2020年浙江省高考数学模拟试卷(15)
浙江省2020届高三高考模拟试题数学试卷及解析word版

浙江省2020届高三高考模拟试题数学试卷一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知U=R,集合A={x|x<32},集合B={y|y>1},则∁U(A∩B)=()A.[32,+∞)B.(−∞,1]∪[32,+∞)C.(1,32)D.(−∞,32)2.已知i是虚数单位,若z=3+i1−2i,则z的共轭复数z等于()A.1−7i3B.1+7i3C.1−7i5D.1+7i53.若双曲线x2m−y2=1的焦距为4,则其渐近线方程为()A.y=±√33x B.y=±√3x C.y=±√55x D.y=±√5x4.已知α,β是两个相交平面,其中l⊂α,则()A.β内一定能找到与l平行的直线B.β内一定能找到与l垂直的直线C.若β内有一条直线与l平行,则该直线与α平行D.若β内有无数条直线与l垂直,则β与α垂直5.等差数列{a n}的公差为d,a1≠0,S n为数列{a n}的前n项和,则“d=0”是“S2nS n∈Z”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.随机变量ξ的分布列如表:ξ﹣1012P13a b c其中a,b,c成等差数列,若E(ξ)=19,则D(ξ)=()A.181B.29C.89D.80817.若存在正实数y,使得xyy−x =15x+4y,则实数x的最大值为()A.15B.54C.1D.48.从集合{A,B,C,D,E,F}和{1,2,3,4,5,6,7,8,9}中各任取2个元素排成一排(字母和数字均不能重复).则每排中字母C 和数字4,7至少出现两个的不同排法种数为( ) A .85B .95C .2040D .22809.已知三棱锥P ﹣ABC 的所有棱长为1.M 是底面△ABC 内部一个动点(包括边界),且M 到三个侧面P AB ,PBC ,P AC 的距离h 1,h 2,h 3成单调递增的等差数列,记PM 与AB ,BC ,AC 所成的角分别为α,β,γ,则下列正确的是( )A .α=βB .β=γC .α<βD .β<γ10.已知|2a →+b →|=2,a →⋅b →∈[−4,0],则|a →|的取值范围是( ) A .[0,1]B .[12,1]C .[1,2]D .[0,2]二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分. 11.若α∈(0,π2),sinα=√63,则cosα= ,tan2α= .12.一个长方体被一个平面截去一部分后,剩余部分的三视图如图所示,则该几何体与原长方体的体积之比是 ,剩余部分表面积是 .13.若实数x ,y 满足{x +y −3≥02x −y +m ≤0y ≤4,若3x +y 的最大值为7,则m = .14.在二项式(√x +1ax 2)5(a >0)的展开式中x﹣5的系数与常数项相等,则a 的值是 .15.设数列{a n }的前n 项和为S n .若S 2=6,a n +1=3S n +2,n ∈N *,则a 2= ,S 5= . 16.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知a cos B =b cos A ,∠A =π6,边BC 上的中线长为4.则c = ;AB →⋅BC →= .17.如图,过椭圆C:x2a2+y2b2=1的左、右焦点F1,F2分别作斜率为2√2的直线交椭圆C上半部分于A,B两点,记△AOF1,△BOF2的面积分别为S1,S2,若S1:S2=7:5,则椭圆C离心率为.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(14分)已知函数f(x)=sin(2x+π3)+sin(2x−π3)+2cos2x,x∈R.(1)求函数f(x)的最小正周期和单调递减区间;(2)求函数f(x)在区间[−π4,π2]上的最大值和最小值.19.(15分)如图,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=AA1.(1)求证:AB1⊥平面A1BC1;(2)若D在B1C1上,满足B1D=2DC1,求AD与平面A1BC1所成的角的正弦值.20.(15分)已知等比数列{a n}(其中n∈N*),前n项和记为S n,满足:S3=716,log2a n+1=﹣1+log2a n.(1)求数列{a n}的通项公式;(2)求数列{a n•log2a n}(n∈N*)的前n项和T n.21.(15分)已知抛物线C:y=12x2与直线l:y=kx﹣1无交点,设点P为直线l上的动点,过P作抛物线C的两条切线,A,B为切点.(1)证明:直线AB恒过定点Q;(2)试求△P AB面积的最小值.22.(15分)已知a为常数,函数f(x)=x(lnx﹣ax)有两个极值点x1,x2(x1<x2).(1)求a的取值范围;(2)证明:f(x1)−f(x2)<12.一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【详解详析】∵U=R,A={x|x<32},B={y|y>1},∴A∩B=(1,32),∴∁U(A∩B)=(−∞,1]∪[32,+∞).故选:B.2.【详解详析】∵z=3+i1−2i =(3+i)(1+2i)(1−2i)(1+2i)=15+75i,∴z=15−75i.故选:C.3.【详解详析】双曲线x2m−y2=1的焦距为4,可得m+1=4,所以m=3,所以双曲线的渐近线方程为:y=±√33x.故选:A.4.【详解详析】由α,β是两个相交平面,其中l⊂α,知:在A中,当l与α,β的交线相交时,β内不能找到与l平行的直线,故A错误;在B中,由直线与平面的位置关系知β内一定能找到与l垂直的直线,故B正确;在C中,β内有一条直线与l平行,则该直线与α平行或该直线在α内,故C错误;在D 中,β内有无数条直线与l 垂直,则β与α不一定垂直,故D 错误. 故选:B .5.【详解详析】等差数列{a n }的公差为d ,a 1≠0,S n 为数列{a n }的前n 项和, “d =0”⇒“S 2n S n∈Z ”,当S2nS n∈Z 时,d 不一定为0,例如,数列1,3,5,7,9,11中,S 6S 3=1+3+5+7+9+111+3+5=4,d =2,故d =0”是“S 2n S n∈Z ”的充分不必要条件.故选:A .6.【详解详析】∵a ,b ,c 成等差数列,E (ξ)=19, ∴由变量ξ的分布列,知:{a +b +c =232b =a +c (−1)×13+b +2c =19,解得a =13,b =29,c =19,∴D (ξ)=(﹣1−19)2×13+(0−19)2×13+(1−19)2×29+(2−19)2×19=8081.故选:D .7.【详解详析】∵xyy−x =15x+4y , ∴4xy 2+(5x 2﹣1)y +x =0, ∴y 1•y 2=14>0, ∴y 1+y 2=−5x 2−14x ≥0,∴{5x 2−1≥0x <0,或{5x 2−1≤0x >0, ∴0<x ≤√55或x ≤−√55①, △=(5x 2﹣1)2﹣16x 2≥0, ∴5x 2﹣1≥4x 或5x 2﹣1≤﹣4x , 解得:﹣1≤x ≤15②,综上x 的取值范围是:0<x ≤15;x的最大值是15,故选:A.8.【详解详析】根据题意,分2步进行分析:①,先在两个集合中选出4个元素,要求字母C和数字4,7至少出现两个,若字母C和数字4,7都出现,需要在字母A,B,D,E,F中选出1个字母,有5种选法,若字母C和数字4出现,需要在字母A,B,D,E,F中选出1个字母,在1、2、3、5、6、8、9中选出1个数字,有5×7=35种选法,若字母C和数字7出现,需要在字母A,B,D,E,F中选出1个字母,在1、2、3、5、6、8、9中选出1个数字,有5×7=35种选法,若数字4、7出现,需要在字母A,B,D,E,F中选出2个字母,有C52=10种选法,则有5+35+35+10=85种选法,②,将选出的4个元素全排列,有A44=24种情况,则一共有85×24=2040种不同排法;故选:C.9.【详解详析】依题意知正四面体P﹣ABC的顶点P在底面ABC的射影是正三角形ABC的中心O,由余弦定理可知,cosα=cos∠PMO•cos<MO,AB>,其中<MO,AB>表示直线MO与AB的夹角,同理可以将β,γ转化,cosβ=cos∠PMO•cos<MO,BC>,其中<MO,BC>表示直线MO与BC的夹角,cosγ=cos∠PMO•cos<MO,AC>,其中<MO,AC>表示直线MO与AC的夹角,由于∠PMO是公共的,因此题意即比较OM与AB,BC,AC夹角的大小,设M到AB,BC,AC的距离为d1,d2,d3则d1=sinℎ1θ,其中θ是正四面体相邻两个面所成角,sinθ=2√23,所以d1,d2,d3成单调递增的等差数列,然后在△ABC中解决问题由于d1<d2<d3,可知M在如图阴影区域(不包括边界)从图中可以看出,OM与BC所成角小于OM与AC所成角,所以β<γ,故选:D.10.【详解详析】选择合适的基底.设m →=2a →+b →,则|m →|=2,b →=m →−2a →,a →⋅b →=a →⋅m →−2a →2∈[−4,0], ∴(a →−14m →)2=a →2−12a →•m →+116m →2≤8+116m →2 |m →|2=m →2=4,所以可得:m→28=12,配方可得12=18m →2≤2(a →−14m →)2≤4+18m →2=92,所以|a →−14m →|∈[12,32], 则|a →|∈[0,2]. 故选:D .二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分. 11.【详解详析】∵α∈(0,π2),sinα=√63, ∴cosα=√1−sin 2α=√33,tanα=sinαcosα=√2,∴tan2α=2tanα1−tan 2α=√21−(√2)2=−2√2.故答案为:√33,﹣2√2.12.【详解详析】根据几何体的三视图转换为几何体为: 如图所示:该几何体为长方体切去一个角.故:V =2×1×1−13×12×2×1×1=53.所以:V 1V =532=56.S =2(1×2+1×2+1×1)−12(1×2+1×2+1×1)+12×√2×√2=9.故答案为:56,9.13.【详解详析】作出不等式组{x +y −3≥02x −y +m ≤0y ≤4对应的平面区域如图:(阴影部分).令z =3x +y 得y =﹣3x +z , 平移直线y =﹣3x +z , 由图象可知当3x +y =7.由 {3x +y =7y =4,解得 {x =1y =4,即B (1,4),同时A 也在2x ﹣y +m =0上, 解得m =﹣2x +y =﹣2×1+4=2. 故答案为:2.14.【详解详析】∵二项式(√x +1ax2)5(a >0)的展开式的通项公式为 T r +1=C 5r •(1a)r•x5−5r 2,令5−5r 2=−5,求得r =3,故展开式中x﹣5的系数为C 53•(1a )3;令5−5r 2=0,求得r =1,故展开式中的常数项为 C 51•1a =5a , 由为C 53•(1a )3=5•1a ,可得a =√2,故答案为:√2.15.【详解详析】∵数列{a n }的前n 项和为S n .S 2=6,a n +1=3S n +2,n ∈N *, ∴a 2=3a 1+2,且a 1+a 2=6,解得a 1=1,a 2=5,a 3=3S 2+2=3(1+5)+2=20, a 4=3S 3+2=3(1+5+20)+2=80, a 5=3(1+5+20+80)+2=320, ∴S 5=1+5+20+80+320=426. 故答案为:5,426.16.【详解详析】由a cos B =b cos A ,及正弦定理得sin A cos B =sin B cos A , 所以sin (A ﹣B )=0, 故B =A =π6,所以由正弦定理可得c =√3a ,由余弦定理得16=c 2+(a2)2﹣2c •a2•cos π6,解得c =8√217;可得a =8√77,可得AB →⋅BC →=−ac cos B =−8√77×8√217×√32=−967.故答案为:8√217,−967. 17.【详解详析】作点B 关于原点的对称点B 1,可得S △BOF 2=S△B′OF 1,则有S 1S2=|y A ||y B 1|=75,所以y A =−75y B 1.将直线AB 1方程x =√2y4−c ,代入椭圆方程后,{x =√24y −c x 2a 2+y 2b 2=1,整理可得:(b 2+8a 2)y 2﹣4√2b 2cy +8b 4=0, 由韦达定理解得y A +y B 1=4√2b 2cb 2+8a 2,y A y B 1=−8b 4b 2+8a 2,三式联立,可解得离心率e =ca =12. 故答案为:12.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.【详解详析】(1)f (x )=sin2x +cos2x +1=√2sin(2x +π4)+1 所以最小正周期为π. 因为当π2+2kπ≤2x +π4≤3π2+2kπ时,f (x )单调递减.所以单调递减区间是[π8+kπ,5π8+kπ].(2)当x ∈[−π4,π2]时,2x +π4∈[−π4,5π4],当2x +π4=π2函数取得最大值为√2+1,当2x +π4=−π4或5π4时,函数取得最小值,最小值为−√22×√2+1=0.19.【详解详析】(1)在直三棱柱ABC ﹣A 1B 1C 1中,∠BAC =90°,AB =AC =AA 1, 根据已知条件易得AB 1⊥A 1B ,由A 1C 1⊥面ABB 1A 1,得AB 1⊥A 1C 1, A 1B ∩A 1C 1=A 1,以AB 1⊥平面A 1BC 1;(2)以A 1B 1,A 1C 1,A 1A 为x ,y ,z 轴建立直角坐标系,设AB =a , 则A (0,0,a ),B (a ,0,a ),C 1(0,a ,0),D(a3,2a 3,0),所以AD →=(a3,2a 3,−a),设平面A 1BC 1的法向量为n →,则n →=(1,0,−1), 可计算得到cos <AD →,n →>=2√77,所以AD 与平面A 1BC 1所成的角的正弦值为2√77. 20.【详解详析】(1)由题意,设等比数列{a n }的公比为q , ∵log 2a n +1=﹣1+log 2a n , ∴log 2a n+1−log 2a n =log 2a n+1a n=−1,∴q =a n+1a n =12.由S 3=716,得a 1[1−(12)3]1−12=716,解得a 1=14.∴数列{a n }的通项公式为a n =12n+1.(2)由题意,设b n =a n •log 2a n ,则b n =−n+12n+1. ∴T n =b 1+b 2+…+b n =−(222+323+⋯+n+12n+1) 故−T n =222+323+⋯+n+12n+1,−T n2=223+⋯+n2n+1+n+12n+2.两式相减,可得−T n2=12+123+⋯+12n+1−n+12n+2=34−n+32n+2.∴T n=n+32n+1−32.21.【详解详析】(1)由y=12x2求导得y′=x,设A(x1,y1),B(x2,y2),其中y1=12x12,y2=12x22则k P A=x1,P A:y﹣y1=x1(x﹣x1),设P(x0,kx0﹣1),代入P A直线方程得kx0﹣1+y1=x1x0,PB直线方程同理,代入可得kx0﹣1+y2=x2x0,所以直线AB:kx0﹣1+y=xx0,即x0(k﹣x)﹣1+y=0,所以过定点(k,1);(2)直线l方程与抛物线方程联立,得到x2﹣2kx+2=0,由于无交点解△可得k2<2.将AB:y=xx0﹣kx0+1代入y=12x2,得12x2−xx0+kx0−1=0,所以△=x02−2kx0+2>0,|AB|=2√1+x02√△,设点P到直线AB的距离是d,则d=02√1+x02,所以S△PAB=12|AB|d=(x02−2kx0+2)32=[(x0−k)2+2−k2]32,所以面积最小值为(2−k2)32.22.【详解详析】(1)求导得f′(x)=lnx+1﹣2ax(x>0),由题意可得函数g(x)=lnx+1﹣2ax有且只有两个零点.∵g′(x)=1x −2a=1−2axx.当a≤0时,g′(x)>0,f′(x)单调递增,因此g(x)=f′(x)至多有一个零点,不符合题意,舍去;当a>0时,令g′(x)=0,解得x=12a,所以x∈(0,12a ),g′(x)>0,g(x)单调递增,x∈(12a,+∞),g′(x)<0,g(x)单调递减.所以x=12a 是g(x)的极大值点,则g(12a)>0,解得0<a<12;(2)g(x)=0有两个根x1,x2,且x1<12a<x2,又g(1)=1﹣2a>0,所以x1<1<12a<x2,从而可知f(x)在区间(0,x1)上递减,在区间(x1,x2)上递增,在区间(x2,+∞)上递减.所以f(x1)<f(1)=−a<0,f(x2)>f(1)=−a>−1,2.所以f(x1)−f(x2)<12。
【精品高考数学】[2020年浙江高考仿真模拟卷-数学]+答案
![【精品高考数学】[2020年浙江高考仿真模拟卷-数学]+答案](https://img.taocdn.com/s3/m/1a5813da680203d8cf2f2417.png)
2020年浙江高考仿真模拟卷数学2020.4一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A.B.C.D.2.若复数,则在复平面内对应的点位于 ( )A.第一象限B.第二象限C.第三象限D.第四象限3.我国南北朝时期数学家祖暅,提出了著名的祖暅原理:“缘幂势既同,则积不容异也”.“幂”是截面积,“势”是几何体的高,意思是两等高几何体,若在每一等高处的截面积都相等,则两几何体体积相等.已知某不规则几何体与右侧三视图所对应的几何体满足“幂势既同”,其中俯视图中的圆弧为圆周,则该不规则几何体的体积为()A.B.C.D.4.已知双曲线的一条渐近线过点,则C的离心率为A.B.C.D.35函数的部分图象大致是()A.B.C.D.6.已知α,β,γ为平面,是直线,若α∩β=,则“α⊥γ,β⊥γ”是“⊥γ”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.已知随机变量的分布列如下表:X -1 0 1P a b c其中.若的方差对所有都成立,则( )A. B. C. D.8.如图,平面四边形中,,是,中点,,,,将沿对角线折起至,使平面平面,则四面体中,下列结论不正确的是()A.平面B.异面直线与所成的角为C.异面直线与所成的角为D.直线与平面所成的角为9.已知是边长为的正三角形,且,,设,当函数的最大值为-2时,()A.B.C.D.10.已知等差数列满足,,数列满足,记数列的前项和为,若对于任意的,,不等式恒成立,则实数的取值范围为()A.B.C.D.非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.《九章算术》第七章“盈不足”中第一题:“今有共买物,人出八,盈三钱;人出七,不足四,问人数物价各几何?”借用我们现在的说法可以表述为:有几个人合买一件物品,每人出8元,则付完钱后还多3元;若每人出7元,则还差4元才够付款.问他们的人数和物品价格?答:一共有_____人;所合买的物品价格为_______元.12.在平面直角坐标系中,不等式组所表示的平面区域的面积等于______,的取值范围是______.13.在 ABC 中,C=45°,AB=6 ,D 为 BC 边上的点,且AD=5,BD=3 ,则cos B=_____ ,AC=_____.14.若的展开式中,的系数为6,则______,常数项的值为______.15.已知奇函数是定义在R上的单调函数,若函数恰有4个零点,则a的取值范围是______.16.某校举行“我爱我的祖国”征文比赛,从名获得一等奖的同学中选出名同学发表获奖感言,要求甲、乙两名同学至少有一人参加,则不同发言顺序的种数为_____.(用数字作答)17.如图,,分别是椭圆的左、右顶点,圆的半径为2,过点作圆的切线,切点为,在轴的上方交椭圆于点,则_______.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.已知函数.(Ⅰ)求的最小正周期;(Ⅱ)求在区间[]上的最大值和最小值.19.如图,三棱柱中,分别为棱的中点.(1)在上确定点M,使平面,并说明理由.(2)若侧面侧面,求直线与平面所成角的正弦值.20.已知等差数列的前项和为,,公差,且,,成等比数列,数列满足,的前项和为.(Ⅰ)求数列和的通项公式;(Ⅱ)记,试比较与的大小.21.已知抛物线,准线方程为,直线过定点,且与抛物线交于两点,为坐标原点.(1)求抛物线方程;(2)是否为定值,若是,求出这个定值;若不是,请说明理由;(3)当时,设,记,求的最小值及取最小值时对应的.22.已知函数.(1)求函数的单调区间;(2)若不等式时恒成立,求的取值范围.2020年浙江高考仿真模拟卷数学2020.4一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A.B.C.D.【解析】选B.2.若复数,则在复平面内对应的点位于 ( )A.第一象限B.第二象限C.第三象限D.第四象限【解析】=,对应的点为(),在第四象限故选:D3.我国南北朝时期数学家祖暅,提出了著名的祖暅原理:“缘幂势既同,则积不容异也”.“幂”是截面积,“势”是几何体的高,意思是两等高几何体,若在每一等高处的截面积都相等,则两几何体体积相等.已知某不规则几何体与右侧三视图所对应的几何体满足“幂势既同”,其中俯视图中的圆弧为圆周,则该不规则几何体的体积为()A.B.C.D.【解析】根据三视图知,该几何体是三棱锥与圆锥体的组合体,如图所示;则该组合体的体积为;所以对应不规则几何体的体积为.故选:B.4.已知双曲线的一条渐近线过点,则C的离心率为A.B.C.D.3 【解析】双曲线的渐近线方程为,由题意可得,可得,则双曲线的离心率为.故选:C.5函数的部分图象大致是()A.B.C.D.【解析】由题知,的定义域为,且,所以是奇函数,排除C和D,将代入得,排除B,故选A.6.已知α,β,γ为平面,是直线,若α∩β=,则“α⊥γ,β⊥γ”是“⊥γ”的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】由α⊥γ,β⊥γ,在γ内任取一点P,过P作a垂直于α,γ的交线,则a⊥α,又α,则a⊥,同理,在γ内过P作b垂直于β,γ的交线,则b⊥,可推出l⊥γ,反过来,若l⊥γ,α∩β=l,根据面面垂直的判定定理,可知α⊥γ,β⊥γ,故“α⊥γ,β⊥γ”是“l⊥γ”的充要条件,故选:C.7.已知随机变量的分布列如下表:X -1 0 1P a b c其中.若的方差对所有都成立,则( )A. B. C. D.【解析】由的分布列可得:的期望为,,所以的方差,因为所以当且仅当时,取最大值,又对所有都成立,所以只需,解得,所以.故选D8.如图,平面四边形中,,是,中点,,,,将沿对角线折起至,使平面平面,则四面体中,下列结论不正确的是()A.平面B.异面直线与所成的角为C.异面直线与所成的角为D.直线与平面所成的角为【解析】A选项:因为,分别为和两边中点,所以,即平面,A正确;B选项:因为平面平面,交线为,且,所以平面,即,故B正确;C选项:取边中点,连接,,则,所以为异面直线与所成角,又,,,即,故C错误,D选项:因为平面平面,连接,则所以平面,连接FC,所以为异面直线与所成角,又,∴,又, sin=,∴,D正确,故选C.9.已知是边长为的正三角形,且,,设,当函数的最大值为-2时,()A.B.C.D.【解析】由题得,=,所以当时,的最大值为.故选:C10.已知等差数列满足,,数列满足,记数列的前项和为,若对于任意的,,不等式恒成立,则实数的取值范围为()A.B.C.D.【解析】由题意得,则,等差数列的公差,.由,得,则不等式恒成立等价于恒成立,而,问题等价于对任意的,恒成立.设,,则,即,解得或.故选:A.非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.《九章算术》第七章“盈不足”中第一题:“今有共买物,人出八,盈三钱;人出七,不足四,问人数物价各几何?”借用我们现在的说法可以表述为:有几个人合买一件物品,每人出8元,则付完钱后还多3元;若每人出7元,则还差4元才够付款.问他们的人数和物品价格?答:一共有_____人;所合买的物品价格为_______元.【解析】设共有人,由题意知,解得,可知商品价格为53元.即共有7人,商品价格为53元.12.在平面直角坐标系中,不等式组所表示的平面区域的面积等于______,的取值范围是______.【解析】不等式组表示的可行域如图,三条直线围成的三角形,可得C(1,0),可得B(1,4),解得A(0,1)区域面积为:×4×1=2.目标函数,根据图像得到过点A时取得最小值1,过点B时取得最大值6.故答案为:(1)2;(2).13.在 ABC 中,C=45°,AB=6 ,D 为 BC 边上的点,且AD=5,BD=3 ,则cos B=_____ ,AC=_____.【解析】∵AB=6,AD=5,BD=3,在△ABD中,余弦定理cos B,∴sin B.正弦定理:,可得:AC.故答案为:,.14.若的展开式中,的系数为6,则______,常数项的值为______.【解析】的展开式的通项公式为,令,求得,可得的系数为,.令,求得,可得常数项的值为,故答案为:1;15.15.已知奇函数是定义在R上的单调函数,若函数恰有4个零点,则a的取值范围是______.【解析】由题意,因为,是偶函数,若恰有4个零点,等价为当时,有两个不同的零点,是奇函数,由,得,是单调函数,,即,当时,有两个根即可,当时,等价为,,设,要使当时,有两个根,则,即,即实数a的取值范围是,故答案为:16.某校举行“我爱我的祖国”征文比赛,从名获得一等奖的同学中选出名同学发表获奖感言,要求甲、乙两名同学至少有一人参加,则不同发言顺序的种数为_____.(用数字作答)【解析】第一步:先选人,甲、乙至少有一人参加,用间接法,有第二步,将人排序,有故不同发言顺序的种数为.故答案为:17.如图,,分别是椭圆的左、右顶点,圆的半径为2,过点作圆的切线,切点为,在轴的上方交椭圆于点,则_______.【解析】连结,可得是边长为2的等边三角形,所以,可得直线的斜率,直线的斜率为,因此,直线的方程为,直线的方程为,设,由解得,因为圆与直线相切于点,所以,因此,故直线的斜率,因此直线的方程为,代入椭圆方程,消去得,解得或,因为直线交椭圆于与点,设,可得,由此可得.故答案为三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤. 18.已知函数.(Ⅰ)求的最小正周期;(Ⅱ)求在区间[]上的最大值和最小值.【解析】解(Ⅰ)====.所以的最小正周期为.(Ⅱ)因为,所以.于是,当,即时,取得最大值;当,即时,取得最小值.19.如图,三棱柱中,分别为棱的中点.(1)在上确定点M,使平面,并说明理由.(2)若侧面侧面,求直线与平面所成角的正弦值.【解析】(1)取BC中点M,连接AM,则AM∥平面PQB1;如图所示,取BB1中点N,连结AM,AN,为平行四边形,点N,P为中点,则,由线面平行的判定定理可得平面PQB1,同理可得,平面PQB 1,据此可得平面AMN∥平面PQB1,故平面.(2)作QO⊥平面ABB1A1,与A1A延长线交于O,则,,,,,,.作PN∥C1A1,则直线A1C1与平面PQB1所成角即直线PN与平面PQB1所成角,.设N到平面PQB1的距离为h,则,∴直线A1C1与平面PQB1所成角的正弦值为:.20.已知等差数列的前项和为,,公差,且,,成等比数列,数列满足,的前项和为.(Ⅰ)求数列和的通项公式;(Ⅱ)记,试比较与的大小.【解析】(Ⅰ)由已知得,即,又,∴,∴,.由得.时,.∴,显然也满足,∴.(Ⅱ),,,当时,,,当时,,,当时,,∴.综上,当时,;当时.21.已知抛物线,准线方程为,直线过定点,且与抛物线交于两点,为坐标原点.(1)求抛物线方程;(2)是否为定值,若是,求出这个定值;若不是,请说明理由;(3)当时,设,记,求的最小值及取最小值时对应的.【解析】(1)……①(2)设,据题意知直线的斜率存在,设②联立①②得,=.由于T(0,t)为定点,故t为定值,为定值. (3),,,,由(2)知,,且,又,当时,,,,;当时,,符合上式.,令,则,,当即时,22.已知函数.(1)求函数的单调区间;(2)若不等式时恒成立,求的取值范围.【解析】(l),①若,,在上单调递增;②若,当时,,当时,,所以是函数的单调递增区间,是函数的单调减区间,综上所述,当时,的单调递增区间为;当时,的单调递增区间为,单调递减区间为.(2)由题意可知,不等式可转化为在时恒成立,令,,①若,则,在上单调递减,所以,不等式恒成立等价于,即;②若,则,当时,,当时,,在上单调递减,在上单调递增,所以,不符合题意;③若,当时,,在上单调递增,所以,不符合题意;综上所述,.。
浙江专用2020年高考数学仿真试卷(含两套,解析版)

浙江高考仿真卷(一)一、选择题(本大题共10小题,每小题4分,共40分)1.已知集合A ={x |x 2<1},集合B ={x |log 2x <0},则A ∩B 等于( ) A .(0,1) B .(-1,0) C .(-1,1) D .(-∞,1) 答案 A解析 根据题意集合A ={x |-1<x <1},集合B ={x |0<x <1},∴A ∩B =(0,1).2.在平面直角坐标系中,经过点P (22,-2),渐近线方程为y =±2x 的双曲线的标准方程为( ) A.x 24-y 22=1 B.x 27-y 214=1 C.x 23-y 26=1 D.y 214-x 27=1 答案 B解析 ∵双曲线的渐近线方程为y =±2x ,∴设所求双曲线的标准方程为2x 2-y 2=k .又()22,-2在双曲线上,则k =16-2=14,即双曲线的方程为2x 2-y 2=14,∴双曲线的标准方程为x 27-y 214=1.3.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤2,2x -3y ≤9,x ≥0,则目标函数z =2x +y 的最大值是( )A .2B .3C .5D .7 答案 C解析 画出约束条件⎩⎪⎨⎪⎧x +y ≤2,2x -3y ≤9,x ≥0表示的可行域,如图中阴影部分(含边界)所示,由⎩⎪⎨⎪⎧ x +y -2=0,2x -3y -9=0,可得⎩⎪⎨⎪⎧x =3,y =-1, 将z =2x +y 变形为y =-2x +z , 平移直线y =-2x +z ,由图可知当直线y =-2x +z 经过点(3,-1)时, 直线在y 轴上的截距最大,即z 最大, z 的最大值为z =2×3-1=5.4.若复数z 1=2+i ,z 2=cos α+isin α(α∈R ),其中i 是虚数单位,则|z 1-z 2|的最大值为 A.5-1 B.5-12 C.5+1 D.5+12答案 C解析 方法一 由题可得z 1-z 2=2+i -cos α-isin α=2-cos α+(1-sin α)i(α∈R ), 则|z 1-z 2|=(2-cos α)2+(1-sin α)2 =4-4cos α+cos 2α+1-2sin α+sin 2α =6-2sin α-4cos α=6-22+42sin (α+φ)=6-25sin (α+φ),其中tan φ=2,当sin(α+φ)=-1时, |z 1-z 2|有最大值,此时|z 1-z 2|=6+25=5+1. 方法二 ∵z 1=2+i ,z 2=cos α+isin α(α∈R ),∴z 2在复平面内对应的点在以原点为圆心,以1为半径的圆上,z 1=2+i 对应的点为Z 1(2,1). 如图:则|z 1-z 2|的最大值为5+1.5.“α≠β”是“cos α≠cos β”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 B解析 因为α=β⇒cos α=cos β,所以cos α≠cos β⇒α≠β (逆否命题)必要性成立,α=-β⇒cos α=cos β,充分性不成立,故“α≠β”是“cos α≠cos β”的必要不充分条件. 6.函数f (x )=ln|x |x的图象大致为( )答案 A解析 函数的定义域为{x |x ≠0},f (x )=ln ||x x ,f ()-x =ln ||-x -x =-ln ||x x =-f (x ),所以函数f (x )是奇函数,图象关于原点对称,故可排除B ;当x >1时,f (x )=ln ||x x =ln xx >0,故可排除C ;当x >0时,f (x )=ln ||x x =ln xx ,f ′(x )=1-ln x x 2,显然当1<x <e 时,f ′(x )>0,函数f (x )单调递增,当x >e 时,f ′(x )<0,函数f (x )单调递减,可排除D ,故选A.7.本次模拟考试结束后,班级要排一张语文、数学、英语、物理、化学、生物六科试卷讲评顺序表,若化学排在生物前面,数学与物理不相邻且都不排在最后,则不同的排表方法共有( )A .72种B .144种C .288种D .360种 答案 B解析 第一步排语文、英语、化学、生物4科,且化学排在生物前面,有A 442=12(种)排法;第二步将数学和物理插入前4科除最后位置外的4个空档中的2个,有A 24=12(种)排法,所以不同的排表方法共有12×12=144(种). 8.已知随机变量X 的分布列如下表:其中a ,b ,c >0.若X 的方差D (X )≤13对所有a ∈(0,1-b )都成立,则( )A .b ≤13B .b ≤23C .b ≥13D .b ≥23答案 D解析 由X 的分布列可得X 的期望为E (X )=-a +c , a +b +c =1,所以X 的方差D (X )=(-1+a -c )2a +(a -c )2b +(1+a -c )2c =(a -c )2(a +b +c )-2(a -c )2+a +c =-(a -c )2+a +c =-(2a -1+b )2+1-b =-4⎝⎛⎭⎫a -1-b 22+1-b ,因为a ∈(0,1-b ),所以当且仅当a =1-b 2时,D (X )取最大值1-b ,又D (X )≤13对所有a ∈(0,1-b )都成立,所以只需1-b ≤13,解得b ≥23.9.如图所示,用一边长为2的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为4π3的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋(球体)离蛋巢底面的最短距离为( )A.2-12 B.2+12 C.6-12 D.3-12答案 D解析 因为蛋巢的底面是边长为1的正方形,所以过四个顶点截鸡蛋所得的截面圆的直径为1,又因为鸡蛋的体积为4π3,所以球的半径为1,所以球心到截面的距离d =1-14=32,而截面到球体最低点的距离为1-32,而蛋巢的高度为12,故球体到蛋巢底面的最短距离为12-⎝⎛⎭⎫1-32=3-12.10.设α,β是方程x 2-x -1=0的两个不等实数根,记a n =αn +βn (n ∈N *). 下列两个命题( )①数列{a n }的任意一项都是正整数; ②数列{a n }存在某一项是5的倍数. A .①正确,②错误 B .①错误,②正确 C .①②都正确 D .①②都错误答案 A解析 因为α,β是方程x 2-x -1=0的两个不等实数根,所以α+β=1,αβ=-1, 因为a n =αn +βn ,所以a n +1=αn +1+βn +1=(αn +βn )α+(αn +βn )β-βn α-αn β=(αn +βn )(α+β)-αβ(αn -1+βn -1)=(αn+βn )+(αn -1+βn -1)=a n +a n -1,即当n ≥3时,数列{a n }中的任一项都等于其前两项之和,又a 1=α+β=1,a 2=α2+β2=(α+β)2-2αβ=3,所以a 3=a 2+a 1=4,a 4=a 3+a 2=7,a 5=a 4+a 3=11,以此类推,即可知数列{a n }的任意一项都是正整数,故①正确,若数列{a n }存在某一项是5的倍数,则此项个位数字应当为0或5.由a 1=1,a 2=3,依次计算知,数列{a n }中不存在个位数字为0或5的项,②错误.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)11.《九章算术》中记载了“今有共买豕,人出一百,盈一百;人出九十,适足.问人数、豕价各几何?”.其意思是“若干个人合买一头猪,若每人出100,则会剩下100;若每人出90,则不多也不少.问人数、猪价各多少?”.设x ,y 分别为人数、猪价,则x =________,y =________. 答案 10 900解析 由题意可列方程组⎩⎪⎨⎪⎧y +100=100x ,y =90x ,解得⎩⎪⎨⎪⎧x =10,y =900.12.某几何体的三视图如图所示(单位:cm),则该几何体的表面积是________cm 2,体积是________cm 3.答案 20+45 8解析 由题意得,该几何体为三棱柱,故其表面积S =2×12×4×2+22+4×2+2×25=20+45,体积V =12×4×2×2=8.13.已知多项式(x +2)m (x +1)n =a 0+a 1x +a 2x 2+…+a m +n x m +n满足a 0=4,a 1=16,则m +n=________,a 0+a 1+a 2+…+a m +n =________. 答案 5 72解析 令x =0,得a 0=2m =4,又由二项展开式的通项公式得C m -1m ·2m -1·C n n ·1n +C m m ·2m ·C n -1n ·1n-1=16,所以m =2,n =3,则m +n =5;令x =1,得a 0+a 1+a 2+…+a m +n =32×23=72. 14.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,S 为△ABC 的面积,若c =2a cos B ,S =12a 2-14c 2,则△ABC 的形状为________,C 的大小为________. 答案 等腰三角形 π4解析 在△ABC 中,由c =2a cos B 及正弦定理得sin C =2sin A cos B ,则sin(A +B )=2sin A cos B ,化简得sin(A -B )=0,那么A =B ,从而有a =b ,所以△ABC 为等腰三角形;由S =12a 2-14c 2及余弦定理得12ab sin C =12a 2-14(a 2+b 2-2ab cos C ),化简得a 2sin C =a 2cos C ,又a >0,所以sin C =cos C ,则tan C =1,又C 是△ABC 的内角,故C =π4.15.已知x >0,y >-1,且x +y =1,则x 2+3x +y 2y +1的最小值为________.答案 2+ 3解析 x 2+3x +y 2y +1=⎝⎛⎭⎫x +3x +⎝⎛⎭⎫y -1+1y +1, 结合x +y =1可知原式=3x +1y +1,且3x +1y +1=⎝⎛⎭⎫3x +1y +1×x +()y +12 =12⎣⎢⎡⎦⎥⎤4+3()y +1x +x y +1 ≥12⎣⎢⎡⎦⎥⎤4+23()y +1x ×x y +1=2+3, 当且仅当x =3-3,y =-2+3时等号成立. 即x 2+3x +y 2y +1的最小值为2+ 3.16.已知F 1,F 2为椭圆C :x 24+y 23=1的左、右焦点,点P 在椭圆C 上移动时,△PF 1F 2的内心I 的轨迹方程为____________________________. 答案 x 2+3y 2=1(y ≠0)解析 由题意得F 1(-1,0),F 2(1,0),设点P (x ,y ),I (m ,n ),-2<x <2,y ≠0,则|PF 1|=(x +1)2+y 2=(x +1)2+3-3x 24=⎪⎪⎪⎪x 2+2=2+x 2,则|PF 2|=2a -|PF 1|=4-⎝⎛⎭⎫2+x 2=2-x 2,|F 1F 2|=2c =2,|PF 1|+|PF 2|+|F 1F 2|=2a +2c =6,则由点I 为△PF 1F 2的内心结合图形(图略)得⎩⎨⎧2+x2=m +1+1,12×n ×6=12×2×y ,则⎩⎪⎨⎪⎧x =2m ,y =3n ,代入椭圆C 的方程得三角形的内心I 的轨迹方程为m 2+3n 2=1(n ≠0),即x 2+3y 2=1(y ≠0).17.如图,在△ABC 中,已知AB =AC =1,∠A =120°,E ,F 分别是边AB ,AC 上的点,且AE →=λAB →,AF →=μAC →,其中λ,μ∈(0,1),且λ+4μ=1,若线段EF ,BC 的中点分别为M ,N ,则|MN →|的最小值为________.答案77解析 连接AM ,AN (图略),在等腰三角形ABC 中,AB =AC =1,∠A =120°,所以AB →·AC →=|AB →|·|AC →|·cos 120°=-12,因为AM 是△AEF 的中线,所以AM →=12(AE →+AF →)=12(λAB →+μAC →),同理可得AN →=12()AB →+AC →,由此可得MN →=AN →-AM →=12(1-λ)AB →+12()1-μAC →,两边平方并化简得MN →2=14(1-λ)2-14(1-λ)(1-μ)+14(1-μ)2,由于λ+4μ=1,可得1-λ=4μ,代入上式并化简得MN →2=214μ2-32μ+14=214⎝⎛⎭⎫μ-172+17,由于λ,μ∈()0,1,所以当μ=17时,MN →2取得最小值17,所以|MN →|的最小值为77.三、解答题(本大题共5小题,共74分.)18.(14分)已知f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,0<ω<4,|φ|<π2过点⎝⎛⎭⎫0,12,且当x =π6时,函数f (x )取得最大值1.(1)将函数f (x )的图象向右平移π6个单位长度得到函数g (x ),求函数g (x )的表达式;(2)在(1)的条件下,函数h (x )=f (x )+g (x )+2cos 2x -1,求h (x )在⎣⎡⎦⎤0,π2上的值域. 解 (1)由题意得A =1,由函数过⎝⎛⎭⎫0,12得sin φ=12,∵|φ|<π2, ∴φ=π6.又f ⎝⎛⎭⎫π6=1,∴π6ω+π6=π2+2k π,k ∈Z ,∵0<ω<4, ∴ω=2,∴f (x )=sin ⎝⎛⎭⎫2x +π6, ∴g (x )=f ⎝⎛⎭⎫x -π6=sin ⎝⎛⎭⎫2x -π6. (2)h (x )=sin ⎝⎛⎭⎫2x +π6+sin ⎝⎛⎭⎫2x -π6+cos 2x =3sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π6, 当x ∈⎣⎡⎦⎤0,π2时,π6≤2x +π6≤7π6,-12≤sin ⎝⎛⎭⎫2x +π6≤1, -1≤2sin ⎝⎛⎭⎫2x +π6≤2,所以h (x )在⎣⎡⎦⎤0,π2上的值域为[-1,2]. 19.(15分)如图,四棱锥P -ABCD 的底面是梯形,BC ∥AD ,AB =BC =CD =1,AD =2,PB =132,P A =PC = 3.(1)证明:AC ⊥BP ;(2)求直线AD 与平面APC 所成角的正弦值. (1)证明 取AC 的中点F ,连接PF ,BF , 由P A =PC 得PF ⊥AC ,由AB =BC ,得BF ⊥AC , 又PF ∩BF =F ,∴AC ⊥平面PBF , 又BP ⊂平面PBF ,∴AC ⊥BP .(2)解 延长BF 交AD 于点E ,过点P 作PO 垂直于平面ABCD 于点O ,由(1)易知点O 在BE 上,在△PBF 中,PB =132,BF =12,PF =32, 由余弦定理得cos ∠PFB =PF 2+BF 2-PB 22PF ·BF =-12,即∠PFB =120°,则∠PFO =60°, ∴PO =PF ·sin 60°=334, 由V P -ACD =V D -APC 得13·PO ·S △ACD =13·h ·S △APC ,其中h 为点D 到平面APC 的距离,解得h =32,设直线AD 与平面APC 所成角为θ, 则sin θ=h AD =34.20.(15分)已知各项均为正数的数列{a n }的前n 项和为S n ,且a 1=1,a n =S n +S n -1(n ∈N *,且n ≥2).(1)求数列{a n }的通项公式;(2)证明:当n ≥2时,1a 1+12a 2+13a 3+…+1na n <32.(1)解 由a n =S n +S n -1,得S n -S n -1=S n +S n -1,即S n -S n -1=1(n ≥2), 所以数列{S n }是以S 1=a 1=1为首项,以1为公差的等差数列, 所以S n =1+(n -1)×1=n ,即S n =n 2, 当n ≥2时,a n =S n -S n -1=2n -1,当n =1时,a 1=S 1=1,也满足上式,所以a n =2n -1. (2)证明 当n ≥2时,1na n =1n (2n -1)<1n (2n -2)=12·1n (n -1)=12⎝⎛⎭⎫1n -1-1n , 所以1a 1+12a 2+13a 3+…+1na n<1+12⎝⎛⎭⎫1-12+12-13+…+1n -1-1n =32-12n <32.故当n ≥2时,1a 1+12a 2+13a 3+…+1na n <32.21.(15分)已知直线l :y =kx +m 与椭圆x 2a 2+y 2b 2=1(a >b >0)恰有一个公共点P ,l 与圆x 2+y 2=a 2相交于A ,B 两点.(1)求k 与m 的关系式;(2)点Q 与点P 关于坐标原点O 对称.若当k =-12时,△QAB 的面积取到最大值a 2,求椭圆的离心率.解 (1)由⎩⎪⎨⎪⎧y =kx +m ,x 2a 2+y 2b 2=1,得(a 2k 2+b 2)x 2+2a 2kmx +a 2(m 2-b 2)=0,则Δ=(2a 2km )2-4(a 2k 2+b 2)a 2(m 2-b 2)=0, 化简整理,得m 2=a 2k 2+b 2.(2)因为点Q 与点P 关于坐标原点O 对称,故△QAB 的面积是△OAB 的面积的两倍. 所以当k =-12时,△OAB 的面积取到最大值a 22,此时OA ⊥OB ,从而原点O 到直线l 的距离d =a2, 又d =|m |k 2+1,故m 2k 2+1=a 22.再由(1),得a 2k 2+b 2k 2+1=a 22,则k 2=1-2b 2a 2.又k =-12,故k 2=1-2b 2a 2=14,即b 2a 2=38,从而e 2=c 2a 2=1-b 2a 2=58,即e =104.22.(15分)已知f (x )=2ln(x +2)-(x +1)2,g (x )=k (x +1),k ∈R . (1)求f (x )的单调区间;(2)当k =2时,求证:对于任意x >-1,f (x )<g (x )恒成立;(3)若存在x 0>-1,使得当x ∈(-1,x 0)时,恒有f (x )>g (x )成立,试求k 的取值范围. (1)解 函数f (x )的定义域为(-2,+∞). f ′(x )=2x +2-2(x +1)=-2()x 2+3x +1x +2(x >-2),当f ′(x )>0时,x 2+3x +1<0. 解得-2<x <-3+52;当f ′(x )<0时,解得x >-3+52.所以f (x )的单调递增区间为⎝ ⎛⎭⎪⎫-2,-3+52,单调递减区间为⎝⎛⎭⎪⎫-3+52,+∞.(2)证明 设h (x )=f (x )-g (x )=2ln(x +2)-(x +1)2-k (x +1)(x >-1), 当k =2时,h ′(x )=-2(x 2+3x +1)x +2-2=-2(x +3)(x +1)x +2,∴当x >-1时,h ′(x )<0恒成立,h (x )单调递减. 又h (-1)=0,∴当x ∈(-1,+∞)时,h (x )<h (-1)=0恒成立, 即f (x )-g (x )<0.∴对于任意x >-1,f (x )<g (x )恒成立.(3)解 因为h ′(x )=-2(x 2+3x +1)x +2-k=-2x 2+(k +6)x +2k +2x +2.方法一 由(2)知,当k =2时,f (x )<g (x )恒成立, 即对于任意x >-1,2ln(x +2)-(x +1)2<2(x +1), 不存在满足条件的x 0;当k >2时,对于任意x >-1,x +1>0, 此时2(x +1)<k (x +1).∴2ln(x +2)-(x +1)2<2(x +1)<k (x +1), 即f (x )<g (x )恒成立,不存在满足条件的x 0; 当k <2时,令t (x )=-2x 2-(k +6)x -(2k +2), 可知t (x )与h ′(x )符号相同,当x ∈(x 0,+∞)时,t (x )<0,h ′(x )<0, h (x )单调递减.∴当x ∈(-1,x 0)时,h (x )>h (-1)=0, 即f (x )-g (x )>0恒成立.综上,k 的取值范围为(-∞,2).方法二 存在x 0>-1,使得当x ∈(-1,x 0)时,恒有f (x )>g (x )成立,即h (x )>0恒成立,即h (x )>h (-1)恒成立,即当x ∈(-1,x 0)时,h ′(x )>0恒成立. 令t (x )=-2x 2-(k +6)x -(2k +2). 则t (-1)>0,即可解得k <2,∴k 的取值范围是(-∞,2).浙江高考仿真卷(二)一、选择题(本大题共10小题,每小题4分,共40分)1.设集合A ={1,2,3},B ={x ∈R |-1<x <3},则A ∩B 等于( ) A .{1,2} B .{1,3} C .{2,3} D .{1,2,3} 答案 A解 ∵集合A ={1,2,3},B ={x ∈R |-1<x <3}, ∴集合A 与集合B 公共元素组成的集合A ∩B ={1,2}.2.已知双曲线x 2m -y 23=1()m >0的右顶点和抛物线y 2=8x 的焦点重合,则m 的值为( )A .1B .2C .3D .4 答案 D解析 双曲线x 2m -y 23=1(m >0)的右顶点为(m ,0),抛物线y 2=8x 的焦点为(2,0),所以m =4.3.若实数x ,y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1,则函数z =2x +y 的最大值为( )A .12 B.325 C .3 D .15答案 A解析 作出不等式组对应的平面区域如图阴影部分所示(含边界).由z =2x +y 得y =-2x +z , 平移直线y =-2x +z ,由图象可知当直线y =-2x +z 经过点A 时, 直线y =-2x +z 在y 轴上的截距最大, 此时z 最大.由⎩⎪⎨⎪⎧ x -4y +3=0,3x +5y -25=0,解得⎩⎪⎨⎪⎧x =5,y =2,即A (5,2), 代入目标函数z =2x +y ,得z =2×5+2=12. 即目标函数z =2x +y 的最大值为12.4.某几何体的三视图如图所示,则该几何体中,面积最大的侧面的面积为( )A .1 B.22 C.52 D.62答案 C解析 几何体为一个四棱锥P -ABCD ,其中P A =3,PB =6,PC =5,PD =2,AB =BC =CD =DA =1, 所以S △P AB =S △P AD =22,S △PDC =12,S △PBC =52,因此面积最大的侧面面积为52.5.“x <2”是“2x <1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 B解析 由2x <1得x <0,因为“x <2”是“x <0”的必要不充分条件,所以“x <2”是“2x <1”的必要不充分条件. 6.函数f (x )=ln ⎝⎛⎭⎪⎫1-x 1+x +2sin x 的图象大致为( )答案 C解析 由1-x1+x >0,得f (x )的定义域为(-1,1),f (-x )=ln 1+x 1-x +2sin(-x )=-ln 1-x1+x -2sin x =-f (x ),∴f (x )为定义在(-1,1)上的奇函数,可排除A 和B ,又f (x )=ln(1-x )-ln(1+x )+2sin x ,x ∈(-1,1), 当x →1时,f (x )→-∞,可排除D.7.已知0<a <12,随机变量ξ的分布列如下:当a 增大时( ) A .E (ξ)增大,D (ξ)增大 B .E (ξ)减小,D (ξ)增大 C .E (ξ)增大,D (ξ)减小 D .E (ξ)减小 ,D (ξ)减小答案 B解析 由题意得,E (ξ)=-a +12,D (ξ)=⎝⎛⎭⎫-a +12+12×a +⎝⎛⎭⎫-a +122×⎝⎛⎭⎫12-a +⎝⎛⎭⎫-a +12-12×12=-a 2+2a +14,又∵0<a <12, ∴故当a 增大时,E (ξ)减小,D (ξ)增大.8.如图,已知三棱锥D -ABC ,记二面角C -AB -D 的平面角是θ,直线DA 与平面ABC 所成的角是θ1,直线DA 与BC 所成的角是θ2,则( )A .θ≥θ1B .θ≤θ1C .θ≥θ2D .θ≤θ2答案 A解析 若θ>π2,则θ>θ1,θ>θ2;若θ≤π2,如图所示,设D 在平面ABC 的投影为M ,过M 作MN ⊥AB ,垂足为N ,连接DN ,AM ,∴sin θ=DM DN ,sin θ1=DMDA ,∵DA ≥DN ,∴sin θ1≤sin θ,∴θ1≤θ,而θ与θ2的大小关系是不确定的,故选A.9.已知|AB →|=1,|BC →|+|CA →|=2,则CA →与CB →夹角的余弦值的取值范围是( ) A.⎣⎡⎦⎤-1,12 B.⎣⎡⎦⎤-12,12 C.⎣⎡⎦⎤12,1 D.⎣⎡⎦⎤-12,1 答案 C解析 易知BC →+CA →=BA →,所以BC →2+CA →2+2BC →·CA →=1.设向量CA →与CB →的夹角为θ,|BC →|=x ,则|CA →|=2-x ,所以cos θ=-2x 2-4x +32x 2-4x =-1-32(x -1)2-2,因为|BA →|=|BC →+CA →|≥||BC →|-|CA →||,所以|2x -2|≤1,所以12≤x ≤32,所以12≤cos θ≤1.故选C.10.已知函数f (x )=⎩⎪⎨⎪⎧ln x ,x >0,ax ,x ≤0,若方程f (-x )=-f (x )有五个不同的实数根,则a 的取值范围是( ) A .(0,+∞) B.⎝⎛⎭⎫0,1e C .(-∞,0) D .(0,1)答案 B解析 设g (x )=-f (-x ),则y =g (x )的图象与y =f (x )的图象关于原点对称,方程f (-x )=-f (x )有五个不同的实数根等价于函数y =f (x )的图象与y =g (x )的图象有5个交点, 由图象可知(图略),只需y =ax 与曲线y =ln x 在第一象限有两个交点即可, 设过原点的直线与y =ln x 切于点P (x 0,y 0), 由f ′(x )=1x,则y =ln x 的切线为y -ln x 0=1x 0(x -x 0),又此直线过点(0,0), 所以ln x 0=1, 所以x 0=e , 即f ′(e)=1e,即过原点的与y =ln x 相切的直线方程为y =1e x ,即所求a 的取值范围为⎝⎛⎭⎫0,1e .二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)11.复数z 满足z ·(1-i)=3-4i(其中i 为虚数单位),则|z |=________,复数z 的共轭复数z =________. 答案522 72+12i 解析 由z ·(1-i)=3-4i ,得z =3-4i 1-i =(3-4i )(1+i )(1-i )(1+i )=72-12i ,故|z |=494+14=522,z =72+12i. 12.已知直线l :mx -y =1,若直线l 与直线x +m (m -1)y =2垂直,则m 的值为________.动直线l: mx -y =1被圆C :x 2-2x +y 2-8=0截得的最短弦长为________. 答案 0或2 27解析 由两直线垂直的充要条件得m ×1+(-1)×m (m -1)=0,∴m =0或m =2;圆的半径为3,当圆心(1,0)到直线的距离最长即d =(1-0)2+[0-(-1)]2=2时弦长最短,此时弦长为232-(2)2=27.13.(1-2x )5展开式中x 3的系数为________;所有项的系数和为________. 答案 -80 -1解析 因为T k +1=C k 5(-2)k x k ,令k =3,T 4=-80x 3,所以x 3的系数为-80,设(1-2x )5 =a 0+a 1x +…+a 5x 5, 令x =1,则a 0+a 1+…+a 5=-1 , 所以所有项的系数和为-1.14.在△ABC 中,若b =2,A =120°,三角形的面积S =3,则c =________;三角形外接圆的半径为________. 答案 2 2解析 S =3=12×2c sin 120°,解得c =2.∴a 2=22+22-2×2×2×cos 120°=12, 解得a =23, ∴2R =a sin A =2332=4,解得R =2.15.已知椭圆C :x 24+y 23=1的左、右两焦点为F 1,F 2,△ABC 为椭圆的内接三角形,已知A ⎝⎛⎭⎫23,263,且满足F 2A →+F 2B →+F 2C →=0,则直线BC 的方程为_______________. 答案 146x -32y -276=0解析 由F 2A →+F 2B →+F 2C →=0知点F 2为△ABC 的重心, 设D (x 0,y 0)为BC 的中点, 则AF 2→=2F 2D →,所以⎩⎨⎧1-23=2(x 0-1),0-263=2y 0,解得⎩⎨⎧x 0=76,y 0=-63,即D ⎝⎛⎭⎫76,-63.设B (x 1,y 1),C (x 2,y 2),则⎩⎨⎧x 214+y 213=1, ①x 224+y223=1, ②①-②得(x 1-x 2)(x 1+x 2)4+(y 1-y 2)(y 1+y 2)3=0,即y 1-y 2x 1-x 2·y 1+y 2x 1+x 2=-34,因为y 1+y 2=2y 0=-263,x 1+x 2=2x 0=73,所以直线BC 的斜率k =y 1-y 2x 1-x 2=7616,所以直线BC 的方程为y +63=7616⎝⎛⎭⎫x -76, 即146x -32y -276=0.16.已知函数f (x )=x +bx +c 有两个不同的零点x 1,x 2,且x 1,x 2∈(0,2),则b 2+2bc +4b 的取值范围是__________________. 答案 (0,1)解析 函数f (x )=x +bx +c 有两个不同的零点x 1,x 2∈(0,2),等价于函数g (x )=x 2+cx +b (x ≠0)有两个不同的零点x 1,x 2∈(0,2),则g (x )=(x -x 1)(x -x 2),所以x 1x 2=b ,x 1+x 2=-c ,则b 2+2bc +4b =b (b +2c +4)=x 1x 2[x 1x 2-2(x 1+x 2)+4]=x 1x 2(2-x 1)(2-x 2)=x 1(2-x 1)·x 2(2-x 2)≤⎝⎛⎭⎫x 1+2-x 122·⎝⎛⎭⎫x 2+2-x 222=1,“=”成立的条件是x 1=x 2=1.因为x 1≠x 2,所以“=”取不到.又因为x 1,x 2∈(0,2),所以2-x 1∈(0,2),2-x 2∈(0,2),所以x 1x 2(2-x 1)(2-x 2)>0,所以b 2+2bc +4b 的取值范围是(0,1).17.在平面四边形ABCD 中,AB =BC =1,AD =CD =2,∠DAB =∠DCB =90°,点P 为AD 的中点,M ,N 分别在线段BD ,BC 上,则PM +22MN 的最小值为________. 答案 1解析 由题意得BD =AD 2+AB 2=3,cos ∠ADB =63. 设DM =t (0<t ≤3),则在△PDM 中,由余弦定理得 PM =PD 2+DM 2-2PD ·DM cos ∠ADB =⎝⎛⎭⎫t -332+16. 当MN ⊥BC 时,MN 取得最小值为BM ·CD BD =32-6t3,则PM +22MN =⎝⎛⎭⎫t -332+16-33t +1, 设y =⎝⎛⎭⎫t -332+16-33t +1, 则23t 2-233yt +12-(y -1)2=0, 将其看作是关于t 的一元二次方程,则Δ=43y 2-83⎣⎡⎦⎤12-(y -1)2≥0, 解得y ≥1或y ≤13.过点P 作PM ′⊥BD ,故易得 PM ≥PM ′=PD ·AB BD =66>13,所以y >13,则y ≤13舍去,即y ≥1,当y =1时,t =32, 所以PM +22MN 的最小值为1. 三、解答题(本大题共5小题,共74分.)18.(14分)已知函数f (x )=2sin(π-x )cos x +2cos 2x -1 . (1)求f (x )的最小正周期;(2)当x ∈⎣⎡⎦⎤-π4,π4时,f (x )≥m 恒成立,求m 的取值范围. 解 (1)f (x )=2sin(π-x )cos x +2cos 2x -1 =2sin x cos x +cos 2x =sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π4, 所以最小正周期T =2π2=π.(2)因为x ∈⎣⎡⎦⎤-π4,π4 ,所以2x ∈⎣⎡⎦⎤-π2,π2 , 2x +π4∈⎣⎡⎦⎤-π4,34π, 所以当2x +π4=-π4 ,即x =-π4时,sin ⎝⎛⎭⎫2x +π4 有最小值-22 ,所以f (x )有最小值-1, 因为当x ∈⎣⎡⎦⎤-π4,π4时,f (x )≥m 恒成立,所以m ≤-1, 即m 的取值范围是(-∞,-1].19.(15分)如图,在直三棱柱ABC -A 1B 1C 1中,△ABC 为等腰直角三角形,AB =AC ,D 为BC 的中点.(1)求证:A 1C ∥平面ADB 1;(2)若AB =AA 1=2,求直线A 1D 与平面ADB 1所成角的正弦值. 解 (1)连接A 1B (图略),记AB 1∩A 1B =E ,连接DE , 在直三棱柱ABC -A 1B 1C 1中,易知侧面ABB 1A 1为矩形,所以E 是A 1B 的中点,又D 为BC 的中点,所以A 1C ∥DE , 又A 1C ⊄平面ADB 1,DE ⊂平面ADB 1, 所以A 1C ∥平面ADB 1.(2)方法一 因为AB =AC =AA 1=2,△ABC 为等腰直角三角形, 所以BC =AB 2+AC 2=2,所BD =BC2=1.在Rt △B 1BD 中,tan ∠BDB 1=BB 1BD=2,连接BC 1,在Rt △B 1BC 1中,tan ∠B 1BC 1=B 1C 1BB 1=2,所以∠BDB 1=∠B 1BC 1.又∠BB 1D +∠BDB 1=π2,所以∠BB 1D +∠B 1BC 1=π2,所以BC 1⊥B 1D .因为AB =AC ,D 为BC 的中点,所以AD ⊥BC .又在直三棱柱ABC -A 1B 1C 1中,B 1B ⊥平面ABC ,AD ⊂平面ABC ,所以B 1B ⊥AD . 又B 1B ∩BC =B ,所以AD ⊥平面B 1BCC 1,又BC 1⊂平面B 1BCC 1,所以AD ⊥BC 1. 因为AD ∩B 1D =D ,所以BC 1⊥平面AB 1D .取CC 1的中点F ,连接DF ,A 1F ,则DF ∥BC 1,DF ⊥平面ADB 1,则∠A 1DF 为直线A 1D 与平面ADB 1所成角的余角,设直线A 1D 与平面ADB 1所成的角为θ,则θ=π2-∠A 1DF .在△A 1DF 中,易知A 1D =AA 21+AD 2=3,A 1F =A 1C 21+C 1F 2=102, DF =DC 2+CF 2=62, 所以cos ∠A 1DF =A 1D 2+DF 2-A 1F 22A 1D ×DF =23,故sin θ=sin ⎝⎛⎭⎫π2-∠A 1DF =cos ∠A 1DF =23, 所以直线A 1D 与平面ADB 1所成角的正弦值为23. 方法二 因为AB =AC ,D 为BC 的中点,所以AD ⊥BC ,又在直三棱柱ABC -A 1B 1C 1中,B 1B ⊥平面ABC ,所以可以DA ,DC 所在直线,过点D 且平行于B 1B 的直线分别为x ,y ,z 轴,建立如图所示的空间直角坐标系,因为AB =AC =AA 1=2,△ABC 为等腰直角三角形,所以A (1,0,0),D (0,0,0),A 1(1,0,2),B 1(0,-1,2),故A 1D →=(-1,0,-2),AD →=(-1,0,0),B 1D →=(0,1,-2),设平面ADB 1的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·AD →=0,n ·B 1D →=0,即⎩⎨⎧-x =0,y -2z =0, 令z =1,得y =2,则n =(0,2,1)为平面ADB 1的一个法向量,设直线A 1D 与平面ADB 1所成的角为θ,则sin θ=|cos 〈n ,A 1D →〉|=⎪⎪⎪⎪⎪⎪n ·A 1D →|n |·|A 1D →|=23, 故直线A 1D 与平面ADB 1所成角的正弦值为23. 20.(15分)已知数列{a n }的前n 项和为S n ,且满足2S n =-a n +n (n ∈N *).(1)求证:数列⎩⎨⎧⎭⎬⎫a n -12为等比数列; (2)求数列{a n -1}的前n 项和T n .(1)证明 2S n =-a n +n ,当n ≥2时,2S n -1=-a n -1+n -1,两式相减,得2a n =-a n +a n -1+1,即a n =13a n -1+13. ∴a n -12=13⎝⎛⎭⎫a n -1-12, 所以数列⎩⎨⎧⎭⎬⎫a n -12为等比数列. (2)解 由2S 1=-a 1+1,得a 1=13.由(1)知,数列⎩⎨⎧⎭⎬⎫a n -12是以-16为首项,13为公比的等比数列. 所以a n -12=-16⎝⎛⎭⎫13n -1=-12⎝⎛⎭⎫13n , ∴a n =-12⎝⎛⎭⎫13n +12(n ∈N *), ∴a n -1=-12⎝⎛⎭⎫13n -12,∴T n =-16⎣⎡⎦⎤1-⎝⎛⎭⎫13n 1-13-n 2=14⎣⎡⎦⎤⎝⎛⎭⎫13n -1-n 2(n ∈N *). 21.(15分)已知抛物线E :y 2=8x ,直线l :y =kx -4.(1)若直线l 与抛物线E 相切,求直线l 的方程;(2)设Q (4,0),直线l 与抛物线E 交于不同的两点A (x 1,y 1),B (x 2,y 2),若存在点C ,满足AC ⊥QC ,且线段OC 与AB 互相平分(O 为原点),求x 2的取值范围.解 (1)方法一 当k =0时,直线与抛物线不相切,所以k ≠0.由⎩⎪⎨⎪⎧y =kx -4,y 2=8x 得k 2x 2-8(k +1)x +16=0, 由k 2≠0及Δ=64(k +1)2-64k 2=0,得k =-12, 所以,所求的直线l 的方程为x +2y +8=0.方法二 直线l 恒过点(0,-4),由y 2=8x ,得y =±8x ,设切点为(x 0,y 0),由题意得,直线与抛物线在x 轴下方的图象相切,则y =-8x ,所以y ′|0x x ==-2x 0 , 所以切线方程为y +8x 0=-2x 0(x -x 0), 将坐标(0,-4)代入得x 0=8,即切点为(8,-8),再将该点代入y =kx -4得,k =-12, 所以所求的直线l 的方程为x +2y +8=0.(2)由⎩⎪⎨⎪⎧y =kx -4,y 2=8x 得k 2x 2-8(k +1)x +16=0,且k ≠0, 因为Δ=64(k +1)2-64k 2>0,且k ≠0, 所以k >-12,且k ≠0, 所以x 1+x 2=8(k +1)k 2, 所以y 1+y 2=k (x 1+x 2)-8=8k, 因为线段OC 与AB 互相平分,所以四边形OACB 为平行四边形.所以OC →=OA →+OB →=(x 1+x 2,y 1+y 2)=⎝⎛⎭⎫8(k +1)k 2,8k ,即C ⎝⎛⎭⎫8(k +1)k 2,8k .因为AC ⊥QC,方法一 所以k AC ·k QC =-1,又k QC =8k 8(k +1)k 2-4=2k 2(k +1)-k 2, 又k AC =k OB =y 2x 2=k -4x 2, 所以2k 2(k +1)-k 2·⎝⎛⎭⎫k -4x 2=-1, 所以8x 2=k +2k+2, 所以若k >0,则8x 2≥22+2=2(2+1), 当且仅当k =2时取等号,此时0<x 2≤4(2-1),若-12<k <0,由于k =-12时,k +2k +2=-52, 所以8x 2<-52,即x 2<-165(舍去), 综上所述,x 2的取值范围是(0,4(2-1)].方法二 所以QC →·AC →=0,又QC →=⎝⎛⎭⎫8(k +1)k 2-4,8k , AC →=OB →=(x 2,y 2)=(x 2,kx 2-4),所以QC →·AC →=⎝⎛⎭⎫8(k +1)k 2-4x 2+8k (kx 2-4)=0, 即8x 2=k +2k+2, 所以若k >0,则8x 2≥22+2=2(2+1), 当且仅当k =2时取等号,此时0<x 2≤4(2-1),若-12<k <0,由于k =-12时,k +2k +2=-52, 所以8x 2<-52,即x 2<-165(舍去). 综上所述,x 2的取值范围是(0,4(2-1)].22.(15分)已知函数f (x )=a e 2x -a e x -x e x (a ≥0,e =2.718…,e 为自然对数的底数),若f (x )≥0对于x ∈R 恒成立.(1)求实数a 的值;(2)证明:f (x )存在唯一极大值点x 0,且ln 22e +14e 2≤f (x 0)<14. (1)解 由f (x )=e x (a e x -a -x )≥0对于x ∈R 恒成立,设函数g (x )=a e x -a -x ,可得g (x )=a e x -a -x ≥0对于x ∈R 恒成立,∵g (0)=0,∴g (x )≥g (0),从而x =0是g (x )的一个极小值点,∵g ′(x )=a e x -1,∴g ′(0)=a -1=0,即a =1.当a =1时,g (x )=e x -1-x ,g ′(x )=e x -1,∵x ∈(-∞,0)时,g ′(x )<0,g (x )在(-∞,0)上单调递减,x ∈(0,+∞)时,g ′(x )>0,g (x )在(0,+∞)上单调递增,∴g (x )≥g (0)=0,即f (x )≥0,∴a =1.(2)证明 当a =1时,f (x )=e 2x -e x -x e x ,f ′(x )=e x (2e x -x -2).令h (x )=2e x -x -2,则h ′(x )=2e x -1,∴当x ∈(-∞,-ln 2)时,h ′(x )<0,h (x )在(-∞,-ln 2)上为减函数;当x ∈(-ln 2,+∞)时,h ′(x )>0,h (x )在(-ln 2,+∞)上为增函数,且h (0)=0,∵h (-1)<0,h (-2)>0,∴在(-2,-1)上存在x =x 0满足h (x 0)=0,∵h (x )在(-∞,-ln 2)上为减函数,∴当x ∈(-∞,x 0)时,h (x )>0,即f ′(x )>0,f (x )在(-∞,x 0)上为增函数,当x ∈(x 0,-ln 2)时,h (x )<0,即f ′(x )<0,f (x )在(x 0,-ln 2)上为减函数,当x ∈(-ln 2,0)时,h (x )<h (0)=0,即f ′(x )<0,f (x )在(-ln 2,0)上为减函数,当x ∈(0,+∞)时,h (x )>h (0)=0,即f ′(x )>0,f (x )在(0,+∞)上为增函数,∴f (x )在(-ln 2,+∞)上只有一个极小值点0,综上可知,f (x )存在唯一的极大值点x 0, 且x 0∈(-2,-1).∵h (x 0)=0,∴20e x -x 0-2=0, ∴f (x 0)=002ee x x --x 00e x =⎝⎛⎭⎫x 0+222-⎝⎛⎭⎫x 0+22(x 0+1)=-x 20+2x 04,x 0∈(-2,-1), ∵当x ∈(-2,-1)时,-x 2+2x 4<14, ∴f (x 0)<14; ∵ln 12e∈(-2,-1), ∴f (x 0)≥f ⎝⎛⎭⎫ln 12e =ln 22e +14e 2;综上知ln 22e +14e 2≤f (x 0)<14.。
【附20套高考模拟试题】2020届浙江省普通高等学校高考科目模拟考试数学试题1高考数学模拟试卷含答案

2020届浙江省普通高等学校高考科目模拟考试数学试题1高考数学模拟试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.将5名教师分配到甲、乙、丙三所学校任教,其中甲校至少分配两名教师,其它两所学校至少分配一名教师,则不同的分配方案共有几种( ) A .60B .80C .150D .3602.在ABC ∆中,内角A 、B 、C 的对边分别为a 、b 、c ,若1cos 2b a Cc =+,则角A 为 A .60︒ B .120︒C .45︒D .135︒3.若圆C :x 2+y 2﹣4x ﹣4y ﹣10=0上至少有三个不同的点到直线l :x ﹣y+m =0的距离为,则m 的取值范围是( ) A .B .C .[﹣2,2]D .(﹣2,2)4.设函数,则下列结论正确的是( )A .的值域为B .是偶函数C .不是周期函数 D .是单调函数5.将三颗骰子各掷一次,设事件A =“三个点数互不相同”, B =“至多出现一个奇数”,则概率()P A B ⋂等于( )A .14B .3536 C .518 D .5126.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为 A .122π B .12π C .82πD .10π7.已知抛物线C :22(0)y px p =>的焦点为F ,准线为l ,点M ,N 分别在抛物线C 上,且30MF NF +=u u u r u u u r,直线MN 交l 于点P ,'NN l ⊥,垂足为'N .若'MN P ∆的面积为3F 到l 的距离为( ) A .12B .10C .8D .68.在等差数列{}n a 中,若981a a <-,且它的前n 项和n S 有最小值,则当0n S >时,n 的最小值为() A .14 B .15 C .16 D .179.函数()sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为π,若将函数()f x 的图像向右平移6π个单位,得到函数()g x 的图像,则()g x 的解析式为( )A .()sin 46g x x π⎛⎫=+⎪⎝⎭B .()sin 43g x x π⎛⎫=-⎪⎝⎭C .()sin 26g x x π⎛⎫=+ ⎪⎝⎭ D .()sin 2g x x = 10.据有关文献记载:我国古代一座9层塔共挂了126盏灯,且相邻两层中的下一层灯数比上一层灯数都多n (n 为常数)盏,底层的灯数是顶层的13倍,则塔的底层共有灯( ) A .2盏 B .3盏 C .26盏 D .27盏11.已知变量1x ,()()20,0x m m ∈>,且12x x <,若2112xxx x <恒成立,则m 的最大值为( )A .eBC .1eD .112.已知{}{}0,1,2,1,1,3,5a b ∈∈-,则函数()22f x ax bx =-在区间()1,+∞上为增函数的概率是( )A .512 B .13 C .14 D .16二、填空题:本题共4小题,每小题5分,共20分。
2020年浙江省高考数学模拟试卷(10)

2020年浙江省高考数学模拟试卷(10)一.选择题(共10小题,满分40分,每小题4分)1.(4分)已知集合A ={x |x 2﹣2x ﹣3<0},集合B ={x |x ﹣1≥0},则∁R (A ∩B )=( ) A .(﹣∞,1)∪[3,+∞) B .(﹣∞,1]∪[3,+∞)C .(﹣∞,1)∪(3,+∞)D .(1,3)2.(4分)若复数a−i 1+i为纯虚数,则实数a 的值为( )A .iB .0C .1D .﹣13.(4分)若实数x ,y 满足约束条件{2x +y −4≤0,x −y +4≥0,3x +2y −3≥0,则z =2x ﹣y 的最小值是( )A .16B .7C .﹣4D .﹣54.(4分)已知离散型随机变量X 的分布列为X 0123p8274929127则X 的数学期望E (X )为( ) A .23B .1C .32D .25.(4分)“a ≥3”是“x =1为函数f (x )=﹣x 3+12(a +3)x 2﹣ax ﹣1的极小值点”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.(4分)已知(1+x )5=a 0+a 1(1﹣x )+a 2(1﹣x )2+…+a 5(1﹣x )5,则a 3=( ) A .﹣40B .40C .10D .﹣107.(4分)已知双曲线C 与双曲线x 22−y 26=1有公共的渐近线,且经过点P(−2,√3),则双曲线C 的离心率为( ) A .√2B .2√33C .4D .28.(4分)如图,在正方体ABCD ﹣A 1B 1C 1D 1中,E 为线段AA 1上的一个动点,F 为线段B 1C 1上的一个动点,则平面EFB 与底面ABCD 所成的锐二面角的平面角余弦值的取值范围是( )A .[0,√22]B .[√32,√22]C .[0,√33]D .[0,√55]9.(4分)函数f(x)=(x−1x+1)e x 的部分图象大致是( )A .B .C .D .10.(4分)已知数列{a n }满足:a n ={2,n ≤5a 1a 2⋯a n−1−1,n ≥6(n ∈N *).若正整数k (k ≥5)使得a 12+a 22+…+a k 2=a 1a 2…a k 成立,则k =( ) A .16B .17C .18D .19二.填空题(共7小题,满分36分)11.(6分)某校高二理科学生期末数学考试成绩的频率分布直方图如图,则本次考试中该校高二理科学生数学成绩的中位数的估计值为 .(精确到0.01)12.(6分)已知向量a →,b →满足|a →|=2,|b →|=1,a →⋅b →=1,则|a →+b →|= ,b →在a →上的投影等于 .13.(6分)某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 cm 3;表面积是 cm 2.14.(6分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,A =2π3,a =√3,b =1,则sin B = ,c = .15.(4分)已知实数x ,y 满足(2x ﹣y )2+4y 2=1,则2x +y 的最大值为 . 16.(4分)将2个相同的红球和2个相同的黑球全部放入甲、乙、丙、丁四个盒子里,其中甲、乙盒子均最多可放入2个球,丙、丁盒子均最多可放入1个球,且不同颜色的球不能放入同一个盒子里,共有 种不同的放法.17.(4分)已知点P 是直线y =x +1上的动点,点Q 是抛物线y =x 2上的动点.设点M 为线段PQ 的中点,O 为原点,则|OM |的最小值为 . 三.解答题(共5小题,满分74分)18.(14分)在平面直角坐标系xOy 中,锐角α,β的顶点为坐标原点O ,始边为x 轴的非负半轴,终边与单位圆O 的交点分别为P ,Q .已知点P 的横坐标为35,点Q 的纵坐标为2√55. (Ⅰ)求cos2α值;(Ⅱ)求tan (2α﹣β)的值.19.(15分)如图,在三棱柱ABC ﹣A 1B 1C 1中,侧面ABB 1A 1是菱形,D 为AB 的中点,△ABC 为等腰直角三角形,∠ACB =π2,∠ABB 1=π3,且AB =B 1C .(1)求证:CD ⊥平面ABB 1A 1;(2)求CD 与平面BCC 1B 1所成角的正弦值.20.(15分)已知数列{a n }是递增的等比数列,S n 是其前n 项和,a 2=9,S 3=39. (1)求数列{a n }的通项公式; (2)记b n =2n−1a n,求数列{b n }的前n 项和T n . 21.(15分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为35,F 1,F 2为椭圆的左、右焦点,点P (5,4√2)为椭圆外的点,点F 2在线段PF 1的中垂线上. (1)求椭圆C 的方程;(2)点Q (m ,0)为椭圆C 的长轴上的一个动点,过点Q 且斜率为45的宜线l 交椭圆C于A 、B 两点,证明:|QA |2+|QB |2为定值. 22.(15分)已知函数f (x )=lnx ﹣ax . (1)当a =1时,判断函数f (x )的单调性; (2)若f (x )≤0恒成立,求a 的取值范围; (3)已知0<a <b <e ,证明a b <b a .2020年浙江省高考数学模拟试卷(10)参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.(4分)已知集合A ={x |x 2﹣2x ﹣3<0},集合B ={x |x ﹣1≥0},则∁R (A ∩B )=( ) A .(﹣∞,1)∪[3,+∞) B .(﹣∞,1]∪[3,+∞)C .(﹣∞,1)∪(3,+∞)D .(1,3)【解答】解:∵A =(﹣1,3),B =[1,+∞), ∴A ∩B =[1,3),∴∁R (A ∩B )=(﹣∞,1)∪[3,+∞), 故选:A . 2.(4分)若复数a−i 1+i为纯虚数,则实数a 的值为( )A .iB .0C .1D .﹣1【解答】解:复数a−i 1+i =(a−i)(1−i)(1+i)(1−i)=a−12−(a+1)2i 为纯虚数,∴a−12=0,−a+12≠0, 解得a =1. 故选:C .3.(4分)若实数x ,y 满足约束条件{2x +y −4≤0,x −y +4≥0,3x +2y −3≥0,则z =2x ﹣y 的最小值是( )A .16B .7C .﹣4D .﹣5【解答】解:作出不等式对应的平面区域(阴影部分), 由z =2x ﹣y ,得y =2x ﹣z ,平移直线y =2x ﹣z ,由图象可知当直线y =2x ﹣z 经过点A 时,直线y =2x ﹣z 的截距最大,此时z 最小.由{x −y +4=03x +2y −3=0 得 {x =−1y =3,即A (﹣1,3),此时z 的最小值为z =﹣1×2﹣3=﹣5, 故选:D .4.(4分)已知离散型随机变量X 的分布列为X 0123p8274929127则X 的数学期望E (X )为( ) A .23B .1C .32D .2【解答】解:由离散型随机变量X 的分布列得: E (X )=0×827+1×49+2×29+3×127=1. 故选:B .5.(4分)“a ≥3”是“x =1为函数f (x )=﹣x 3+12(a +3)x 2﹣ax ﹣1的极小值点”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【解答】解:f ′(x )=﹣3x 2+(a +3)x ﹣a =(﹣3x +a )(x ﹣1),令f ′(x )=0,则x =a3或x =1.当a3=1时,即a =3时,f ′(x )=﹣3(x ﹣1)2<0,f (x )单调递减,函数f (x )无极小值点;当a3>1时,即a >3时,当x <1时,f '(x )<0,f (x )单调递减;当1<x <a3时,f '(x )>0,f (x )单调递增;当x >a3时,f '(x )<0,f (x )单调递减; 故x =1为极小值点.当a3<1时,即a <3时,当x <a 3时,f '(x )<0,f (x )单调递减;当a3<x <1时,f '(x )>0,f (x )单调递增;当x >1时,f '(x )<0,f (x )单调递减; 故x =1为极大值点.故“x =1为函数f (x )=﹣x 3+12(a +3)x 2﹣ax ﹣1的极小值点”⇔a >3故“a ≥3”是“x =1为函数f (x )=﹣x 3+12(a +3)x 2﹣ax ﹣1的极小值点”的必要不充分条件. 故选:B .6.(4分)已知(1+x )5=a 0+a 1(1﹣x )+a 2(1﹣x )2+…+a 5(1﹣x )5,则a 3=( ) A .﹣40B .40C .10D .﹣10【解答】解:已知(1+x)5=a 0+a 1(1−x)+a 2(1−x)2+⋯+a 5(1−x)5=[2﹣(1﹣x )]5,则a 3=C 53•(﹣1)3•22=﹣40, 故选:A .7.(4分)已知双曲线C 与双曲线x 22−y 26=1有公共的渐近线,且经过点P(−2,√3),则双曲线C 的离心率为( ) A .√2B .2√33C .4D .2【解答】解:根据题意,双曲线C 与双曲线x 22−y 26=1有公共的渐近线,设双曲线C的方程为x 22−y 26=t ,(t ≠0),又由双曲线C 经过点P (﹣2,√3),则有2−12=t ,则t =32, 则双曲线的C 的方程为x 22−y 26=32,即:x 23−y 29=1,其焦距c =2√3,a =√3,所以双曲线的离心率为:e =ca =2. 故选:D .8.(4分)如图,在正方体ABCD ﹣A 1B 1C 1D 1中,E 为线段AA 1上的一个动点,F 为线段B 1C 1上的一个动点,则平面EFB 与底面ABCD 所成的锐二面角的平面角余弦值的取值范围是( )A .[0,√22]B .[√32,√22]C .[0,√33]D .[0,√55]【解答】解:在正方体ABCD ﹣A 1B 1C 1D 1中,E 为线段AA 1上的一个动点, F 为线段B 1C 1上的一个动点,当F 与B 1重合时,平面EFB 即为平面ABB 1A 1,此时 平面EFB 与底面ABCD 所成的二面角的平面角为90°,余弦值为0, 当E 与A 重合,F 与C 1重合时,平面EFB 是平面ABC 1D 1,此时平面EFB 与底面ABCD 所成的锐二面角的平面角为45°,余弦值为√22. ∴平面EFB 与底面ABCD 所成的锐二面角的平面角余弦值的取值范围是[0,√22]. 故选:A .9.(4分)函数f(x)=(x−1x+1)e x的部分图象大致是( ) A . B .C .D .【解答】解:当x →﹣∞时,e x →0+,x−1x+1=1−2x+1→1+,所以f (x )→0+,排除C ,D ;因为x →+∞时,e x →+∞,x−1x+1=1−2x+1→1+,所以f (x )→+∞,因此排除B , 故选:A .10.(4分)已知数列{a n }满足:a n ={2,n ≤5a 1a 2⋯a n−1−1,n ≥6(n ∈N *).若正整数k (k ≥5)使得a 12+a 22+…+a k 2=a 1a 2…a k 成立,则k =( ) A .16B .17C .18D .19【解答】解:a n ={2,n ≤5a 1a 2⋯a n−1−1,n ≥6(n ∈N *),即a 1=a 2=a 3=a 4=a 5=2,a 6=a 1a 2a 3…a 5﹣1=25﹣1=31, n ≥6时,a 1a 2…a n ﹣1=1+a n , a 1a 2…a n =1+a n +1, 两式相除可得1+a n+11+a n=a n ,则a n 2=a n +1﹣a n +1,n ≥6, 由a 62=a 7﹣a 6+1, a 72=a 8﹣a 7+1, …,a k 2=a k +1﹣a k +1,k ≥5,可得a 62+a 72+…+a k 2=a k +1﹣a 6+k ﹣5a 12+a 22+…+a k 2=20+a k +1﹣a 6+k ﹣5=a k +1+k ﹣16, 且a 1a 2…a k =1+a k +1,正整数k (k ≥5)时,要使得a 12+a 22+…+a k 2=a 1a 2…a k 成立, 则a k +1+k ﹣16=a k +1+1, 则k =17, 故选:B .二.填空题(共7小题,满分36分)11.(6分)某校高二理科学生期末数学考试成绩的频率分布直方图如图,则本次考试中该校高二理科学生数学成绩的中位数的估计值为 115.83 .(精确到0.01)【解答】解:由频率分布直方图得:频率在[50,110)的频率为:(0.0016+0.008+0.0084)×20=0.36, 频率在[110,130)的频率为:0.024×20=0.48,∴本次考试中该校高二理科学生数学成绩的中位数的估计值为: 110+0.5−0.360.48×20≈115.83. 故答案为:115.83.12.(6分)已知向量a →,b →满足|a →|=2,|b →|=1,a →⋅b →=1,则|a →+b →|= √7 ,b →在a →上的投影等于12.【解答】解:因为|a →|=2,|b →|=1,a →⋅b →=1, 所以:|a →+b →|2=a →2+2a →•b →+b →2=22+12+2×1=7; ∴|a →+b →|=√7;∵b →的a →上的投影等于:|b →|cos θ=a →⋅b →|a →|=12; 故答案为:√7,12.13.(6分)某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 8+4√23 cm 3;表面积是 20+4√3 cm 2.【解答】解:根据几何体的三视图转换为几何体为:该几何体为上面为正式棱锥体,下面为正方体的组合体,故V =2×2×2+13×2×2×√2=8+4√23. S =4×12×2×√3+5×2×2=20+4√3. 故答案为:8+4√23;20+4√3.14.(6分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,A =2π3,a =√3,b =1,则sin B =12,c = 1 .【解答】解:∵在△ABC 中:A =2π3,a =√3,b =1, ∴由正弦定理得:asinA=b sinB=√3sin2π3=2,∴sin B =12,又∵a >b ,0<B <π, ∴0<B <2π3, ∴B =π6,又∵A +B +C =π, ∴C =π−2π3−π6=π6, ∴c =b =1, 故答案为:12;1.15.(4分)已知实数x ,y 满足(2x ﹣y )2+4y 2=1,则2x +y 的最大值为 √2 .【解答】解:由题意可令{2x −y =sinα2y =cosα,则2x +y =sin α+cos α=√2sin(α+π4), 结合正弦函数的性质可知,2x +y 的最大值√2 故答案为:√216.(4分)将2个相同的红球和2个相同的黑球全部放入甲、乙、丙、丁四个盒子里,其中甲、乙盒子均最多可放入2个球,丙、丁盒子均最多可放入1个球,且不同颜色的球不能放入同一个盒子里,共有 20 种不同的放法. 【解答】解:(丙,丁)→(0,0):A 22=2,(丙,丁)→(1,0):C 21C 21=4, (丙,丁)→(0,1):C 21C 21=4,(丙,丁)→(1,1):A 22A 22(不同色)+C 21.3(同色)=10,故共有:2+4+4+10=20种.17.(4分)已知点P 是直线y =x +1上的动点,点Q 是抛物线y =x 2上的动点.设点M 为线段PQ 的中点,O 为原点,则|OM |的最小值为3√216. 【解答】解:如图:直线l 2:y =x +1,与直线l 2:y =x −14,(相切时最远),则M 点的轨迹在y =x +1−142上,所以|OM |的最小值为原点到直线y =x +38的距离:|OM|min =3√216.三.解答题(共5小题,满分74分)18.(14分)在平面直角坐标系xOy 中,锐角α,β的顶点为坐标原点O ,始边为x 轴的非负半轴,终边与单位圆O 的交点分别为P ,Q .已知点P 的横坐标为35,点Q 的纵坐标为2√55. (Ⅰ)求cos2α值;(Ⅱ)求tan (2α﹣β)的值.【解答】解:(Ⅰ)∵锐角α,β的顶点为坐标原点O ,始边为x 轴的非负半轴,终边与单位圆O 的交点分别为P ,Q . 已知点P 的横坐标为35,点Q 的纵坐标为2√55,∴cos α=35,sin β=2√55, ∴cos2α=2cos 2α﹣1=−725. (Ⅱ)由题意可得sin α=√1−cos 2α=45,cos β=√1−sin 2β=√55, ∴tan α=sinαcosα=43,tan β=sinβcosβ=2,∴tan2α=2tanα1−tan 2α=−247, ∴tan (2α﹣β)=tan2α−tanβ1+tan2α⋅tanβ=3841.19.(15分)如图,在三棱柱ABC ﹣A 1B 1C 1中,侧面ABB 1A 1是菱形,D 为AB 的中点,△ABC 为等腰直角三角形,∠ACB =π2,∠ABB 1=π3,且AB =B 1C . (1)求证:CD ⊥平面ABB 1A 1;(2)求CD 与平面BCC 1B 1所成角的正弦值.【解答】解:(1)证明:∵D 为AB 中点,AC =BC ,∴CD ⊥AB ,连结B 1D ,如图,设AB =2a ,∵四边形ABB 1A 1是菱形,D 为AB 中点,∠ABB 1=π3, ∴B 1D =√3a ,∵△ABC 是等腰直角三角形,∠ACB =π2,CD =a , ∴B 1D 2+CD 2=B 1C 2,∴CD ⊥B 1D , ∵AB ∩B 1D =D ,∴CD ⊥平面ABB 1A 1. (2)解:设CD 与平面BCC 1B 1所成角为θ, 点D 到平面BCC 1B 1的距离为d ,AB =2a , 由(1)知B 1D ⊥平面BCD ,则S △BCD =12a 2,∴V B 1−BCD =13×12a 2×√3a =√36a 3, ∵BC =√2a ,B 1B =B 1C =2a ,∴S △B 1BC =12×√2a ×√7√2=√72a 2, ∴V D−B 1BC =13×√72a 2d , ∵V B 1−BCD =V D−B 1BC ,∴√36a 3=√76a 2d , 解得d =√3√7,∴sin θ=dCD =√217.∴CD 与平面BCC 1B 1所成角的正弦值为√217.20.(15分)已知数列{a n }是递增的等比数列,S n 是其前n 项和,a 2=9,S 3=39. (1)求数列{a n }的通项公式;(2)记b n =2n−1a n,求数列{b n }的前n 项和T n .【解答】解:(1)数列{a n }是递增的等比数列,设公比为q ,由题意可得q >1, 由a 2=9,S 3=39,可得9q+9+9q =39,解得q =3或13(舍去),则数列{a n }的通项公式为a n =a 2q n ﹣2=9•3n ﹣2=3n ;(2)b n =2n−1a n =(2n ﹣1)•(13)n , T n =1•13+3•(13)2+5•(13)3+…+(2n ﹣1)•(13)n , 13T n =1•(13)2+3•(13)3+5•(13)4+…+(2n ﹣1)•(13)n +1, 两式相减可得23T n =13+2[(13)2+(13)3+…+•(13)n ]﹣(2n ﹣1)•(13)n +1=13+2•19(1−13n−1)1−13−(2n ﹣1)•(13)n +1, 化简可得T n =1﹣(n +1)•(13)n . 21.(15分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为35,F 1,F 2为椭圆的左、右焦点,点P (5,4√2)为椭圆外的点,点F 2在线段PF 1的中垂线上. (1)求椭圆C 的方程;(2)点Q (m ,0)为椭圆C 的长轴上的一个动点,过点Q 且斜率为45的宜线l 交椭圆C于A 、B 两点,证明:|QA |2+|QB |2为定值. 【解答】解:(1)∵椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为35,F 1,F 2为椭圆的左、右焦点,点P (5,4√2)为椭圆外的点,点F 2在线段PF 1的中垂线上.∴{ ca =352c =√(5−c)2+(4√2−0)2a 2=b 2+c 2, 解得a =5,b =4,c =3, ∴椭圆C 的方程为x 225+y 216=1.证明:(2)点Q (m ,0)为椭圆C 的长轴上的一个动点,过点Q 且斜率为45的直线l 交椭圆C 于A 、B 两点,则直线l 的方程为x =54y +m ,代入x 225+y 216=1,并整理得:25y 2+20my +8(m 2﹣25)=0,设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=−45m ,y 1y 2=8(m 2−25)25,又|QA |2=(x 1﹣m )2+y 12=4116y 12,同理,|QB |2=8(m 2−25)25,则|QA |2+|QB |2=4116(y 12+y 22)=4116[(y 1+y 2)2﹣2y 1y 2]=4116[(−4m5)2−16(m 2−25)25]=41,∴|QA |2+|QB |2为定值41.22.(15分)已知函数f (x )=lnx ﹣ax . (1)当a =1时,判断函数f (x )的单调性; (2)若f (x )≤0恒成立,求a 的取值范围; (3)已知0<a <b <e ,证明a b <b a .【解答】解:(1)当a =1时,f (x )=lnx ﹣x (x >0),则f ′(x)=1x −1=1−xx , 令f ′(x )>0解得0<x <1,令f ′(x )<0解得x >1, 故函数f (x )的增区间为(0,1),减区间为(1,+∞); (2)f (x )≤0恒成立即为a ≥lnxx ,设g(x)=lnx x (x >0),则g ′(x)=1−lnxx 2, 令g ′(x )>0解得0<x <e ,令g ′(x )<0解得x >e ,即函数g (x )在(0,e )上单增,在(e ,+∞)上单减,故g(x)max =g(e)=1e, ∴实数a 的取值范围为a ≥1e ;(3)证明:要证a b <b a ,即证blna <alnb ,即证lna a<lnb b,由(2)知函数g(x)=lnxx 在(0,e )上单增,又0<a <b <e ,故lna a <lnb b,即得证.。
(浙江专用)2020高考数学仿真模拟卷

浙江专用高考数学仿真模拟试卷(时间:120分钟;满分:150分)选择题部分一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A ={x |x 2-x -2≤0},B ={x |x <1,且x ∈Z },则A ∩B =( ) A .{-1} B .{0} C .{-1,0}D .{0,1}2.若复数1+a i2-i (i 为虚数单位)为纯虚数,则实数a 的值为( )A .2 B.12 C .-12D .-23.设a ∈R ,则“a >0”是“a +2a≥22”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.曲线f (x )=x 3-x +3在点P 处的切线平行于直线y =2x -1,则P 点的坐标为( ) A .(1,3)B .(-1,3)C .(1,3)和(-1,3)D .(1,-3)5.函数y =|x |axx(a >1)的图象大致形状是( )6.已知变量x ,y 满足约束条件{x -2y ≥-2,x -y ≤0,x ≥-4,若不等式2x -y +m 2≥0恒成立,则实数m 的取值范围为( )A .[-6,6]B .[-7,7]C .(-∞,-6]∪[6,+∞)D .(-∞,-7]∪[7,+∞)7.随机变量X 的分布列如下表,且E (X )=2,则D (2X -3)=( )A.2 B.3C.4 D.58.已知平面向量a,b,c满足c=x a+y b(x,y∈R),且a·c>0,b·c>0.( )A.若a·b<0则x>0,y>0 B.若a·b<0则x<0,y<0C.若a·b>0则x<0,y<0 D.若a·b>0则x>0,y>09.如图,四棱锥PABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB和△PAD都是等边三角形,则异面直线CD与PB所成角的大小为( )A.90°B.75°C.60°D.45°10.若函数f(x)=2x+1-x2-2x-2,对于任意的x∈Z且x∈(-∞,a),f(x)≤0恒成立,则实数a的取值范围是( )A.(-∞,-1] B.(-∞,0]C.(-∞,3] D.(-∞,4]二、填空题:本大题共7小题,多空题每小题6分,单空题每小题4分,共36分.11.设抛物线y2=2px(p>0)的焦点为F,准线为l,点A(0,2).若线段FA的中点B在抛物线上,则F到l的距离为________,|FB|=________.12.某几何体的三视图如图所示,当xy取得最大值为________时,该几何体的体积是________.13.在△ABC中,角A,B,C分别对应边a,b,c,S为△ABC的面积.已知a=4,b=5,C=2A,则c=________,S=________.14.已知数列{a n }满足a 1=2且对任意的m ,n ∈N *,都有a n +ma m=a n ,则a 3=________;{a n }的前n 项和S n =________.15.安排甲、乙、丙、丁、戊5名大学生去杭州、宁波、金华三个城市进行暑期社会实践活动,每个城市至少安排一人,则不同的安排方式共有________种.(用数字作答)16.已知f (x )=x 3+ax -2b ,如果f (x )的图象在切点P (1,-2)处的切线与圆(x -2)2+(y +4)2=5相切,那么3a +2b =________.17.若二项式⎝⎛⎭⎪⎫x +m x 2n展开式的二项式系数之和为32,常数项为10,则实数m 的值为________.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤. 18.(本题满分14分)已知函数f (x )=sin 2x -sin 2(x -π6),x ∈R .(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最大值和最小值.19.(本题满分15分)在三棱柱ABC A 1B 1C 1中,侧面AA 1B 1B 是边长为2的正方形,点C 在平面AA 1B 1B 上的射影H 恰好为A 1B 的中点,且CH =3,设D 为CC 1的中点.(1)求证:CC 1⊥平面A 1B 1D ;(2)求DH 与平面AA 1C 1C 所成角的正弦值.20.(本题满分15分)已知等差数列{a n }的前n 项和为S n ,a 1=1,公差d ≠0,且S 1,S 3,S 9成等比数列,数列{b n }满足b 1S 1+b 2S 2+…+b n S n =6-n 2+4n +62n(n ∈N *),{b n }的前n 项和为T n .(1)求数列{a n }和{b n }的通项公式; (2)记R n =1a 1a 2+1a 2a 3+…+1a n a n +1,试比较R n 与12T n 的大小.21.(本题满分15分)已知抛物线y 2=2px ,过焦点且垂直x 轴的弦长为6,抛物线上的两个动点A (x 1,y 1)和B (x 2,y 2),其中x 1≠x 2且x 1+x 2=4,线段AB 的垂直平分线与x 轴交于点C .(1)求抛物线方程;(2)试证线段AB 的垂直平分线经过定点,并求此定点; (3)求△ABC 面积的最大值.22.(本题满分15分)已知函数f (x )=ln x +x 2-ax +2,(a ∈R )在定义域内不单调.(1)求实数a 的取值范围;(2)若函数f (x )存在3个不同的零点,证明:存在m ,n ∈(0,+∞),使得f (m )-f (n )m -n<22-3.答案及解析1.解析:选C.依题意得A ={x |(x +1)(x -2)≤0}={x |-1≤x ≤2},因此A ∩B ={x |-1≤x <1,x ∈Z }={-1,0},选C.2.解析:选A.法一:由题意得1+a i 2-i =(1+a i )(2+i )(2-i )(2+i )=2-a +(1+2a )i 5=2-a5+1+2a 5i 为纯虚数,则2-a 5=0,且1+2a5≠0,解得a =2.故选A. 法二:由题意,令1+a i 2-i =t i(t ≠0),则1+a i =t +2t i ,则⎩⎪⎨⎪⎧1=t ,a =2t ,解得⎩⎪⎨⎪⎧t =1,a =2.3.解析:选C.由a >0得,a +2a≥2a ·2a=22,所以是充分条件; 由a +2a≥22可得a >0,所以是必要条件,故“a >0”是“a +2a≥22”的充要条件.故选C.4.解析:选C.f ′(x )=3x 2-1,令f ′(x )=2,则3x 2-1=2,解得x =1或x =-1,所以P (1,3)或(-1,3),经检验,点(1,3),(-1,3)均不在直线y =2x -1上,故选C.5.解析:选B.当x >0时,y =a x,因为a >1,所以是增函数,排除C 、D ,当x <0时,y =-a x,是减函数,所以排除A.故选B.6.解析:选D.作出约束条件⎩⎪⎨⎪⎧x -2y ≥-2,x -y ≤0,x ≥-4所对应的可行域(图中阴影部分),令z =-2x +y , 当直线经过点A (-4,-1)时,z 取得最大值, 即z max =-2×(-4)-1=7,所以m 的取值范围为(-∞,-7]∪[7,+∞),故选D.7.解析:选C.由题意可得:16+p +13=1,解得p =12,因为E (X )=2,所以0×16+2×12+a ×13=2,解得a =3.D (X )=(0-2)2×16+(2-2)2×12+(3-2)2×13=1.D (2X -3)=4D (X )=4.故选C.8.解析:选A.由a ·c >0,b ·c >0,若a ·b <0, 可举a =(1,1),b =(-2,1),c =(0,1), 则a ·c =1>0,b ·c =1>0,a ·b =-1<0, 由c =x a +y b ,即有0=x -2y ,1=x +y , 解得x =23,y =13,则可排除B ;若a·b >0,可举a =(1,0),b =(2,1),c =(1,1), 则a ·c =1>0,b ·c =3>0,a ·b =2>0,由c =x a +y b ,即有1=x +2y ,1=y ,解得x =-1,y =1, 则可排除C ,D.故选A. 9.解析:选A.延长DA 至E ,使AE =DA ,连接PE ,BE ,因为∠ABC =∠BAD =90°,BC =2AD ,所以DE =BC ,DE ∥BC . 所以四边形CBED 为平行四边形. 所以CD ∥BE .所以∠PBE (或其补角)就是异面直线CD 与PB 所成的角. 在△PAE 中,AE =PA ,∠PAE =120°, 由余弦定理得PE =PA 2+AE 2-2·PA ·AE ·cos ∠PAE=AE 2+AE 2-2·AE ·AE ·⎝ ⎛⎭⎪⎫-12=3AE .在△ABE 中,AE =AB ,∠BAE =90°, 所以BE =2AE .因为△PAB 是等边三角形, 所以PB =AB =AE .因为PB 2+BE 2=AE 2+2AE 2=3AE 2=PE 2,所以∠PBE =90°.故选A. 10.解析:选D.f (x )=2x +1-x 2-2x -2≤0,即2x +1≤x 2+2x +2.设g (x )=2x +1,h (x )=x2+2x +2,当x ≤-1时,0<g (x )≤1,h (x )=x 2+2x +2≥1,所以当a ≤-1时,满足对任意的x ∈Z 且x ∈(-∞,a ),f (x )≤0恒成立;当-1<x <4时,因为g (0)=h (0)=2,g (1)=4<h (1)=5,g (2)=8<h (2)=10,g (3)=16<h (3)=17,所以当-1<a ≤4时,亦满足对任意的x ∈Z 且x ∈(-∞,a ),f (x )≤0恒成立;当x ≥4时,易知f ′(x )=2x +1·ln 2-2x -2,设F (x )=2x +1·ln 2-2x -2,则F ′(x )=2x +1·(ln 2)2-2>0,所以F (x )=2x +1·ln 2-2x-2在[4,+∞)上是增函数,所以f ′(x )≥f ′(4)=32ln 2-10>0,所以函数f (x )=2x +1-x 2-2x -2在[4,+∞)上是增函数,所以f (x )≥f (4)=32-16-8-2=6>0,即当a >4时,不满足对任意的x ∈Z 且x ∈(-∞,a ),f (x )≤0恒成立.综上可知,实数a 的取值范围是(-∞,4].11.解析:依题意可知F 点坐标为⎝ ⎛⎭⎪⎫p 2,0,所以B 点坐标为⎝ ⎛⎭⎪⎫p4,1,代入抛物线方程解得p =2,所以F 到l 的距离为2,|FB |=p 4+p 2=324.答案: 2 32412.解析:分析题意可知,该几何体为如图所示的四棱锥P ABCD ,CD =y2,AB =y ,AC =5,CP =7,BP =x ,所以BP 2=BC 2+CP 2,即x 2=25-y 2+7,x 2+y 2=32≥2xy ,则xy ≤16,当且仅当x =y =4时,等号成立.此时该几何体的体积V =13×2+42×3×7=37.答案:16 37 13.6157414.解析:因为a n +m a m=a n ,所以a n +m =a n ·a m ,所以a 3=a 1+2=a 1·a 2=a 1·a 1·a 1=23=8;令m =1,则有a n +1=a n ·a 1=2a n ,所以数列{a n }是首项为a 1=2,公比q =2的等比数列,所以S n =2(1-2n)1-2=2n +1-2.答案:8 2n +1-215.解析:根据题意,按五名同学分组的不同分2种情况讨论;①五人分为2,2,1的三组,有C 25C 23C 11A 22=15(种)分组方法,对应三个暑期社会实践活动,有15×A 33=90(种)安排方案;②五人分为3,1,1的三组,有C 35C 12C 11A 22=10(种)分组方法,对应三个暑期社会实践活动,有10×A 33=60(种)安排方案;综上,共有90+60=150(种)不同的安排方案. 答案:15016.解析:由题意得f (1)=-2⇒a -2b =-3,又因为f ′(x )=3x 2+a ,所以f (x )的图象在点(1,-2)处的切线方程为y +2=(3+a )(x -1),即(3+a )x -y -a -5=0,所以|(3+a )×2+4-a -5|(3+a )2+1=5⇒a =-52,所以b =14,所以3a +2b =-7. 答案:-717.解析:因为二项式⎝⎛⎭⎪⎫x +m x 2n展开式的二项式系数之和为32,所以2n=32,所以n =5,因为T r +1=C r5(x )5-r⎝ ⎛⎭⎪⎫m x 2r=C r 5m r x 52-52r ,令52-52r =0,得r =1,所以常数项为C 15m =10,所以m =2.答案:218.解:(1)由已知,有f (x )=1-cos 2x 2-1-cos ⎝⎛⎭⎪⎫2x -π32=12⎝ ⎛⎭⎪⎫12cos 2x +32sin 2x -12cos 2x =34sin 2x -14cos 2x =12sin ⎝⎛⎭⎪⎫2x -π6.所以f (x )的最小正周期T =2π2=π. (2)因为f (x )在区间⎣⎢⎡⎦⎥⎤-π3,-π6上是减函数,在区间⎣⎢⎡⎦⎥⎤-π6,π4上是增函数,且f ⎝ ⎛⎭⎪⎫-π3=-14,f ⎝ ⎛⎭⎪⎫-π6=-12,f ⎝ ⎛⎭⎪⎫π4=34,所以f (x )在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最大值为34,最小值为-12.19.解:(1)证明:如图,以H 为原点,建立空间直角坐标系,则C (0,0,3),C 1(2,2,3),A 1(2,0,0),B 1(0,2,0),所以CC 1→=(2,2,0),A 1D →=⎝ ⎛⎭⎪⎫-22,22,3, B 1D →=⎝⎛⎭⎪⎫22,-22,3,所以CC 1→·A 1D →=0,CC 1→·B 1D →=0, 因此CC 1⊥平面A 1B 1D .(2)设平面AA 1C 1C 的法向量n =(1,x ,y ),由于AA 1→=(2,2,0),A 1C →=(-2,0,3), 则n ·AA 1→=2+2x =0,n ·A 1C →=-2+3y =0,得x =-1,y =63,所以n =⎝ ⎛⎭⎪⎫1,-1,63. 又HD →=⎝ ⎛⎭⎪⎫22,22,3,所以sin θ=|HD →·n ||HD →|·|n |=22·263=34.20.解:(1)由已知得S 23=S 1·S 9, 即(3+3d )2=9+36d ,又d ≠0,所以d =2,所以a n =2n -1,S n =n 2, 由b 1×12+b 2×22+…+b n ×n 2=6-n 2+4n +62n得b 1=12,n ≥2时,b n ×n 2=6-n 2+4n +62n -6+(n -1)2+4(n -1)+62n -1=n 22n , 所以b n =12n ,显然b 1=12也满足.所以b n =12n (n ∈N *).(2)T n =1-12n ,12T n =12(1-12n ),R n =11×3+13×5+…+1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1=12(1-12n +1).当n =1时,21<2×1+1=3,R 1>12T 1;当n =2时,22<2×2+1=5,R 2>12T 2;当n ≥3时,2n =(1+1)n =1+C 1n +C 2n +C 3n +…>1+n +n (n -1)2≥2n +1;所以R n <12T n .综上,当n ≤2时,R n >12T n ;当n ≥3时R n <12T n .21.解:(1)由题意,2p =6,所以抛物线方程为y 2=6x .(2)设线段AB 的中点为M (x 0,y 0),则x 0=2,y 0=y 1+y 22,k AB =y2-y 1x 2-x 1=3y 0.线段AB 的垂直平分线的方程是y -y 0=-y 03(x -2),①由题意知x =5,y =0是①的一个解,所以线段AB 的垂直平分线与x 轴的交点C 为定点,且点C 坐标为(5,0). 所以线段AB 的垂直平分线经过定点C (5,0).(3)由(2)知直线AB 的方程为y -y 0=3y 0(x -2),即x =y 03(y -y 0)+2,②②代入y 2=6x 得y 2=2y 0(y -y 0)+12,即y 2-2y 0y +2y 20-12=0,③依题意,y 1,y 2是方程③的两个实根,且y 1≠y 2,所以Δ>0,-23<y 0<2 3.|AB |=(x 1-x 2)2+(y 1-y 2)2=23(9+y 20)(12-y 20).定点C (5,0)到线段AB 的距离h =|CM |=9+y 20.所以S △ABC =13(9+y 20)(12-y 20)·9+y 20 ≤1312⎝ ⎛⎭⎪⎫9+y 20+24-2y 20+9+y 233=1473.当且仅当9+y 20=24-2y 20,即y 0=±5时等号成立,所以△ABC 面积的最大值为1473.22.解:(1)因为函数f (x )不单调,所以f ′(x )=1x +2x -a =0有正根,即a =1x +2x ≥21x ·2x =22,除去等号,所以a >2 2.(2)证明:令f ′(x )=2x 2-ax +1x =0的两根为x 1,x 2,且x 1<x 2, 则f (x )在(0,x 1)上单调递增,(x 1,x 2)上单调递减,(x 2,+∞)上单调递增, 且x 1+x 2=a2,x 1·x 2=12,x 1<22<x 2,a =1x 1+2x 1=1x 2+2x 2,因为f (x )存在3个不同的零点,且x →0时,f (x )→-∞,x →+∞时,f (x )→+∞, 所以f (x 1)>0,f (x 2)<0,f (x 1)=ln x 1+x 21-⎝ ⎛⎭⎪⎫1x 1+2x 1x 1+2=ln x 1-x 21+1,同理f (x 2)=ln x 2-x 22+1,令g (x )=ln x -x 2+1,则g ′(x )=1x -2x <0得x >22,所以g (x )在⎝ ⎛⎭⎪⎫0,22上单调递增,在⎝ ⎛⎭⎪⎫22,+∞上单调递减,因为g (1)=0,所以x 2>1,又因为g ⎝ ⎛⎭⎪⎫12>0,当x →0时,g (x )→-∞,所以存在x 0∈⎝ ⎛⎭⎪⎫0,12使得g ()x 0=0,因为g (x 1)>0,所以12x 2=x 1>x 0,所以1<x 2<12x 0,所以a =1x 2+2x 2∈⎝ ⎛⎭⎪⎫3,1x 0+2x 0,令h (x )=f (x )-(22-3)x =ln x +x 2-(a +22-3)x +2, h ′(x )=1x +2x -(a +22-3),h ′(x )min =3-a <0,所以h ′(x )=0有两个根,设为t 1,t 2且t 1<t 2,则h (x )在(t 1,t 2)上单调递减.若t 1<m <n <t 2,则h (m )>h (n ),即f (m )-f (n )>(22-3)(m -n ),即f (m )-f (n )m -n <22-3;若t 1<n <m <t 2同理可证,所以对于任意的m ,n ∈(t 1,t 2),不等式f (m )-f (n )m -n <22-3成立;即存在m ,n ∈(0,+∞)使得f (m )-f (n )m -n <22-3成立.。
浙江专用2020高考数学模拟仿真试卷(含两套,解析版)

浙江高考仿真卷(一)一、选择题(本大题共10小题,每小题4分,共40分)1.已知集合A ={x ∈Z |x ≤0},B ={}x |-1≤x ≤6,则A ∩B 等于( ) A .{x |-1≤x ≤0} B .{x |x ≤6} C .{0,1,2,3,4,5,6} D .{0,-1}答案 D解析 A ={x ∈Z |x ≤0},B ={x |-1≤x ≤6},则A ∩B ={0,-1}. 2.若双曲线x 2a 2-y 2=1(a >0)的实轴长为2,则其渐近线方程为( )A .y =±xB .y =±2xC .y =±12xD .y =±2x 答案 A解析 双曲线的实轴长为2,得a =1,又b =1,所以双曲线的渐近线方程为y =±x . 3.设α是空间中的一个平面,l ,m ,n 是三条不同的直线. ①若m ⊂α,n ⊂α,l ⊥m ,l ⊥n ,则l ⊥α; ②若l ∥m ,m ∥n ,l ⊥α,则n ⊥α; ③若l ∥m ,m ⊥α,n ⊥α,则n ∥l ; ④若m ⊂α,n ⊥α,l ⊥n ,则l ∥m . 则上述命题中正确的是( )A .①②B .①④C .③④D .②③ 答案 D解析 对于①,当m ,n 相交时,才能得到l ⊥α,①错误;对于②,由l ∥m ,m ∥n 得l ∥n ,又因为l ⊥α,所以n ⊥α,②正确;对于③,因为m ⊥α,n ⊥α,所以m ∥n ,又因为l ∥m ,所以n ∥l ,③正确;对于④,直线l 与m 可能相交、平行或互为异面直线,④错误.综上所述,正确命题的序号为②③.4.函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2的最小正周期是π,若将该函数的图象向右平移π6个单位长度后得到的函数图象关于直线x =π2对称,则函数f (x )的解析式为( )A .f (x )=sin ⎝⎛⎭⎫2x +π3B .f (x )=sin ⎝⎛⎭⎫2x -π3 C .f (x )=sin ⎝⎛⎭⎫2x +π6 D .f (x )=sin ⎝⎛⎭⎫2x -π6 答案 D解析 因为函数f (x )=sin(ωx +φ)的最小正周期是π, 所以2πω=π,解得ω=2,所以f (x )=sin(2x +φ),将该函数的图象向右平移π6个单位长度后,得到图象所对应的函数解析式为y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π6+φ=sin ⎝⎛⎭⎫2x +φ-π3, 由此函数图象关于直线x =π2对称,得2×π2+φ-π3=k π+π2,k ∈Z ,即φ=k π-π6,k ∈Z , 取k =0,得φ=-π6,满足|φ|<π2,所以函数f (x )的解析式为f (x )=sin ⎝⎛⎭⎫2x -π6. 5.函数f (x )=3x 34|x |-4的图象大致为( )答案 A解析 由题意知,函数f (x )的定义域为{x |x ≠±1}且满足f (-x )=3(-x )34|-x |-4=-3x 34|x |-4=-f (x ),所以函数f (x )是奇函数,图象关于原点对称,排除C ,D 项;又由当x ∈(0,1)时,函数f (x )的值小于0,排除B 项,故选A.6.已知等比数列{a n }的前n 项和为S n ,则“a 1>0”是“S 3>S 2”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 C解析 设等比数列{a n }的公比为q ,S 3>S 2⇔a 3>0⇔a 1q 2>0⇔a 1>0,故选C.7.一个箱子中装有形状完全相同的5个白球和n (n ∈N *)个黑球.现从中有放回的摸取4次,每次都是随机摸取一个球,设摸得白球个数为X ,若D (X )=1,则E (X )等于( ) A .1 B .2 C .3 D .4 答案 B解析 设摸取一次摸得白球的概率为p ,则易得X ~B (4,p ),D (X )=4p (1-p )=1,解得p =12,则E (X )=4×12=2.8.将颜色分别为红色、黄色、蓝色的3个球,放入编号为1,2,…,7的七个盒子中,每一个盒子至多放2个球,则不同的放法有( ) A .98种 B .196种 C .252种 D .336种 答案 D解析 3个球放入编号为1,2,…,7的七个盒子中,每个盒子至多放2个球,应采用排除法,每个球放入盒子的放法各有7种,共73种,排除3个球放在同一个盒中的7种放法,则共有73-7=336(种)放法.9.已知向量a ,b 满足|a |=|a +b |=2,则|2a +b |+|b |的最大值为( ) A .4 B .4 2 C .4+2 2 D .8 答案 B解析 记a +b =m ,则|a |=|m |=2,|2a +b |+|b |=|a +m |+|m -a |≤2(|a +m |2+|m -a |2)=2m 2+a 2=42,当且仅当|a +m |=|m -a |,即a ·(a +b )=0,a ·b =-4时,取等号,则所求的最大值为4 2.10.已知偶函数f (x )满足f (1-x )=f (1+x ),当x ∈[0,1]时,f (x )=ax 2-bx +c ,a ,b ,c ∈N *.若函数f (x )在[-100,100]上有400个零点,则a +b +c 的最小值为( ) A .5 B .8 C .11 D .12 答案 C解析 由f (1-x )=f (1+x ),得f (x +2)=f (-x )=f (x ),则函数f (x )是以2为周期的周期函数,函数f (x )在[-100,100]上有400个零点等价于函数f (x )在[0,1]上有两个不同的零点,又因为a ,b ,c ∈N *,所以⎩⎪⎨⎪⎧ f (0)=c >0,f (1)=a -b +c >0,0<--b2a<1,(-b )2-4ac >0,即⎩⎪⎨⎪⎧c >0,a -b +c >0,b -2a <0,b 2-4ac >0,所以要使a +b +c 取得最小值,不妨取c =1,则不等式组化为⎩⎪⎨⎪⎧a -b +1>0,b -2a <0,b 2-4a >0,以a 为横轴,b 为纵轴建立平面直角坐标系,在平面直角坐标系内画出不等式组表示的平面区域如图中阴影部分(不含边界)所示,由图易得区域内横纵坐标之和最小的整数点为(5,5),此时a =b =5,所以a +b +c 的最小值为11.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分) 11.复数z =(3+4i)2的虚部为________,z 的共轭复数z =________. 答案 24 -7-24i解析 ∵z =(3+4i)2=32+2×3×4i +(4i)2=-7+24i ,∴虚部为24,共轭复数z =-7-24i. 12.若变量x ,y 满足⎩⎪⎨⎪⎧2x -y ≤0,x -2y +3≥0,x ≥0,则2x+y的最大值为________,y +1x -2的取值范围为________.答案 8 ⎣⎡⎦⎤-3,-12 解析 不等式组表示的平面区域如图中阴影部分(含边界)所示,令z =x +y ,则y =-x +z 表示的是斜率为-1,在y 轴上的截距为z 的直线,当直线在y 轴上的截距最大时,z 最大,即直线过点C 时,z 最大,由⎩⎪⎨⎪⎧ 2x -y =0,x -2y +3=0,得⎩⎪⎨⎪⎧x =1,y =2,z max =3,2x +y 的最大值为23=8.y +1x -2表示的是可行域内的点(x ,y )与点(2,-1)连线的斜率,设D (2,-1),k AD =-12,k CD =3-1=-3,因此y +1x -2的取值范围⎣⎡⎦⎤-3,-12.13.某多面体的三视图如图所示,则该多面体最长的棱长为________;其外接球的体积为________.答案 4323π 解析 由三视图知该几何体是如图所示的四棱锥O -ABCD ,且AB =CD =2,AD =BC =3,AO =3,四边形ABCD 是矩形,OA ⊥平面ABCD , 所以该多面体最长的棱长为OC =OA 2+AD 2+CD 2=3+4+9=4,该几何体外接球的半径为2,其体积V =43π×23=323π.14.已知⎝⎛⎭⎫3x 2-1x n 的展开式中所有二项式系数和为64,则n =________;二项展开式中含x 3的系数为________. 答案 6 -540解析 ⎝⎛⎭⎫3x 2-1x n 展开式中所有二项式系数和为64, ∴2n =64,解得n =6;∴⎝⎛⎭⎫3x 2-1x 6展开式的通项公式为 T k +1=C k 6·(3x 2)6-k ·⎝⎛⎭⎫-1x k =(-1)k ·36-k ·C k 6·x 12-3k,令12-3k =3,解得k =3,∴二项式展开式中含x 3项的系数为(-1)3×33×C 36=-540. 15.已知实数a ≥12,b ≥12,且a 2-a =b -b 2,则M =b 2a +a 2b 的最大值是________.答案322+1 解析 由a 2-a =b -b 2化简得,⎝⎛⎭⎫a -122+⎝⎛⎭⎫b -122=12,又实数a ≥12,b ≥12,图形为14圆,如图:由a 2-a =b -b 2,可得a 2=a +b -b 2,b 2=a +b -a 2,则M =b 2a +a 2b =a +b -a 2a +a +b -b 2b =1+b a -a +1+a b -b =b a +ab-a -b +2,由几何意义得,b a ∈[2-1,1+2],则ab ∈[2-1,1+2],则当过点A 或点B 时,a +b 取最小值,可得M max =2-1+1+2-⎝⎛⎭⎫12+12+22+2=322+1,所以M =b 2a +a 2b 的最大值是322+1.16.如图,椭圆M :x 2a 2+y 2b 2=1(a >b >0)的两个顶点A (a,0),B (0,b ),过A ,B 分别作AB 的垂线交椭圆M 于D ,C (不同于顶点),若|BC |=3|AD |,则椭圆M 的离心率e =________.答案63解析 直线AB 的斜率为-b a ,故直线BC ,AD 的斜率都为a b ,所以直线BC 的方程为y =ab x+b ,直线AD 的方程为y =ab ()x -a .将直线BC 的方程代入椭圆方程,求得C 点的坐标为⎝ ⎛⎭⎪⎫-2a 3b 2a 4+b 4,b 5-a 4b a 4+b 4,将直线AD 的方程代入椭圆方程,求得D 点的坐标为⎝ ⎛⎭⎪⎫a 5-ab 4a 4+b 4,-2a 2b 3a 4+b 4,由于|BC |=3|AD |,即BC →=3AD →,也即⎝ ⎛⎭⎪⎫-2a 3b 2a 4+b 4,-2a 4b a 4+b 4=3⎝ ⎛⎭⎪⎫-2ab 4a 4+b 4,-2a 2b 3a 4+b 4,即-2a 3b 2a 4+b 4=-6ab 4a 4+b 4,化简得b 2a 2=13.故离心率为e =1-⎝⎛⎭⎫b a 2=63.17.已知f (x )=2x 2+2x +b 是定义在[-1,0]上的函数, 若f (f (x ))≤0在定义域上恒成立,而且存在实数x 0满足:f (f (x 0))=x 0且f (x 0)≠x 0,则实数b 的取值范围是________. 答案 ⎣⎡⎭⎫-12,-38 解析 因为f (x )min =f ⎝⎛⎭⎫-12=b -12,f (x )max =f (0)=f (-1)=b ,所以⎩⎪⎨⎪⎧-1≤b -12≤0,-1≤b ≤0,得b ∈⎣⎡⎦⎤-12,0时满足 f (f (x ))≤0;设f (x 0)=y 0,则f (y 0)=x 0且y 0≠x 0,所以函数f (x )=2x 2+2x +b 图象上存在两点关于直线y =x 对称, 令l :y =-x +m ,由⎩⎪⎨⎪⎧y =-x +m ,y =2x 2+2x +b ,得2x 2+3x +b -m =0, 设M (x 1,y 1),N (x 2,y 2)为直线与抛物线的交点,线段MN 的中点为E (x E ,y E ), 所以⎩⎪⎨⎪⎧Δ=9-8(b -m )>0,x 1+x 2=-32, 所以E ⎝⎛⎭⎫-34,34+m ,而E 在y =x 上, 所以m =-32,从而2x 2+3x +b +32=0在[-1,0]上有两个不相等的实数根,令h (x )=2x 2+3x +b +32,所以⎩⎪⎨⎪⎧Δ=9-8⎝⎛⎭⎫b +32>0,h (-1)=b +12≥0,h (0)=32+b ≥0,-1<-34<0,得b ∈⎣⎡⎭⎫-12,-38. 三、解答题(本大题共5小题,共74分.)18.(14分)已知函数f (x )=cos x ()3sin x -cos x +12.(1)求f ⎝⎛⎭⎫π3的值;(2)当x ∈⎣⎡⎦⎤0,π2时,不等式c <f (x )<c +2恒成立,求实数c 的取值范围.解 (1)f (x )=3sin x cos x -cos 2x +12=32sin 2x -12cos 2x =sin ⎝⎛⎭⎫2x -π6, 所以f ⎝⎛⎭⎫π3=sin ⎝⎛⎭⎫2π3-π6=sin π2=1. (2)因为0≤x ≤π2,所以-π6≤2x -π6≤5π6.所以-12≤sin ⎝⎛⎭⎫2x -π6≤1. 由不等式c <f (x )<c +2恒成立, 所以⎩⎪⎨⎪⎧c <-12,c +2>1,解得 -1<c <-12.所以实数c 的取值范围为⎝⎛⎭⎫-1,-12. 19.(15分)如图,四边形ABEF 是正方形,AB ∥CD ,AD =AB =BC =12CD .(1)若平面ABEF ⊥平面ABCD ,求证:DB ⊥平面EBC ; (2)若DF ⊥BC ,求直线BD 与平面ADF 所成角的正弦值.(1)证明 ∵四边形ABEF 是正方形,∴EB ⊥AB .又∵平面ABEF ⊥平面ABCD ,平面ABEF ∩平面ABCD =AB , ∴EB ⊥平面ABCD ,可得EB ⊥BD . 又∵AD =AB =BC =12CD ,不妨设AB =BC =AD =1,DC =2, 可求BD =3,可得BD ⊥BC , ∵EB ∩BC =B ,EB ,BC ⊂平面EBC , ∴DB ⊥平面EBC .(2)解 方法一 过点F 作FH ⊥平面ABCD ,连接AH 交CD 于点G ,过点H 作HI ⊥AD 交AD 于点I ,连接FI ,作HO ⊥FI 交FI 于点O ,∵FH ⊥平面ABCD ,BC ⊂平面ABCD ,∴FH ⊥BC , 又∵DF ⊥BC ,且FH ∩DF =F ,FH ,DF ⊂平面FDH , ∴BC ⊥平面FDH ,又DH ⊂平面FDH ,∴BC ⊥DH ,即H 在BD 上,又∵FH ⊥AB ,F A ⊥AB ,且FH ∩F A =F ,FH ,F A ⊂平面F AH ,∴AB ⊥平面F AH , 又AH ⊂平面F AH ,∴AB ⊥AH .又∵AD ⊥FH ,AD ⊥HI ,FH ∩HI =H ,FH ,HI ⊂平面FHI ,∴AD ⊥平面FHI , 又∵AD ⊂平面F AD ,∴平面FHI ⊥平面F AD , ∴H 到平面AFD 的距离为HO ,由(1)知DG =12,HG =HI =36,HO =69,又∵DB =3DH ,∴B 到平面AFD 的距离为63, 设直线BD 与平面ADF 所成角为θ,则sin θ=23, 方法二 设AD =AB =BC =1,以A 为坐标原点,AB 为y 轴建立空间直角坐标系, 则A (0,0,0),B (0,1,0),C ⎝⎛⎭⎫32,32,0,D⎝⎛⎭⎫32,-12,0, 设F (x ,y ,z ),由题意得⎩⎨⎧F A =1,FB =2,DF →·BC →=0,即⎩⎪⎨⎪⎧x 2+y 2+z 2=1,x 2+(y -1)2+z 2=2,⎝⎛⎭⎫x -32,y +12,z ·⎝⎛⎭⎫32,12,0=0,解得x =33,y =0,z =63,即F ⎝⎛⎭⎫33,0,63. 设平面ADF 的法向量为m =(r ,s ,t ), 又AD →=⎝⎛⎭⎫32,-12,0,AF →=⎝⎛⎭⎫33,0,63,∴⎩⎪⎨⎪⎧AD →·m =0,AF →·m =0,即⎩⎨⎧32r -12s =0,33r +63t =0,令r =2,则s =6,t =-1,即m =(2,6,-1).设直线BD 与平面ADF 所成角为θ,且BD →=⎝⎛⎭⎫32,-32,0,则sin θ=|cos 〈m ,BD →〉|=|m ·BD →||m ||BD →|=23,∴直线BD 与平面ADF 所成角的正弦值为23. 20.(15分)已知数列{a n }是等差数列,满足a 2=6,S 4=28,数列{b n }满足:b 1=1,1b 1+12b 2+…+1nb n =1b n +1-1(n ∈N *). (1)求a n 和b n ;(2)记数列⎩⎨⎧⎭⎬⎫b n a n 的前n 项和为S n ,求S n .解 (1)设数列{a n }的首项和公差分别为a 1,d ,则⎩⎪⎨⎪⎧ a 1+d =6,4a 1+6d =28,解得⎩⎪⎨⎪⎧a 1=4,d =2,∴a n =2n+2,n ∈N *.1b 1+12b 2+…+1nb n =1b n +1-1,① 1b 1+12b 2+…+1(n -1)b n -1=1b n-1(n ≥2),② ①-②得1nb n =1b n +1-1b n ,b n +1b n =n n +1(n ≥2),当n =1时,1b 1=1b 2-1,b 2=12,当n ≥2时,b n=b n b n -1·b n -1b n -2·…·b 2b 1·b 1=1n .当n =1时,b 1=1符合上式,所以b n =1n ,n ∈N *.(2)b n a n =1n 2n +2=1(2n +2)n =12·1(n +1)n =12⎝⎛⎭⎫1n -1n +1, S n =b 1a 1+b 2a 2+…+b n a n=12⎝⎛⎭⎫1-12+12-13+…+1n -1n +1 =12⎝⎛⎭⎫1-1n +1=n 2n +2.21.(15分)已知抛物线C :y 2=2px (p >0)的焦点是F (1,0),直线l 1:y =k 1x ,l 2:y =k 2x 分别与抛物线C 相交于点A 和点B ,过A ,B 的直线与圆O :x 2+y 2=4相切.(1)求直线AB 的方程(含k 1,k 2);(2)若线段OA 与圆O 交于点M ,线段OB 与圆O 交于点N ,求S △MON 的取值范围. 解 (1)焦点是F (1,0),可得p2=1,即p =2,设A (x 1,y 1),B (x 2,y 2),抛物线方程为y 2=4x ,联立⎩⎪⎨⎪⎧y 2=4x ,y =k 1x ,可得A ⎝⎛⎭⎫4k 21,4k 1,同理可得B ⎝⎛⎭⎫4k 22,4k 2, 若AB 的斜率存在,可得k AB =y 1-y 2x 1-x 2=k 1k 2k 1+k 2, AB 的方程为y -4k 1=k 1k 2k 1+k 2⎝⎛⎭⎫x -4k 21, 化为k 1k 2x -(k 1+k 2)y +4=0,若AB 的斜率不存在,也满足上面的方程,则直线AB 的方程为k 1k 2x -(k 1+k 2)y +4=0. (2)过A ,B 的直线与圆O :x 2+y 2=4相切,可得d =4()k 1k 22+()k 1+k 22=r =2,化简为(k 1k 2)2+(k 1+k 2)2=4,即有-2≤k 1k 2<0, cos ∠AOB =OA →·OB→|OA →||OB →|=x 1x 2+y 1y 2x 21+y 21·x 22+y 22 =1+k 1k 2(k 1k 2)2+k 21+k 22+1, 由(k 1k 2)2+(k 1+k 2)2=4,可得cos ∠AOB =1+k 1k 25-2k 1k 2,sin 2∠MON =-(k 1k 2)2-4k 1k 2+45-2k 1k 2,设t =5-2k 1k 2∈(5,9],则S2△MON=4sin 2∠MON=4·-(k 1k 2)2-4k 1k 2+45-2k 1k 2=4·-(5-t )24-2(5-t )+4t =-t 2+18t -49t =18-⎝⎛⎭⎫t +49t ≤18-249=4, 当t =7时取等号,即k 1k 2=-1∈[-2,0),所以(S △MON )max =2,又S 2△MON >18-⎝⎛⎭⎫5+495=165,即S △MON >455, 即有S △MON 的取值范围为⎝⎛⎦⎤455,2.22.(15分)已知函数f (x )=k e x ()x -1-12x 2,k ∈R .(1)当k =-1时,求f (x )的最大值;(2)若函数f (x )有两个零点,求k 的取值范围.解 (1)函数f (x )的定义域为R ,当k =-1时,f (x )=-e x (x -1)-12x 2,f ′(x )=-e x x -x =-x (e x +1).当x <0时,f ′(x )>0,当x >0时,f ′(x )<0,所以f (x )在(-∞,0)上单调递增,在(0,+∞)上单调递减,所以f (x )在x =0时取到最大值,最大值为f (0)=1. (2)f ′(x )=k e x x -x =x (k e x -1),当k <0时,f (x )在(-∞,0)上单调递增,在(0,+∞)上单调递减,又因为f (0)=-k >0,f (1)=-12<0,f (2k -1)=k e 2k -1(2k -2)-12(2k -1)2<k (2k -2)-12(2k -1)2=-12<0,所以f (x )有两个零点;当k =0时,f (x )=-12x 2,所以此时f (x )只有一个零点;当k =1时,f ′(x )=e x x -x =x (e x -1)≥0恒成立,f (x )在R 上单调递增,f (x )不存在两个零点; 当k >0且k ≠1时,令f ′(x )=0,得x =0或x =ln 1k,当0<k <1时,ln 1k =-ln k >0,f (x )在(-∞,0)上单调递增,在(0,-ln k )上单调递减,在(-ln k ,+∞)上单调递增,且f (0)=-k <0,f (x )不存在两个零点;当k >1时,ln 1k =-ln k <0,f (x )在(-∞,-ln k )上单调递增,在(-ln k ,0)上单调递减,在(0,+∞)上单调递增,且f ()-ln k =-(ln k +1)2+12<0,f (x )不存在两个零点.综上,当f (x )有两个零点时,k 的取值范围是(-∞,0).浙江高考仿真卷(四)一、选择题(本大题共10小题,每小题4分,共40分)1.已知集合A ={}x |x 2<1,B ={}x |log 2x <0,则A ∩B 等于( ) A .(-∞,1) B .(0,1) C .(-1,0) D .(-1,1) 答案 B解析 由题得A ={x |-1<x <1},B ={x |0<x <1}, 所以A ∩B =(0,1).2.已知双曲线的中心在原点,焦点在坐标轴上,一条渐近线方程为3x +4y =0,则该双曲线的离心率是( )A.53B.54C.43或53D.53或54 答案 D解析 3x +4y =0⇒y =-34x ,当焦点位于x 轴时,b a =34⇒b 2a 2=916,而c 2=a 2+b 2,所以c 2-a 2a 2=916⇒e =c a =54; 当焦点位于y 轴时,b a =43⇒b 2a 2=169,c 2=a 2+b 2⇒c 2-a 2a 2=169⇒e =c a =53.3.如果实数x ,y 满足条件⎩⎪⎨⎪⎧x -y +1≥0,y +1≥0,x +y +1≤0,那么z =2x -y 的最大值为( )A .2B .-2C .1D .-3 答案 C解析 由约束条件⎩⎪⎨⎪⎧x -y +1≥0,y +1≥0,x +y +1≤0画出可行域如图中阴影部分所示(含边界),再画出目标函数z =2x -y 如图中过原点的虚线, 平移目标函数易得过点A (0,-1)处时取得最大值, 代入得z max =1.4.如图是一个几何体的三视图,且正视图、侧视图都是矩形,则该几何体的体积为( )A .12B .14C .16D .18 答案 D解析 由题意可得,该几何体是由一个四棱柱和一个三棱柱组成的几何体, 其中四棱柱的体积V 1=1×3×4=12,三棱柱的体积V 2=12×3×1×4=6,该几何体的体积为V =V 1+V 2=18.5.“对任意正整数n ,不等式n lg a <(n +1)lg a a (a >1)都成立”的一个必要不充分条件是( ) A .a >0 B .a >1 C .a >2 D .a >3 答案 A解析 由n lg a <(n +1)lg a a 得n lg a <a (n +1)lg a , ∵a >1,∴lg a >0,∴n <a (n +1),即a >n n +1=1-1n +1,又1-1n +1<1,∴a >1. 即a >1时,不等式n lg a <(n +1)lg a a ()a >1成立,则a >0是其必要不充分条件;a >1是其充要条件;a >2,a >3均是其充分不必要条件. 6.与函数f (x )=sin x 2+cos x 的部分图象符合的是( )答案 B解析 f (0)=sin 0+cos 0=1排除C , F ⎝⎛⎭⎫π2=sin π24+cos π2=sin π24>0,排除A ,D.7.已知随机变量ξ的分布列如下表所示:ξ 1 3 5 P0.40.1x则ξ的标准差为( )A .3.56 B. 3.56 C .3.2 D. 3.2 答案 B解析 由题意,E (ξ)=1×0.4+3×0.1+5×(1-0.4-0.1)=3.2,∴D (ξ)=(1-3.2)2×0.4+(3-3.2)2×0.1+(5-3.2)2×0.5=1.936+0.004+1.62=3.56, ∴ξ的标准差为 3.56.8.如图,正四面体ABCD 中,P ,Q ,R 分别在棱AB ,AD ,AC 上,且AQ =QD ,AP PB =CRRA =12,分别记二面角A -PQ -R ,A -PR -Q ,A -QR -P 的平面角为α,β,γ,则( )A .β>γ>αB .γ>β>αC .α>γ>βD .α>β>γ答案 D解析 ∵ABCD 是正四面体,P ,Q ,R 分别在棱AB ,AD ,AC 上,且AQ =QD ,AP PB =CR RA =12,可得α为钝角,β,γ为锐角,设P 到平面ACD 的距离为h 1,P 到QR 的距离为d 1,Q 到平面ABC 的距离为h 2,Q 到PR 的距离为d 2,设正四面体的高为h ,棱长为6a ,可得h 1=13h ,h 2=12h ,h 1<h 2,由余弦定理可得QR =13a ,PR =23a ,由三角形面积相等可得到d 1d 2=PR QR =2313,因为sin γ=h 1d 1,sin β=h 2d 2,所以sin βsin γ=3313>1,即sin β>sin γ,所以γ<β,∴α>β>γ.9.如图,点C 在以AB 为直径的圆上,其中AB =2,过A 向点C 处的切线作垂线,垂足为P ,则AC →·PB →的最大值是( )A .2B .1C .0D .-1 答案 B解析 连接BC (图略),则∠ACB =90°, ∵AP ⊥PC ,∴AC →·PB →=AC →·()PC →+CB →=AC →·PC →=()AP →+PC →·PC →=PC →2,依题意可证Rt △APC ∽Rt △ACB ,则PC CB =AC AB ,即PC =AC ·CB 2,∵AC 2+CB 2=AB 2, ∴AC 2+CB 2=4≥2AC ·BC ,即AC ·BC ≤2,当且仅当AC =CB 时取等号. ∴PC ≤1,∴AC →·PB →=PC →2≤1, ∴AC →·PB →的最大值为1.10.设等差数列{a n }的前n 项和为S n ,已知()a 2 017-1 2 019+2 019a 2 017+()a 2 017-1 2 021=2 000,(a 2 020-1)2 019+2 019a 2 020+(a 2 020-1)2 021=2 038,则S 4 036等于( ) A .2 019 B .2 020 C .2 021 D .4 036 答案 D解析 由(a 2 017-1)2 019+2 019a 2 017+(a 2 017-1)2 021=2 000得:(a 2 017-1)2 019+2 019(a 2 017-1)+(a 2 017-1)2 021=-19,①由(a 2 020-1)2 019+2 019a 2 020+(a 2 020-1)2 021=2 038得:()a 2 020-1 2 019+2 019()a 2 020-1+()a 2 020-1 2 021=19,②令f (x )=x 2 019+2 019x +x 2 021, 则①式即为f ()a 2 017-1=-19, ②式即为f ()a 2 020-1=19,又f ()-x +f (x )=0,即f (x )为奇函数,且()a 2 017-1+()a 2 020-1=0,∴a 2 017+a 2 020=2, ∴S 4 036=2 018()a 1+a 4 036=2 018(a 2 017+a 2 020)=4 036.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)11.复数z =11-i 的共轭复数是________,复数z 对应的点位于复平面内的第________象限.答案 12-12i 一解析11-i =1+i ()1-i ()1+i =12+12i ,其共轭复数为12-12i ,复数z 对应的点位于复平面内的第一象限.12.已知圆C :x 2+y 2-2ax +4ay +5a 2-25=0的圆心在直线l 1:x +y +2=0上,则a =________;圆C 被直线l 2:3x +4y -5=0截得的弦长为________. 答案 2 8解析 圆C :x 2+y 2-2ax +4ay +5a 2-25=0的标准方程为(x -a )2+(y +2a )2=52,可得圆心坐标是(a ,-2a ),把圆心坐标代入直线l 1:x +y +2=0的方程中得a =2; 即圆心为(2,-4),圆心到直线l 2:3x +4y -5=0的距离d =||3×2-4×4-532+42=3,所以弦长等于2r 2-d 2=252-32=8.13.若x (1-mx )4=a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,其中a 2=-6,则实数m =________; a 1+a 3+a 5=________. 答案 32 31316解析 x (1-mx )4=a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5 ,则x (1-mx )4=x ()1-4mx +C 24m 2x 2+…,则-4m =a 2=-6, 解得m =32.令x =1,则⎝⎛⎭⎫1-324=a 1+a 2+a 3+a 4+a 5 , 令x =-1, 则-⎝⎛⎭⎫1+324=-a 1+a 2-a 3+a 4-a 5, ∴2()a 1+a 3+a 5=⎝⎛⎭⎫124+⎝⎛⎭⎫524, 解得a 1+a 3+a 5=31316.14.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知sin A +sin B =54sin C ,且△ABC的周长为9,△ABC 的面积为3sin C ,则c =________,cos C =________. 答案 4 -14解析 在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c , 已知sin A +sin B =54sin C ,则a +b =5c4,且△ABC 的周长为9, 则c +5c4=9,解得c =4 .因为△ABC 的面积等于3sin C , 所以12ab sin C =3sin C ,整理得ab =6. ∵a +b =5c4=5,∴⎩⎪⎨⎪⎧ a +b =5,ab =6,解得⎩⎪⎨⎪⎧ a =2,b =3,或⎩⎪⎨⎪⎧a =3,b =2, ∴cos C =a 2+b 2-c 22ab =-14.15.某地火炬接力传递路线共分6段,传递活动分别由6名火炬手完成,如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有________种(用数字作答). 答案 96解析 若第一棒火炬手为甲或乙,则最后一棒只能由甲、乙中不跑第一棒的火炬手完成,剩下的4段路线全排列,此时有2A 44种不同的传递方案;若第一棒火炬手为丙,则最后一棒由甲或乙完成,剩下的4段路线全排列,此时有2A 44种不同的传递方案,则由分类加法计数原理得共有2A 44+2A 44=96(种)不同的传递方案.16.设椭圆C 的两个焦点是F 1,F 2,过F 1的直线与椭圆C 交于P ,Q ,若|PF 2|=|F 1F 2|,且5|PF 1|=6|F 1Q |,则椭圆的离心率为________. 答案911解析 画出图形如图所示.由椭圆的定义可知:|PF 1|+|PF 2|=|QF 1|+|QF 2|=2a ,|F 1F 2|=2c . ∵|PF 2|=|F 1F 2|,∴|PF 2|=2c , ∴|PF 1|=2(a -c ). ∵5|PF 1|=6|F 1Q |,∴|QF 1|=56|PF 1|=53(a -c ),∴|QF 2|=a 3+5c3.在△PF 1F 2中,由余弦定理可得: cos ∠PF 1F 2=|F 1F 2|2+|F 1P |2-|F 2P |22|F 1F 2||F 1P |=a -c2c ,在△QF 1F 2中,由余弦定理可得: cos ∠QF 1F 2=|F 1F 2|2+|F 1Q |2-|F 2Q |22|F 1F 2||F 1Q |=2a -3c5c .∵∠PF 1F 2+∠QF 1F 2=180°,∴cos ∠PF 1F 2=-cos ∠QF 1F 2, ∴a -c 2c =-2a -3c5c,整理得9a =11c , ∴e =c a =911.17.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若对任意λ∈R ,不等式|λBC →-BA →|≥|BC →|恒成立,则c b +bc 的最大值为________.答案5解析 由对任意λ∈R ,不等式|λBC →-BA →|≥|BC →|恒成立得BC 边上的高h ≥a . 在△ABC 中,有12ah =12bc sin A ,即bc =ahsin A ,在△ABC 中,由余弦定理得 b 2+c 2=a 2+2bc cos A =a 2+2ah cos Asin A, 则c b +bc =b 2+c 2bc =a 2+2ah cos A sin A ahsin A =a 2sin A +2ah cos A ah =a sin A +2h cos A h≤h sin A +2h cos Ah=sin A +2cos A=5sin(A +φ), 其中tan φ=2,则当A +φ=π2且h =a 时,c b +bc 取得最大值 5.三、解答题(本大题共5小题,共74分.) 18.(14分)已知:函数f (x )=2(sin x -cos x ). (1)求函数f (x )的最小正周期和值域;(2)若函数f (x )的图象过点⎝⎛⎭⎫α,65,π4<α<3π4.求f ⎝⎛⎭⎫π4+α的值. 解 (1)f (x )=2(sin x -cos x ) =2⎝⎛⎭⎫sin x ·22-cos x ·22=2sin ⎝⎛⎭⎫x -π4. ∴函数的最小正周期为2π,值域为{y |-2≤y ≤2}. (2)依题意得,2sin ⎝⎛⎭⎫α-π4=65,sin ⎝⎛⎭⎫α-π4=35,∵π4<α<3π4,∴0<α-π4<π2, ∴cos ⎝⎛⎭⎫α-π4=1-sin 2⎝⎛⎭⎫α-π4=1-⎝⎛⎭⎫352=45,∴f ⎝⎛⎭⎫π4+α=2sin ⎣⎡⎦⎤⎝⎛⎭⎫π4+α-π4 =2sin ⎣⎡⎦⎤⎝⎛⎭⎫α-π4+π4 =2⎣⎡⎦⎤sin ⎝⎛⎭⎫α-π4cos π4+cos ⎝⎛⎭⎫α-π4sin π4 =2×22×⎝⎛⎭⎫35+45=725. 19.(15分)如图,在四棱锥P -ABCD 中,已知P A ⊥平面ABCD ,AB ∥CD ,AB ⊥BC ,CD =2AB =4,BC =2 2.(1)求证:PC ⊥BD ;(2)若直线AB 与平面PBD 所成的角为π6,求P A 的长.解 (1)连接AC ,在△ABC 中,因为AB ⊥BC ,AB =2,BC =22, 所以tan ∠ACB =AB BC =22.因为AB ∥CD ,AB ⊥BC ,所以CD ⊥BC .在Rt △BCD 中,因为CD =4,所以tan ∠BDC =BC CD =22,所以tan ∠ACB =tan ∠BDC , 所以∠ACB =∠BDC .因为∠ACB +∠ACD =π2,所以∠BDC +∠ACD =π2,所以BD ⊥AC .因为P A ⊥平面ABCD ,BD ⊂平面ABCD ,所以P A ⊥BD .又P A ⊂平面P AC ,AC ⊂平面P AC ,P A ∩AC =A ,所以BD ⊥平面P AC . 因为PC ⊂平面P AC ,所以PC ⊥BD .(2)方法一 如图,设P A =t ,AC 与BD 交于点M ,连接PM ,过点A 作AH ⊥PM 于点H ,连接BH .由(1)知,BD ⊥平面P AC ,又AH ⊂平面P AC ,所以BD ⊥AH .因为AH ⊥PM ,PM ⊂平面PBD ,BD ⊂平面PBD ,PM ∩BD =M ,所以AH ⊥平面PBD , 所以∠ABH 为直线AB 与平面PBD 所成的角.在Rt △ABC 中,因为AB =2,BC =22,所以AC =AB 2+BC 2=23, 所以由三角形相似得AM =AB 2AC =233.在Rt △P AM 中,易知AH =P A ·AM PM =P A ·AMP A 2+AM 2=t ×233t 2+43. 因为直线AB 与平面PBD 所成的角为π6,所以∠ABH =π6.所以sin ∠ABH =AHAB =t ×233t 2+432=12,所以t =2, 所以P A 的长为2.方法二 取CD 的中点E ,连接AE ,因为AB ∥CD ,CD =2AB =4,所以AB ∥CE 且AB =CE , 所以四边形ABCE 是平行四边形,所以BC ∥AE . 因为AB ⊥BC ,所以AB ⊥AE .又P A ⊥平面ABCD ,所以P A ⊥AB ,P A ⊥AE ,故AE ,AB ,AP 两两垂直,故以A 为坐标原点,AE ,AB ,AP 所在直线分别为x ,y ,z 轴,建立如图所示的空间直角坐标系,设P A =t ,因为CD =2AB =4,所以A (0,0,0),B (0,2,0),P (0,0,t ),D (22,-2,0),所以AB →=(0,2,0),BP →=(0,-2,t ),BD →=(22,-4,0).设平面PBD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·BP →=0,n ·BD →=0,即⎩⎨⎧-2y +tz =0,22x -4y =0,令x =2,则y =1,z =2t ,故n =⎝⎛⎭⎫2,1,2t 为平面PBD 的一个法向量. 因为直线AB 与平面PBD 所成的角为π6,所以sin π6=|cos 〈n ,AB →〉|=|n ·AB →||n |·|AB →|=23+4t2×2=12, 所以t =2. 所以P A 的长为2.20.(15分)数列{a n }满足: a 1=1,a 2=2,a n +2=[2+(-1)n ]a n +2,n =1,2,3,…. (1)求a 3,a 4,并证明数列{a 2n +1}是等比数列; (2)求数列{a n }的前2n 项和S 2n . 解 (1) 当n =1时,a 3=a 1+2=3, 当n =2时,a 4=3a 2+2=8,令n =2k ,a 2k +2=3a 2k +2(k =1,2,3,…), 即a 2k +2+1=3(a 2k +1)(k =1,2,3,…). 所以数列{a 2n +1}是等比数列.(2)由(1)得,当n 为偶数时,a n =23n -1,当n 为奇数时, a n +2=a n +2,即数列{a n }的奇数项构成等差数列,可求得a n =n ,{a n }的通项公式a n =⎩⎪⎨⎪⎧n ,n 是奇数,23n -1,n 是偶数.所以在前2n 项中,S 奇=n ·1+12n ()n -1·2=n 2,S 偶=3()1-3n 1-3-n =12()3n +1-3-n ,S 2n =S 奇+S 偶=12()3n +1-3+n 2-n .21.(15分)已知平面上一动点P 到定点C (1,0)的距离与它到直线l :x =4的距离之比为12.(1)求点P 的轨迹方程;(2)点O 是坐标原点,A ,B 两点在点P 的轨迹上,F 是点C 关于原点的对称点,若F A →=λBF →,求λ的取值范围.解 (1)设P (x ,y )是所求轨迹上的任意一点,由动点P 到定点C (1,0)的距离与它到直线l :x =4的距离之比为12,则(x -1)2+y 2|x -4|=12,化简得x 24+y 23=1,即点P 的轨迹方程为x 24+y 23=1.(2)由F 是点C 关于原点的对称点,所以点F 的坐标为(-1,0), 设A (x 1,y 1),B (x 2,y 2),因为F A →=λBF →, 则(x 1+1,y 1)=λ(-1-x 2,-y 2),可得⎩⎪⎨⎪⎧x 1=-1-λ-λx 2,y 1=-λy 2,∵x 214+y 213=1,即(-1-λ-λx 2)24+(-λy 2)23=1,① 又由x 224+y 223=1,则(λx 2)24+(λy 2)23=λ2,②①-②得2λ(λ+1)x 2+(λ+1)24=1-λ2,化简得x 2=3-5λ2λ,∵-2≤x 2≤2,∴-2≤3-5λ2λ≤2,解得13≤λ≤3,所以λ的取值范围是⎣⎡⎦⎤13,3.22.(15分)已知函数f (x )=e x -ln(x +m ),其中m ≥1. (1)设x =0是函数f (x )的极值点,讨论函数f (x )的单调性; (2)若y =f (x )有两个不同的零点x 1和x 2,且x 1<0<x 2, ①求参数m 的取值范围; ②求证:21ex x --ln(x 2-x 1+1)>e -1.(1)解 f ′(x )=e x -1x +m, 若x =0是函数f (x )的极值点,则f ′(0)=1-1m =0,得m =1,经检验满足题意,此时f ′(x )=e x -1x +1,x >-1, 所以当x ∈(-1,0)时,f ′(x )<0,f (x )单调递减; 当x ∈(0,+∞)时,f ′(x )>0,f (x )单调递增. (2)①解 m ≥1, f ′(x )=e x -1x +m,x >-m ,记h (x )=f ′(x ),则h ′(x )=e x +1()x +m 2>0,知f ′(x )在区间(-m ,+∞)内单调递增. 又∵f ′(0)=1-1m >0, f ′(-m +1)=e 1-m -1<0,∴f ′(x )在区间(1-m ,0)内存在唯一的零点x 0, 即f ′(x 0)=0e x -1x 0+m =0,于是0e x=1x 0+m ,x 0=-ln(x 0+m ).当-m <x <x 0时, f ′(x )<0,f (x )单调递减; 当x >x 0时, f ′(x )>0,f (x )单调递增.若y =f (x )有两个不同的零点x 1和x 2,且x 1<0<x 2, 易知x →-m 时,f (x )→+∞,x →+∞时,f (x )→+∞, 所以f (0)=1-ln m <0,解得m >e.②证明 由①中的单调性知,当x ∈(x 1,x 2)时,f (x )<0,又m >e ,所以f (-1)=1e -ln(m -1)<1e -ln(e -1)<12-ln(e -1)<12-ln 1.7=ln e1.7<0,所以x 1<-1.所以x 1<-1<0<x 2,所以x 2-x 1>1,令t =x 2-x 1>1, 要证21ex x --ln(x 2-x 1+1)>e -1,即证e t -ln(t +1)>e -1. 令h (t )=e t -ln(t +1),t ≥1, 则h ′(t )=e t -1t +1单调递增,又h ′(1)=e -12>0,所以h ′(t )>0,h (t )单调递增, 所以h (t )>h (1)=e -ln 2>e -1, 即21e x x --ln(x 2-x 1+1)>e -1.。
2020年普通高等学校招生全国统一考试(浙江卷)数学模拟题(含答案解析)

2020年普通高等学校招生全国统一考试(浙江卷)数学模拟题选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合P {|14}{|2}x x Q x x =−<<=<,那么()R P C Q ⋂=() A. [2,4)B.(-1,+∞)C. [2,+∞)D. (-1,2]2. 复数z 满足(1+2i)z=2 (i 为虚数单位),则z 的虚部是( )4.5A −4.5i B −4.3C4.3i D 3.已知双曲线的中心在原点,焦点在坐标轴上,一条渐近线方程为3x+4y=0,则该双曲线的离心率是( )5.3A5.4B4.3C 或535.3D 或544.如图是一个几何体的三视图,且正视图、侧视图都是矩形,则该几何体的体积为()A.12B.14C.16D.185.已知函数f (x )的图象如右图所示,则f (x )的解析式可能是( )A.2()2ln ||f x x x =−B.2()ln ||f x x x =−C. f(x)=|x|-2ln |x|D. f(x)=|x|-1n|x|6.在《青春有你2》录制现场,有5名学员和3名导师排成一列,则5名学员至少2人排在一起且不与导师相邻的排法有几种()A.720B.1440C.1880D.2567.随机变量ξ的分布列是若5()3E ξ=,则随机变量ξ的方差D (ξ)=() 1.9A3.9B5.9C D.798.如图,已知三棱锥D-ABC ,记二面角C-AB-D 的平面角是θ,直线DA 与平面ABC 所成的角是1,θ直线DA 与BC 所成的角是2,θ则()A.θ≥θ1B.θ≤θ1C.θ≥θ2D.θ≤θ29.已知向量a, b 满足|a|=|a+b|=2,则|2a+b|+|b|的最大值为 A.4.42B + 2D.810.已知数列{}n a 满足1110,4,a a >=2112n n n a a a +=+,数列{}n b 满足0n b >,112b a =,21112n n n b b b ++=+若存在正整数P,q(p≤q),使得14p q b b +=,则()A.p=10, q=12B. p=9, q=11C. p=4, q=6D. p=1, q=3非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年浙江省高考数学模拟试卷(15)一.选择题(共12小题,满分60分,每小题5分)1.(5分)已知i 为虚数单位,z =41+i ,则复数z 的虚部为( ) A .﹣2iB .2iC .2D .﹣22.(5分)如图,已知圆M :(x ﹣3)2+(y ﹣3)2=4,四边形ABCD 为圆M 的内接正方形,E ,F 分别为边AB ,AD 的中点,当正方形ABCD 绕圆心M 转动时,ME →⋅OF →的取值范围是( )A .[−6√2,6√2]B .[﹣6,6]C .[−3√2,3√2]D .[﹣4,4]3.(5分)已知关于x 的方程sin(π2+x)+cos(π2−x)=a 在区间[0,2π)上有两个实数根x 1,x 2,且|x 1﹣x 2|≥π,则实数a 的取值范围是( ) A .[﹣1,0)B .[√22,1)C .[0,1)D .(1,√2)4.(5分)复数(1+i )a 是实数,其中i 为虚数单位,则实数a 等于( ) A .﹣1B .1C .0D .25.(5分)设非零向量a →,b →,c →,满足|b →|=2,|a →|=1,且b →与a →的夹角为θ,则“|b →−a →|=√3”是“θ=π3”的( ) A .充分非必要条件 B .必要非充分条件 C .充分必要条件D .既不充分也不必要条件6.(5分)设锐角△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c ,且b =4,c =1,△ABC 的面积为√3,则a 的值为( ) A .√21B .√13C .√13或√21D .2√37.(5分)若平面向量a →,b →的夹角为30°,且|a →|=2|b →|=2,则b →在a →方向上的投影为( ) A .√3B .12C .√32D .18.(5分)函数f (x )=x 2+e |x |的图象只可能是( )A .B .C .D .9.(5分)在△ABC 中,AB =3,AC =2,∠BAC =60°,点D 、E 分别在线段AB 、CD 上,且BD =2AD ,CE =2ED ,则BE →⋅AB →=( ) A .﹣3B .﹣6C .4D .910.(5分)已知θ∈(π4,π2),且sin(θ+π4)=3√1010,则tan θ=( ) A .2B .43C .3D .12511.(5分)在四边形ABCD 中,AD ∥BC ,AB =2,AD =5,BC =3,∠A =60°,点E 在线段CB 的延长线上,且AE =BE ,点M 在边CD 所在直线上,则AM →⋅ME →的最大值为( ) A .−714B .﹣24C .−514D .﹣3012.(5分)如图,在平行四边形ABCD 中,M 、N 分别为AB 、AD 上的点,且AM →=45AB →,AN →=23AD →,连接AC 、MN 交于P 点,若AP →=λAC →,则λ的值为( )A .35B .37C .411D .413二.填空题(共4小题,满分20分,每小题5分) 13.(5分)i 是虚数单位,复数3+2i 1−i= .14.(5分)在△ABC 中,已知AB →=a →,BC →=b →,G 为△ABC 的重心,用向量a →、b →表示向量AG →= . 15.(5分)√3tan10°+1(4cos 10°−2)sin10°= .16.(5分)如图所示,位于A 处的信息中心获悉:在其正东方向相距30√2海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西45°、相距20海里的C 处的乙船,现乙船朝北偏东θ的方向沿直线CB 前往B 处救援,则cos θ的值为 .三.解答题(共6小题)17.已知复数z 的虚部大于0,且|z |=|z +2|=√5. (1)求z ; (2)求复数z z+4的实部.18.已知sin(3π+α)=2sin(3π2+α),求下列各式的值: (1)sinα−4cosα5sinα+2cosα.(2)sin 2α+2sin αcos α.19.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,满足ab +a 2=c 2. (1)求证:C =2A ;(2)若△ABC 的面积为a 2sin 2B ,求角C 的大小.20.已知锐角△ABC 的三个内角A 、B 、C 满足sin B sin C =(sin 2B +sin 2C ﹣sin 2A )tan A . (Ⅰ)求角A 的大小;(Ⅱ)若△ABC 的外接圆的圆心是O ,半径是1,求OA →•(AB →+AC →)的取值范围. 21.某学习小组在一次研究性学习中发现,以下三个式子的值都等于同一个常数. cos 215°+cos 215°−√3sin15°sin15°;cos280°+cos2(﹣50°)−√3sin80°sin(−50°);cos2170°+cos2(﹣140°)−√3sin170°sin(−140°).(1)求出这个常数;(2)结合(1)的结果,将该小组的发现推广为一个三角恒等式,并证明你的结论.22.在△ABC中,角A,B,C的对边分别为a,b,c,且acosC+12c=b.(1)求角A的大小;(2)若a=√3,求b+c的最大值.2020年浙江省高考数学模拟试卷(15)参考答案与试题解析一.选择题(共12小题,满分60分,每小题5分)1.(5分)已知i 为虚数单位,z =41+i ,则复数z 的虚部为( ) A .﹣2iB .2iC .2D .﹣2【解答】解:z =41+i =4(1−i)(1+i)(1−i)=4(1−i)2=2﹣2i , 则复数z 的虚部为﹣2, 故选:D .2.(5分)如图,已知圆M :(x ﹣3)2+(y ﹣3)2=4,四边形ABCD 为圆M 的内接正方形,E ,F 分别为边AB ,AD 的中点,当正方形ABCD 绕圆心M 转动时,ME →⋅OF →的取值范围是( )A .[−6√2,6√2]B .[﹣6,6]C .[−3√2,3√2]D .[﹣4,4]【解答】解:因为圆M :(x ﹣3)2+(y ﹣3)2=4,圆心的坐标(3,3)半径为2, 所以|ME |=√2,|OM |=√32+32=3√2,OF →=OM →+MF →,ME →⋅OF →=ME →(OM →+MF →)=ME →⋅OM →+ME →⋅MF →, ∵ME →⊥MF →,∴ME →⋅MF →=0,∴ME →⋅OF →=ME →⋅OM →=6cos (π﹣∠OME )∈[﹣6,6], ME →⋅OF →的取值范围是[﹣6,6]. 故选:B .3.(5分)已知关于x 的方程sin(π2+x)+cos(π2−x)=a 在区间[0,2π)上有两个实数根x 1,x 2,且|x 1﹣x 2|≥π,则实数a 的取值范围是( ) A .[﹣1,0)B .[√2,1)C .[0,1)D .(1,√2)【解答】解:由sin(π2+x)+cos(π2−x)=a , 方程化简sin (π2+x )+cos (π2−x )=sin x +cos x=√2sin (x +π4)=a ,转化为函数y =√2sin (x +π4)与函数y =a 有两个交点, 区间[0,2π) 上有两个实根 x 1,x 2, 由x ∈[0,2π)则x +π4∈[π4,9π4),设 x 1>x 2,由x 1﹣x 2≥π,可得5π4≥x 2≥π4,当3π4≥x 2≥π4时,结合正弦函数可知,不存在a 的值; 当3π4≤x 2≤5π4时,对应的2π≤x 1<9π4, 结合正弦函数可知,函数y =√2sin (x +π4)与函数y =a 有两个交点, 此时可得:a ∈[0,1). 故选:C .4.(5分)复数(1+i )a 是实数,其中i 为虚数单位,则实数a 等于( ) A .﹣1B .1C .0D .2【解答】解:∵复数(1+i )a =a +ai 是实数, ∴a =0. 故选:C .5.(5分)设非零向量a →,b →,c →,满足|b →|=2,|a →|=1,且b →与a →的夹角为θ,则“|b →−a →|=√3”是“θ=π3”的( ) A .充分非必要条件 B .必要非充分条件 C .充分必要条件D .既不充分也不必要条件【解答】解:|b →−a →|=√3,∴b →2+a →2−2a →•b →=3,∴22+1﹣2×2×1×cos θ=3, 解得:cos θ=12,θ∈[0,π],解得θ=π3. ∴“|b →−a →|=√3”是“θ=π3”的充要条件.故选:C .6.(5分)设锐角△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c ,且b =4,c =1,△ABC 的面积为√3,则a 的值为( ) A .√21B .√13C .√13或√21D .2√3【解答】解:∵S △ABC =√3=12bc sin A =12×4×1×sinA ,解得:sin A =√32, ∵A 为锐角,解得:cos A =12,∴由余弦定理可得:a =2+c 2−2bccosA =√16+1−2×1×4×12=√13. 故选:B .7.(5分)若平面向量a →,b →的夹角为30°,且|a →|=2|b →|=2,则b →在a →方向上的投影为( ) A .√3B .12C .√32D .1【解答】解:∵|b →|=1,<a →,b →>=30°, ∴b →在a →方向上的投影为|b →|cos30°=√32.故选:C .8.(5分)函数f (x )=x 2+e |x |的图象只可能是( )A .B .C .D .【解答】解:因为对于任意的x ∈R ,f (x )=x 2+e |x |>0恒成立,所以排除A ,B , 由于f (0)=02+e |0|=1,则排除D , 故选:C .9.(5分)在△ABC 中,AB =3,AC =2,∠BAC =60°,点D 、E 分别在线段AB 、CD 上,且BD =2AD ,CE =2ED ,则BE →⋅AB →=( )A .﹣3B .﹣6C .4D .9【解答】解:如图,BD =2AD ,CE =2ED ,AB =3,AC =2,∠BAC =60°,∴BE →⋅AB →=(BD →+DE →)⋅AB →=(−23AB →+13DC →)⋅AB →=[−23AB →+13(DA →+AC →)]⋅AB →=[−23AB →+13(−13AB →+AC →)]⋅AB →=(−79AB →+13AC →)⋅AB →=−79AB →2+13AB →⋅AC →=−79×9+13×3×2×12 =﹣6. 故选:B .10.(5分)已知θ∈(π4,π2),且sin(θ+π4)=3√1010,则tan θ=( ) A .2B .43C .3D .125【解答】解:因为θ∈(π4,π2), 所以θ+π4∈(π2,3π4),又sin(θ+π4)=3√1010, 所以cos (θ+π4)=−√1010,则tan (θ+π4)=﹣3,所以tan θ=tan (θ+π4−π4)=−3−11−3=2. 故选:A .11.(5分)在四边形ABCD 中,AD ∥BC ,AB =2,AD =5,BC =3,∠A =60°,点E 在线段CB 的延长线上,且AE =BE ,点M 在边CD 所在直线上,则AM →⋅ME →的最大值为( )A .−714B .﹣24C .−514D .﹣30【解答】解:如图:;因为:在四边形ABCD 中,AD ∥BC ,AB =2,AD =5,BC =3,∠A =60°, 点E 在线段CB 的延长线上,且AE =BE ; ∴AE =BE =AB =2;∴四边形AECD 为平行四边形;且AD →与DC →所成角为60°. 设DM →=x DC →,∴AM →•ME →=(AD →+DM →)•(MC →+CE →)=(AD →+x DC →)•[(1﹣x )DC →−AD →]=−AD →2+x (1﹣x )DC →2+[(1﹣x )﹣x ]AD →•DC →=−4x 2+6x ﹣20;∵对称轴为x =34,开口向下∴x =34时,AM →⋅ME →的最大值为:﹣4×(34)2+6×34−20=−714. 故选:A .12.(5分)如图,在平行四边形ABCD 中,M 、N 分别为AB 、AD 上的点,且AM →=45AB →,AN →=23AD →,连接AC 、MN 交于P 点,若AP →=λAC →,则λ的值为( )A .35B .37C .411D .413【解答】解:∵AM →=45AB →,AN →=23AD →,连∴AP →=λAC →=λ(AB →+AD →)=λ(54AM →+32AN →)=54λAM →+32λAN →,∵三点M ,N ,P 共线.∴54λ+32λ=1, ∴λ=411, 故选:C .二.填空题(共4小题,满分20分,每小题5分) 13.(5分)i 是虚数单位,复数3+2i 1−i= 12+52i .【解答】解:3+2i 1−i =(3+2i)(1+i)(1−i)(1+i)=12+52i .故答案为:12+52i .14.(5分)在△ABC 中,已知AB →=a →,BC →=b →,G 为△ABC 的重心,用向量a →、b →表示向量AG →=23a →+13b → .【解答】解:设BC 边的中点为D , ∵G 为△ABC 的重心,∴AG →=23AD →=23×12(AB →+AC →→)=13(AB →+AB →+AC →)=23AB →+13AC →=23a →+13b →, 故答案为:23a →+13b →.15.(5分)√3tan10°+1(4cos 10°−2)sin10°= 4 .【解答】解:原式=√3sin10°+cos10°2cos20°sin10°cos10°=2sin(10°+30°)2cos20°sin10°cos10°=2sin40°sin20°cos20°=4sin40°sin40°=4.故答案为:4.16.(5分)如图所示,位于A 处的信息中心获悉:在其正东方向相距30√2海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西45°、相距20海里的C 处的乙船,现乙船朝北偏东θ的方向沿直线CB 前往B 处救援,则cos θ的值为 √1717.【解答】解:如图所示,在△ABC 中,AB =30√2,AC =20,∠BAC =135°定理得BC 2=AB 2+AC 2﹣2AB •AC •cos135°=3400, 所以BC =10√34, 正弦定理得sin ∠ACB =AB BC •sin ∠BAC =3√3434. 由∠BAC =135°知∠ACB 为锐角,故cos ∠ACB =5√3434. 故cos θ=cos (∠ACB +45°)=cos ∠ACB cos45°﹣sin ∠ACB sin45°=√22(5√3434−3√3434)=√1717.故答案为:√1717. 三.解答题(共6小题)17.已知复数z 的虚部大于0,且|z |=|z +2|=√5. (1)求z ; (2)求复数z z+4的实部.【解答】解:(1)设x =a +bi (a ,b ∈R ,b ≥0), 则z +2=a +2+bi ,∴√a 2+b 2=√(a +2)2+b 2, 整理得4a +4=0,解得a =﹣1.又√a 2+b 2=√1+b 2=√5,∴b =±2. ∵复数z 的虚部大于0, ∴b =2,则z =﹣1+2i . (2)zz+4=−1−2i −1+2i+4=−1+2i 3+2i=−(1+2i)(3−2i)13=−713−413i∴复数z→z+4的实部为−713. 18.已知sin(3π+α)=2sin(3π2+α),求下列各式的值: (1)sinα−4cosα5sinα+2cosα. (2)sin 2α+2sin αcos α.【解答】解:(1)∵sin(3π+α)=2sin(3π2+α), ∴﹣sin α=﹣2cos α,即sin α=2cos α, 则原式=2cosα−4cosα10cosα+2cosα=−212=−16; (2)∵sin α=2cos α,即tan α=2,∴原式=sin 2α+2sinαcosαsin 2α+cos 2α=tan 2α+2tanαtan 2α+1=4+44+1=85. 19.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,满足ab +a 2=c 2. (1)求证:C =2A ;(2)若△ABC 的面积为a 2sin 2B ,求角C 的大小. 【解答】解:(1)证明:∵ab +a 2=c 2 ∴a 2﹣c 2=﹣ab ,又∵cos C =b 2+a 2−c 22ab=b 2−ab 2ab =b−a2a , ∴2a cos C =b ﹣a ,∴由正弦定理可得:2sin A cos C =sin B ﹣sin A ,∴2sin A cos C =sin (A +C )﹣sin A =sin A cos C +sin C cos A ﹣sin A , 可得:sin A cos C =sin C cos A ﹣sin A ,可得:sin A =sin (C ﹣A ), ∴A =C ﹣A ,或A +(C ﹣A )=π(舍去), ∴C =2A ,得证;(2)∵S △ABC =12ab sin C =a 2sin 2B , 又sin C =sin2A =2sin A cos A ,∴12ab ×2sin A cos A =a 2sin 2B ,可得:b sin A cos A =a sin 2B ,∴由正弦定理可得:sin B sin A cos A =sin A sin 2B , ∵sin A >0,sin B >0, ∴cos A =sin B ,∴A +B =π2,或B =π2+A , ∴解得C =π2,或C =π4.20.已知锐角△ABC 的三个内角A 、B 、C 满足sin B sin C =(sin 2B +sin 2C ﹣sin 2A )tan A . (Ⅰ)求角A 的大小;(Ⅱ)若△ABC 的外接圆的圆心是O ,半径是1,求OA →•(AB →+AC →)的取值范围. 【解答】解:(Ⅰ)sin B sin C =(sin 2B +sin 2C ﹣sin 2A )tan A , 由正弦定理可得bc =(b 2+c 2﹣a 2)tan A , 由余弦定理可得bc =2bc cos A tan A =2bc sin A , 可得sin A =12,0<A <π2, 解得A =π6;(Ⅱ) OA →•(AB →+AC →)=OA →•(OB →+OC →−2OA →) =OA →•OB →+OA →•OC →−2OA →2 =cos ∠AOB +cos ∠AOC ﹣2 =cos2C +cos2B ﹣2 =cos (5π3−2B )+cos2B ﹣2=32cos2B −√32sin2B ﹣2 =√3cos (2B +π6)﹣2, ∵△ABC 是锐角三角形, ∴{B <π2B +A >π2,可得π3<B <π2,则5π6<2B +π6<7π6, 可得cos (2B +π6)∈[﹣1,−√32),故OA →•(AB →+AC →)的取值范围是[﹣2−√3,−72).21.某学习小组在一次研究性学习中发现,以下三个式子的值都等于同一个常数. cos 215°+cos 215°−√3sin15°sin15°; cos 280°+cos 2(﹣50°)−√3sin80°sin(−50°); cos 2170°+cos 2(﹣140°)−√3sin170°sin(−140°). (1)求出这个常数;(2)结合(1)的结果,将该小组的发现推广为一个三角恒等式,并证明你的结论. 【解答】解:(1)由题意,可知 cos 215°+cos 215°−√3sin15°sin15° =2cos 215°−√3sin 215° =1+cos30°−√32(1−cos30°)=1+√32−√32(1−√32)=74.(2)由题意推广的结论为:当α+β=30°时,cos 2α+cos 2β−√3sinαsinβ=74. 证明:∵α+β=30°,∴β=30°﹣α,则 cos 2α+cos 2β−√3sinαsinβ=cos 2α+cos 2(30°−α)−√3sinαsin(30°−α)=cos 2α+(√32cosα+12sinα)2−√3sinα(12cosα−√32sinα)=cos 2α+34cos 2α+√32cosαsinα+14sin 2α−√32cosαsinα+32sin 2α =74cos 2α+74sin 2α=74.22.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且acosC +12c =b . (1)求角A 的大小;(2)若a =√3,求b +c 的最大值. 【解答】解:(1)由于acosC +12c =b , 利用正弦定理可得sin A cos C +12sin C =sin B ,所以sin A cos C +12sin C =sin (A +C )=sin A cos C +cos A sin C , 所以12sin C =cos A sin C ,因为sin C ≠0, 所以cos A =12.因为A 为三角形的内角, 所以A =π3.(2)由于a =√3,A =π3, 根据正弦定理bsinB=c sinC=a sinA =2,可得b =2sin B ,c =2sin C ,所以b +c =2sin B +2sin C =2sin (2π3−C )+2sin C =√3cos C +3sin C =2√3sin (C +π6)≤2√3,当C =π3时等号成立, 所以b +c 的最大值为2√3.。