最新华东师大版七年级上册数学专题训练利用数轴求点对应的数

合集下载

七年级数学上册专题提分精练数轴上动点返回问题(解析版)

七年级数学上册专题提分精练数轴上动点返回问题(解析版)

专题11 数轴上动点返回问题1.数轴上有A 、B 、C 三个点对应的数分别是-22、-10、10.动点P 从 A 出发,以每秒3个单位的速度向点C 方向移动,设移动时间为t 秒,点Q 从B 点出发,以每秒1个单位的速度向右运动, P 点到达C 点后,再立即按原速返回点A .(1)点P 到达点B 时t = 秒,点Q 向右运动的过程所表示的数为 ,点P 返回的过程中所表示的数为 ;(2)当t 为何值时, P 、Q 两点之间的距离为4.【答案】(1)4;−10+t ;42−3t (2)4s 或8s 或12s 或14s【解析】【分析】(1)由时间=路程÷速度,可求t 的值,由两点距离可求解;(2)分两种情况讨论,列出方程可求解.【详解】(1)点P 到达点B 时,t =10223-+=4s ,点Q 向右运动的过程中所表示的数为−10+t ,点P 返回的过程中所表示的数为10−(3t−32)=42−3t ,故答案为:4,−10+t ,42−3t ;(2)当点P 到点C 之前,则有|(−10+t )−(−22+3t )|=4,∴t =4或8当点P 返回时,则有|(42−3t )−(−10+t )|=4∴t =12或14答:当t =4s 或8s 或12s 或14s 时,P 、Q 两点之间的距离为4.【点睛】本题考查了一元一次方程的应用、数轴,找准等量关系,正确列出一元一次方程是解题的关键.2.已知数轴上有三点A ,B ,C 分别表示有理数26-,10-,10,动点P 从点A 出发,以1个单位长度/s 的速度向终点C 移动,设点P 移动时间为s t .(1)用含t 的代数式表示点P 分别到点A 和点C 的距离:PA =______,PC ______. (2)当点P 运动到点B 时,点Q 从点A 出发,以3个单位长度/s 的速度向点C 运动,点Q 到达点C 后,再立即以同样的速度返回,当点P 运动到点C 时,两点运动停止.当点P ,Q 运动停止时,求点P ,Q 间的距离.【答案】(1)t ,36t -;(2)24【解析】【分析】(1)根据数轴上两点的距离即可求得答案;(2)先求得点P 从B 点到C 点的时间,进而求得点Q 运动20s 的路程,根据题意确定Q 的位置,进而求得,P Q 的距离【详解】(1)PA t =,36PC t =-故答案为:t ,36t -;(2)解:点P 从B 点到C 点的时间为20120s ÷=点Q 运动20s 的路程为32060⨯=点P ,Q 距离为60(2610)24-+=答:点P ,Q 距离为24【点睛】本题考查了数轴上两点距离,数轴上动点问题,数形结合是解题的关键.3.如图,在数轴上每相邻两点间的距离为一个单位长度,点A 、B 、C 、D 对应的数分别是a 、b 、c 、d ,且d ﹣2a=14(1)那么a= ,b= ;(2)点A 以3个单位/秒的速度沿着数轴的正方向运动,1秒后点B 以4个单位/秒的速度也沿着数轴的正方向运动.当点A 到达D 点处立刻返回,与点B 在数轴的某点处相遇,求这个点对应的数;【答案】(1)6a =-,8b =-;(2)47.【解析】【分析】(1)根据数轴可知8d a =+,然后代入等式求出a 的值, 再根据数轴确定出原点即可; (2)先求出A 点到达D 所需要时间,再根据相遇问题列方程求得相遇时间, 再计算即可求解;【详解】解: (1)由图可知:8d a =+,214d a -=,8214a a ∴+-=,解得6a =-,则28b a =-=-;(2) 由(1)可知:6a =-,8b =-,3c =-,2d =,点A 运动到D 点所花的时间为83,设运动的时间为t 秒,则A 对应的数为823()1033t t --=-,B 对应的数为:84(1)412t t -+-=-,当A 、B 两点相遇时,103412t t -=-,227t =, 44127t ∴-=. 答: 这个点对应的数为47;【点睛】此题主要考查了一元一次方程的应用以及数轴上点的坐标与距离表示方法等知识, 正确表示数轴上的点的距离是解答本题的关键 .4.如图,点A 从原点出发沿数轴向左运动,同时点B 从原点出发沿数轴向右运动,4秒钟后,两点相距16个单位长度,已知点B 的速度是点A 的速度的3倍.(速度单位:单位长度/秒)(1)求出点A 点B 运动的速度.(2)若A 、B 两点从(1)中位置开始,仍以原来的速度同时沿数轴向左运动,几秒时原点恰好处在点A 点B 的正中间(3)若A 、B 两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点C 同时从B 点位置出发向A 点运动,当遇到A 点后,立即返回向B 点运动,遇到B 点又立即返回向A 点运动,如此往返,直到B 点追上A 点时,点C 一直以10单位长度/秒的速度运动,那么点C 从开始运动到停止运动,行驶的路程是多少单位长度.【答案】(1)A 、B 这动的速度分别为1单位长度/秒,3单位长度/秒;(2)2秒时,原点给好处在点A 点B 正中间;(3)C 行驶的路程是80个单位长度.【解析】【分析】(1)设点A 的速度为每秒x 个单位,则点B 的速度为每秒3x 个单位,由甲的路程+乙的路程=总路程建立方程求出其解即可;(2)设t 秒时原点恰好在A 、B 的中间,根据两点离原点的距离相等建立方程求出其解即可;(3)先根据追击问题求出A 、B 相遇的时间就可以求出C 行驶的路程.【详解】(1)设点A 的速度为每秒x 个单位,则点B 的速度为每秒3x 个单位,由题意,得4x +4×3x =16,解得:x =1,所以点A 的速度为每秒1单位长度/秒,则点B 的速度为3单位长度/秒.(2)设t 秒后原点位于A 、B 点正中间.(4)(123)02t t --+-= 480t -+=2t =2∴秒时,原点给好处在点A 点B 正中间.(3)设B 点追上A 点的时间为1t 秒112(4)831t --==-(秒) ∴点C 行驶路程:10880⨯=(单位长度)C ∴行驶的路程是80个单位长度.【点睛】本题考查了列一元一次方程解实际问题的运用,数轴的运用,行程问题的相遇问题和追及问题的数量关系的运用,解答时根据行程问题的数量关系建立方程是关键.5.已知数轴上点A 与点B 相距12个单位长度,点A 在原点的左侧,到原点的距离为24个单位长度,点B 在点A 的右侧,点C 表示的数与点B 表示的数互为相反数,动点P 从A 出发,以每秒1个单位长度的速度向终点C 移动,设移动时间为t 秒.(1)点A 表示的数为__________,点C 表示的数为_________;(2)用含t 的代数式表示P 与点A 的距离:=PA _________;(3)当点P 运动到B 点时,点Q 从A 点出发,以每秒3个单位的速度向C 点运动,Q 点到达C 点后,再立即以同样的速度返回,回到点A 处停止运动.①点Q 运动过程中,请求出点Q 运动几秒后与点P 相遇?②在点Q 从点A 向点C 运动的过程中,P 、Q 两点之间的距离能否为4个单位?如果能,请直接写出此时点P 表示的数;如果不能,请说明理由.【答案】(1)24-,12;(2)t ;(3)①6秒或15秒;②8-或4-或2或-2.【解析】【分析】(1)由点A 在原点的左侧,离原点的距离为24,可知点A 表示的数,继而解得点B 表示的数,,再根据相反数的定义解得点C 的坐标;(2)根据路程=速度⨯时间,可得PA ;(3)①分两种情况讨论Ⅰ:点Q 从点A 向点C 运动时,Ⅰ:点Q 从点C 返回点A 时,根据题意列一元一次方程解题即可;②分两种情况讨论,Ⅰ)点Q 从点A 向点C 运动时,Ⅰ)点Q 从点C 返回点A 时,根据题意,列一元一次方程解题即可.【详解】(1)由题意可知,点A 表示数-24,根据数轴上点A 与点B 相距12个单位长度,点B 在点A 的右侧,可得点B 表示的数是-24+12=-12因为点C 表示的数与点B 表示的数互为相反数,所以点C 表示的数是12,故答案为:-24,12;(2)根据题意得,点P 在点A 的右侧,故点P 表示的数是-24+t,=-24+t-(-24)=t PA ∴故答案为:t ;(3)①设点Q 运动x 秒与点p 相遇,Ⅰ:点Q 从点A 向点C 运动时,根据题意得:3x -x =12 (或-24+3x =-12+x ),解得:x =6;Ⅰ:点Q 从点C 返回点A 时,AC=12-(-24)=36,BC=12-(-12)=24根据题意得:3x +x =36+24或12(336)12x x --=-+,解得:x =15②分两种情况讨论,设点Q 运动x 秒与点p 相距4个单位,Ⅰ)点Q 从点A 向点C 运动时, 则12+(324)4x x ---=,解得4x =或8x =,P 1=-8或P 2=-4Ⅰ)点Q 从点C 返回点A 时,12+(336)4x x ---=,解得14x =或10x =,P3 = 2或P 4 = -2【点睛】本题考查一元一次方程的应用、数轴等知识,是重要考点,难度一般,掌握相关知识是解题关键.6.如图,点A 表示的数为﹣3,线段AB =12(点B 在点A 右侧),动点M 从点A 出发,以每秒1个单位的速度,沿线段AB 向终点B 运动,同时,另一个动点N 从点B 出发,以每秒3个单位的速度在线段AB 上来回运动(从点B 向点A 运动,到达点A 后,立即原速返回,再次到达B 点后立即调头向点A 运动).当点M 到达B 点时,M 、N 两点都停止运动.设点M 的运动时间为x 秒.(1)当x =2时,线段MN 的长为 .(2)当M 、N 两点第一次重合时,求线段BN 的长;(3)是否存在某一时刻,使点BN 的中点恰好落与点M 重合,若存在,请求出所有满足条件的x 的值;若不存在,请说明理由.【答案】(1)4;(2)9BN =;(3)当x = 9.6时,恰好重合【解析】【分析】(1)结合图形,分别表示出AM 、BN 的长,即可得MN 的长;(2)设x 秒后M ,N 重合,根据题意列出方程求解即可;(3)点BN 的中点恰好落与点M 重合分三种情况讨论,分别列出方程,求解即可.【详解】解:(1)由题意可知:AM x =,3BN x =,则124MN x =-或412MN x =-当2x =时,1244x -=,当2x =时,4124x -=-,(不合题意,舍去) ∴4MN =故答案为:4;(2)设x 秒后M ,N 重合,得:312x x +=,解得:3x =,3339BN x ==⨯=;(3)当点M 从点A 运动到B 时,用时:12112÷=秒;当点N 从点B 运动到A 时,用时:1234÷=秒;①当点N 从点B 出发后,运动到A 时,即04x ≤≤时,3122x x =-, 解得:2445x =>,(舍去) ②当点N 到点A 后,从点A 到点B 过程中,即48x <<时,243122x x -=-, 解得:0x =,(舍去)③当点N 返回B 点,从点B 出发运动到A 时,即812x ≤≤时,324122x x -=-, 解得:9.6x =,综上可得:当9.6x =时,点BN 的中点恰好落与点M 重合.【点睛】题目主要考查一元一次方程的应用,数轴上两点间的距离,理解题意,利用树形结合思想进行分类讨论是解题关键.7.在数轴上原点O 表示数0,A 点表示的数是m ,B 点表示的数是n ,并且满足1050m n ++-=.(1)点A 表示的数为________,点B 表示的数为________;(2)若动点P 从点A 出发,以每秒同时动点Q 从点B 出发以每秒2个单位长度的速度沿数轴向左运动.设P 运动的时间为t 秒,并且P Q 、两点在C 点相遇.试求t 值及C 点所表示的数;(3)在(2)的条件下,若点P 运动到达B 点后按原速立即返回,点Q 继续按原速原方向运动,点P 离开B 点多少秒后,P Q 、两点的距离为4个单位长度?【答案】(1)10-,5;(2)3t =,1-;(3)6秒或14秒【解析】【分析】(1)根据绝对值的非负性,解得m 、n 的值,即可解题;(2)分别写出点P 、Q 所表示的数,再根据相遇时,点P 、Q 表示同一个数解题即可; (3)分两种情况讨论,当P 在Q 右边时,或当P 在Q 左边时,结合数轴上两点间的距离解题即可.【详解】(1)1050m n ++-=10+0,50m n ∴=-=10,5m n ∴=-=∴点A 表示的数为10-,点B 表示的数为5,故答案为:-10;5;(2)点P 表示的数是:10+3t -,点Q 表示的数是:52t -,根据题意得,10+3t -=52t -32510t t +=+解得3t =523=1∴-⨯-,此时C 点表示的数是1-;(3)P 从C 运动到B 时,Q 距离C 点4,点P 到达点B 时,P Q 、相距10,当P 在Q 右边时,(210)34t t +-=解得6t =当P 在Q 左边时, 3(210)4t t -+=解得14t =综上所述,当6t =或14t =时,P Q 、两点的距离为4个单位长度.【点睛】本题考查数轴、数轴上的动点,涉及绝对值、解一元一次方程等知识,是重要考点,难度较易,掌握相关知识是解题关键.8.点A 在数轴上表示的数是-8,点在点A 的右侧,且线段AB =24(单位长度) (1)点B 在数轴上表示的数是(2)若点A 以6个单位长度/秒的速度向右匀速运动,同时点B 以2个单位长度/秒的速度向左匀速运动.求几秒后点A 和点B 相距8个单位长度;(3)在(2)的条件下,有一只电子蚂蚁同时从原点出发向点A 运动,当遇到点A 后,立即返回向点B 运动,遇到点B 后立即返回向点A 运动,如此往返,直到点A 和点B 相遇时,电子蚂蚁立即停止运动.若电子蚂蚁一直以4个单位长度/秒的速度匀速运动,那么电子蚂蚁从开始到停止运动时,求蚂蚁运动的路程是多少个单位长度【答案】(1)16;(2)2秒或4秒后点A 和点B 相距8个单位长度;(3)电子蚂蚁的路程是12个单位长度【解析】【分析】(1)由题意得,88OA =-=,0OB >,即可得;(2)设经过t 秒后点A 和点B 相距8个单位长度,分情况讨论:①当点A ,B 两点相遇前,AB =8,②当点A 、B 两点相遇之后,AB =8,进行解答即可得;(3)设经过x 秒后点A 和点B 相遇,得经过3秒后点A 和点B 相遇,再用电子蚂蚁的速度乘时间即可得.【详解】解:(1)由题意得,88OA =-=,0OB >, 则24824816OB AB OA =-=--=-=,即点B 在数轴上表示的数是:16,故答案为:16;(2)设经过t 秒后点A 和点B 相距8个单位长度,①当点A ,B 两点相遇前,AB =8,则62824t t ++=,816t =,解得2t =,②当点A 、B 两点相遇之后,AB =8,则62824t t +-=,832t =,4t =,综上,当AB =8时,运动时间为2秒或4秒;(3)设经过x 秒后点A 和点B 相遇,6224x x +=,3x =,即经过3秒后点A 和点B 相遇,则3412⨯=,故电子蚂蚁的路程是12个单位长度.【点睛】本题考查了数轴及其动点问题和一元一次方程的应用,解题的关键是掌握灵活运用知识点,全面考虑问题可能出现的情况.9.已知数轴上两点A B 、对应的数分别为1-、3,点P 为数轴上一动点,其对应的数为x .(1)若点P 到点A 、点B 的距离相等,则点P 对应的数为_____________;(2)数轴上是否存在点P ,使点P 到点A 、点B 的距离之和为8?若存在,请求出x 的值;若不存在,说明理由;(3)现在点A、点B分别以2个单位长度/秒和0.5个单位长度/秒的速度同时向右运动,动点P也同时从原点出发向点A运动,当遇到点A后立即返回向点B运动,遇到点B后又立即返回向点A运动,如此往返,直到点A追上点B时,点P立即停止运动.若点P一直以2个单位长度/秒的速度匀速运动,则点P一共运动了__________个单位长度.【答案】(1)1;(2)存在,当x=-3或5时,点P到点A、点B的距离之和为8;(3)16 3【解析】【分析】(1)根据数轴上中点公式即可求出结论;(2)根据点P与点A、B的位置分类讨论,分别列出方程即可求出结论;(3)先求出AB的长,即可求出点A追上点B所用时间,从而求出点P的运动时间,再乘点P的运动速度即可求出结论.【详解】解:(1)∵A B、对应的数分别为1-、3,点P到点A、点B的距离相等∴点P对应的数为1+31 2-=故答案为:1;(2)存在当点P在点A左侧时,则PA=-1-x,PB=3-x由题意可得(-1-x)+(3-x)=8解得:x=-3当点P在A、B之间时,则PA=x-(-1)=x+1,PB=3-x此时PA+PB=4≠8,故此时不符合题意;当点P在点B右侧时,则PA=x-(-1)=x+1,PB=x-3由题意可得(x+1)+(x-3)=8解得:x=5综上:当x=-3或5时,点P到点A、点B的距离之和为8;(3)∵A B、对应的数分别为1-、3,∴AB=3-(-1)=4∵点A、点B分别以2个单位长度/秒和0.5个单位长度/秒的速度同时向右运动∴点A追上点B所用时间为4÷(2-0.5)=83(秒)即点P运动的时间为83秒∴点P运动的路程为83×2=163个单位长度故答案为:163.【点睛】此题考查的是数轴与动点问题和一元一次方程的应用,掌握两点之间的距离公式、中点公式和实际问题中的等量关系是解题关键.10.如图,线段AB=10,动点P从点A出发,以每秒1个单位的速度,沿线段AB向终点B运动,同时,另一个动点Q从点B出发,以每秒3个单位的速度在线段AB上来回运动(从点B向点A运动,到达点A后,立即原速返回,再次到达B点后立即调头向点A运动.)当点P到达B点时,P,Q两点都停止运动.设点P的运动时间为x.(1)当x=3时,线段PQ的长为.(2)当P,Q两点第一次重合时,求线段BQ的长.(3)是否存在某一时刻,使点Q恰好落在线段AP的中点上?若存在,请求出所有满足条件的x的值;若不存在,请说明理由.【答案】(1)2;(2)7.5;(3)当x=207或x=4或x=607时,点Q恰好落在线段AP的中点上.【解析】【分析】(1)根据运动速度以及时间分别求出点P和点Q的位置,从而得出PQ的长度;(2)设时间为x秒,然后根据题意列出方程求出x的值;(3)分三种情况分别列出方程,从而求出x的值.【详解】解:(1)由题意可知:AP=x,BQ=3x,则PQ=10-4x或4x-10当x=3时,10-4x=-2(不合题意,舍去)当x=3时,4x-10=2∴PQ=2故答案为:2;(2)设x秒后P,Q重合,得:x+3x=10解得:x=2.5PQ=3x=3×2.5=7.5(3)①x=2(10-3x)解得:x=207② x=2(3x -10) 解得:x=4③ x=2(30-3x ) 解得:x=607【点睛】本题考查数轴上两点间的距离和一元一次方程的应用,利用数形结合思想解题是关键. 11.如图1,数轴上有三点A 、B 、C ,表示的数分别是a 、b 、c ,这三个数满足()()228|4|20a b a c ++-++=,请解答:(1)=a _________,b =_________,c =_________;(2)点P ,Q 分别从A ,B 同时出发,点P 以每秒3个单位长度的速度向数轴正方向运动,点Q 以每秒1个单位长度的速度向数轴负方向运动,当点P ,Q 之间的距离为4个单位时,求运动的时间是多少秒?(3)如图2,点P ,Q 分别从A ,B 同时出发向数轴正方向运动,点P 的速度每秒3个单位长度,点Q 的速度每秒1个单位长度,当点P 到达C 点时立即掉头向数轴的负方向运动,并且速度提高了13,直至点P 与点Q 相遇时两个点同时停止运动.设运动时间为t 秒,请直接写出在运动过程中点P 与点Q 之间的距离(用含t 的化简的代数式表示,并指出t 的对应取值范围).【答案】(1)8,4,16- (2)2秒或4秒(3)06t <≤时,122PQ t =-; 68t <≤时,212PQ t =-; 4885t <≤时,445PQ t =-. 【解析】 【分析】(1)根据非负数的性质可得a 、b 、c 的值;(2)先用含t 的代数式表示出点P 和点Q 表示的数,再根据两点距离为4,列方程可得解; (3)分三种情况讨论:当06t <≤时;当68t <≤时;当4885t <≤时,即可求解 (1)解:∵()()228|4|20a b a c ++-++=, ∴80,40,20a b a c +=-=+=, 解得:8,4,16a b c =-== (2)解:设运动时间为x 秒,依题意得,点P 表示的数是-8+3x ,点Q 表示的数是4-x , ∴|(-8 + 3x )-(4-x )| = 4, 解得x = 4或2,答:当P ,Q 之间的距离为4个单位时,运动的时间是4或2秒; (3)当06t <≤时,点P 表示的数是-8+ 3t ,点Q 表示的数是4+t , ∴PQ =(4 + t )-(-8 + 3t )= 12-2t ;当68t <≤时,点P 表示的数是-8+3t ,点Q 表示的数是4+t , ∴PQ =(-8 + 3t )-(4 +t )= 2t -12;当4885t <≤时,点P 表示的数是16-4(t -8)= 48-4t ,点Q 表示的数是4+t , ∴PQ =(48-4t )-(4 +t )= 44-5t ;综上,当06t <≤时,122PQ t =-;当68t <≤时,212PQ t =-;当4885t <≤时,445PQ t =-. 【点睛】本题考查一元一次方程的应用,绝对值非负性,数轴上两点间的距离,会用含t 的代数式表示出点P 和点Q 表示的数是解题关键. 12.思考下列问题,并在横线上填上答案:(1)数轴上表示-3的点与表示4的点相距_______个单位.(2)数轴上表示2的点先向右移动2个单位,再向左移动5个单位,最后到达的点表示的数是 _____________.(3)数轴上若点A 表示的数是2,点B 与点A 的距离为3,则点B 表示的数是_______. (4)若|a -3|=2,|b+2|=1,且数a 、b 在数轴上表示的数分别是点A 、点B ,则A 、B 两点间的最大距离是_______,最小距离是_______.(5)数轴上点A 表示8,点B 表示-8,点C 在点A 与点B 之间,A 点以每秒0.5个单位的速度向左运动,点B 以每秒1.5个单位的速度向右运动,点C 以每秒3个单位的速度先向右运动碰到点A 后立即返回向左运动,碰到点B 后又立即返回向右运动,碰到点A 后又立即返回向左运动…,三个点同时开始运动,经过_______秒三个点聚于一点,这一点表示的数是_________,点C 在整个运动过程中,移动了_______个单位. 【答案】(1)7;(2)-1;(3)5或-1;(4)8,2;(5)8,4,24 【解析】 【分析】(1)根据数轴上两点间的距离公式,即可求解;(2)根据数轴上点的平移和其对应的数的大小变化规律:左减右加,即可求解; (3)根据数轴上两点间的距离公式,列绝对值方程即可求解;(4)利用绝对值的性质分别求得x 、y 的值,根据数轴上两点间的距离公式计算出结果,比较即可得出;(5)设经过t 秒,三个点聚于一点,根据点A 、B 运动的路程为()88--,列一元一次方程求解,利用“速度⨯时间=路程”即可求得点C 运动的路程. 【详解】(1)数轴上表示-3的点与表示4的点相距|-3-4|=7个单位; 故答案为:7;(2)数轴上表示2的点先向右移动2个单位,再向左移动5个单位,最后到达的点表示的数是2251+-=-; 故答案为:1-;(3)数轴上若点A 表示的数是2,点B 与点A 的距离为3, 设点B 表示的数为x , 则23x -=, 解得:5x =或1x =-, 点B 表示的数是5或1-, 故答案为:5或1-;(4)∵32a -=,21b +=, ∴a 为5或1,b 为-1或-3,则A 、B 两点间的最大距离是()538--=, 最小距离是()112--=, 故答案为:8,2;(5)设经过t 秒,三个点聚于一点, 由题意可得:()0.5 1.588t t +=--, ∴8t =(秒),880.54-⨯=, 3824⨯=(个单位),故经过8秒三个点聚于一点,这一点表示的数是4,点C 在整个运动过程中,移动了24个单位.故答案为:8,4,24. 【点睛】本题考查了数轴,绝对值方程,一元一次方程的应用等知识.数轴上两点间的距离,即数轴上两点所表示的数的差的绝对值,即较大的数减去较小的数.数轴上点的平移和其对应的数的大小变化规律:左减右加.13.如图,在数轴上有A 、B 、C 三点,A 、B 两点所表示的有理数分别是2k -4和-2k+4,且k 为最大的负整数.点C 在A 、B 之间,且C 到B 的距离是到A 点距离的2倍,动点P 从点A 出发,以每秒3个单位长度的速度向右运动,到达点B 后立即返回,以每秒3个单位长度的速度向左运动;动点Q 从点C 出发,以每秒l 个单位长度的速度向右运动,设它们同时出发,运动时间为t 秒,当点P 与点Q 第二次重合时,P 、Q 两点停止运动,(1)直接写出A 、B 、C 三点所代表的数值;A :________B :________C :________ (2)当t 为何值时,P 到点A 与点Q 的距离相等; (3)当t 为何值时,P 、Q 两点间的距离为1个单位长度. 【答案】(1)A :-6;B :6;C :-2;(2)t=45;(3)t =32或52或19 4【解析】 【分析】(1)由k 为最大的负整数可得出k 的值,进而可得出点A 、B 表示的数,由点C 在A 、B 之间,且C 到B 的距离是到点A 点距离的2倍,可得到结果;(2)由P 到点A 与点Q 的距离相等可得到关于t 的一元一次方程,解方程即可; (3)利用时间=路程÷速度求出点P 到达点B 的时间及两点第二次相遇的时间,分04t ≤≤和4<5t ≤两种情况,利用1pq =得出方程计算即可;【详解】(1)∵k 为最大的负整数, ∴1k =-,∴点A 表示的数为6-,点B 表示的数为6,又∵点C 在A 、B 之间,且C 到B 的距离是到点A 点距离的2倍, ∴点C 表示的数为()66623---+=-;故答案是-6;6;-2. (2)依题意可得: -6+3t -(-6)=-2+t -(-6+3t), 解得:t=45.(3)点P 到达点B 的时间为()6634⎡⎤--÷=⎣⎦(秒), 当点P 到达点B 时,点Q 表示的数为242-+=, 点P 、Q 第二次相遇的时间为624531-+=+(秒), 当04t ≤≤,点P 表示的数为63t -+,点Q 表示的数为2t -+, ∵P ,Q 两点间距离为1,∴()2631t t -+--+=或()6321t t -+--+=, 解得:32t =或52t =;当4<5t≤时,点P 表示的数为()634t --,点Q 表示的数为2t -+, ∵P ,Q 两点间距离为1, ∴()()63421t t ----+=, 解得:194t =; 故当t =32或52或194时,P 、Q 两点间的距离为1个单位长度. 【点睛】本题主要考查了数轴的应用、一元一次方程的应用和两点间的距离,准确计算是解题的关键. 14.数轴上点A 表示的数为10,点M ,N 分别以每秒a 个单位长度、每秒b 个单位长度的速度沿数轴运动,a ,b 满足|a -3|+(b -4)2=0. (1)请直接写出a = ,b = ;(2)如图1,若点M 从A 出发沿数轴向左运动,到达原点后立即返回向右运动;同时点N从原点O出发沿数轴向左运动,运动时间为t,点P为线段ON的中点.若MP=MA,求t 的值;(3)如图2,若点M从原点向右运动,同时点N从原点向左运动,运动时间为t.当以M,N,O,A为端点的所有线段的长度和为94时,求此时点M对应的数.【答案】(1)a=3,b=4;(2)t=52或154;(3)此时点M对应的数为12.【解析】【分析】(1)根据非负数的性质解答;(2)分三种情况解答:①点M未到达O时(0<t≤2时),NP=OP=3t,AM=5t,OM=10-5t;②点M到达O返回时当(2<t≤4时),OM=5t-10,AM=20-5t;③点M到达O返回时,即t>4时,不成立;(3【详解】(1)∵|a-3|+(b-4)2=0.∴a-3=0,b-4=0∴a=3,b=4(2)①点M未到达O时(0<t≤103时),NP=OP=2t,AM=3t,OM=10-3t,即2t+10-3t=3t,解得t=5 2②点M到达O返回时(103<t≤203时),OM=3t-10,AM=20-3t,即2t+3t-10=20-3t,解得t=15 4③点M到达O返回时,即t>203时,不成立(3)①依题意,当M在OA之间时,NO+OM+AM+MN+OA+AN=4t+3t+(10-3t)+7t+10+(10+4t)=15t+30=94,解得t=6415>103,不符合题意,舍去;②当M在A右侧时,NO+OA+AM+AN+OM+MN=4t+10+(3t-10)+(4t+10)+3t+7t=94,解得t=4,点M对应的数为12答:此时点M对应的数为12.【点睛】此题考查一元一次的应用,非负性偶次方,数轴,清楚各个点之间距离的表示方式是解题的关键.另外要注意路程相等的几种情况.15.已知数轴上的A、B两点分别对应数字a、b,且a、b满足|4a-b|+(a-4)2=0(1)a= ,b= ,并在数轴上面出A、B两点;(2)若点P从点A出发,以每秒3个单位长度向x轴正半轴运动,求运动时间为多少时,点P到点A的距离是点P到点B距离的2倍;(3)数轴上还有一点C的坐标为30,若点P和点Q同时从点A和点B出发,分别以每秒3个单位长度和每秒1个单位长度的速度向C点运动,P点到达C点后,再立刻以同样的速度返回,运动到终点A.求点P和点Q运动多少秒时,P、Q两点之间的距离为4,并求此时点Q对应的数.【答案】(1)4,16.画图见解析;(2)83或8秒;(3)点P和点Q运动4或8或9或11秒时,P,Q两点之间的距离为4.此时点Q表示的数为20,24,25,27.【解析】【分析】(1)根据非负数的性质求出a、b的值即可解决问题;(2)构建方程即可解决问题;(3)分四种情形构建方程即可解决问题.【详解】(1)∵a,b满足|4a-b|+(a-4)2≤0,∴a=4,b=16,故答案为4,16.点A、B的位置如图所示.(2)设运动时间为ts.由题意:3t=2(16-4-3t)或3t=2(4+3t-16),解得t=83或8,∴运动时间为83或8秒时,点P到点A的距离是点P到点B的距离的2倍;(3)设运动时间为ts.由题意:12+t-3t=4或3t-(12+t)=4或12+t+4+3t=52或12+t+3t-4=52,解得t=4或8或9或11,∴点P和点Q运动4或8或9或11秒时,P,Q两点之间的距离为4.此时点Q表示的数为20,24,25,27.【点睛】本题考查多项式、数轴、行程问题的应用等知识,具体的关键是学会构建方程解决问题,学会用分类讨论的思想思考问题.16.已知,如图,A 、B 、C 分别为数轴上的三个点,A 点对应的数为60,B 点在A 点的左侧,并且与A 点的距离为30,C 点在B 点左侧,C 点到A 距离是B 点到A 点距离的4倍.(1)求出数轴上B 点对应的数及AC 的距离.(2)点P 从A 点出发,以3单位/秒的速度项终点C 运动,运动时间为t 秒. ①点P 点在AB 之间运动时,则BP =_______.(用含t 的代数式表示)②P 点在A 点向C 点运动过程中,何时P 、A 、B 三点中其中一个点是另外两个点的中点?求出相应的时间t .③当P 点运动到B 点时,另一点Q 以5单位/秒速度从A 点出发,也向C 点运动,点Q 到达C 点后立即原速返回到A 点,那么Q 点在往返过程中与P 点相遇几次?直接写出....相遇是P 点在数轴上对应的数.【答案】(1)B 点对应的数为30;AC=120;(2)①303t -;②t 的值为5或20;③相遇2次;P 点在数轴上对应的数为-15或3484-. 【解析】 【分析】(1)根据A 点对应的数为60,B 点在A 点的左侧,AB=30求出B 点对应的数,根据AC=4AB 求出AC 的距离;(2)①当P 点在AB 之间运动时,根据路程=速度×时间求出AP=3t ,根据BP=AB -AP 求解; ②分P 点是AB 的中点和B 点是AP 的中点两种情况进行讨论即可;③根据P 、Q 两点的运动速度与方向可知Q 点在往返过程中与P 点相遇2次,设Q 点在往返过程中经过x 秒与P 点相遇,第一次相遇是点Q 从A 点出发,向C 点运动的途中,根据AQ -BP=AB 列出方程;第二次相遇是点Q 到达C 点后返回到A 点的途中,根据CQ+BP=BC 列出方程,进而求出P 点在数轴上的对应的数. 【详解】 解(1)A点对应的数为60,B ,点在A 点的左侧,并且与A 点的距离为30,∴B 点对应的数为603030-=;C 点到A 点距离是B ,点到A 点距离的4倍,∴4430120AC AB ==⨯=; (2)①当P 点在AB 之间运动时,3AP t =,303BP AB AP t ∴=-=-.故答案为303t -;。

2华东师大版初中数学七年级上册专题训练.2 数轴

2华东师大版初中数学七年级上册专题训练.2 数轴

2.2 数轴一、选择题1.如图,在数轴上所标出的点中,相邻两点间的距离相等,则点C表示的数为( )A.30B.50C.60D. 802.下列各数,比-1小的是( )A.-2B.0C.2D.33.在数轴上点A表示-4,如果把原点向负方向移动1.5个单位长度,那么在新数轴上点A 表示的数是( )A.-5. 5B.-4C.-2.5D.2.5二、填空题4.如图,A,B两点在数轴上,点A对应的数为2,若线段AB的长为3,则点B对应的数为_ _.5.如图,数轴上的点P表示的数是-1,将点P向右移动3个单位长度得到点P',则点P'表示的数是________.6.冷库A的温度是-5℃,冷库B的温度是-15 ℃,则温度较高的冷库是________,若使它的温度达到-16℃的标准,应该________(填“升高”或“降低”)________℃.三、解答题7.将有理数-2,1,0,-2,3在数轴上表示出来,并用“<”号连接各数.8.在数轴上有三个点A,B,C,如图.(1)将A点向右移动4个单位长度,此时该点表示的数是多少?(2)将C点向左移动6个单位长度得到数x1,再向右移动2个单位长度得到数x2,问数x1,x2分别是多少?用“>”把表示点B,x1,x2的数连接起来.9.我们规定:数轴上的点向右移动1个单位长度,表示为+1,那么向左移动2个单位长度,表示为-2.如图,一个点从原点开始,先向右移动3个单位长度,再向右移动2个单位长度,到达的终点是表示5的点,这个过程用算式表示为:(+3)+(+2)=+5.(1)如果有一个点从原点开始按下列方式移动,先画图,再用算式表示移动过程:①向左移动1个单位长度,再向左移动2个单位长度;②向左移动2个单位长度,再向右移动2个单位长度;③向左移动1个单位长度,再向右移动5个单位长度;(2)将上述①,②和③中移动到达终点表示的数用“<”连接起来.答案1.B 分析:每个间隔之间所表示的单位长度为100÷4=25,点C在原点右边,与原点相距两个格,因此点C表示的数为50.2. A 分析:在数轴上表示-2的点在表示-1的点的左边,因此-2<-1.3. C 分析:平移后点A距离原点2.5个单位长度,且在原点的左边,所以点A表示的数是-2.5.4. 5 分析:因为点A距离原点2个单位长度,点B距离点A3个单位长度,所以点B距离原点5个单位长度,又因为点B在原点的右边,所以点B对应的数为5.5.2 分析:点P在原点左边,距离原点1个单位长度,从原点往右再2个单位长度表示的数为2.6. A 降低11分析:易知-5大于-15,所以冷库A温度较高,应降低11℃才达到-16℃的标准.7. 解:如图.由图知,-2<-2<0<1<3.8.解:(1)将A点向右移动4个单位长度可以看作:先将A点向右移动3个单位长度,到达原点,再从原点向右移动1个单位长度,此时该点表示的数是1.(2)将C点向左移动6个单位长度可以看作:先将C点向左移动4个单位长度到达原点,再从原点向左移动2个单位长度,此时该点表示的数是-2,即x1=-2;将表示-2的点再向右移动2个单位长度,此时该点表示的数为0,即x2=0.表示点B,x1,x2的数连接起来为:0>-1>-2.9.解:(1)①如图:算式:(-1)+(-2)=-3.②如图:算式:(-2)+(+2)=0.③如图:算式:(-1)+(+5)=+4.(2)-3<0<+4.。

七年级数学上册数轴上动点问题专项练习

七年级数学上册数轴上动点问题专项练习

七年级数学上册数轴上动点问题专项练习1.已知数轴上有两点A、B,点A对应的数为﹣12,点B在点A的右边,且距离A点16个单位,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,B的距离相等,求点P对应的数;(2)是否存在这样的点P,使点P到点A,B的距离之和为20?若存在,请求出x的值;若不存在,请说明理由?(3)点Q是数轴上另一个动点,动点P,Q分别从A,B同时出发,点P以每秒6个单位长度的速度沿数轴向右匀速运动,点Q以每秒4个单位长度的速度沿数轴向左匀速运动,点M为AP的中点,点N在线段BQ上,且BN=BQ,设运动时间为t(t>0)秒.①分别求数轴上点M,N表示的数(用含t的式子表示);②t为何值时,M,N之间的距离为10?2.如图,已知点A,B是数轴上原点O两侧的两点,其中点A在负半轴上,点B在正半轴上,AO=2,OB=10.动点P从点A出发以每秒2个单位长度的速度向右运动,到达点B后立即返回,速度不变;动点Q从点O出发以每秒1个单位长度的速度向右运动,当点Q到达点B时,动点P,Q停止运动.设P,Q两点同时出发,运动时间为t秒.(1)当点P从点A向点B运动时,点P在数轴上对应的数为.当点P从点B 返回向点O运动时,点P在数轴上对应的数为(以用含t的代数式表示)(2)当t为何值时,点P,Q第一次重合?(3)当t为何值时,点P,Q之间的距离为3个单位?3.如图,已知数轴上点A表示的数为9,B是数轴上一点,且AB=15.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,运动时间为t(t>0)秒.发现:(1)写出数轴上点B表示的数,点P表示的数(用含t的代数式表示);探究:(2)动点Q从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P.Q 同时出发,问,为何值时点P追上点Q?此时P点表示的数是多少?(3)若M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.点P 在运动的过程中,线段MN的长度是否发生变化?在备用图中画出图形,并说明理由.拓展:(4)若点D是数轴上一点,点D表示的数是x,请直接写出|x+6|+|x﹣9|的最小值是.4.阅读理解:若A,B,C为数轴上三点且点C在A,B之间,若点C到A的距离是点C到B的距离的3倍,我们就称点C是【A,B】的好点.例如,如图1,点A表示的数为﹣2,点B表示的数为2.表示1的点C到A的距离是3,到B的距离是1,那么点C是【A,B】的好点;又如,表示﹣1的点D到A的距离是1,到B的距离是3,那么点D就不是【A,B】的好点,但点D是【B,A】的好点.知识运用:(1)若M、N为数轴上两点,点M所表示的数为﹣6,点N所表示的数为2.数所表示的点是【M,N】的好点;数所表示的点是【N,M】的好点;(2)若点A表示的数为a,点B表示的数为b,点B在点A的右边,且点B在A,C之间,点B是【C,A】的好点,求点C所表示的数(用含a、b的代数式表示);(3)若A、B为数轴上两点,点A所表示的数为﹣33,点B所表示的数为27,现有一只电子蚂蚁P从点A出发,以每秒6个单位的速度向右运动,运动时间为t秒.如果P,A,B中恰有一个点为其余两点的好点,求t的值.5.阅读理解:点A、B、C为数轴上三点,若点C到点A的距离是点C到点B的距离2倍,我们就称点C是有序点对[A,B]的好点.例如,如图①,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是有序点对[A,B]的好点;但点C不是有序点对[B,A]的好点.知识运用:(1)同理判断:如图①,点B[D,C]的好点,点B[C,D]的好点(两空均填“是”或“不是”);(2)如图②,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.数轴上数所表示的点是[M,N]的好点;(3)如图③,A、B为数轴上两点,点A所表示的数为﹣40,点B所表示的数为20.现有一只电子蚂蚁P从点B出发,以2个单位每秒的速度向左运动,到达点A停止.①用含t的代数式表示PB=,PA=;②当t为何值时,P、A和B中恰有一个点为其余两点的好点?6.阅读理解:【探究与发现】如图1,在数轴上点E表示的数是8,点F表示的数是4,求线段EF的中点M所示的数对于求中点表示数的问题,只要用点E所表示的数﹣8,加上点F所表示的数4,得到的结果再除以2,就可以得到中点M所表示的数:即M点表示的数为:.【理解与应用】把一条数轴在数m处对折,使表示﹣20和2020两数的点恰好互相重合,则m=.【拓展与延伸】如图2,已知数轴上有A、B、C三点,点A表示的数是﹣6,点B表示的数是8.AC=18.(1)若点A以每秒3个单位的速度向右运动,点C同时以每秒1个单位的速度向左运动设运动时间为t秒.①点A运动t秒后,它在数轴上表示的数表示为(用含t的代数式表示)②当点B为线段AC的中点时,求t的值.(2)若(1)中点A、点C的运动速度、运动方向不变,点P从原点以每秒2个单位的速度向右运动,假设A、C、P三点同时运动,求多长时间点P到点A、C的距离相等?7.已知数轴上的A、B两点分别对应的数字为a、b,且a,b满足|4a﹣b|+(a﹣4)2=0.(1)直接写出a、b的值;(2)P从A出发,以每秒3个长度的速度沿数轴正方向运动,当PA=PB时,求P运动的时间和P表示的数;(3)数轴上还有一点C对应的数为36,若点P从A出发,以每秒3个单位的速度向C 点运动,同时,Q从B点出发,以每秒1个长度的速度向正方向运动,点P运动到C点立即返回再沿数轴向左运动.当PQ=10时,求P点对应的数.8.如图,数轴上A,B两点对应的数分别为10和﹣3,点P和点Q同时从原点出发,点P 以每秒1个单位长度的速度沿数轴正方向运动,点Q以每秒3个单位长度的速度先沿数轴负方向运动,到达点B后再沿数轴正方向运动,当点P到达点A后,两个点同时结束运动.设运动时间为t秒.(1)当t=1时,求线段PQ的长度;(2)通过计算说明,当t在不同范围内取值时,线段PQ的长度如何用含t的式子表示?(3)当点Q是BP的中点时直接写出t的值.9.某校为准备运动会,在一条笔直的跑道上画一段跑道AB,如图,主席台0为原点,A 点表示数a米,B点表示数b米,且关于x多项式﹣5x5﹣bx2+2ax3+x+40x2+120x3﹣4不含x的3次项和2次项.(1)a=;b=;AB跑道为米赛跑跑道.(2)甲、乙两机器人同时从0出发,甲向A以3米/分速度画线,乙向B以2米/分速度画线,甲、乙两机器人到达终点A、B后,立刻按原速度返回到0点.设两机器人运动时间为t分钟,用含t的式子求出它们从0出发到回到0的过程中,甲、乙两机器人的距离.(3)在(2)的条件下,t为何值时,两机器人相距60米?并直接写出两机器人相距60米时,各自所在位置所表示的数.10.如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,3秒后,两点相距15个单位长度.已知点B的速度是点A的速度的4倍(速度单位:单位长度/秒).(1)求出点A、点B运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,几秒时,原点恰好处在点A、点B的正中间?(3)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点C同时从B点位置出发向A点运动,当遇到A点后,立即返回向B点运动,遇到B 点后又立即返回向A点运动,如此往返,直到B点追上A点时,C点立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是多少个单位长度?参考答案1.解:(1)∵点A对应的数为﹣12,点B在点A的右边,且距离A点16个单位,∴点B对应的数为4,∵点P到点A,B的距离相等,∴x﹣(﹣12)=4﹣x,∴x=﹣4.∴点P对应的数为﹣4..(2)当点P在点A左边时,﹣12﹣x+4﹣x=20,解得:x=﹣14;当点P在点A,B之间时,PA+PB=16<20,∴此情况不存在;当点P在点B右边时,x﹣(﹣12)+x﹣4=20,解得:x=6.综上所述:存在这样的点P,使点P到点A,B的距离之和为20,且x的值为﹣14或6.(3)①当运动时间为t秒时,点P对应的数为6t﹣12,点Q对应的数为4﹣4t,∵M为AP的中点,点N在线段BQ上,且,∴点M对应的数为3t﹣12,点N表示的数为.②∵MN=10,∴.解得:,t2=6.答:t为或6时,MN距离为10.2.解:(1)由题意知,点P在数轴上对应的数为:2t﹣2.当点P从点B返回向点O运动时,点P在数轴上对应的数为:22﹣2t.故答案是:2t﹣2;22﹣2t;(2)由题意,得2t=2+t,解得t=2;(3)①当点P追上点Q后(点P未返回前),2t=2+t+3.解得t=5;②当点P从点B返回,未与点Q相遇前,2+t+3+2t﹣12=12.解得,t=;③点点P从B返回,并且与点Q相遇后,2+t﹣3+2t﹣12=12解得t=综上所述,当t的值是5或或时,点P、Q间的距离是3个单位.3.解:(1)设点B表示的数为x,则有:AB=9﹣x=15解得:x=﹣6;∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动∴经t秒后点P走过的路程为5t∴点P表示的数为:9﹣5t故答案为:﹣6;9﹣5t;(2)设点P运动t秒时,在点C处追上点Q,如图则AC=5t,BC=2t,∵AC﹣BC=AB∴5t﹣2t=15解得:t=5,∴点P运动5秒时,在点C处追上点Q.当t=5时,9﹣5t=9﹣25=﹣16.此时P点表示的数是﹣16.(3)没有变化.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点,∴PM=AP,PN=BP.分两种情况:①当点P在点A、B两点之间运动时(如图):∴MN=MP+NP=AP+BP=(AP+BP)=AB=10;②当点P运动到点B的左侧时(如图):∴MN=MP﹣NP=AP﹣BP=(AP﹣BP)=AB=10综上所述,线段MN的长度不发生变化,其值为10.(4)①当x<﹣6时,|x+6|+|x﹣9|=﹣(x+6)﹣(x﹣9)=﹣x﹣6﹣x+9=3﹣2x ∵x<﹣6∴3﹣2x>15;②当﹣6≤x≤9时,|x+6|+|x﹣9|=x+6﹣(x﹣9)=15③当x>9时,|x+6|+|x﹣9|=x+6+x﹣9=2x﹣3∵x>9∴2x﹣3>15综上,当﹣6≤x≤9时,|x+6|+|x﹣9|取得最小值15.故答案为:15.4.解:(1)由题意知,数0或6所表示的点是【M,N】的好点;数﹣4或﹣10所表示的点是【N,M】的好点;故答案是:0或6,﹣4或﹣10;(2)设点C所表示的数为c,依题意得(3)依题意得,AB=60①P是【A,B】的好点②P是【B,A】的好点③B是【A,P】的好点④B是【P,A】的好点答:当时,P,A,B中恰有一个点为其余两点的好点.5.(1)因为BD=2,BC=1,BD=2BC,所以B是[D,C]好点,但不是[C,D]好点.(2)因为MN=6,6÷3=2,当为[M,N]好点是,左边距离是右边距离的2倍,所以左边为4个单位,右边为2个,所以这个数是2.(3)①因为AB=60,PB等于2t,所以AP等于60﹣2t.②因为P、A和B中恰有一个点为其余两点的好点,所以分为5种情况讨论,分别如下:第一种:P为【A,B】的好点,由题意得,x﹣(﹣40)=2(20﹣x),解得:x=0,t =20÷2=10(秒).第二种:A为【B,P】的好点,由题意得,20﹣(﹣40)=2(x﹣(﹣40)),解得:x=﹣10,t=(20﹣(﹣10))÷2=15(秒).第三种:P为【B,A】的好点,由题意得,20﹣x=2(x﹣(﹣40)),解得:x=﹣20,t=(20﹣(﹣20))÷2=20(秒).第四种:A为【P,B】的好点,由题意得,x﹣(﹣40)=2(20﹣(﹣40)),解得:x=80(舍).第五种:B为【A,P】的好点.由题意得,20﹣(﹣40)=2(20﹣x),解得:x=﹣10,t=(20﹣(﹣10))÷2=15(秒).此种情况点P的位置与②中重合,即点P为AB中点.综上可知,当t为10 秒、15 秒或20 秒,P、A和B中恰有一个点为其余两点的好点.6.解:m==1000;故答案为:1000;(1)①点A向右移动的距离为3t,因此点A从数轴上表示﹣6的点向右移动3t的单位后,所表示的数为3t﹣6,故答案为:3t﹣6,②当点B为线段AC的中点时,Ⅰ)当移动后点C在点B的右侧时,此时t<4,如图1,由BA=BC得,8﹣(3t﹣6)=(12﹣t)﹣8,解得,t=5>4(舍去)Ⅱ)当移动后点C在点B的左侧时,此时t>4,如图2,由BA=BC得,(3t﹣6)﹣8=8﹣(12﹣t),解得,t=5,答:当点B为线段AC的中点时,t的值为5秒.(2)根据运动的方向、距离、速度可求出,点P、C相遇时间为12÷(2+1)=4秒,点A、C相遇时间为18÷(3+1)=秒,点A追上点P的时间为6÷(3﹣2)=6秒,当点P到点A、C的距离相等时,①如图2﹣3所示,此时t<4,由PA=PC得,2t﹣(3t﹣6)=(12﹣t)﹣2t,解得,t=3;②当A、C相遇时符合题意,此时,t=,③当点A在点P的右侧,点C在点P的左侧时,此时t>6,∵点A追上点P时用时6秒,之后PA距离每秒增加1个单位长度,而PC每秒增加4个单位长度,∴不存在点P到点A、C的距离相等的情况,因此:当点P到点A、C的距离相等时,t=3或t=.7.解:(1)∵|4a﹣b|+(a﹣4)2=0∴4a﹣b=0,a﹣4=0,解得a=4,b=16.答:a、b的值分别为4、16.(2)设P运动的时间为t1秒,P表示的数为x.根据题意,得x﹣4=16﹣x,解得x=10.3t1=x﹣4=10﹣4=6,∴t1=2.答:P运动的时间为2秒,P表示的数为10.(3)设点P、Q同时出发运动时间为t2秒,则P对应的数为(3t2+4),Q表示的数为16+t2.根据题意,得|4+3t2﹣(16+t)|=10解得t2=1,或t2=11(舍去),∴3t2+4=7.当P返回时,设时间为t,则P表示的数为36﹣3t,Q表示的数为+t,则列出方程36﹣3t+10=+t,解得t=,∴P表示的数为.答:P点对应的数7或.8.解:(1)当t=1时,P点对应的有理数为1,Q点对应的有理数为﹣3×1=﹣3,所以PQ=1﹣(﹣3)=4;(2)①当0<t<1时,P点对应的有理数为t,Q点对应的有理数为﹣3t,PQ=t﹣(﹣3t)=4t;②当1≤t<3时,P点对应的有理数为t,Q点对应的有理数为3t﹣6,PQ=t﹣(3t﹣6)=﹣2t+6;③当3≤t≤10时,P点对应的有理数为t,Q点对应的有理数为3t﹣6,PQ=3t﹣6﹣t=2t﹣6.综上所述,PQ=;(3)①当0<t<1时,则﹣3t×2=﹣3+t,解得t=;②当1≤t<3时,则(3t﹣6)×2=﹣3+t,解得t=.故t的值是或.9.解:(1)﹣5x5﹣bx2+2ax3+x+40x2+120x3﹣4=﹣5x5+(40﹣b)x2+(120+2a)x3+x ﹣4,∵关于x多项式﹣5x5﹣bx2+2ax3+x+40x2+120x3﹣4不含x的3次项和2次项,∴120+2a=0,40﹣b=0,解答a=﹣60,b=40,∴AB=40﹣(﹣60)=100.故答案为:﹣60,40,100;(2)甲到达A点用时t==20(分),乙到达B点用时t==20(分).①如果t≤20,甲在数轴上表示的数为﹣3t,乙在数轴上表示的数为2t,所以甲、乙两机器人的距离为:2t﹣(﹣3t)=5t(米);②如果t>20,甲在数轴上表示的数为﹣60+3(t﹣20)=3t﹣120,乙在数轴上表示的数为40﹣2(t﹣20)=80﹣2t,所以甲、乙两机器人的距离为:80﹣2t﹣(3t﹣120)=200﹣5t(米);(3)①如果t≤20,令5t=60,解得t=12,符合题意,此时甲表示的数为﹣36,乙表示的数为24;②如果t>20,令200﹣5t=60,解得t=28,符合题意,此时甲表示的数为﹣36,乙表示的数为24.答:两机器人相距60米时,两次都是甲表示的数为﹣36,乙表示的数为24.10.解:(1)设点A的速度为每秒t个单位,则点B的速度为每秒4t个单位,由题意,得3t+3×4t=15,解得:t=1,∴点A的速度为每秒1个单位长度,则点B的速度为每秒4个单位长度.如图:(2)设x秒时原点恰好在A、B的中间,由题意,得3+x=12﹣4x,解得:x=1.8.∴A、B运动1.8秒时,原点就在点A、点B的中间;(3)由题意,得B追上A的时间为:15÷(4﹣1)=5,∴C行驶的路程为:5×20=100单位长度.。

期末难点特训(一)和数轴七年级数学上册专题提分精练

期末难点特训(一)和数轴七年级数学上册专题提分精练

期末难点特训(一)和数轴有关的压轴题1.定义:数轴上的三点,如果其中一个点与近点距离是它与远点距离的1,则称该点是其2BC,他两个点的“倍分点”.例如数轴上点A,B,C所表示的数分别为﹣1,0,2,满足AB=12此时点B是点A,C的“倍分点”.已知点A,B,C,M,N在数轴上所表示的数如图所示.(1)A,B,C三点中,点是点M,N的“倍分点”;(2)若数轴上点M是点D,A的“倍分点”,则点D对应的数有个,分别是;(3)若数轴上点N是点P,M的“倍分点”,且点P在点N的右侧,求此时点P表示的数.0.(1)写出a、b的值;(2)P是A右侧数轴上的一点,M是AP的中点.设P表示的数为x,求点M、B之间的距离;(3)若点C从原点出发以3个单位/秒的速度向点A运动,同时点D从原点出发以2个单位/秒的速度向点B运动,当到达A点或B点后立即以原来的速度向相反的方向运动,直到C点到达B点或D点到达A点时运动停止,求几秒后C、D两点相距5个单位长度?点P 从点 A 出发,以每秒6个单位的速度沿A →B向终点B匀速运动;动点Q 从点C 出发,以每秒1个单位的速度沿C →B 向终点B 匀速运动,当P、Q都到达终点后停止运动.设点P 的运动时间为t(s) .(1)当点P 到达点B 时,点Q 所表示的数是;(2)当t= 0.5时,线段PQ 的长为;(3)在整个运动过程中,当P ,Q 两点到点C 的距离相等时,求t 的值.点C 在数轴上表示的数是10.若线段AB以6个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度也向右匀速运动.(1)运动t秒后,点B表示的数是;点C表示的数是.(用含有t的代数式表示)(2)求运动多少秒后,BC=4(单位长度);(3)P是线段AB上一点,当B点运动到线段CD上时,是否存在关系式4-=,若BD AP PC存在,求线段PD的长;若不存在,请说明理由.(1)点A表示的数是,点B表示的数是.若将数轴折叠,使得A与-5表示的点重合,则B 点与数 表示的点重合; (2)观察数轴,与点A 的距离为4的点表示的数是: ; (3)已知M 点到A 、B 两点距离和为8,求M 点表示的数. 【答案】(1)1,-3,-1;(2)5或-3 ;(3)5m =-或3m =【分析】(1)利用数轴表示数的方法写出A 、B 点表示的数,写出点A 与−5表示的点的中心对称点表示的数,然后画出点B 关于此点的对称点,再写出对应的数即可; (2)把点A 向右或向左平移4个单位,写出对应点表示的数即可;(3)设M 表示的数是m ,可分三种情况进行讨论,并利用数轴上两点间的距离表示M 点到A 、B 两点距离和,列出关于m 的方程,求解后即可得出结论. 【详解】解:(1)A 、B 两点所表示的有理数是1和-3.若A 点与-5重合,则对称点是-2,则点B 关于-2的对称点是:-1. 故答案为:1,-3,-1;(2)与点A 的距离为4的点表示的数是:5或-3 . 故答案为:5或-3 ; (3)设M 表示的数是m ,①若M 在B 的左侧时,3,1BM m AM m =--=-31228BM AM m m m +=--+-=--=,则5m =-②若M 在线段AB 上,3,1BM m AM m =+=-3148BM AM m m +=++-=≠,则无解.③若M 在A 的右侧上,3,1BM m AM m =+=-31228BM AM m m m +=++-=+=,则3m =.综上所诉,5m =-或3m =.【点睛】本题主要考查了数轴、两点间距离等知识,解题的关键是理解题意,掌握数轴上的点的特点及利用两点间的距离构建方程解决问题.6.如图1,长方形OABC 的边OA 在数轴上,O 为原点,长方形OABC 的面积为12,OC 边长为3.(1)数轴上点A 表示的数为 .(2)将长方形OABC 沿数轴水平移动,移动后的长方形记为''''O A B C ,移动后的长方形''''O A B C 与原长方形OABC 重叠部分(如图2中阴影部分)的面积记为S .①设点A 的移动距离'AA x =.当4S =时,x = .②当S 恰好等于原长方形OABC 面积的一半时,求数轴上点'A 表示的数为多少.7.如图,点A 、B 分别在数轴原点O 的两侧,且2OB+8=OA ,点A 对应数是20. (1)求B 点所对应的数;(2)动点P 、Q 、R 分别从B 、O 、A 同时出发,其中P 、Q 均向右运动,速度分别为2个单位长度/秒,4个单位长度/秒,点R 向左运动,速度为5个单位长度/秒,设它们的运动时间为t 秒,当点R 恰好为PQ 的中点时,求t 的值及R 所表示的数;(3)当5t ≤时,BP+12AQ 的值是否保持不变?若不变,直接写出定值;若变化,试说明理由.则称点P为点A和B的“m级精致点”,例如,原点O表示的数为0,则AO+BO=3+3=6,则称点O为点A和点B的“6级精致点”,根据上述规定,解答下列问题:(1)若点C轴在数轴上表示的数为﹣5,点C为点A和点B的“m级精致点”,则m= ;(2)若点D是数轴上点A和点B的“8级精致点”,求点D表示的数;(3)如图,数轴上点E和点F分别表示的数是﹣2和4,若点G是点E和点F的“m级精致点”,且满足GE=3GF,求m的值.【答案】(1)10;(2)D表示的数为4或-4;(3)m的值为6或12中概念,分情况列出方程解答.9.如图,在数轴上有A 、B 、C 、D 四个点,分别对应的数为a ,b ,c ,d ,且满足a ,b 是方程| x+7|=1的两个解(a <b),且(c -12)2 与| d -16 |互为相反数.(1)填空:a =、b =、 c =、 d =;(2)若线段AB 以3 个单位/ 秒的速度向右匀速运动,同时线段CD 以1 单位长度/ 秒向左匀速运动,并设运动时间为t 秒,A 、B 两点都运动在线段CD 上(不与C ,D 两个端点重合),若BD=2AC ,求t 的值;(3)在(2)的条件下,线段AB ,线段CD 继续运动,当点B 运动到点D 的右侧时,问是否存在时间t ,使BC=3AD ?若存在,求t 的值;若不存在,说明理由.轴上对应的数.若动点P从点A出发沿数轴正方向运动,动点Q同时从点B出发也沿数轴正方向运动,点P的速度是每秒3个单位长度,点Q的速度是每秒1个单位长度.(1)求a、b、c的值;(2)P、Q同时出发,求运动几秒后,点P可以追上点Q?(3)在(2)的条件下,P、Q出发的同时,动点M从点C出发沿数轴正方向运动,速度为每秒6个单位长度,点M追上点Q后立即返回沿数轴负方向运动,追上后点M再运动几秒,M到Q的距离等于M到P距离的两倍?11.已知,数轴上点A 、C 对应的数分别为a 、c ,且满足()710a c ++-=,点B 对应点的数为-3.(1)=a ______,c =______;(2)若动点P 、Q 分别从A 、B 同时出发向右运动,点P 的速度为3个单位长度/秒;点Q 的速度为1个单位长度/秒,求经过多长时间P 、Q 两点的距离为43;(3)在(2)的条件下,若点Q 运动到点C 立刻原速返回,到达点B 后停止运动,点P 运动至点C 处又以原速返回,到达点A 后又折返向C 运动,当点Q 停止运动点P 随之停止运动.求在整个运动过程中,两点P ,Q 同时到达的点在数轴上表示的数.484间的距离.(1)若在数轴上存在一点C,使AC=3BC,求点C表示的数;(2)在(1)的条件下,点C位于A,B两点之间.点A以1个单位/秒的速度沿着数轴的正方向运动,2秒后点C以2个单位/秒的速度也沿着数轴的正方向运动,到达B点处立刻返回沿着数轴的负方向运动,直到点A到达点B,两个点同时停止运动,设点A运动的时间为t,在此过程中存在t使得AC=3BC仍成立,求t的值.(3)在(1)的条件下,点C位于A,B两点之间.点A以1个单位/秒的速度沿着数轴的负方向运动,2秒后点B以2个单位/秒的速度也沿着数轴的负方向运动.点C以20单位/秒的速度与点A同时同向出发,当遇到A后,立即返回向B点运动;遇到B点后立即返回向A点运动:如此往返,直到B追上A时,C立即停止运动,那么点C从开始到停止运动,运动的路程是多少单位长度.1640)点ACAC反数.(1)若AB=24,则点A对应的数是,点B对应的数是;(2)如图2,在(1)的条件下,动点P从点O出发以2个单位/秒的速度向右运动,设点P运动的时间为t秒,当PA=2PB时,求t的值;(3)如图3,在(1)和(2)的条件下,动点P从点O出发的同时,动点M从点A出发以3个单位/秒的速度向右运动,动点N从点B出发以4个单位/秒的速度向左运动.在这三点运动过程中,其中任意两点相遇时,这两点立即以原速度向反方向运动,另一点保持原来的速度和方向,设运动时间为t(t>0)秒.求:当t的值为多少时,满足PM=PN?32A点=P A P2∴+122tt=解得2当点P在同理可得:t=解得18)PP点A B 2|8|(4)0a b ++-=.(1)求OA ,OB 的长度;(2)若点C 是线段AB 上一点(点C 不与A B 、两点重合),且满足AC CO CB =+,求CO 的长; (3)若动点P ,Q 分别从A ,B 两点同时出发,向右运动,点P 的速度为2单位长度/s ,点Q 的速度为1单位长度/s .设运动时间为()t s ,当点P 与点Q 重合时,P ,Q 两点停止运动.求当t 为何值时,24OP OQ -=单位长度.412t,(P=-+-=820t--+t t2(28)(4t=s.8t=.6s或综上,1【点睛】本题考查了一元一次方程的应用,如下:两人先猜硬币的正反面,依据猜的对错再移动,若都猜对或都猜错,则甲向右移动1个单位,同时乙向左移动1个单位;若甲猜对乙猜错,则甲向右移动4个单位,同时乙向右移动2个单位;若甲猜错乙猜对,则甲向左移动2个单位,同时乙向左移动4个单位.(1)第一次游戏时,若甲、乙都猜对,则移动后两人相距个单位;若甲猜对乙猜错,则移动后两人相距个单位;若甲猜错乙猜对,则移动后两人相距个单位;(2)若连续(下次在上次的基础上)完成了10次移动游戏,且每次甲、乙所猜结果均为一对一错.游戏结束后,①乙会不会落在原点O处?为什么?②求甲、乙两人之间的距离.【答案】(1)6;6;6;(2)①乙不会落在原点O处;理由见解析;②12【分析】(1)根据题意列式计算即可;(2)①设甲猜对了n次,则甲猜对乙猜错n次,甲猜错乙猜对(10﹣n)次,根据题意列方程即可得到结论;②游戏结束时,得到甲的位置落在﹣3+4n﹣2(10﹣n)=6n﹣23处,游戏结束时,得到乙b .如图,在数轴上有点A ,B ,C 三个点,且点A ,B ,C 三点所表示的数分别为a ,b ,c .已知6AC AB =.(1)求a ,b ,c 的值;(2)若动点P ,Q 分别从C ,O 两点同时出发,向右运动,且点Q 不超过点A .在运动过程中,点E 为线段AP 的中点,点F 为线段BQ 的中点,若动点P 的速度为每秒2个单位长度,动点Q 的速度为每秒3个单位长度,求BP AQEF-的值. (3)若动点P ,Q 分别自A ,B 出发的同时出发,都以每秒2个单位长度向左运动,动点M 自点C 出发,以每秒6个单位长度的速度沿数轴向右运动,设运动时间为t (秒),732t <<时,数轴上的有一点N 与点M 的距离始终为2,且点N 在点M 的左侧,点T 为线段MN 上一点(点T 不与点M ,N 重合),在运动的过程中,若满足3MQ NT PT -=(点T 不与点P重合),求出此时线段PT的长度.A B A P 以A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为()0t t >秒.(1)写出数轴上点B 表示的数_________;点P 表示的数_________(用含t 的代数式表示). (2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?(3)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.【答案】(1)-12;85t -;(2)2.25秒或2.75秒;(3)MN 长度不变,画图见解析,10MN =. 【分析】(1)根据点B 和点P 的运动轨迹列式即可.(2)分两种情况:①点P 、Q 相遇之前;②点P 、Q 相遇之后,分别列式求解即可. (3)分两种情况:①当点P 在点A 、B 两点之间运动时;②当点P 在点B 的左侧时,分别列式求解即可.【详解】解:(1)数轴上点B 表示的数为:82012-=-, 点P 表示的数为:85t -. 故答案为:-12;85t -.(2)设t 秒后P ,Q 之间的距离恰好等于2, ①点P ,Q 相遇前,由题意可得:32520t t ++=,解得 2.25t =,②点P ,Q 相遇之后,由题意可得:32520t t -+=,解得 2.75t =.答:若点P ,Q 同时出发,2.25秒或2.75秒时,P ,Q 之间的距离恰好等于2.=+MN MP NP=-MN MP NP﹣6)2+|b﹣2|+|c﹣1|=0.(1)直接写出a、b、c的值;(2)如图1,若点M从点A出发以每秒1个单位的速度向右运动,点N从点B出发以每秒3个单位的速度向右运动,点R从点C出发以每秒2个单位的速度向右运动,点M、N、R 同时出发,设运动的时间为t秒,t为何值时,点N到点M、R的距离相等;(3)如图2,若点P从点A出发以每秒1个单位的速度向左运动,点Q从点B出发以每秒3个单位的速度向左运动,点P,Q同时出发开始运动,点K为数轴上的一个动点,且点C 始终为线段PK的中点,设运动时间为t秒,若点K到线段PC的中点D的距离为3时,求t的值.是﹣10,点C在数轴上表示的数是16.若线段AB以每秒6个单位长度的速度向右匀速运动,同时线段CD以每秒2个单位长度的速度向左匀速运动.(1)问:运动多少秒后,点B与点C互相重合?(2)当运动到BC为6个单位长度时,则运动的时间是多少秒?(3)P 是线段AB 上一点,当点B 运动到线段CD 上时,是否存在关系式4BD APPC-=?若存在,求线段PD 的长;若不存在,请说明理由.。

1.2 数轴(教案)华东师大版(2024)数学七年级上册

1.2 数轴(教案)华东师大版(2024)数学七年级上册

1.2数轴第1课时数轴1.掌握数轴的三要素,能正确画出数轴;能将已知数在数轴上表示出来;能说出数轴上已知点所表示的数;2.使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识;对学生渗透数形结合的思想方法;3.使学生初步了解数学来源于实践,反过来又服务于实践的辩证唯物主义观点.重点正确掌握数轴画法和用数轴上的点表示有理数.难点有理数和数轴上的点的对应关系.一、导入新课1.请大家看,这是一支温度计(展示温度计图片),它的用途大家是知道的,但是你会读温度计吗?请同学们读出此时温度计所显示的温度.这样看来,液面所在的刻度就表示此时的温度,这说明温度计上的刻度与一些有理数建立了对应的关系,也就是说温度计上的每一个刻度都表示一个有理数.2.在一条东西方向的马路上,有一个汽车站,汽车站东3 m和7.5 m处分别有一棵柳树和一棵杨树,汽车站西3 m和4.8 m处分别有一棵槐树和一根电线杆,试画图表示这一情境.二、探究新知1.观察温度计的刻度规律,你能发现什么?学生观察温度计,从温度计上发现:刻度有正有负也有0.结合有理数包含正数、零和负数的特点,类比一条直线在什么样的条件下才能成为数轴,于是:因为有零,就必须在直线上取一点,用这个点表示零.(如图1)我们把这个点叫做原点,用大写字母O表示,由温度计的刻度规律可知:原点的一侧表示正数,另一侧表示负数.因而我们就规定原点的其中一侧为正方向,那么另一侧就为负方向.习惯上,当直线水平放置时,原点右方为正方向,原点的左方为负方向,正方向的一侧我们用箭头表示.(如图2)现在同学们来猜想一下,正有理数应该在图2的哪一个区域?负有理数呢?知道正数在原点的右边,那么我们用多长来表示+1呢?怎么办?我们需要规定一个单位长度.(如图3)一旦表示1的点确定了,表示其他的有理数就好确定了.我想请同学们举例说明其他有理数点的确定.(利用成倍的关系)2.这样能用来表示全体有理数的图形我们就找到了,我们把这种图形叫做数轴.现在我请同学们归纳一下数轴有哪几个特点?(原点、正方向和单位长度)于是:规定了原点、正方向和单位长度的直线叫做数轴.归纳数轴的规范画法:(1)三要素:原点、正方向和单位长度;(2)刻度要在直线上,且是细短线;数字在下,字母在上.3.动手操作、感受数轴的画法、巩固对数轴的认识.教师活动设计:现在每一位同学都画一个数轴,根据你所画的数轴提出你的问题.学生活动设计:学生动手画数轴,在画的过程中可能有诸多问题,比如:数轴一定是水平放置的吗?原点一定在最中间吗?单位长度究竟是什么样的一个长度?数轴可以画为射线吗?然后学生进行交流,得到数轴规范的画法.三、课堂练习1.判断下列图形哪些是数轴?2.画出一个单位长度是1厘米的数轴,并用刻度尺画出表示下列各数的点:1.5, 0, 2, -2, 2.5.3.如图:写出数轴上的点A,B,C,D,E,F表示的有理数.四、课堂小结1.数轴的三要素是什么?2.在数轴上,正数和负数分别是怎样排列的?五、课后作业教材第16页习题第2,3,4题.本节课从生活中的实际入手,由温度计的具体形象,引出数轴的概念,总结归纳出数轴的三要素和数轴上数字的排列规律.要求学生学会画出数轴,学会在数轴上表示出有理数,初步渗透数形结合的思想.第2课时在数轴上比较数的大小1.通过观察数轴上点的位置关系,初步学会利用数轴比较有理数的大小;2.初步认识图形和数量的对应关系.重点负数和零的大小比较.难点如何启发学生自己得到有理数的大小比较的方法,并认识其合理性.一、导入新课在小学,我们已知学会比较两个正数的大小,那么,引进负数后,怎样比较两个有理数的大小呢?例如:1与-2哪个大?-1与0哪个大?-3与-4哪个大?二、探究新知1.探寻规律(教材P17探索)(1)请任意写出两个正数,在下面的数轴上画出表示它们的点.你所写的两个数是________>________,观察在数轴上表示它们的点,我们可以发现,较大的数的对应点在较小的数的对应点的________边.(2)生活中,同学们能判断两个气温的高低吗?①某日哈尔滨的气温为-9 ℃,泉州的气温为12 ℃,该日________的气温较高;②把温度计如下图横放,我们可以发现,________的气温会显示在右边.2.总结规律(教材P17概括)规律1:把温度计横过来放,就像一条数轴,类似于气温的高低,我们可以知道,在数轴上表示的两个数,右边的数总________左边的数.规律2:从数轴上可以发现,表示正数的点都在原点的________,表示负数的点都在原点的________,所以,我们说:正数都________零,负数都________零,正数都比负数________.3.用“>”、“<”或“=”填空:1________-2;-1________0;-3________-4.三、课堂练习1.判断下列各数是否存在?如果存在,把它们写出来.(1)最小的正整数:________,_________________;(2)最小的负整数:________,________________;(3)最大的正整数:________,_____________________;(4)最小的整数:________,______________________________.2.如图所示的是数a,b在数轴上的位置,下列判断正确的一项是()A.a<0B.a>1C.b>-1 D.b<-1四、课堂小结1.在数轴上表示的数大小是怎样排列的?2.怎样利用数轴比较两个负数的大小?五、课后作业教材第19页习题2.2第5,6题.教师引导学生通过结合有理数在数轴上的位置,发现正数、零和负数在数轴上的位置关系,确定了正数、零和负数的大小比较法则,并能通过数轴来比较任意两个非确定数的大小,尤其是要注意掌握比较两个负数的大小.。

华东师大版七年级数学上册 动点问题培优训练【含答案解析】

华东师大版七年级数学上册 动点问题培优训练【含答案解析】
(2)在(1)的条件下,Q 是直线 AB 上一点,且 AQ﹣BQ=PQ,求 PQ 的值. AB
(3)在(1)的条件下,若 C、D 运动 5 秒后,恰好有 CD 1 AB ,此时 C 点停止运动,D 点继续运动(D 点在线 2
段 PB 上),M、N 分别是 CD、PD 的中点,下列结论:①PM﹣PN 的值不变;② MN 的值不变,可以说明,只有 AB
5
2.如图 1,已知数轴上两点 A、B 对应的数分别为﹣1、3,点 P 为数轴上的一动点,其对应的数为 x.
(1)PA= |x+1| ;PB= |x﹣3| (用含 x 的式子表示) (2)在数轴上是否存在点 P,使 PA+PB=5?若存在,请求出 x 的值;若不存在,请说明理由. (3)如图 2,点 P 以 1 个单位/s 的速度从点 D 向右运动,同时点 A 以 5 个单位/s 的速度向左运动,点 B 以 20 个单
(3)由已知可得出:PM= PA,PN= PB, 当①PM÷PN 的值不变时,PM÷PN=PA÷PB.
②|PM﹣PN|的值不变成立.
故当 P 在线段 AB 上时, PM+PN= (PA+PB)= AB=2, 当 P 在 AB 延长线上或 BA 延长线上时, |PM﹣PN|= |PA﹣PB|= |AB|=2.
一个 结论是正确的,请你找出正确的结论并求值.
5.如图 1,已知数轴上有三点 A、B、C,AB= 1 AC,点 C 对应的数是 200. 2
(1)若 BC=300,求点 A 对应的数; (2)如图 2,在(1)的条件下,动点 P、Q 分别从 A、C 两点同时出发向左运动,同时动点 R 从 A 点出发向右运 动,点 P、Q、R 的速度分别为 10 单位长度每秒、5 单位长度每秒、2 单位长度每秒,点 M 为线段 PR 的中点,点 N 为线段 RQ 的中点,多少秒时恰好满足 MR=4RN(不考虑点 R 与点 Q 相遇之后的情形); (3)如图 3,在(1)的条件下,若点 E、D 对应的数分别为﹣800、0,动点 P、Q 分别从 E、D 两点同时出发向左 运动,点 P、Q 的速度分别为 10 单位长度每秒、5 单位长度每秒,点 M 为线段 PQ 的中点,点 Q 在从是点 D 运动

七年级数学上册数轴类动点问题压轴题专题提高练习(二) (2)

七年级数学上册数轴类动点问题压轴题专题提高练习(二) (2)

七年级数学上册数轴类动点问题压轴题专题提高练习1.点A在数轴上对应的数为a,点B对应的数为b,且a、b满足|a+2|+(b﹣3)2=0.(1)求点A,B所表示的数;(2)点C在数轴上对应的数为x,且x是方程2x+1=x﹣8的解,①求线段BC的长;②在数轴上是否存在点P,使PA+PB=BC?若存在,求出点P对应的数;若不存在,请说明理由.2.如图,在数轴上有四个点A、B、C、D,点A在数轴上表示的数是﹣12,点D在数轴上表示的数是15,AB长2个单位长度,CD长1个单位长度.(1)点B在数轴上表示的数是,点C在数轴上表示的数是,线段BC =.(2)若点B以1个单位长度/秒的速度向右运动,同时点C以2个单位长度/秒的速度向左运动设运动时间为t秒,若BC长6个单位长度,求t的值;(3)若线段AB以1个单位长度/秒的速度向左运动,同时线段CD以2个单位长度/秒的速度也向左运动.设运动时间为t秒.①用含有t的式子分别表示点A、B、C、D,则A是,B是,C是,D是.②若0<t<24时,设M为AC中点,N为BD中点,试求出线段MN的长.3.如图,数轴上有A、B、C、D四个点,分别对应a,b,c,d四个数,其中a=﹣10,b=﹣8,(c﹣14)2与|d﹣20|互为相反数,(1)求c,d的值;(2)若线段AB以每秒3个单位的速度,向右匀速运动,当t=时,点A与点C 重合,当t=时,点B与点D重合;(3)若线段AB以每秒3个单位的速度向右匀速运动的同时,线段CD以每秒2个单位的速度向左匀速运动,则线段AB从开始运动到完全通过CD所需时间多少秒?(4)在(3)的条件下,当点B运动到点D的右侧时,是否存在时间t,使点B与点C 的距离是点A与点D的距离的4倍?若存在,请求出t值,若不存在,请说明理由.4.如图,数轴上点A对应的有理数为12,点P以每秒1个单位长度的速度从点A出发,点Q以每秒2个单位长度的速度从原点O出发,且P、Q两点同时向数轴正方向运动.设运动时间为t秒.(1)填空:当t=2时,P,Q两点对应的有理数分别为,,PQ=.(2)当PQ=8时,求t的值.5.数轴上A、B两点对应的数分别是﹣4、12,线段CE在数轴上运动,点C在点E的左边,且CE=8,点F是AE的中点.(1)如图1,当线段CE运动到点C、E均在A、B之间时,若CF=1,则AB=,AC=,BE=;(2)当线段CE运动到点A在C、E之间时,求BE与CF的数量关系;(3)当点C运动到数轴上表示数﹣14的位置时,动点P从点E出发,以每秒3个单位长度的速度向右运动,抵达B后,立即以同样速度返回,同时点Q从A出发,以每秒1个单位长度的速度向终点B运动,设它们运动的时间为t秒(t≤16),求t为何值时,P、Q两点间的距离为1个单位长度.6.如图,一根木棒放在数轴上,数轴的1个单位长度为1cm,木棒的左端与数轴上的点A 重合,右端与点B重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B时,它的右端在数轴上所对应的数为24;若将木棒沿数轴向左水平移动,则当它的右端移动到点A时,它的左端在数轴上所对应的数为6,由此可得到木棒长为cm;(2)由(1)的启发,请你借助“数轴”这个工具解决下列问题:一天,小丽问马老师年龄时,马老师说:“我像你这么大时,你只是1岁;等你到我这个年龄的时候,我已经52岁了.”请求出小丽和马老师现在多少岁了?7.已知数轴上三点A、O、B表示的数分别为4、0、﹣2,动点P从A点出发,以每秒3个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是.(2)另一动点R从点B出发,以每秒2个单位的速度沿数轴向左匀速运动,若点P、R 同时出发,问点P运动多长时间追上点R?(3)若点M为AP的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.8.如图,线段AB=24,动点P从A出发,以每秒2个单位的速度沿射线AB运动,运动时间为t秒(t>0),M为AP的中点.(1)当点P在线段AB上运动时,①当t为多少时,PB=2AM?②求2BM﹣BP的值.(2)当P在AB延长线上运动时,N为BP的中点,证明线段MN的长度不变,并求出其值.(3)在(2)的条件下,在P点的运动过程中,是否存在这样的t的值,使M、N、B三点中的一个点是以其余两点为端点的线段的中点,若有,请求出t的值;若没有,请说明理由.9.如图1,在长方形ABCD中,AB=12厘米,BC=6厘米.点P沿AB边从点A开始向点B以2厘米/秒的速度移动;点Q沿DA边从点D开始向点A以1厘米/秒的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么:(1)DQ=厘米,AP=厘米(用含t的代数式表示)(2)如图1,当t=秒时,线段AQ与线段AP相等?(3)如图2,P、Q到达B、A后继续运动,P点到达C点后都停止运动.当t为何值时,线段AQ的长等于线段CP的长的一半.10.如图,在射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm(如图所示),点P从点O出发,沿OM方向以3cm/s的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动(点Q运动到点O时停止运动),两点同时出发.(1)当P在线段AB上时,且PA=2PB,点Q运动到的位置恰好是线段AP的中点,求点Q的运动速度.(2)若点Q运动速度为5cm/s,经过多长时间P、Q两点相距70cm.(3)当点P运动到线段AB上时,分别取OP和OC的中点E、F,求的值.参考答案1.解:(1)∵|a+2|+(b﹣3)2=0,∴a+2=0,b﹣3=0,解得a=﹣2,b=3,即点A,B所表示的数分别为﹣2,3;(2)①2x+1=x﹣8,解得x=﹣6,即点C表示的数为﹣6,∵点B表示的数为3,∴BC=3﹣(﹣6)=3+6=9,即线段BC的长为9;②存在点P,使PA+PB=BC,设点P表示的数为m,当m<﹣2时,(﹣2﹣m)+(3﹣m)=9,解得m=﹣4,即当点P表示的数为﹣4时,使得PA+PB=BC;当﹣2≤m≤3时,[m﹣(﹣2)]+(3﹣m)=m+2+3﹣m=5≠9,故当﹣2≤m≤3时,不存在点P使得PA+PB=BC;当m>3时,[m﹣(﹣2)]+(m﹣3)=9,解得m=5,即当点P表示的数为5时,使得PA+PB=BC;由上可得,点P表示的数为﹣4或5时,使得PA+PB=BC.2.解:(1)∵AB长2个单位长度,点A在数轴上表示的数是﹣12 ∴点B在数轴上表示的数为﹣10;∵CD长1个单位长度,点D在数轴上表示的数是15 ∴点C在数轴上表示的数为14∴BC=14﹣(﹣10)=24故答案为:﹣10;14;24.(2)当B、C相遇前:t+2t=24﹣6;解得:t=6.当B、C相遇后:t+2t=24+6;解得:t=10.∴t的值为:6或10.(3)①∵移动前,点A在数轴上表示的数是﹣12,∴运动t秒后,A是﹣12﹣t;∵移动前,点B在数轴上表示的数为﹣10∴运动t秒后,B是﹣10﹣t;∵移动前,点C在数轴上表示的数为14,∴运动t秒后,点C是14﹣2t;∵移动前,点D在数轴上表示的数是15∴运动t秒后,点D是15﹣2t.故答案为:﹣12﹣t;﹣10﹣t;14﹣2t;15﹣2t.②∵0<t<24,∴点B一直在点C的左侧.∵M为AC中点,N为BD中点,∴点M表示的数为,点N表示的数为,∴MN=.3.解:(1)由题意得:∵(c﹣14)2+|d﹣20|=0,∴c﹣14=0,d﹣20=0,∴c=14,d=20;(2)[14﹣(﹣10)]÷3=8;[20﹣(﹣8)]÷3=.故答案为:8;;(3)t秒后,A点表示的数为﹣10+3t,D点表示的数为20﹣2t,∵AD重合,∴﹣10+3t=20﹣2t,解得t=6.∴线段AB从开始运动到完全通过CD所需要的时间是6秒;(4)①当点A在D的左侧时AD=(20﹣2t)﹣(﹣10+3t)=30﹣5t,BC=(﹣8+3t)﹣(14﹣2t)=5t﹣22,∵BC=4AD,∴5t﹣22=4(30﹣5t),解得;②当点A在D的右侧时AD=(﹣10+3t)﹣(20﹣2t)=5t﹣30,BC=(﹣8+3t)﹣(14﹣2t)=5t﹣22,∵BC=4AD,∴5t﹣22=4(5t﹣30),解得:.所以当或时,BC=4AD.4.解:(1)∵2×2=4,12+2×1=14,∴当t=2时,P,Q两点对应的有理数分别是14,4,∴PQ=14﹣4=10.故答案为:14;4;10.(2)当运动t秒时,P、Q两点对应的有理数分别为12+t,2t.①当点P在点Q右侧时:∵PQ=8,∴(12+t)﹣2t=8,解得t=4.②当点P在点Q的左侧时:∵PQ=8,∴2t﹣(12+t)=8,解得t=20.综上所述,当PQ=8时,t的值为4或20.5.(1)∵数轴上A、B两点对应的数分别是﹣4、12,∴AB=16;∵CE=8,CF=1,∴EF=7∵点F是AE的中点.∴AF=EF=7∴AC=AF﹣CF=7﹣1=6BE=AB﹣AE=16﹣7×2=2故答案为:16,6,2;(2)∵点F是AE的中点∴AF=EF设AF=FE=x,∴CF=8﹣x∴BE=16﹣2x=2(8﹣x)∴BE=2CF(3)①当0<t≤6时,P对应数:﹣6+3t,Q对应数﹣4+tPQ=|﹣4+t﹣(﹣6+3t)|=|﹣2t+2|依题意得:|﹣2t+2|=1解得:t=或②当6<t≤12时,P对应数12﹣3(t﹣6)=30﹣3t,Q对应数﹣4+tPQ=|30﹣3t﹣(﹣4+t)|=|﹣4t+34|依题意得:|﹣4t+34|=1解得:t=或∴t为秒,秒,秒,秒时,两点距离是1.6.解:(1)由数轴观察知三根木棒长是24﹣6=18(cm),则此木棒长为:18÷3=6cm,故答案为:6.(2)设马老师今年x岁,因为马老师和小丽的年龄和是:52+1=53(岁),则小丽的岁数是53﹣x岁;所以,x﹣(53﹣x)+x=523x﹣53=52,x=35,小丽的年龄是:53﹣35=18(岁)答:小丽现在18岁,马老师现在35岁.7.解:(1)∵A,B表示的数分别为4,﹣2,∴AB=6,∵PA=PB,∴点P表示的数是1,故答案为:1;(2)设P点运动x秒追上R点,由题意得:2x+6=3x解得:x=6答:P点运动6秒追上R点.(3)MN的长度不变.①当P点在线段AB上时,如图示:∵M为PA的中点,N为PB的中点∴又∵MN=MP+NP∴∵AP+BP=AB,AB=6∴②当P点在线段AB的延长线上时,如图示:∵MN=MP﹣NP,AB=AP﹣BP=6∴=.8.解:(1)①∵M是线段AP的中点,∴AM=AP=t,PB=AB﹣AP=24﹣2t.∵PB=2AM,∴24﹣2t=2t,解得t=6;②∵AM=t,BM=24﹣t,PB=24﹣2t,∴2BM﹣BP=2(24﹣t)﹣(24﹣2t)=24;(2)当P在AB延长线上运动时,点P在B点右侧.∵M是线段AP的中点,∴PM=AP=t,∵N是线段BP的中点,∴PN=BP=(2t﹣24)=t﹣12.∴MN=PM﹣PN=t﹣(t﹣12)=12;(3)由题意可知,N不能是BM的中点.①如果M是NB的中点,那么BM=MN=BN,∴t﹣24=12,解得t=36,符合题意;②如果B是MN的中点,那么BM=BN=MN,∴24﹣t=×12,解得t=18,符合题意.综上,在P点的运动过程中,存在这样的t的值,使M、N、B三点中的一个点是以其余两点为端点的线段的中点,此时t为36或18.9.解:(1)DQ=t厘米,AP=2t厘米;(2)由题意,得AQ=(6﹣t)cm,当AQ=AP时,6﹣t=2t解得:t=2故当t=2秒时,线段AQ与线段AP相等;(3)由题意,得AQ=(t﹣6)cm,CP=(18﹣2t)cm,∴t﹣6=(18﹣2t),解得:t=7.5.答:当t行7.5秒时,线段AQ的长等于线段CP的长的一半.故答案为:t,2t;2.10.解:(1)当P在线段AB上时,∵PA=2PB,AB=60cm,OA=20cm,∴PA=40cm,PB=20cm,∴OP=60cm,∴点P运动时间为:60÷3=20(秒),∵当P在线段AB上时,且PA=2PB,点Q运动到的位置恰好是线段AP的中点,BC=10cm,∴BQ=40cm,CQ=50cm,∴点Q的运动速度为:50÷20=(cm/s);(2)设运动时间为t秒,则3t+5t=90±70,解得,t1=,t2=20,∵点Q运动到O点时停止运动,∴点Q最多运动的时间是:(10+60+20)÷5=18(秒),∴当点Q运动18秒到点O时,PQ=OP=3×18=54cm,之后点P继续运动的时间为:(70﹣54)÷3=秒,∴PQ=OP=70cm时,此时t=18+=秒,由上可得,故经过秒或秒两点相距70cm;(3)如右图所示,设设运动时间为t秒,OP=3t,点P在线段AB上,∵点E为OP的中点,∴OE=1.5t,∵OA=20cm,AB=60cm,BC=10cm,点F为OC的中点,∴OC=90cm,OF=45cm,∴EF=OF﹣OE=45﹣1.5t,OC﹣OP=90﹣3t,∴.。

七年级数学第二章有理数2.2数轴提升作业华东师大版

七年级数学第二章有理数2.2数轴提升作业华东师大版

数轴一.选择题(共8小题)1.如图所示,在数轴上点A表示的数可能是()A.1。

5 B.﹣1.5 C.﹣2。

6 D.2.62.数轴上表示﹣4的点到原点的距离为()A.4 B.﹣4 C. D.3.如图,如果数轴上A,B两点之间的距离是8,那么点B表示的数是()A.5 B.﹣5 C.3 D.﹣34.如图,数轴上点M所表示的数可能是()A.1.5 B.﹣2。

6 C.﹣1。

4 D.2。

65.如图,数轴上表示数﹣2的相反数的点是()A.点P B.点Q C.点M D.点N6.在数轴上到原点距离等于2的点所表示的数是()A.﹣2 B.2 C.±2 D.不能确定7.如图,A.B两点在数轴上表示的数分别为A。

b,下列式子成立的是()A.ab>0 B.a+b<0 C.(b﹣1)(a+1)>0 D.(b﹣1)(a﹣1)>08.如图,数轴上点A,B,C,D表示的数中,绝对值相等的两个点是()A.点A和点C B.点B和点C C.点A和点D D.点B 和点D二.填空题(共7小题)9.(数轴上的点A到原点的距离是6,则点A表示的数为_________.10.在数轴上点P表示的数是2,那么在同一数轴上与点P相距5个单位的点表示的数是_________.11.在数轴上与﹣3的距离等于4的点表示的数是_________.12.如图,A。

B两点在数轴上,点A对应的数为2,若线段AB 的长为3,则点B对应的数为_________.13.数轴上到﹣3的距离等于2的数是_________.14.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a﹣b|=2013,且AO=2BO,则a+b的值为_________.15.如图,数轴上的点P表示的数是﹣1,将点P向右移动3个单位长度得到点P′,则点P′表示的数是_________.三.解答题(共5小题)16.上海杨浦大桥中孔跨径A,B间的距离为602米.(1)如果以AB的中点O为原点,向右为正方向,取适当的单位长度画数轴,那么A,B两点在数轴上所表示的数是互为相反数吗?(2)如果以左塔A为原点,那么塔B所表示的数是多少?17.数轴上离原点距离小于2的整数点的个数为x,离原点距离不大于3的整数点的个数为y,离原点距离等于4的整数点的个数为z,求x﹣y﹣z的值.18.已知数轴上点A对应的数是1,点B对应的数是﹣2,乌龟从A点出发以每秒1个单位长度的速度爬行,小白兔从B点出发以每秒3个单位长度的速度运动,若它们同时出发运动3秒,此时请回答:(1)当它们相距最远时,乌龟和小白兔所在的位置对应的数分别是多少?(2)当它们相距最近时,乌龟和小白兔所在的位置对应的数分别是多少?19.已知数a与数b互为相反数,且在数轴上表示数A.b的点A.B之间的距离为2010个单位长度,若a<b,求A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
________ -m .
4.已知A为数轴上的一点,将A先向右移动7个单位,再向左移动4 个单位,得到点B,若A,B两点对应的数恰好互为相反数,求点A 对应的数. 解:由已知得AB=3,因为A,B两点对应的数互为相反数,且点A 在点B的左边,所以点A对应的数是-1.5
5.已知点A在数轴上原点的左边,到原点的距离为8个单位长度, 点B在原点的右边,点A到点B的距离为32个单位长度. (1)求A,B两点所对应的数; (2)若点C也是数轴上的点,点C到点B的距离是点C到原点的距离的 3倍,求点C对应的数; (3)若点P到点B的距离是10个单位长度,直接写出点P所表示的数. 解:(1)点A表示-8,点B表示24 (2)点C表示6或-12 (3)点P表 示34或14
七年级数学上册(华师版)
第2章 有理数
专题训练 利用数Biblioteka 求点对应的数1.数轴上的点A,B分别表示2和10,则线段AB的中点M所对应
6 . 的数是____
2.已知点M,N在同一条数轴上,点M表示-3,MN=5,则点 -8或2 N表示的数是_____________ .
3.如图,数轴上的点M到原点的距离是m,则点M表示的数是
7.甲、乙两只昆虫分别在数轴的原点O和点A处,点A对应的数是12, 且分别以每秒1个单位长度和每秒3个单位长度的速度同时相向移动. (1)两只昆虫在数轴上何处相遇? (2)若两只昆虫同时沿数轴的负方向移动,乙昆虫在数轴上的点C处追上 甲昆虫,求点C对应的数. 解:(1)OA=12,相遇时间为12÷(1+3)=3(s),甲昆虫向右移动了1×3 =3个单位长度,所以两只昆虫在数轴上表示3的点处相遇 (2)乙昆虫追 上甲昆虫所用时间为12÷(3-1)=6(s),此时甲昆虫向左移动了1×6=6 个单位长度到达点C,所以点C对应的数是-6
6.如图,A,B,C三点在数轴上,A表示的数为-10,B表示的数为 14,点C在点A与点B之间,且AC=BC. (1)求A,B两点之间的距离; (2)求点C对应的数; (3)甲、乙分别从A,B两点同时相向运动,甲的速度是每秒1个单位长 度,乙的速度是每秒2个单位长度,求相遇点D对应的数.
解:(1)AB=24 (2)点C对应的数是2 (3)相遇时间是24÷(1+2)=8(s), 此时甲从A向右运动了1×8=8个单位长度,所以点D对应的数是-2
相关文档
最新文档