式及运算法则

基本初等函数的导数公式及运算法则

课时授课计划教师活动教学过程:一•创设情景2 1四种常见函数y=c、y = x、y =x、y —的导数公式及应用:■•新课讲授学生活动学生自行预习(二)导数的运算法则导数运算法则1. 〔f(X)土g(x)i = f'(x) ±g'(x)2. [f(x) g(x)]' = f'(x)g(x)±f(x)g'(x)If (x) I f (x)g (x) - f (x) g (x) / . .3. = ——(g(x)HO)]g(x) 一[g(x)f(2)推论:lcf(x) I - Cf'(x)(常数与函数的积的导数,等于常数乘函数的导数)三.典例分析例1 .假设某国家在20年期间的年均通货膨胀率为5% ,物价p (单位:元)与时间t (单位:年)有如下函数关系p(t) = p0(1 - 5%亍,其中p0 为t = 0时的物价.假定某种商品的p0 = 1,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)?解:根据基本初等函数导数公式表,有p'(t) =1.0“ In 1.05所以p (10) =1.0510|n1.05 : 0.08 (元/年)因此,在第10个年头,这种商品的价格约为0.08元/年的速度上涨.例2•根据基本初等函数的导数公式和导数运算法则,求下列函数的导数.(1) y = x3 -2x 3(2) y1 1(3) y = x sin x ln x;(4)y(5)y(6)y 4x1 -ln x1 l n x(2 x2—5 x + 1) e x/ 、sin x—xcosx (7) y =--------------------------cosx +xsin x 通过预习自行完成在老师的指导下独立完成后面几道题【点评】 ① 求导数是在定义域内实行的. ② ② 求较复杂的函数积、商的导数,必须细心、耐心. 例3日常生活中的饮水通常是经过净化的•随着水纯净度的提高,所需 净化费用不断增加•已知将1吨水净化到纯净度为 X%时所需费用(单 位:元)为 5284 c(x) (80 ::: x :::100) 100 —x 求净化到下列纯净度时,所需净化费用的瞬时变化率: (1) 90% (2) 98% 解:净化费用的瞬时变化率就是净化费用函数的导数. c(x 、_( 5284、‘_5284 x (100 — x)—5284 x (100 — x) c(x)=()100—x(100-x)2_ 0 (100 -x)-5284 (-1)_5284 一 2(100-x)2(100 -x)(1)5284因为c(90) = --------------- =52.84 ,所以,纯净度为90%(100 -90)2时,费用的瞬时变化率是 52.84元/吨.(2)因为c '(98)2 =1321,所以,纯净度为 98%(100 —90)时,费用的瞬时变化率是 1321元/吨.函数f (x)在某点处导数的大小表示函数在此点附近变化的快慢•由上述计算可知,c '(98^25c (90) •它表示纯净度为98%左右时净化费 用的瞬时变化率,大约是纯净度为90%左右时净化费用的瞬时变化率的 25倍•这说明,水的纯净度越高,需要的净化费用就越多,而且净化费 用增加的速度也越快.。

(完整版),基本初等函数公式总结,推荐文档

(完整版),基本初等函数公式总结,推荐文档

基本初等函数1常数函数:;;c y1y y e2幂函数:;;;;y x 2x y x y 1y x /m n n m y x x 3指数函数:;x a y x e y4对数函数:;;;x y a log x y ln x y 2log lg y x 5三角函数:;x ysin x y cos 三角函数是有界函数,奇函数;偶函数sin x cos x 6奇函数:图形关于坐标原点对称;()()f x f x 偶函数:图形关于轴对称;()()f x f x y 含有因子的是偶函数;含有因子的是奇函数,x x a a x xa a 两个重要极限1 e 和1sin lim 0xxx e x x x 11lim 无穷小量×有界量=无穷小量当时,是无穷小量x 1sinn x 1sin lim 0xxx e x x x 101lim 极限运算法则:g f g f lim lim )lim(sin lim 0x xx 0lim sin 0x x x ;f k kf lim )lim(lim lim lim fg f g微分公式dx y dy kdx dkx dx ax dx x dx a a a 1)(adx a dx a dax x x ln )(dxdx x x d 2)2(2221log (log )ln 2d x x dx dx x xdx dx x x d cos )(sin sin dx e dx e de x x x )(dx x dx x x d 1)(ln ln xdx dxx x d sin )(cos cos 导数公式0)(c 1)(x a x x a ln 1)(log x x cos )(sin 0)0(2()2x x x x 1)(ln x x sin )(cos 01211x x a a a xx ln )()()()(g f g f )()()(g f g f fg )()(f k kf1)(a a ax x x x 21)(x x e e )(2)()(gg f g f g f复合函数求导基本方法x x x x2cos 222cos 2sin 22222x x x xe x e e 22212ln x x x x (())(())()y f x f x x 不定积分公式0 dx c 12dx x c x ln xx a a dx c a不定积分运算法则:加减法,数乘1 dx x c3223x dx x c x x e dx e c gdx dx f dx g f )(212x dxx c 111a a x dx x c a sin cos x dx x c dx f k kfdx 211dx c x x 1ln ||dx x cx cos sin x dx x c 分部积分法计算法则对幂指三x ln x x e 、sin x cos x运算公式:fg dx f dg fg g df 两两组合,位置排在前面的选,排列在后面的选f g凑微分公式dx c dx x d dx x ln 1x d dx x 21原函数与被积函数()F x ()f x之间的关系kdx c dkxx x de dx e x d xdx cos sin c x F dx x f )()(221dx xdx x d dx x 112x d xdx sin cos )()(x f x F 定积分公式() ()|()()bb a a f x dx F x F b F a () b b b a a a f g dx f dx g dx (为常bb a a kf dx k f dx 数)|bb b a a a fg dx fg f g dx a a a 为为为为为x 为为f x f x f dx x f 为为为为为x 为为f x f x f dx x f 0)()()(,)(2)()()(,0)(逆矩阵求法用初等行变换求逆矩阵的方法:1||P I I P 初等行变换-齐次方程有非零解和零解条件0m n A X当时齐次方程只有零解。

基本初等函数的导数公式及导数的运算法则

基本初等函数的导数公式及导数的运算法则

基本初等函数的导数公式及导数的运算法则导数是微积分中一个重要的概念,它描述了函数在给定点处的变化率。

在微积分中有许多基本的初等函数,它们都有对应的导数公式和导数的运算法则。

下面,我将介绍一些常见的基本初等函数的导数公式及导数的运算法则。

1.常数函数导数公式:如果f(x)=C,其中C为常数,则其导数为f'(x)=0。

2.幂函数导数公式:如果f(x) = x^n,其中n为常数,则其导数为f'(x) = nx^(n-1)。

例如:f(x)=x^3,则f'(x)=3x^23.指数函数导数公式:如果f(x)=e^x,则其导数为f'(x)=e^x。

例如:f(x)=e^2,则f'(x)=e^24.对数函数导数公式:如果f(x) = ln(x),则其导数为f'(x) = 1/x。

例如:f(x) = ln(2),则f'(x) = 1/25.三角函数导数公式:(1) 如果f(x) = sin(x),则其导数为f'(x) = cos(x)。

(2) 如果f(x) = cos(x),则其导数为f'(x) = -sin(x)。

(3) 如果f(x) = tan(x),则其导数为f'(x) = sec^2(x)。

6.反三角函数导数公式:(1) 如果f(x) = arcsin(x),则其导数为f'(x) = 1/√(1-x^2)。

(2) 如果f(x) = arccos(x),则其导数为f'(x) = -1/√(1-x^2)。

(3) 如果f(x) = arctan(x),则其导数为f'(x) = 1/(1+x^2)。

导数的运算法则:1.常数乘法法则:设c为常数,f(x)为可导函数,则(cf(x))' = c*f'(x)。

例如:如果f(x)=2x,则f'(x)=2*1=22.求和差法则:设f(x),g(x)为可导函数,则(f(x)±g(x))'=f'(x)±g'(x)。

基本初等函数的导数公式及导数的运算法则

基本初等函数的导数公式及导数的运算法则
公式1.若f ( x) c, 则f '( x) 0; 公式2.若f ( x) x n , 则f '( x) nx n 1 ; 公式3.若f ( x) sin x, 则f '( x) cos x; 公式4.若f ( x) cos x, 则f '( x) sin x; 公式5.若f ( x) a x , 则f '( x) a x ln a ( a 0); 公式6.若f ( x) e x , 则f '( x) e x ; 1 公式7.若f ( x) log a x, 则f '( x) ( a 0, 且a 1); x ln a 1 公式8.若f ( x) ln x, 则f '( x) ; x
如果上式中f(x)=c,则公式变为:
[cg ( x)] cg ( x)
法则3:两个函数的商的导数,等于第一个函数的导数乘第二个 函数,减去第一个函数乘第二个函数的导数 ,再除以第二个函 数的平方.即:
f ( x) f ( x) g ( x) f ( x) g ( x) ( g ( x) 0) g ( x) 2 g ( x)
3
y 3x cos x sin x
2
x x 2 (1) (2) y 2 sin cos 2 x 1 2 2
y cos x 4 x
(3) y ( x 1)(x 2)
y 2 x 3
例3:求下列函数的导数:
1 2 (1) y 2 ; x x x (2) y ; 2 1 x (3) y tan x;
例2 根据基本初等函数的导数公式和导数
运算法则,求函数y=x3-2x+3的导数。

基本初等函数的导数公式及导数的运算法则 人教课标版精品课件

基本初等函数的导数公式及导数的运算法则 人教课标版精品课件

(g(x) 0)
例2 根据基本初等函数的导数公式和导数 运算法则,求函数y=x3-2x+3的导数。
解 (x3 ): (2x) (3) 3x2 因2

所 以
练习2、求下列函数的导数。
(1) y x4 2x
(2) y 3cos x 4sin x
(3) y 2ex (4)y (x 1)(x 2)
那个年代的钱特别的顶用,一斤大米一毛三分八;一斤鱼两角钱;一斤牛肉熟的才五角钱;一个大肉包子五分钱;一只烧鸡两元钱;小米一斤一角钱;一个卤猪蹄子两毛钱一个;一盒火柴两分钱;一斤面粉两毛五。全国啥地方都是统一的价格,住的房子都是单位给分的,房子也都不交水电费的。一点也不像现在一会一个价钱。那个时候老干部一般一个月一百多元钱,一般的干部工人多数就是一个月五六十元到七八十元不等。这几家人特别的和睦,就像一家人一样,谁家有事大家都会过去帮忙。 一九七六年唐山大地震的时候,老吴在唐山的老家也遭受了灾害,屋子倒了,人也砸伤了,老吴赶紧请假和他爱人一起回去处理老家的事情去了。老李对老吴说,“你放心的回老家吧!你的孩子我帮你看。”当时老吴的老大才十四岁,还有一个刚刚才上学的七岁的小女儿。
大自然给予了我们很多美好的东西,只是我们自己却不知道去好好珍惜,只有当我们在失去后或者犯错了,我们才会去说后悔没有珍惜,希望能给一次机会重新来过,只是这样的重来真的还能重来吗?我们谁都不能去肯定,路,自己选择,自己走下去,也许有人给你使绊,也许有人会拉你一把,但终归还是需要自己去选择,自己亲自去走。人生经历太多,失败了、跌倒了,可以站起来继续走,如果走错了,可以选择正确的路,但我们如果放弃了,就有可能一直停留在那,多年以后,或许你已经被遗忘。
导数的运算法则: 法则1:两个函数的和(差)的导数,等于这两个函数的导数的

高二数学基本初等函数的导数公式及导数的运算法则

高二数学基本初等函数的导数公式及导数的运算法则

公 式 4 .若 f ( x ) c 5 .若 f ( x ) a x , 则 f '( x ) a x ln a ( a 0 );
公 式 6 .若 f ( x ) e x , 则 f '( x ) e x ;
公 式 7 .若 f ( x )
; https:///cn/diamonds?track=NavDrawDia 什么钻石好;
道了这件事情了,所以在这里闭关修行,害得天云天风他们兄妹三人白担心了,有了这壹座神山,根汉之前の担忧也全然不见了丶"你还敢来?""这。"他身形壹闪,避开了这壹只巨掌丶巨掌猛の落下,没有镇住根汉,壹个白袍老者出现在了原地,正是天阳子丶天阳子冷哼壹声,盯着不远处の根 汉:"你到底是什么来路?"根汉拱手笑了笑,对天阳子道:"咱并不是晴天,只是与他长の壹模壹样而已咱与晴天没有半点关系丶"天阳子眉头壹锁道:"你蒙谁呀?"根汉无奈道:"这件事情,咱已经和仙尔说清楚了。"天阳子脸色壹下子冷了下来,杀机迸现,根汉连忙说道:"前辈您先不要发飙, 有些事情,容咱慢慢の和你们说吧丶"想到自己女尔,莫名其妙の被人骗了,搞大了肚子,生下了无父の孩子,心也壹直背负着这种欺骗の情愿丶不过令他很意外の是,眼前这个家伙の隐遁之术很了得,若不是自己借助这冲天剑の仙力,也无法发现他站在这里丶别看自己是魔仙,若没有这冲天剑 の话,看都看不到这家伙,更别提还想杀了他了丶"丫の,你小子有些过了啊!""冲你小子让茹尔有能力怀孩子,老夫咱不杀你!""呃,事情是这样の。"天阳子冷哼道:"天家の事情,老夫咱自会处理,还容不着你来窜下跳の。"根汉尴尬の笑了笑,当然轮不到自己窜下跳了,自己也不想窜下跳呀, 要是知道这里の地势冲天剑,自己还管什么事尔呢丶根汉将之前,看到峰回九渊の事情,和他说了说丶根汉点了点头:"侥幸吧丶"天阳子气不打壹处来,脸色有些难看,心里骂开了,自己壹个魔仙,在天家祖地转了好些年,才发现这里の地势丶只是这家伙,明明修为低,只不过是壹位初阶大魔神, 竟然可以发现这里,壹来发现了,真是让自己难堪呀丶天阳子显然是挂不住脸,根汉可不知道他の这点小心思,要知道打了他の脸の话给他留点脸了丶"好吧,那前辈您保重吧,天家之事,由您全权做主吧。"天阳子白了他壹眼,直接身形壹闪,又回到了那冲天剑神山之,压根没再瞧根汉壹眼了丶 本来自肆0贰叁你这个坑货(猫补中文)既然天阳子早有打算了,根汉也不便再在这里打扰了,马离开了这里,让天阳子自己去安排天家の这些事情吧丶请大家搜索(@¥)看最全!更新最快の被天阳子给骂了个狗血喷头,根汉赶紧逃也,大概意思是这样の好东西别你这个老东西壹个人给享用了 丶让天家の弟子都到这冲天剑神山来修行,修行の速度都要提升好几倍,甚至是数十倍都不壹定,天家の整体实力会大增了丶"没想到,咱天家也有这样の地势风水,看来咱天不绝咱天家。"听闻天阳子实力大增,做女尔の天仙尔自然是很惊喜了丶"只不过他们那些家亭,不知道知不知道咱父亲 の情况?"天仙尔皱眉问道丶根汉笑了笑道:"你这个老父亲,等着壹鸣惊人,给他们大吃壹惊呢。"天仙尔笑道:"那咱们什么时候出发离开这里?"因为得知了天阳子の实力,所以根汉这心头隐隐の不好の感觉也消失了,想必以天阳子の实力,再加那冲天剑地势,出现什么危险天阳子也可以化 险为夷,也可以保住天家の丶天仙尔顿了顿道:"咱听你の丶"根汉对天仙尔道:"怎么说这也是壹个是非之地,有些事情咱们不要参与了,交由你父亲他们去解决吧丶"天仙尔也没有别の挂念了,只要天家不会有事好了,小天意现在也认了他们父母了丶只是小家伙不想伤天风夫妇の心,所以壹 直假装不知道而已,但是现在壹切都解决了丶三天之后,根汉壹家便出发了,他们告别了天风夫妇,离开了天家来到了浮家祖地丶"恩,根汉你小心壹些丶"她怀着孩子呢,小天意也还这么小,三岁不到,不能沾染那些不好の东西丶他反倒是将白狼马给叫了出来:"小白,咱们在这里布壹座法阵如 何?""呵呵,咱和天家の人。""去你小子の。"原来之前他和天风说过了,说自己会在浮家这边布下壹座法阵,若是到时候他们想离开の话,只要拿着自己给他の壹块玉,可以抢先从这里离开丶人不为已,天诛地灭嘛,根汉能做の也只有这么多了丶花了两天の时间,根汉和白狼马,才在这里布下 了几座复杂の法阵,其还包括壹座根汉の仙阵丶而在这阴魔域外面,还有白狼马之前留下の定位坐标,白狼马取出黑天罗盘,试着用这黑天罗盘,看看能不能锁定长生神山の位置,或者是阴魔域边缘の位置丶找了近壹天后,白狼马有所发现了,在黑天罗盘の面,出现了壹个立体の光团丶光团,立 即出现了壹个地域の地貌,不过那个地方似乎并不是长生神山丶白狼马也有些怪异:"不知道呀,好像咱们没有用罗盘,定下这样の壹个坐标呀,这地方怎么会出现在黑盘の丶"白狼马壹脸の委屈道:"大哥,咱真没有留这么壹个坐标,您看看这里面嘛,壹个人影也没有嘛。""应该,可能?"根汉 有些无语,"这要是传送到,不知道什么鬼地方去了,到时候还不如阴魔域。"白狼马道:"起码这个地方,好像有阳光,还有山有水,风景也不错の,应该不错の丶"根汉想了想,能省事省事吧,刚刚壹阵阴风吹来,根汉感觉浑身都不好了丶像幻之地壹样,也发生了这么大の变化,而阴魔域,还有阳 魔域,其实也发生了不少の变化丶根汉和白狼马渗入了其,直接传送走了,这是黑天罗盘の好处,如果有坐标の话,可以进行这样の直接の传送丶只不过需要耗费壹些顶级の灵玉,而这种灵玉の数量,根�

基本初等函数的导数公式及导数的运算法则

基本初等函数的导数公式及导数的运算法则

5、若 f ( x) a ,则 f ( x) _______________
'
a ln a(a 0) x x ' e 6、若 f ( x) e ,则 f ( x) _______
x
1 7、若 f ( x) loga x ,则 f ( x) ________________ (a 0, 且a 1) x ln a 1 ' 8、若 f ( x) ln x ,则 f ( x) _____ x
2、求导数的一般步骤: (1)求函数的增量Δy=f(x0+Δx) -f(x0)
y (2)求平均变化率 x
(3)求极限 f ' ( x ) lim
y x 0 x
新课讲解
课题:基本初等函数的导数公式及导数的运算法则(1)
几个常用函数的导数 1、 函数 y f ( x) c 的导数 y ' 0

'
1
例题选讲
课题:基本初等函数的导数公式及导数的运算法则(1)
4
【例1】已知 y x (1)求y’; (2)求曲线在点(1,1)处的切线方程。
1 y x 4
'

3 4
1 3 y x 4 4
2
【练习】若抛物线y 4 x 上的点P到直线y 4 x 5 的距离最短,求点P的坐标。
1 4 s t 4t 3 16t 2 4
例题选讲
课题:基本初等函数的导数公式及导数的运算法则(1)
【例 5】偶函数 f(x)=ax4+bx3+cx2+dx+e 的图象过点 P(0,1),且在 x=1 处的切线方程 为 y=x-2,求 y=f(x)的解析式.

基本初等函数的导数公式及导数的四则运算法则(一)_2022年学习资料

基本初等函数的导数公式及导数的四则运算法则(一)_2022年学习资料

例用导数公式求下列函数的导数-1fx=x-2fx=-3fx=-sin x-4fx=Vx3-5fx=-cos -6fx=3x-7fx=21nx-8fx=1og3x-9fx=2e1-10fx=1gx-2fx=x2-6i到-7fx=l0g1x-朝-4f=2fx=1gx-湖
比比赛赛:-1y=fx=3-求在点M2,3处切线的方程-2y=fx=x,-求在点M2,2处切线的方程-3y fx=x2,-求在点M2,4处切线的方程-4yfx=-X-求在点M1,1/2处切线的方程
2.求函数y=的图象上点2,处的切线方程-X-3曲线y=x2的一条切线方程为6x-y-9=0,-求切点的坐 -4.求曲线y=3上过点1,3的切线方程.-陶
导数的运法则-1、和(差)的导数:[fx±g]=f'x±g'x-2、积的导数:[fx:gx]=f'·8x+ x8'x-推论:[cfx=c·f'-C为常数-f'x8x-fx8'x-8x≠0-[8x]
例题讲解-例题1:求下列函数的导数-1y=2x5-3x2+8-2y=x4+2xx3-2-3y=sinxco x-潮-4y=-2ex+1
练习:求下列函数的导数-1y=3x3-2x2+5-3y=x3x2-4-4y=2x-123x+2e-5y-1 2-2x+1-7y=2*Inx-6y=5*cosx-8y =tanx
作业-1、求下列函数的导数-1y=2x2+1-31nx-2-2y=e*.sinx-3y=-x+210gsx x2+3-x3-coS x-2.课本Ps5A组4,5,6,7
3.2,2基本初等函数的导数公式
基本初等函数的导数公式:-1、若fx=c,则f'x=0-常函数-2、-若∫x=x”,则f'x=nx”-一幂 数-3、若fx=sinx,则f'x=cosx-三角函数-4-若fx=cosx,则f'x=-sinx-5、若 x=a,则f'x=a.lna-指数函数-6、-若fx=e,则f'x=e-7、若fx=log。,则f'x=lna-对数函数-8、若fx=lnx,则f'x=二-X
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档