2017届高考数学(文)一轮复习讲练测:专题3.1导数的概念及其运算(讲).doc
【高优指导】2017版高考数学一轮复习 第三章 导数及其应用 3.1 导数的概念及运算课件 文 北师大版

0
3
2
得 x0=-ln 2, 又e-������ 0 =eln 2=2, (1)A (2)( -ln 2,2) (-ln 2,2). 故点 P 的坐标是
-4-
1.导数与导函数的概念 (1)平均变化率:对于一般的函数 y=f(x),在自变量 x 从 x0 变到 x1 的过程中,若设 Δx=x1-x0,Δy=f(x1)-f(x0),则函数的平均变化率是
������(������1 )-������(������0 ) ������1 -������0 ������ ������
-15考点1 考点2 知识方法 易错易混
考点Байду номын сангаас导数的运算 例1分别求下列函数的导数:
(1)y=ex· cos x; 解:(1)y'=(ex)'cos x+ex(cos x)'=excos x-exsin x. 1 1 2 (2)y=x ������ 3 + + 1 2 3 ; ������ ������ (2)∵y=x +1+ 2,∴y'=3x2- 3. ������ ������
1
1
2 2 1 1 ∴y'=- sin x- xcos x. 2 2
2 2
2
2
答案
-16考点1 考点2 知识方法 易错易混
思考:函数求导应遵循怎样的原则? 解题心得:函数求导应遵循的原则: (1)求导之前,应利用代数、三角恒等式变形等对函数进行化简, 然后求导,这样可以减少运算量,提高运算速度,减少差错. (2)进行导数运算时,要牢记导数公式和导数的四则运算法则,切 忌记错记混.
高考数学一轮复习讲练测(浙江版):专题3.1 导数的概念及其几何意义(讲)答案解析

【最新考纲解读】【考点深度剖析】本节中导数的概念、导数的几何意义等是重点知识,基础是导数运算.导数的几何意义为高考热点内容,考查题型多为选择、填空题,也常出现在解答题中前几问,难度较低.导数的几何意义命题的角度主要有求曲线的切线斜率、切线方程或已知曲线的切线斜率、切线方程求参数的值或范围等问题.【课前检测训练】[判一判]判断正误(1)f′(x0)与(f(x0))′表示的意义相同.( )(2)求f′(x0)时,可先求f(x0)再求f′(x0).( )(3)曲线的切线不一定与曲线只有一个公共点.( )(4)与曲线只有一个公共点的直线一定是曲线的切线.( )答案:(1)× (2)× (3)√ (4)× [练一练]1. 【基础经典试题】曲线32y x x =-在(1,1)-处的切线方程为( )A .20x y --=B .20x y -+=C .20x y +-=D .20x y ++= 【答案】A【解析】由已知,点(1,1)-在曲线32y x x =-上,所以切线的斜率为211'|(32)|1x x y x ===-=,由直线方程的点斜式得20x y --=,故选A .2.【2016年山东卷.10】若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是( ) (A )sin y x =(B )ln y x =(C )e x y =(D )3y x =【答案】A3. 【百强校】2016届江苏省苏州大学高考考前指导卷1】已知直线x y b +=是函数2y ax x=+的图象在点(1,)P m 处的切线,则a b m +-= . 【答案】2. 【解析】由于P 点在函数2y ax x=+图象和直线x y b +=上,则2m a =+,1m b +=. 又由函数2y ax x =+的导函数22'y a x=-可知,切线的斜率12k a =-=-,有1a =,3m =和4b =,则2a b m +-=.4. 【选修2-2P18T3改编】已知函数()r V =)r =________. 【答案】112π【解析】因为'()r V =1)12r π=.5.【2015·高考全国卷Ⅱ】已知曲线y x lnx =+在点()1,1(1,1)处的切线与曲线221()y ax a x =+++相切,则a =________.【答案】8【解析】法一:∵x=11y'=1+,y|=2,y=x+ln x x∴∴在点()1,1处的切线方程为()1212 1.y x y x ∴-=-,=-又【题根精选精析】考点1 利用导数的定义求函数的导数【1-1】 求函数y =1x =处的导数. 【答案】12-【解析】y∆=-=x 0x 0x 1y x y 1lim lim[.x 21y |.2∆→∆→==∆=∆∆==-∆∴'=-【1-2】一质点运动的方程为283s t =-.(1)求质点在[1,1+Δt]这段时间内的平均速度;(2)求质点在t=1时的瞬时速度(用定义及求求导两种方法) 【答案】(1)63x --∆;(2)6-.【基础知识】1.函数y =f (x )在x =x 0处的导数定义:称函数y =f (x )在x =x 0处的瞬时变化率0000()()limlimx x f x x f x yx x∆→∆→+∆-∆=∆∆为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即00000()()()lim limx x f x x f x yf x x x∆→∆→+∆-∆==∆∆. 2.函数f (x )的导函数称函数0()()()limx f x x f x f x x∆→+∆-=∆为f (x )的导函数.【思想方法】1.根据导数的定义求函数()y f x =在点0x 处导数的方法:①求函数的增量00()()y f x x f x ∆=+∆-;②求平均变化率00()()f x x f x y x x+∆-∆=∆∆; ③得导数00()lim x yf x x∆→∆'=∆,简记作:一差、二比、三极限.2.函数的导数与导数值的区间与联系:导数是原来函数的导函数,而导数值是导函数在某一点的函数值,导数值是常数【温馨提醒】导数的物理意义建立了导数与物体运动的瞬时速度之间的关系.对位移s 与时间t 的关系式求导可得瞬时速度与时间t 的关系.根据导数的定义求导数是求导数的基本方法,应按照“一差、二比、三极限”的求导步骤来求.考点2 导数的运算 【2-1】求下列函数的导数.()()()()()()()222x x x 251y 2x 1(3x 1)x x 12y x x 13y 3e 2elnx 4y x 15y 32x =-+-+=++=-+=+=-【答案】(1)21843x x +-;(2)22222(1)x x x +-+;(3)()3322x xe ln e ln -;(4)2222ln )1x((11)x x x -++; (5)()41032.x --(2)根据题意把函数的解析式整理变形可得:()()()()22222222222x x 1x x 12x 2xy 1,x x 1x x 1x x 12x x 12x 2x 12x 2y x x 1x x 1-+++-===-++++++++-+-∴'=-=++++【基础知识】基本初等函数的导数公式【思想方法】求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错;遇到函数的商的形式时,如能化简则化简,这样可避免使用商的求导法则,减少运算量.【温馨提醒】导数的运算是用导数研究函数性质的工具,一般较少直接考查,通常情况下涉及导数的综合运算及导数公式的灵活运用.考点3 导数的几何意义【3-1】【2016年河南郑州高三二模】曲线3)(3+-=x x x f 在点P 处的切线平行于直线12-=x y ,则P 点的坐标为( )A .)3,1(B .)3,1(-C .)3,1(和)3,1(-D .)3,1(- 【答案】C.【解析】因2'()31f x x =-,令'()2f x =,故23121x x -=⇒=或1-,所以(1,3)P 或(1,3)-,经检验,点(1,3),(1,3)-均不在直线21y x =-上,故选C .【3-2】【2016年高考四川理数】设直线l 1,l 2分别是函数f (x )= ln ,01,ln ,1,x x x x -<<⎧⎨>⎩图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△P AB 的面积的取值范围是( )(A )(0,1) (B )(0,2) (C )(0,+∞) (D )(1,+∞) 【答案】A【3-3】已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,且与f (x )图象的切点为(1,f (1)),则m 的值为( )A .-1B .-3C .-4D .-2 【答案】D【基础知识】函数y =f (x )在x =x 0处的导数几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0).【思想方法】1.求函数()f x 图象上点00(,())P x f x 处的切线方程的关键在于确定该点切线处的斜率k ,由导数的几何意义知0'()k f x =,故当0'()f x 存在时,切线方程为000()'()()y f x f x x x -=-.2.可以利用导数求曲线的切线方程,由于函数()y f x =在0x x =处的导数表示曲线在点00(,())P x f x 处切线的斜率,因此,曲线()y f x =在点00(,())P x f x 处的切线方程,可按如下方式求得:第一,求出函数()y f x =在0x x =处的导数,即曲线()y f x =在点00(,())P x f x 处切线的斜率;第二,在已知切点坐标和切线斜率的条件下,求得切线方程000'()()y y f x x x =+-;如果曲线()y f x =在点00(,())P x f x 处的切线平行于y 轴(此时导数不存在)时,由切线的定义可知,切线的方程为0x x =.【温馨提醒】根据导数的几何意义求参数的值时,一般是利用切点P (x 0,y 0)既在曲线上又在切线上构造方程组求解. 【易错问题大揭秘】 已知曲线31y x =+.(1)求曲线在1x =-处的切线方程; (2)求曲线过点(1,0)-的切线方程.【易错点】易于因为审题不严或理解有误,将两道小题混淆,特别是第(2)小题独立出现时.【分析】(1)∵ 23y x '=, ∴曲线在1x =-处的斜率213(1)3x k y =-'==⨯-=. ∵1x =-时,0y =,∴曲线在1x =-处的切线方程为3(1)y x =+, 即330x y -+=.(2) 设过点(1,0)-的切线与曲线相切于点00(,)x y , 则切线的斜率为023x x k y x ='==, ∴20003000311y x x y x -⎧=⎪+⎨⎪=+⎩, 整理得32002310x x +-=,∴200(1)(21)0x x +-=, 解得01x =-,或012x =, ∴所求的切线为330x y -+=,或3430x y -+=.温馨提醒:(1)对于曲线切线方程问题的求解,对函数的求导是一个关键点,因此求导公式,求导法则及导数的计算原则要熟练掌握.(2)对于已知的点,应首先认真审题,对于确定切线的方程问题,要注意区分“该曲线过点P 的切线方程”与“该曲线在点P 处的切线方程”的两种情况,避免出错.从历年高考题看,“该曲线在点P 处的切线方程”问题的考查较为普遍. 【针对训练】已知曲线31433y x =+, (1)求曲线在点P(2,4)处的切线方程; (2)求曲线过点P(2,4)的切线方程; (3)求斜率为4的曲线的切线方程.. 【答案】(1)440.x y --=(2)44020x y x y --=-+=或(3)440123200x y x y --=-+=和.即440123200x y x y --=-+=和.。
导数的概念及其意义 、导数的运算(高三一轮复习)

;
gfxx′=f′xgx[g-xf]2xg′x(g(x)≠0);
[cf(x)]′= 16 cf′(x)
.
— 8—
数学 N 必备知识 自主学习 关键能力 互动探究
— 9—
5.复合函数的定义及其导数
(1)一般地,对于两个函数y=f(u)和u=g(x),如果通过中间变量u,y可以表示成x 的函数,那么称这个函数为函数y=f(u)与u=g(x)的复合函数,记作y= 17 f(g(x)) .
— 20 —
数学 N 必备知识 自主学习 关键能力 互动探究
— 21 —
命题点2 导数的几何意义
考向1 求切线方程
例2
(1)(2022·湖南衡阳二模)函数f(x)=xln(-2x),则曲线y=f(x)在x=-
e 2
处的
切线方程为 4x-2y+e=0
.
(2)(2y0=22-·新1e高x 考Ⅱ卷.)曲线y=ln|x|过坐标原点的两条切线的方程为
(2)f1x′=-f[′fxx]2(f(x)≠0). (3)曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次函数的图 象相切只有一个公共点. (4)函数y=f(x)的导数f′(x)反映了函数f(x)的瞬时变化趋势,其正负号反映了变 化的方向,其大小|f′(x)|反映了变化的快慢,|f′(x)|越大,曲线在这点处的切线越 “陡”.
f(x)=xα(α∈Q且α≠0) f′(x)= 7αxα-1
f(x)=sin x
f′(x)= 8 cos x
f(x)=cos x
f′(x)= 9 -sin x
— 6—
数学 N 必备知识 自主学习 关键能力 互动探究
f(x)=ax(a>0且a≠1) f′(x)= 10 axln a
高考数学一轮复习 3.1 导数的概念及运算精品教学案(学生版)新人教版

【考纲解读】1.导数概念及其几何意义 (1)了解导数概念的实际背景. (2)理解导数的几何意义. 2.导数的运算(1)能根据导数定义,求函数x y xyx y x y x y c y ======,1,,,,32的导数. (2)能利用下面给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数. (3)基本初等函数的导数公式和常用的导数计算公式:()0C '=(C 为常数), 1()();(sin )cos ;(cos )sin ;1();()ln (0,1);(ln );1(log )log (0,1)n n x x x x a a x nx n x x x x e e a a a a a x xx e a a x-+'''=∈N ==-'''==>≠='=>≠且且·法则1:[])()()()(x v x u x v x u '±'='±·法则2:[])()()()()()(x v x u x v x u x v x u '+'='·法则3:)0)(()()()()()()()(2≠'-'='⎪⎪⎭⎫ ⎝⎛x v x v x v x u x v x u x v x u1.导数的概念(1)f(x)在x=x 0处的导数就是f(x)在x=x 0处的瞬时变化率,记作:0/|x x y =或f /(x 0),即f /(x 0)=000()()limx f x x f x x∆→+∆-∆.(2)当把上式中的x 0看作变量x 时, f /(x)即为f(x)的导函数,简称导数,即''()y f x ==0()()limx f x x f x x∆→+∆-∆.2.导数的几何意义:函数f(x)在x=x 0处的导数就是曲线y=f(x)在点P(x 0,f(x 0))处的切线的斜率k= f /(x 0),切线方程为'000()()y y f x x x -=-.3.基本初等函数的导数公式1()();(sin )cos ;(cos )sin ;1();()ln (0,1);(ln );1(log )log (0,1)n n x x x x a a x nx n x x x x e e a a a a a x xx e a a x-+'''=∈N ==-'''==>≠='=>≠且且4.两个函数的四则运算法则 若u(x),v(x)的导数都存在,则 法则1:[])()()()(x v x u x v x u '±'='±法则2:[])()()()()()(x v x u x v x u x v x u '+'='法则3:)0)(()()()()()()()(2≠'-'='⎪⎪⎭⎫ ⎝⎛x v x v x v x u x v x u x v x u .【例题精析】考点一 导数的概念及几何意义例 1.(2012年高考新课标全国卷文科13)曲线y =x (3ln x +1)在点)1,1(处的切线方程为________ 【变式训练】1.(2011年高考江西卷文科4)曲线xy e =在点A (0,1)处的切线斜率为( ) A.1 B.2 C.e D.1e考点二 导数的运算例2. (2010年高考全国2卷理数10)若曲线12y x -=在点12,a a -⎛⎫ ⎪⎝⎭处的切线与两个坐标围成的三角形的面积为18,则a =( )(A )64 (B )32 (C )16 (D )8【变式训练】2. (2010年高考江西卷文科4)若函数42()f x ax bx c =++满足'(1)2f =,则'(1)f -=( )A .1-B .2-C .2D .0 【易错专区】问题:忽视导数存在的条件 例.已知曲线3y x =上的一点P (0,0),求过点P (0,0)的切线方程.【课时作业】1.(山东省济南一中2012届高三上学期期末)设曲线11x y x +=-在点(3,2)处的切线与直线10ax y ++=垂直,则a = ( ) A .2B . 2-C . 12-D.122. (2010年高考宁夏卷文科4)曲线2y 21x x =-+在点(1,0)处的切线方程为( ) (A )1y x =- (B )1y x =-+ (C )22y x =- (D )22y x =-+3.(2010年高考全国卷Ⅱ文科7)若曲线2y x ax b =++在点(0,)b 处的切线方程是10x y -+=,则( )(A )1,1a b == (B) 1,1a b =-= (C) 1,1a b ==- (D) 1,1a b =-=- 4. (2010年全国高考宁夏卷3)曲线2xy x =+在点(-1,-1)处的切线方程为( ) (A )y=2x+1 (B)y=2x-1 C y=-2x-3 D.y=-2x-2 5.(2010年高考辽宁卷文科12)已知点P 在曲线41xy e =+上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( ) (A)[0,4π) (B)[,)42ππ (C ) 3(,]24ππ (D) 3[,)4ππ6. (福建省福州市2012年3月高中毕业班质量检查理科)函数)()(3R x ax x x f ∈+=在1=x 处有极值,则曲线)(x f y =在原点处的切线方程是 ___ __.【考题回放】1.(2011年高考重庆卷文科3)曲线223y x x =-+在点(1,2)处的切线方程为 ( )A .31y x =-B .35y x =-+C .35y x =+D .2y x =2. (2011年高考山东卷文科4)曲线211y x =+在点P(1,12)处的切线与y 轴交点的纵坐标是( )(A)-9 (B)-3 (C)9 (D)15 3. (2011年高考全国卷理科8)曲线y=2xe -+1在点(0,2)处的切线与直线y=0和y=x 围成的三角形的面积为( ) (A)13 (B)12 (C)23(D)1 4.(2011年高考湖南卷文科7)曲线sin 1sin cos 2x y x x =-+在点(,0)4M π处的切线的斜率为( ) A .12-B .12C .22-D .225. (2012年高考广东卷理科12)曲线y=x 3-x+3在点(1,3)处的切线方程为 .6.(2012年高考山东卷文科22第1问)已知函数ln ()(e x x kf x k +=为常数,e=2.71828…是自然对数的底数),曲线()y f x =在点(1,(1))f 处的切线与x 轴平行.求k 的值.。
2017版高考数学一轮复习 第三章 导数及其应用 第1讲 导数的概念及运算课件 理

3.基本初等函数的导数公式
基本初等函数
f(x)=c(c为常数) f(x)=xα(α是实数) f(x)=sin x
导函数
f′(x)=______ 0
αx f′(x)=_______ cos x f′(x)=_______
α -1
f(x)=cos x
f(x)=ex f(x)=ax(a>0,a≠1) f(x)=ln x
规律方法
(1) 熟记基本初等函数的导数公式及运算法则是
导数计算的前提,求导之前,应利用代数、三角恒等式等 变形对函数进行化简,然后求导,这样可以减少运算量提 高运算速度,减少差错.
(2)①如函数为根式形式,可先化为分数指数幂,再求导.
②复合函数求导,应先确定复合关系,由外向内逐层求导, 必要时可换元处理.
(1)f′(x0)与(f(x0))′表示的意义相同.( × )
(2)求f′(x0)时,可先求f(x0)再求f′(x0).( × ) (3)曲线的切线与曲线不一定只有一个公共点.( √ ) (4)若f(x)=e2x,则f′(x)=e2x.( × )
1 2 2.某汽车的路程函数是 s(t)=2t -2gt (g=10 m/s2),则当 t=x来自(-∞,0)+
0
(0,1)
-
1
(1,+∞)
+
g′(x)
g(x)
0 t+3
0 t+1
所以 g(0)=t+3 是 g(x)的极大值;g(1)=t+1 是 g(x)的极小值. 当 g(0)=t+3≤0,即 t≤-3 时,此时 g(x)在区间(-∞,1]和 (1,+∞)上分别至多有 1 个零点,所以 g(x)至多有 2 个零点. 当 g(1)=t+1≥0,即 t≥-1 时,此时 g(x)在区间(-∞,0)和 [0,+∞)上分别至多有 1 个零点,所以 g(x)至多有 2 个零点.
2017年高考数学一轮复习讲练测(江苏版)专题3.1 导数概念及其运算(讲) 含解析

【最新考纲解读】内容要求备注A B C导数及其应用导数的概念√导数的几何意义√导数的运算√【考点深度剖析】【课前检测训练】(1)y′=f′(x)在点x=x0处的函数值就是函数y=f(x)在点x=x0处的导数值。
( )解析正确。
(2)求f′(x0)时,可先求f(x0)再求f′(x0)。
()解析错误.若先求f(x0)再求f′(x0),则它的值为0.(3)曲线的切线不一定与曲线只有一个公共点。
()解析正确。
(4)与曲线只有一个公共点的直线一定是曲线的切线.()解析错误。
直线与曲线可能相交。
(5)若f(x)=f′(a)x2+ln x(a>0),则f′(x)=2xf′(a)+错误!.( )解析正确.由对数运算法则可知.1.函数y=xcos x-sin x的导数为_______解析y′=x′cos x+x(cos x)′-(sin x)′=cos x-xsin x-cos x=-xsin x。
答案-xsin x2.有一机器人的运动方程为s=t2+错误!(t是时间,s是位移),则该机器人在时刻t=2时的瞬时速度为_______解析根据导数的物理意义,s′(2)表示机器人在t=2时的瞬时速度,∵s′(t)=2t-3t-2,∴s′(2)=4-34=错误!,答案错误!3.设曲线y=e x在点(0,1)处的切线与曲线y=错误!(x>0)上点P处的切线垂直,则P的坐标为________.答案(1,1)4.直线y=12x+b是曲线y=ln x(x〉0)的一条切线,则实数b=________。
解析y′=错误!,令错误!=错误!,得x=2,因此切点为(2,ln 2),代入直线方程y=错误!x+b得b=ln 2-1。
【经典例题精析】考点1 导数的运算【1—1】求下列函数的导数.(1)y=x2sin x;(2)y=错误!;(3)y=ln(2x-5).【答案】(1) 2x sin x+x2cos x。
(2)错误!.(3) 错误!。
2017版高考数学一轮总复习第3章导数及其应用第一节导数的概念及其运算课件文

⑤分式形式:观察函数的结构特征,先化为整式函数或较为
简单的分式函数,再求导.
【例1】 求下列函数的导数:
(1)y=x2cos x; 1 2 1 (2)y=x-x x -x2; ln x (3)y= x .
(1)y′=(x2)′cos x+x2(cos x)′=2xcos x-x2sin x. 1 3 -1 -3 3 2 (2)∵y=x -x-x +x ,∴y′=3x -1+ 2- 4. x x 1 (ln x)′x-x′ln x x ·x-ln x 1-ln x (3)y′= = = x2 . x2 x2 解
解 易知点 O(0,0)在曲线 y=x3-3x2+2x 上. (1)当 O(0,0)是切点时,由 y′=3x2-6x+2,得 y′|x=0=2, 即直线 l 的斜率为 2,故直线 l 的方程为 y=2x.
y=2x, 2 由 得 x -2x+a=0, 2 y=x +a,
依题意 Δ=4-4a=0,得 a=1.
(3)函数f(x)的导函数
称函数f′(x)为f(x)的导函数,导函数有时也记作y′.
2.导数的计算 (1)基本初等函数的导数公式
原函数 f(x)=C(C 为常数) f(x)=x (α∈Q ) f(x)=sin x f(x)=cos x f(x)=ax
α
导函数 f′(x)=0
1 ax f′(x)=
[点评]
(2)中函数若直接求导,计算繁琐,且容易出错,应
先化简再求导.
利用导数求切线方的解题方略
若已知曲线过点P(x0,y0),求曲线过点P(x0,y0)的切线,则 需分点P(x0,y0)是切点和不是切点两种情况求解. (1)点P(x0,y0)是切点时: 第一步:求导数f′(x);
(江苏专用)高考数学一轮复习 第三章 导数及其应用 3.1 导数的概念及运算 理-人教版高三全册数学

【步步高】(某某专用)2017版高考数学一轮复习 第三章 导数及其应用 3.1 导数的概念及运算 理1.导数与导函数的概念(1)设函数y =f (x )在区间(a ,b )上有定义,x 0∈(a ,b ),若Δx 无限趋近于0时,比值Δy Δx=f x 0+Δx -f x 0Δx无限趋近于一个常数A ,则称f (x )在x =x 0处可导,并称该常数A 为函数f (x )在x =x 0处的导数(derivative),记作f ′(x 0).(2)若f (x )对于区间(a ,b )内任一点都可导,则f (x )在各点的导数也随着自变量x 的变化而变化,因而也是自变量x 的函数,该函数称为f (x )的导函数,记作f ′(x ). 2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率k ,即k =f ′(x 0). 3.基本初等函数的导数公式基本初等函数导函数f (x )=C (C 为常数) f ′(x )=0 f (x )=x α(α为常数)f ′(x )=αx α-1 f (x )=sin x f ′(x )=cos_x f (x )=cos x f ′(x )=-sin_x f (x )=e x f ′(x )=e x f (x )=a x (a >0,a ≠1)f ′(x )=a x ln_a f (x )=ln x f ′(x )=1xf (x )=log a x (a >0,a ≠1)f ′(x )=1x ln a4.若f ′(x ),g ′(x )存在,则有(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );(3)[f xg x ]′=f ′x g x -f x g ′xg 2x(g (x )≠0).5.复合函数的导数若y =f (u ),u =ax +b ,则y ′x =y ′u ·u ′x ,即y ′x =y ′u ·a . 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)f ′(x 0)与(f (x 0))′表示的意义相同.( × ) (2)求f ′(x 0)时,可先求f (x 0)再求f ′(x 0).( × ) (3)曲线的切线不一定与曲线只有一个公共点.( √ ) (4)与曲线只有一个公共点的直线一定是曲线的切线.( × ) (5)函数f (x )=sin(-x )的导数是f ′(x )=cos x .( × )1.(教材改编)f ′(x )是函数f (x )=13x 3+2x +1的导函数,则f ′(-1)的值为________.答案 3解析 ∵f (x )=13x 3+2x +1,∴f ′(x )=x 2+2.∴f ′(-1)=3.2.如图所示为函数y =f (x ),y =g (x )的导函数的图象,那么y =f (x ),y =g (x )的图象可能是________.答案 ④解析 由y =f ′(x )的图象知y =f ′(x )在(0,+∞)上单调递减,说明函数y =f (x )的切线的斜率在(0,+∞)上也单调递减,故可排除①③.又由图象知y =f ′(x )与y =g ′(x )的图象在x =x 0处相交,说明y =f (x )与y =g (x )的图象在x =x 0处的切线的斜率相同,由图知②不符合,④符合,故④正确.3.设函数f (x )的导数为f ′(x ),且f (x )=f ′(π2)sin x +cos x ,则f ′(π4)=________.答案 - 2解析 因为f (x )=f ′(π2)sin x +cos x ,所以f ′(x )=f ′(π2)cos x -sin x ,所以f ′(π2)=f ′(π2)cos π2-sin π2,即f ′(π2)=-1,所以f (x )=-sin x +cos x .f ′(x )=-cos x -sin x .故f ′(π4)=-cos π4-sin π4=- 2.4.已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值X 围是__________. 答案 ⎣⎢⎡⎭⎪⎫3π4,π解析 ∵y =4e x +1,∴y ′=-4exe x+12=-4e xe 2x +2e x+1=-4e x +1ex +2. ∵e x >0,∴e x +1e x ≥2,当且仅当e x=1e x =1,即x =0时,“=”成立.∴y ′∈[-1,0), ∴tan α∈[-1,0).又α∈[0,π), ∴α∈⎣⎢⎡⎭⎪⎫3π4,π. 5.(2015·某某)设曲线y =e x在点(0,1)处的切线与曲线y =1x(x >0)上点P 处的切线垂直,则P 的坐标为________. 答案 (1,1)解析 y ′=e x ,曲线y =e x 在点(0,1)处的切线的斜率k 1=e 0=1,设P (m ,n ),y =1x(x >0)的导数为y ′=-1x 2 (x >0),曲线y =1x (x >0)在点P 处的切线斜率k 2=-1m2 (m >0),因为两切线垂直,所以k 1k 2=-1,所以m =1,n =1,则点P 的坐标为(1,1).题型一 导数的运算 例1 求下列函数的导数: (1)y =(3x 2-4x )(2x +1); (2)y =x 2sin x ; (3)y =3x e x-2x+e ; (4)y =ln xx 2+1; (5)y =ln(2x -5).解 (1)∵y =(3x 2-4x )(2x +1) =6x 3+3x 2-8x 2-4x =6x 3-5x 2-4x , ∴y ′=18x 2-10x -4.(2)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x . (3)y ′=(3x e x )′-(2x)′+e′ =(3x )′e x +3x (e x )′-(2x)′ =3x e x ln 3+3x e x -2xln 2 =(ln 3+1)·(3e)x -2xln 2.(4)y ′=ln x ′x 2+1-ln x x 2+1′x 2+12=1xx 2+1-2x ln xx 2+12=x 2+1-2x 2ln x x x 2+12.(5)令u =2x -5,y =ln u ,则y ′=(ln u )′u ′=12x -5·2=22x -5,即y ′=22x -5.思维升华 (1)求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错;遇到函数的商的形式时,如能化简则化简,这样可避免使用商的求导法则,减少运算量.(2)复合函数求导时,先确定复合关系,由外向内逐层求导,必要时可换元.(1)f (x )=x (2 016+ln x ),若f ′(x 0)=2 017,则x 0=________.(2)若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)=________. 答案 (1)1 (2)-2解析 (1)f ′(x )=2 016+ln x +x ×1x=2 017+ln x ,故由f ′(x 0)=2 017得2 017+ln x 0=2 017,则ln x 0=0,解得x 0=1. (2)f ′(x )=4ax 3+2bx ,∵f ′(x )为奇函数,且f ′(1)=2, ∴f ′(-1)=-2. 题型二 导数的几何意义命题点1 已知切点的切线方程问题例2 (1)函数f (x )=ln x -2xx的图象在点(1,-2)处的切线方程为__________.(2)曲线y =e-2x+1在点(0,2)处的切线与直线y =0和y =x 围成的三角形的面积为________.答案 (1)x -y -3=0 (2)13解析 (1)f ′(x )=1-ln xx2,则f ′(1)=1, 故该切线方程为y -(-2)=x -1,即x -y -3=0. (2)∵y ′=-2e-2x,曲线在点(0,2)处的切线斜率k =-2,∴切线方程为y =-2x +2,该直线与直线y =0和y =x 围成的三角形如图所示,其中直线y =-2x +2与y =x 的交点为A (23,23),∴三角形的面积S =12×1×23=13.命题点2 未知切点的切线方程问题例3 (1)与直线2x -y +4=0平行的抛物线y =x 2的切线方程是__________.(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为____________.答案 (1)2x -y -1=0 (2)x -y -1=0解析 (1)对y =x 2求导得y ′=2x .设切点坐标为(x 0,x 20),则切线斜率为k =2x 0. 由2x 0=2得x 0=1,故切线方程为y -1=2(x -1),即2x -y -1=0. (2)∵点(0,-1)不在曲线f (x )=x ln x 上,∴设切点为(x 0,y 0).又∵f ′(x )=1+ln x ,∴⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=1+ln x 0x 0,解得x 0=1,y 0=0.∴切点为(1,0),∴f ′(1)=1+ln 1=1. ∴直线l 的方程为y =x -1,即x -y -1=0. 命题点3 和切线有关的参数问题例4 已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,且与f (x )图象的切点为(1,f (1)),则m =________. 答案 -2解析 ∵f ′(x )=1x,∴直线l 的斜率为k =f ′(1)=1. 又f (1)=0,∴切线l 的方程为y =x -1.g ′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0), 则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0,于是解得m =-2.命题点4 导数与函数图象的关系例5 如图,点A (2,1),B (3,0),E (x,0)(x ≥0),过点E 作OB 的垂线l .记△AOB 在直线l 左侧部分的面积为S ,则函数S =f (x )的图象为下图中的________(填序号).答案 ④解析 函数的定义域为[0,+∞),当x ∈[0,2]时,在单位长度变化量Δx 内面积变化量ΔS 大于0且越来越大,即斜率f ′(x )在[0,2]内大于0且越来越大,因此,函数S =f (x )的图象是上升的,且图象是下凸的;当x ∈(2,3)时,在单位长度变化量Δx 内面积变化量ΔS 大于0且越来越小,即斜率f ′(x )在(2,3)内大于0且越来越小,因此,函数S =f (x )的图象是上升的,且图象是上凸的; 当x ∈[3,+∞)时,在单位长度变化量Δx 内面积变化量ΔS 为0,即斜率f ′(x )在[3,+∞)内为常数0,此时,函数图象为平行于x 轴的射线.思维升华 导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面: (1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值:k =f ′(x 0). (2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k .(3)若求过点P (x 0,y 0)的切线方程,可设切点为(x 1,y 1),由⎩⎪⎨⎪⎧y 1=f x 1,y 0-y 1=f ′x 1x 0-x 1求解即可.(4)函数图象在每一点处的切线斜率的变化情况反映函数图象在相应点处的变化情况,由切线的倾斜程度可以判断出函数图象升降的快慢.(1)已知函数f (x )=3x +cos 2x +sin 2x ,a =f ′(π4),f ′(x )是f (x )的导函数,则过曲线y =x 3上一点P (a ,b )的切线方程为__________________. (2)若直线y =2x +m 是曲线y =x ln x 的切线,则实数m 的值为________. 答案 (1)3x -y -2=0或3x -4y +1=0 (2)-e 解析 (1)由f (x )=3x +cos 2x +sin 2x 得f ′(x )=3-2sin 2x +2cos 2x , 则a =f ′(π4)=3-2sin π2+2cos π2=1.由y =x 3得y ′=3x 2,当P 点为切点时,切线的斜率k =3a 2=3×12=3. 又b =a 3,则b =1,所以切点P 的坐标为(1,1). 故过曲线y =x 3上的点P 的切线方程为y -1=3(x -1), 即3x -y -2=0.当P 点不是切点时,设切点为(x 0,x 30), ∴切线方程为y -x 30=3x 20(x -x 0),∵P (a ,b )在曲线y =x 3上,且a =1,∴b =1. ∴1-x 30=3x 20(1-x 0), ∴2x 30-3x 20+1=0, ∴2x 30-2x 20-x 20+1=0, ∴(x 0-1)2(2x 0+1)=0, ∴切点为⎝ ⎛⎭⎪⎫-12,-18,∴此时的切线方程为y +18=34⎝ ⎛⎭⎪⎫x +12,综上,满足题意的切线方程为3x -y -2=0或3x -4y +1=0. (2)设切点为(x 0,x 0ln x 0),由y ′=(x ln x )′=ln x +x ·1x=ln x +1,得切线的斜率k =ln x 0+1,故切线方程为y -x 0ln x 0=(ln x 0+1)(x -x 0), 整理得y =(ln x 0+1)x -x 0,与y =2x +m 比较得⎩⎪⎨⎪⎧ln x 0+1=2,-x 0=m ,解得x 0=e ,故m =-e.4.求曲线的切线方程条件审视不准致误典例 (14分)若存在过点O (0,0)的直线l 与曲线y =x 3-3x 2+2x 和y =x 2+a 都相切,求a 的值.易错分析 由于题目中没有指明点O (0,0)的位置情况,容易忽略点O 在曲线y =x 3-3x 2+2x 上这个隐含条件,进而不考虑O 点为切点的情况. 规X 解答解 易知点O (0,0)在曲线y =x 3-3x 2+2x 上. (1)当O (0,0)是切点时,由y ′=3x 2-6x +2,得在原点处的切线斜率k =2, 即直线l 的斜率为2,故直线l 的方程为y =2x . 由⎩⎪⎨⎪⎧y =2x ,y =x 2+a ,得x 2-2x +a =0,依题意Δ=4-4a =0,得a =1.[5分](2)当O (0,0)不是切点时,设直线l 与曲线y =x 3-3x 2+2x 相切于点P (x 0,y 0),则y 0=x 30-3x 20+2x 0,且k =3x 20-6x 0+2,① 又k =y 0x 0=x 20-3x 0+2,②联立①②,得x 0=32(x 0=0舍去),所以k =-14,故直线l 的方程为y =-14x .[9分]由⎩⎪⎨⎪⎧y =-14x ,y =x 2+a ,得x 2+14x +a =0,依题意,Δ=116-4a =0,得a =164.[12分]综上,a =1或a =164.[14分]温馨提醒 对于求曲线的切线方程没有明确切点的情况,要先判断切线所过点是否在曲线上;若所过点在曲线上,要对该点是否为切点进行讨论.[方法与技巧]1.f ′(x 0)代表函数f (x )在x =x 0处的导数值;(f (x 0))′是函数值f (x 0)的导数,而函数值f (x 0)是一个常数,其导数一定为0,即(f (x 0))′=0.2.对于函数求导,一般要遵循先化简再求导的基本原则.在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.3.未知切点的曲线切线问题,一定要先设切点,利用导数的几何意义表示切线的斜率建立方程. [失误与防X]1.利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.复合函数的导数要正确分解函数的结构,由外向内逐层求导.2.求曲线切线时,要分清在点P 处的切线与过P 点的切线的区别,前者只有一条,而后者包括了前者.3.曲线的切线与曲线的交点个数不一定只有一个,这和研究直线与二次曲线相切时有差别.A 组 专项基础训练 (时间:40分钟)1.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(1)+ln x ,则f ′(1)=________. 答案 -1解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1x.∴f ′(1)=2f ′(1)+1,则f ′(1)=-1.2.已知曲线y =ln x 的切线过原点,则此切线的斜率为________.答案 1e解析 y =ln x 的定义域为(0,+∞),且y ′=1x,设切点为(x 0,ln x 0),则曲线在x =x 0处的切线斜率k =1x 0,切线方程为y -ln x 0=1x 0(x -x 0),因为切线过点(0,0),所以-ln x 0=-1, 解得x 0=e ,故此切线的斜率为1e.3.已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ∈N *,则f 2 016(x )=____________.答案 sin x -cos x解析 ∵f 1(x )=sin x +cos x , ∴f 2(x )=f 1′(x )=cos x -sin x , ∴f 3(x )=f 2′(x )=-sin x -cos x , ∴f 4(x )=f 3′(x )=-cos x +sin x , ∴f 5(x )=f 4′(x )=sin x +cos x =f 1(x ), ∴f n (x )是以4为周期的函数, ∴f 2 016(x )=f 4(x )=sin x -cos x .4.设曲线y =ax -ln x 在点(1,1)处的切线方程为y =2x ,则a =________. 答案 3解析 令f (x )=ax -ln x ,则f ′(x )=a -1x.由导数的几何意义可得在点(1,1)处的切线的斜率为f ′(1)=a -1.又切线方程为y =2x ,则有a -1=2,∴a =3.5.已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=______________.答案 0解析 由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13.∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ), ∴g ′(3)=f (3)+3f ′(3),又由题图可知f (3)=1, ∴g ′(3)=1+3×(-13)=0. 6.在平面直角坐标系xOy 中,若曲线y =ax 2+b x (a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是______.答案 -3解析 y =ax 2+b x 的导数为y ′=2ax -b x2,直线7x +2y +3=0的斜率为-72. 由题意得⎩⎪⎨⎪⎧ 4a +b 2=-5,4a -b 4=-72,解得⎩⎪⎨⎪⎧ a =-1,b =-2,则a +b =-3. 7.已知函数f (x )=x 3-3x ,若过点A (0,16)且与曲线y =f (x )相切的直线方程为y =ax +16,则实数a 的值是________.答案 9解析 先设切点为M (x 0,y 0),则切点在曲线上有y 0=x 30-3x 0,①求导数得到切线的斜率k =f ′(x 0)=3x 20-3,又切线l 过A 、M 两点,所以k =y 0-16x 0, 则3x 20-3=y 0-16x 0,② 联立①②可解得x 0=-2,y 0=-2,从而实数a 的值为a =k =-2-16-2=9. 8.已知曲线y =1e x +1,则曲线的切线斜率取得最小值时的直线方程为______________. 答案 x +4y -2=0解析 y ′=-e x e x +12=-1e x +1ex +2, 因为e x >0,所以e x +1ex ≥2e x ×1e x =2(当且仅当e x =1e x ,即x =0时取等号), 则e x +1ex +2≥4,故y ′=-1e x +1e x +2≥-14当(x =0时取等号). 当x =0时,曲线的切线斜率取得最小值,此时切点的坐标为(0,12), 切线的方程为y -12=-14(x -0), 即x +4y -2=0.9.已知曲线y =x 3+x -2在点P 0处的切线l 1平行于直线4x -y -1=0,且点P 0在第三象限.(1)求P 0的坐标;(2)若直线l ⊥l 1,且l 也过切点P 0,求直线l 的方程.解 (1)由y =x 3+x -2,得y ′=3x 2+1,由已知令3x 2+1=4,解之得x =±1.当x =1时,y =0;当x =-1时,y =-4.又∵点P 0在第三象限,∴切点P 0的坐标为(-1,-4).(2)∵直线l ⊥l 1,l 1的斜率为4,∴直线l 的斜率为-14. ∵l 过切点P 0,点P 0的坐标为(-1,-4),∴直线l 的方程为y +4=-14(x +1), 即x +4y +17=0.10.设函数f (x )=ax -b x,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值.解 (1)方程7x -4y -12=0可化为y =74x -3. 当x =2时,y =12.又f ′(x )=a +b x 2, 于是⎩⎪⎨⎪⎧ 2a -b 2=12,a +b 4=74, 解得⎩⎪⎨⎪⎧ a =1,b =3.故f (x )=x -3x.(2)设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2知曲线在点P (x 0,y 0)处的切线方程为 00203()()-=1+y y x x x - 即0020033()()=(1+)-.y x x x x x -- 令x =0,得y =-6x 0,从而得切线与直线x =0的交点坐标为⎝ ⎛⎭⎪⎫0,-6x 0. 令y =x ,得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形的面积为S =12⎪⎪⎪⎪⎪⎪-6x 0|2x 0|=6. 故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值,且此定值为6.B 组 专项能力提升(时间:20分钟)11.已知函数f (x )=x +1,g (x )=a ln x ,若在x =14处函数f (x )与g (x )的图象的切线平行,则实数a 的值为________.答案 14解析 由题意可知()1212,f x x -'=g ′(x )=a x , 由f ′(14)=g ′(14),得1211()1244=,a -⨯ 可得a =14,经检验,a =14满足题意. 12.曲边梯形由曲线y =x 2+1,y =0,x =1,x =2所围成,过曲线y =x 2+1 (x ∈[1,2])上一点P 作切线,使得此切线从曲边梯形上切出一个面积最大的普通梯形,则这一点的坐标为____________. 答案 ⎝ ⎛⎭⎪⎫32,134 解析 设P (x 0,x 20+1),x 0∈[1,2],则易知曲线y =x 2+1在点P 处的切线方程为y -(x 20+1)=2x 0(x -x 0),∴y =2x 0(x -x 0)+x 20+1,设g (x )=2x 0(x -x 0)+x 20+1,则g (1)+g (2)=2(x 20+1)+2x 0(1-x 0+2-x 0),∴S 普通梯形=g 1+g 22×1=-x 20+3x 0+1=-⎝⎛⎭⎪⎫x 0-322+134,∴P 点坐标为⎝ ⎛⎭⎪⎫32,134时,S 普通梯形最大. 13.若函数f (x )=12x 2-ax +ln x 存在垂直于y 轴的切线,则实数a 的取值X 围是________. 答案 [2,+∞)解析 ∵f (x )=12x 2-ax +ln x ,∴f ′(x )=x -a +1x. ∵f (x )存在垂直于y 轴的切线,∴f ′(x )存在零点,即x +1x -a =0有解,∴a =x +1x≥2. 14.已知曲线f (x )=x n +1(n ∈N *)与直线x =1交于点P ,设曲线y =f (x )在点P 处的切线与x 轴交点的横坐标为x n ,则log 2 016x 1+log 2 016x 2+…+log 2 016x 2 015的值为________. 答案 -1解析 f ′(x )=(n +1)x n,k =f ′(1)=n +1,点P (1,1)处的切线方程为y -1=(n +1)(x -1),令y =0,得x =1-1n +1=n n +1,即x n =n n +1, ∴x 1·x 2·…·x 2 015=12×23×34×…×2 0142 015×2 0152 016=12 016,则log 2 016x 1+log 2 016x 2+…+log 2 016x 2 015=log 2 016(x 1x 2…x 2 015)=-1.15.已知函数f (x )=ax 3+3x 2-6ax -11,g (x )=3x 2+6x +12和直线m :y =kx +9,且f ′(-1)=0.(1)求a 的值;(2)是否存在k ,使直线m 既是曲线y =f (x )的切线,又是曲线y =g (x )的切线?如果存在,求出k 的值;如果不存在,请说明理由.解 (1)由已知得f ′(x )=3ax 2+6x -6a ,∵f ′(-1)=0,∴3a -6-6a =0,∴a =-2.(2)存在.由已知得,直线m 恒过定点(0,9),若直线m 是曲线y =g (x )的切线,则设切点为(x 0,3x 20+6x 0+12).∵g ′(x 0)=6x 0+6,∴切线方程为y -(3x 20+6x 0+12)=(6x 0+6)(x -x 0),将(0,9)代入切线方程,解得x0=±1.当x0=-1时,切线方程为y=9;当x0=1时,切线方程为y=12x+9.由(1)知f(x)=-2x3+3x2+12x-11,①由f′(x)=0得-6x2+6x+12=0,解得x=-1或x=2.在x=-1处,y=f(x)的切线方程为y=-18;在x=2处,y=f(x)的切线方程为y=9,∴y=f(x)与y=g(x)的公切线是y=9.②由f′(x)=12得-6x2+6x+12=12,解得x=0或x=1.在x=0处,y=f(x)的切线方程为y=12x-11;在x=1处,y=f(x)的切线方程为y=12x-10;∴y=f(x)与y=g(x)的公切线不是y=12x+9.综上所述,y=f(x)与y=g(x)的公切线是y=9,此时k=0.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年高考数学讲练测【新课标版】【讲】 第三章 导数
第01节 导数的概念及其运算
【课前小测摸底细】
1.【选修2-2P18T3改编】已知函数()r V =)r =________.
2.【2016高考新课标Ⅲ文数】已知()f x 为偶函数,当0x ≤ 时,1()x f x e x --=-,则曲线()y f x =在(1,2)
处的切线方程式_____________________________.
3. 【百强校】2016届江苏省苏州大学高考考前指导卷1】已知直线x y b +=是函数2y ax x
=+的图象在点(1,)P m 处的切线,则a b m +-= .
4.【基础经典试题】曲线32y x x =-在(1,1)-处的切线方程为( )
A .20x y --=
B .20x y -+=
C .20x y +-=
D .20x y ++=
5.【2015·高考全国卷Ⅱ】已知曲线y x lnx =+在点()1,1(1,1)处的切线与曲线221()y ax a x =+++相切,则a =________.
【考点深度剖析】
本节中导数的概念、导数的运算、导数的几何意义等是重点知识,基础是导数运算.导数的几何意义为高考热点内容,考查题型多为选择、填空题,也常出现在解答题中前几问,难度较低.归纳起来常见的命题探究角度有:
(1)求切线方程问题.
(2)确定切点坐标问题.
(3)已知切线问题求参数.
(4)切线的综合应用.
【经典例题精析】
考点1 导数的运算
【2-1】求下列函数的导数.
()()()()()()()
222x x x 251y 2x 1(3x 1)
x x 12y x x 1
3y 3e 2e lnx
4y x 1
5y 32x =-+-+=++=-+=+=-
【课本回眸】
1. 基本初等函数的导数公式
2.导数的运算法则
(1) [f (x )±g (x )]′=f ′(x )±g ′(x );
(2) [f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );
(3)2()'()()'()()'()()f x f x g x g x f x g x g x ⎡⎤⋅-⋅=⎢⎥⎣⎦
(g (x )≠0). 【方法规律技巧】
求函数导数的一般原则如下:
(1)遇到连乘积的形式,先展开化为多项式形式,再求导;
(2)遇到根式形式,先化为分数指数幂,再求导;
(3)遇到复杂分式,先将分式化简,再求导.
【新题变式探究】
【变式一】【【百强校】2016届辽宁省实验中学分校高三上学期期中】已知函数()f x 的导函数为()f x ',且满足x e f x x f ln )(2)(+'=,则=')(e f ( )
A .e
B .1-
C .1--e
D .e -
【变式二】【【百强校】2016届湖南省常德市一中高三上第五次月考】已知函数
3()sin 4(,),()f x a x bx a b R f x '=++∈为()f x 的导函数,则
(2014)(2014)(2015)(2015)f f f f ''+-+--= ( )
A .0
B .2014
C .2015
D .8
考点3 导数的几何意义
【3-1】【2016年河南郑州高三二模】曲线3)(3+-=x x x f 在点P 处的切线平行于直线12-=x y ,则P 点的坐标为( )
A .)3,1(
B .)3,1(-
C .)3,1(和)3,1(-
D .)3,1(-
【3-2】【2016年高考四川理数】设直线l 1,l 2分别是函数f (x )= ln ,01,ln ,1,
x x x x -<<⎧⎨>⎩图象上点
P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△P AB 的面积的取值范围是( )
(A )(0,1) (B )(0,2) (C )(0,+∞) (D )(1,+∞)
【3-3】已知曲线31433
y x =+, (1)求曲线在点P(2,4)处的切线方程;
(2)求曲线过点P(2,4)的切线方程;
(3)求斜率为4的曲线的切线方程..
【课本回眸】
函数y =f (x )在x =x 0处的导数几何意义:
函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0).
【方法规律技巧】
1.求函数()f x 图象上点00(,())P x f x 处的切线方程的关键在于确定该点切线处的斜率k ,
由导数的几何意义知0'()k f x =,故当0'()
f x 存在时,切线方程为000()'()()y f x f x x x -=-.
2.可以利用导数求曲线的切线方程,由于函数()y f x =在0x x =处的导数表示曲线在点00(,())P x f x 处切线的斜率,因此,曲线()y f x =在点00(,())P x f x 处的切线方程,可按如下方式求得:
第一,求出函数()y f x =在0x x =处的导数,即曲线()y f x =在点00(,())P x f x 处切线的斜率;
第二,在已知切点坐标和切线斜率的条件下,求得切线方程000'()()y y f x x x =+-;如果曲线()y f x =在点00(,())P x f x 处的切线平行于y 轴(此时导数不存在)时,由切线的定义可知,切线的方程为0x x =.
【新题变式探究】
【变式一】【【百强校】2016届江西师大附中高三上学期期末】已知函数()y f x =的图象在点()()
2,2M f 处的切线方程是4y x =+,则()()22f f '+= .
【变式二】已知函数x x x f +=ln )(,则函数)(x f 点P (1,)1(f )的切线与两坐标轴围成的三角形的面积为 .
三、易错试题常警惕
易错典例1:已知曲线31y x =+.
(1)求曲线在1x =-处的切线方程;
(2)求曲线过点(1,0)-的切线方程.
易错分析:易于因为审题不严或理解有误,将两道小题混淆,特别是第(2)小题独立出现时.
温馨提醒:(1)对于曲线切线方程问题的求解,对函数的求导是一个关键点,因此求导公式,求导法则及导数的计算原则要熟练掌握.(2)对于已知的点,应首先认真审题,对于确定切线的方程问题,要注意区分“该曲线过点P 的切线方程”与“该曲线在点P 处的切线方程”的两种情况,避免出错.从历年高考题看,“该曲线在点P 处的切线方程”问题的考查较为普遍.
四、学科素养提升之思想方法篇
近似与精确、有限与无限——无限逼近的极限思想
1.由0()()'()lim x f x x f x f x x
∆→+∆-=∆可以知道,函数的导数是函数的瞬时变化率,函数的瞬时变化率是平均变化率的极限,充分说明极限是人们从近似中认识精确的数学方法.极限的实质就是无限近似的量,向着有限的目标无限逼近而产生量变导致质变的结果,这是极限的实质与精髓,也是导数的思想及其内涵.
2.曲线的切线定义,充分体现了运动变化及无限逼近的思想:“两个不同的公共点→两公共点无限接近→两公共点重合(切点)”⇒“割线→切线”.
(1)在求曲线的切线方程时,注意两个“说法”:求曲线在点P 处的切线方程和求曲线过点P 的切线方程,在点P 处的切线,一定是以点P 为切点,过点P 的切线,不论点P 在不在曲线上,点P 不一定是切点.
【典例】【【百强校】2016届辽宁省沈阳二中高三第一次模拟】322()13
f x x x ax =-+-己知曲线存在两条斜率为3的切线,且切点的横坐标都大于零,则实数a 的取值范围为 .。