数学北师大版九年级下册二次函数与一元二次方程的关系
二次函数图像平移题型、题型解读5 二次函数与一元二次方程关系题型-北师大版九年级数学下册教学讲义

题型解读4 二次函数图像平移题型【解题方法】1.平移口决:“左右平移在括号,上下平移在末梢;左加右减须牢记,上加下减错不了”2.注意:①平移时,要抛物线的解析式转化为顶点式y=a(x﹣h)2+k②点的平移与线的平移,在左右平移时,正好相反---左减右加;上下平移完全相同。
【典型例题】1.将抛物线y=(x﹣1)2+3向左平移1个单位,得到的抛物线与y轴的交点坐标是( B )2.将抛物线y=x2平移得到抛物线y=(x+2)2,则这个平移过程正确的是()AA.向左平移2个单位 B.向右平移2个单位 C.向上平移2个单位 D.向下平移2个单位3.把抛物线y=﹣2x2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为()y=﹣2(x﹣1)2+24.将抛物线y=x2﹣6x+5向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线解析式是()y=(x﹣4)2﹣25.矩形ABCD的两条对称轴为坐标轴,A(2,1),一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A重合,此时抛物线的解析式为y=x2,再次平移透明纸,使这个点与点C重合,则该抛物线的解析式为()A. y=x2+8x+14B. y=x2−8x+14C. y=x2+4x+3D. y=x2−4x+3解析:考查二次函数图像的平移。
∵矩形ABCD的两条对称轴为坐标轴,A(2,1),∴点C与A关于原点对称,∴C(-2,-1),纸上的点与二次函数同时移,即相当于二次函数平移,该点由点A移到点C,即向左移4个单位长度,再向下移2个单位长度,则二次函数也随之向左移4个单位长度,再向下移2个单位长度,∴二次函数的解析式为:y=(x+4)2−2,选A6.如图,抛物线y=x2在第一象限内经过的整数点(横坐标、纵坐标都为整数的点)依次为A1,A2,A3…A n,….将抛物线y=x2沿直线L:y=x向上平移,得一系列抛物线,且满足下列条件:①抛物线的顶点M1,M2,M3,…M n,…都在直线L:y=x上;②抛物线依次经过点A1,A2,A3…A n,….则顶点M2014的坐标为(4027 ,4027 ).解:M1(a1,a1)是抛物线y1=(x﹣a1)2+a1的顶点,抛物线y=x2与抛物线y1=(x﹣a1)2+a1相交于A1,得x2=(x﹣a1)2+a1,即2a1x=a12+a1,x=(a1+1).∵x为整数点∴a1=1,M1(1,1);M2(a2,a2)是抛物线y2=(x﹣a2)2+a2=x2﹣2a2x+a22+a2顶点,抛物线y=x2与y2相交于A2,x2=x2﹣2a2x+a22+a2,∴2a2x=a22+a2,x=(a2+1).∵x为整数点,∴a2=3,M2(3,3),M3(a3,a3)是抛物线y2=(x﹣a3)2+a3=x2﹣2a3x+a32+a3顶点,抛物线y=x2与y3相交于A3,x2=x2﹣2a3x+a32+a3,∴2a3x=a32+a3,x=(a3+1).∵x为整数点∴a3=5,M3(5,5),所以M2014,2014×2﹣1=4027 (4027,4027),7.如图,一段抛物线y=﹣x(x﹣1)(0≤x≤1)记为m1,它与x轴交点为O、A1,顶点为P1;将m1绕点A1旋转180°得m2,交x轴于点A2,顶点为P2;将m2绕点A2旋转180°得m3,交x轴于点A3,顶点为P3,…,如此进行下去,直至得m10,顶点为P10,则P10的坐标为((10.5,﹣0.25)).解:y=﹣x(x﹣1)(0≤x≤1),OA1=A1A2=1,P2P4=P1P3=2,P2(2.5,﹣0.25)P10的横坐标是2.5+2×[(10﹣2)÷2]=10.5,p10的纵坐标是﹣0.25,故答案为(10.5,﹣0.25).题型解读5 二次函数与一元二次方程关系题型【知识梳理】一.二次函数与一元二次方程的关系二.二次函数最值问题(一).对二次函数2(0)y axbx c a =++≠,若自变量为任意实数,则取最值情况为:(1)当0,2ba x a>=-时,244ac b y a-=最小值(2)当0,2ba x a<=-时,244ac b y a -=最大值(3)可直接根据图象或采用配方法和公式法求二次函数的最值.三.二次函数表达式(一)二次函数的三种表示方法1、解析法(用函数表达式表示);2、表格法;3、图像法 (二)用待定系数法求二次函数的解析式(简称”一般两根三顶点”) (1)一般式:c bx ax y++=2.已知图像上三点或三对x 、y 的值,通常选择一般式.(2)顶点式:()k h x a y+-=2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=(即对应二次好方程02=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=。
北师大版九年级下册数学《二次函数与一元二次方程》二次函数教学说课(第2课时)

课堂小测
解:(1)由题意得
-1-b+c=0, c=3,
解得
b=2, c=3,
故所求解析式为y=-x2+2x+3 .
(2)令y=0,得-x2+2x+3=0,
解得x1=-1, x2=3,
∴抛物线与x轴的另一个交点坐标为(3 , 0) ,
∴由图象可知,函数值y为正数时,自变量x的取值范围 是-1<x<3.
(2).确定方程x2+2x-10=0的解;
由此可知,方程x2+2x-10=0的近似根 为:x1≈-4.3,x2≈2.3.
小组交流
用一元二次方程的求根公式验证一下,看是否有相同的结果
你认为利用二次函数的图象求一元二次方程的近似根的时候,应 该注意什么?
做一做
利用二次函数的图象求一元二次方程x2+2x-10=3的 近似根.
y=ax2+bx+c的图象与x轴交点坐标是
。
(-2,0)和(3,0)
2 、抛物线y=0.5x2-x+3与x轴的交点情况是( )c
A 两个交点 B 一个交点
C 没有交点 D 画出图象后才能说明
3、不画图象,求抛物线y=x2-x-6与x轴交点坐标。 抛物线y=x2-6x+4与x轴交点坐标为: (-2,0)和(3,0)
2
(1)求m的值. (2)先作y=x2-(m+1)x+1 (m2+1)的图象关于x轴的对称图形,然后
2
将所作图形向左平移3个单位长度,再向上平移2个单位长度,写 出变化后图象的解析式. (3)在(2)的条件下,当直线y=2x+n(n≥m)与变化后的图象有公共点 时,求n2-4n的最大值和最小值.
北师大版数学九年级下册2.5《二次函数与一元二次方程》说课稿1

北师大版数学九年级下册2.5《二次函数与一元二次方程》说课稿1一. 教材分析北师大版数学九年级下册2.5《二次函数与一元二次方程》这一节的内容,是在学生已经掌握了二次函数的图像和性质的基础上进行讲解的。
本节课的主要内容是一元二次方程的求解方法和应用,通过引导学生利用二次函数的性质来解决实际问题,培养学生的解决问题的能力。
教材中首先介绍了二次函数与一元二次方程的关系,引导学生理解二次函数的图像与一元二次方程的解的关系。
接着,教材通过具体的例子,讲解了一元二次方程的求解方法,包括因式分解法、配方法、求根公式法等。
最后,教材又通过实际问题,让学生应用所学的知识,解决实际问题。
二. 学情分析九年级的学生已经掌握了二次函数的基本知识,对于二次函数的图像和性质有一定的了解。
但是,对于一元二次方程的求解方法和应用,可能还不是很熟悉。
因此,在教学过程中,需要引导学生利用已学的二次函数知识,来理解和掌握一元二次方程的知识。
三. 说教学目标1.让学生理解二次函数与一元二次方程的关系,理解一元二次方程的解的性质。
2.让学生掌握一元二次方程的求解方法,包括因式分解法、配方法、求根公式法等。
3.培养学生利用二次函数和一元二次方程解决实际问题的能力。
四. 说教学重难点1.教学重点:让学生理解二次函数与一元二次方程的关系,掌握一元二次方程的求解方法。
2.教学难点:引导学生理解一元二次方程的根的判别式,以及如何应用一元二次方程解决实际问题。
五. 说教学方法与手段在教学过程中,我会采用讲授法、引导法、讨论法等教学方法,通过多媒体课件、教学实物等教学手段,引导学生理解二次函数与一元二次方程的关系,掌握一元二次方程的求解方法。
六. 说教学过程1.导入:通过复习二次函数的图像和性质,引导学生理解二次函数与一元二次方程的关系。
2.讲解:讲解一元二次方程的求解方法,包括因式分解法、配方法、求根公式法等。
3.应用:通过实际问题,让学生应用所学的知识,解决实际问题。
九年级数学下第2章二次函数5二次函数与一元二次方程第1课时二次函数与一元二次方程之间的关系习题北师大

第二章 二次函数
2.5 二次函数与一元二次方程 第1课时 二次函数与一元二次方程之
间的关系
提示:点击 进入习题
1D 2A 3C 4B
5C 6D 7C 8A
答案显示
提示:点击 进入习题
9 见习题 10 见习题 11 见习题 12 见习题
答案显示
1.【2020·成都】关于二次函数 y=x2+2x-8,下列说法正确的 是( D ) A.图象的对称轴在 y 轴的右侧 B.图象与 y 轴的交点坐标为(0,8) C.图象与 x 轴的交点坐标为(-2,0)和(4,0) D.y 的最小值为-9
【答案】C
8.【中考·徐州】若函数 y=x2-2x+b 的图象与坐标轴有三个交
点,则 b 的取值范围是( A )
A.b<1 且 b≠0 B.b>1
C.0<b<1
D.b<1
【点拨】根据函数的图象与坐标轴有三个交点,可得(-2)2-4b
>0,解得 b<1.但本题易忽略与 x 轴的交点不能在原点上,即 b
【答案】D
7.【2020·遵义】抛物线 y=ax2+bx+c 的对称轴是直线 x=-2. 抛物线与 x 轴的一个交点在点(-4,0)和点(-3,0)之间,其 部分图象如图所示,下列结论中正确的个数有( ) ①4a-b=0;②c≤3a;③关于 x 的方程 ax2+bx+c=2 有两个 不相等的实数根;④b2+2b>4ac. A.1 个 B.2 个 C.3 个 D.4 个
【点拨】①∵对称轴在 y 轴右侧,∴a、b 异号,∴ab<0,
∵c<0,∴abc>0,故①正确; ②∵对称轴为直线 x=-2ba=1,∴2a+b=0,故②正确; ③∵2a+b=0,∴a=-12b,∵当 x=-1 时,y=a-b+c>0, ∴-12b-b+c>0,∴3b-2c<0,故③正确;
九年级数学下册《二次函数与一元二次方程的关系》教案、教学设计

-例如:“已知二次函数y=ax^2+bx+c的图像开口向上,且顶点坐标为(-1,2),求该二次函数的解析式。”
4.小组合作探究题:这部分作业要求学生在小组内共同完成,培养学生的合作精神和探究能力。
(三)学生小组讨论
在讲授新知之后,我会组织学生进行小组讨论。我将设计一些具有探究性的问题,如:“二次函数的开口方向和顶点坐标是如何影响一元二次方程的解的?”、“在实际问题中,如何运用二次函数的性质求解一元二次方程?”等。学生通过小组合作,共同探讨这些问题,培养他们的合作精神和探究能力。
(四)课堂练习
-教师设计具有现实背景的实际问题,引导学生运用二次函数知识进行分析和解决。
-学生在解决问题的过程中,掌握数学建模、问题求解等数学方法。
3.通过对二次函数图像的观察与分析,培养学生的观察能力、逻辑思维能力和空间想象能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和热情,激发学生主动参与学习的积极性。
五、作业布置
为了巩固学生对二次函数与一元二次方程关系的理解,提高学生的应用能力和解决问题的策略,我设计了以下几类作业:
1.基础知识巩固题:这部分作业主要针对课堂所学的基本概念和性质进行设计,包括填空题、选择题和简答题,旨在帮助学生巩固二次函数与一元二次方程的基本知识。
-填空题:如“二次函数y=ax^2+bx+c(a≠0)的图像开口向上,当a<0时,图像开口______。”
2.掌握一元二次方程的求解方法,了解一元二次方程与二次函数之间的关系,并能运用二次函数解决实际问题。
-学生能够运用直接开平方法、配方法、求根公式等求解一元二次方程。
2024北师大版数学九年级下册2.5.1《二次函数与一元二次方程》教学设计

2024北师大版数学九年级下册2.5.1《二次函数与一元二次方程》教学设计一. 教材分析《二次函数与一元二次方程》是北师大版数学九年级下册第2.5.1节的内容。
本节内容是在学生已经掌握了二次函数的图像和性质的基础上,引出一元二次方程,并通过解决实际问题,让学生了解一元二次方程的解法及其应用。
教材通过生活中的实例,引导学生探究一元二次方程的解法,培养学生的数学思维能力和解决问题的能力。
二. 学情分析九年级的学生已经掌握了二次函数的基本知识和图像,对于一元二次方程也有了一定的了解。
但是,学生在解决实际问题时,往往会因为对概念理解不深而产生困惑。
因此,在教学过程中,教师需要帮助学生深化对二次函数和一元二次方程的理解,提高他们解决实际问题的能力。
三. 教学目标1.知识与技能:使学生掌握一元二次方程的解法,并能应用于实际问题。
2.过程与方法:通过解决实际问题,培养学生运用数学知识解决实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 教学重难点1.重点:一元二次方程的解法及其应用。
2.难点:如何将实际问题转化为数学模型,并运用一元二次方程解决。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题,引导学生自主探究,合作解决实际问题,从而提高学生的数学素养。
六. 教学准备1.教材、教案、课件。
2.相关实际问题素材。
3.投影仪、白板等教学设备。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本节内容,例如:“某商品打8折后的售价为120元,请问原价是多少?”让学生思考并尝试解决。
2.呈现(10分钟)教师引导学生将实际问题转化为数学模型,呈现出一元二次方程的形式。
例如,设商品原价为x元,则打8折后的售价为0.8x,根据题意可得方程0.8x = 120。
3.操练(10分钟)教师引导学生运用一元二次方程的解法求解问题。
首先,让学生回忆二次函数的图像和性质,然后引导学生利用“开平方法”求解方程。
二次函数与一元二次方程ppt课件

在Rt△AQF中,
AQ2=AF2+QF2=1+m2,
在Rt△BQE中,
BQ2=BE2+EQ2=4+(3-m)2,
∵AQ=BQ,∴1+m2=4+(3-m)2,∴m=2,
∴Q点的坐标为(2,2).
数学
返回目录
(3)当点N在对称轴上时,NC与AC不垂直,所以AC应为正方形的对角线.
一个交点的横坐标为1,则另一个交点的横坐标为
A.-1
B.-2
C.2
D.3
D(
)
数学
返回目录
2.抛物线y=x2+4x+5-m与x轴有两个不同的交点,则m的取值
范
(
围
)
A.m<-1
B.0<m≤1
C.m<1
D.m>1
D
是
数学
返回目录
3.若二次函数y=ax2+bx+c的图象经过点(-1,0),(2,0),则关于x
∴两个交点之间的距离为1-(-3)=4,故选C.
答案:C
数学
返回目录
▶▶ 对应练习
1.抛物线y=x2+4x+4与x轴的交点个数为 ( B
A.0个
B.1个
C.2个
D.3个
)
数学
返回目录
2.已知二次函数y=(m-1)x2+3x-1与x轴有交点,则m的取值范
D
围是
(
)
5
A.m>4
5
C.m>- 且m≠1
A,B,∴A(1,0),B(0,3).
又∵抛物线y=a(x-2)2+k经过点A(1,0),
二次函数与一元二次方程第2课时利用二次函数求方程的近似根课件北师大版数学九年级下册

与x轴交点情况
方法总结
解答本题首先需要根据图象估计出一个根,再根据对称性 计算出另一个根,估计值的精确程度,直接关系到计算的 准确性,故估计尽量要准确.
四 利用二次函数求一元二次不等式的近似解
思考1
函数 y = ax2+bx+c 的图象如图,那么 方程 ax2+bx+c=0 的根是 x_1_=_-_1_,___x_2=_3_; 不等式 ax2+bx+c>0 的解集是_x_<__-_1_或___x_>__3_; 不等式 ax2+bx+c<0 的解集是__-_1_<__x_<_3___.
5
x
做一做
y
你还能利用其他方法二次函数
y3
5
y x2 2x 10 的图象求一元二次方程
x2 2x 10 3 的近似根吗? x2+2x-10=3即x2+2x=7
–5
O
画出y1=x2+2x,y2=3的图象,交点的横坐标为解
–5
x1≈2.7,x2≈-4.7
–10
y x2 2x 10
5
x
归纳 利用二次函数求一元二次方程的近似根的一般方法:
y 2
–4 –2 O –2 –4 –6 –8 –10
2 4x
(1)先求-5和-4之间的根.
y值更接近0
x -4.1 -4.2 -4.3 -4.4
y -1.39 -0.76 -0.11 0.56
y对应的值由负变为正 因此,x=-4.3是方程的一个近似根.
y 2
–4 –2 O –2 –4 –6 –8 –10
y 1.21 0.44 -0.31
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
谢谢专家们聆听! 请多多批评指正!
二次函数与一元二次方程的关 系
(一)复习引入,知识归结
分别求出下列一元二次方程的解。
x 2 x0 x 2 x 1 0
2
2
x 2 x 2 0
2
x 1 x 0 ,x 2 x 1 2 1 2
无解
y x2 2x
y x2 2x1
yx2 2 x2
(二)例题精析,加强巩固
(二)例题精析,加强巩固
x3和一次函数 (3).二次函数 yx 2 y x 1有交点吗?有求出坐标,没有 请说明理由。
2
解 : 由题意得 x2 2x 3 x 1 即: x 2 3 x 4 0 9 16 25 0 两函数有交点 交点坐标为( 4 , 5),( - 1 , 0)
2
(其中a 为常数)的图象与坐标轴只有两个
1 不同交点,则a值为____________ 。 2或 - 或0 4
(二)例题精析,加强巩固
ax bx c ( a 0 ) 例2.已知关于x的函数 y 的图象如图所示,那么讨论关于x的方程 2 ( k为常数)的根的情 ax bx c k 0 况。
2
解:当 k 3 时,方程有两个不相等 的实数根 当 k 3 时,方程有两个相等的 实数根 当 k 3 时,方程没有实数解
(2013年直升) x m )( n x ) 2 ( m n ) 关于x的方程 ( 的两根 为 x1 , x2 ( x1 x2),则比较 x ,n 的大小关 1,x 2,m 系为( C ) x m n A. x 1 2 B. m x x n 1 2 C. x m n x 1 2 D. m n x x 1 2
例1.(1)若抛物线 与x轴有两 9 a 且 a 0 个交点,则 的取值范围是___________ 4
2.若函数 个交点,求交点坐标。 与x轴只有一
1 1 ( ,0)或( - ,0 ) 3 12
(2014直升题)
( a 2 ) x ( 2 a 1 ) x a 若关于x的函数 y
(二)例题精析,加强巩固
(二)例题精析,加强巩固
(2015直升题) 2 2 x ( k 13 ) x k k 2 0 已知方程 7 有两个实数根 a, ,且0< a <1,1< <2, 求实数 k的取值范围。
(三)课堂小结 1. 二次函数与一元二次方程的关系是二次函 数图象与x轴交点的横坐标即为一元二次方 程的解; 2.数形结合思想