中考数学总复习专题练习--几何图形的初步认识.doc
初中数学几何图形初步知识点总复习含答案解析

初中数学几何图形初步知识点总复习含答案解析一、选择题1.下列图形不是正方体展开图的是()A.B.C.D.【答案】D【解析】【分析】根据正方体展开的11种形式对各选项分析判断即可【详解】A、B、C是正方体展开图,错误;D折叠后,有2个正方形重合,不是展开图形,正确故选:D【点睛】本题是空间想象力的考查,解题关键是在脑海中折叠图形,看是否满足条件2.∠1与∠2互余,∠1与∠3互补,若∠3=125°,则∠2=()A.35°B.45°C.55°D.65°【答案】A【解析】【分析】【详解】解:根据题意得:∠1+∠3=180°,∠3=125°,则∠1=55°,∵∠1+∠2=90°,则∠2=35°故选:A.【点睛】本题考查余角、补角的计算.3.如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,那么∠2的度数是()A.20°B.30°C.35°D.50°【答案】C【解析】【分析】由垂线的性质可得∠ABC=90°,所以∠3=180°﹣90°﹣∠1=35°,再由平行线的性质可得到∠2的度数.【详解】解:由垂线的性质可得∠ABC=90°,所以∠3=180°﹣90°﹣∠1=35°,又∵a ∥b ,所以∠2=∠3=35°.故选C .【点睛】本题主要考查了平行线的性质.4.在等腰ABC ∆中,AB AC =,D 、E 分别是BC ,AC 的中点,点P 是线段AD 上的一个动点,当PCE ∆的周长最小时,P 点的位置在ABC ∆的( )A .重心B .内心C .外心D .不能确定【答案】A【解析】【分析】 连接BP ,根据等边三角形的性质得到AD 是BC 的垂直平分线,根据三角形的周长公式、两点之间线段最短解答即可.【详解】连接BP 、BE ,∵AB=AC ,BD=BC ,∴AD ⊥BC ,∴PB=PC ,∴PC+PE=PB+PE ,∵PB PE BE +≥,∴当B 、P 、E 共线时,PC+PE 的值最小,此时BE 是△ABC 的中线,∵AD 也是中线,∴点P 是△ABC 的重心,故选:A.【点睛】此题考查等腰三角形的性质,轴对称图形中最短路径问题,三角形的重心定义.5.如右图,在ABC ∆中,90ACB ∠=︒,CD AD ⊥,垂足为点D ,有下列说法:①点A 与点B 的距离是线段AB 的长;②点A 到直线CD 的距离是线段AD 的长;③线段CD 是ABC ∆边AB 上的高;④线段CD 是BCD ∆边BD 上的高.上述说法中,正确的个数为( )A .1个B .2个C .3个D .4个【答案】D【解析】【分析】 根据两点间的距离定义即可判断①,根据点到直线距离的概念即可判断②,根据三角形的高的定义即可判断③④.【详解】解:①、根据两点间的距离的定义得出:点A 与点B 的距离是线段AB 的长,∴①正确; ②、点A 到直线CD 的距离是线段AD 的长,∴②正确;③、根据三角形的高的定义,△ABC 边AB 上的高是线段CD ,∴③正确;④、根据三角形的高的定义,△DBC 边BD 上的高是线段CD ,∴④正确.综上所述,正确的是①②③④共4个.故选:D .【点睛】本题主要考查对两点间的距离,点到直线的距离,三角形的高等知识点的理解和掌握,能熟练地运用概念进行判断是解此题的关键.6.如图,已知圆柱底面的周长为4 dm,圆柱的高为2 dm,在圆柱的侧面上,过点A和点C 嵌有一圈金属丝,则这圈金属丝的周长的最小值为()A.45 dm B.22 dm C.25 dm D.42 dm【答案】D【解析】【分析】要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.【详解】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.∵圆柱底面的周长为4dm,圆柱高为2dm,∴AB=2dm,BC=BC′=2dm,∴AC2=22+22=4+4=8,∴AC=22dm,∴这圈金属丝的周长最小为2AC=42dm.故选D.【点睛】本题考查了平面展开-最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.7.如图,B是线段AD的中点,C是线段BD上一点,则下列结论中错误..的是()A.BC=AB-CD B.BC=12(AD-CD) C.BC=12AD-CD D.BC=AC-BD【答案】B 【解析】试题解析:∵B是线段AD的中点,∴AB=BD=12 AD,A、BC=BD-CD=AB-CD,故本选项正确;B、BC=BD-CD=12AD-CD,故本选项错误;C、BC=BD-CD=12AD-CD,故本选项正确;D、BC=AC-AB=AC-BD,故本选项正确.故选B.8.如图,是一个正方体的表面展开图,将其折成正方体后,则“扫”的对面是()A.黑B.除C.恶D.☆【答案】B【解析】【分析】正方体的空间图形,从相对面入手,分析及解答问题.【详解】解:将其折成正方体后,则“扫”的对面是除.故选B.【点睛】本题考查了正方体的相对面的问题.能够根据正方体及其表面展开图的特点,找到相对的面是解题的关键.9.已知点C在线段AB上,则下列条件中,不能确定点C是线段AB中点的是()A.AC=BC B.AB=2AC C.AC+BC=AB D.12 BC AB【答案】C 【解析】【分析】根据线段中点的定义,结合选项一一分析,排除答案.显然A、B、D都可以确定点C是线段AB中点【详解】解:A、AC=BC,则点C是线段AB中点;B、AB=2AC,则点C是线段AB中点;C、AC+BC=AB,则C可以是线段AB上任意一点;D、BC=12AB,则点C是线段AB中点.故选:C.【点睛】本题主要考查线段中点,解决此题时,能根据各选项举出一个反例即可.10.一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是()A.中B.考C.顺D.利【答案】C【解析】试题解析:正方体的表面展开图,相对的面之间一定相隔一个正方形,“祝”与“考”是相对面,“你”与“顺”是相对面,“中”与“立”是相对面.故选C.考点:正方体展开图.11.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我【答案】D【解析】分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.详解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“的”与“害”是相对面,“了”与“厉”是相对面,“我”与“国”是相对面.故选:D.点睛:本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.12.已知:在Rt△ABC中,∠C=90°,BC=1,AC=3,点D是斜边AB的中点,点E是边AC上一点,则DE+BE的最小值为()A.2B.31C.3D.23【答案】C【解析】【分析】作B关于AC的对称点B',连接B′D,易求∠ABB'=60°,则AB=AB',且△ABB'为等边三角形,BE+DE=DE+EB'为B'与直线AB之间的连接线段,其最小值为B'到AB的距离=AC=3,所以最小值为3.【详解】解:作B关于AC的对称点B',连接B′D,∵∠ACB=90°,∠BAC=30°,∴∠ABC=60°,∵AB=AB',∴△ABB'为等边三角形,∴BE+DE=DE+EB'为B'与直线AB 之间的连接线段,∴最小值为B'到AB 的距离=AC=3,故选C .【点睛】本题考查的是最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此题的关键.13.如图,点C 是射线OA 上一点,过C 作CD ⊥OB ,垂足为D ,作CE ⊥OA ,垂足为C ,交OB 于点E ,给出下列结论:①∠1是∠DCE 的余角;②∠AOB =∠DCE ;③图中互余的角共有3对;④∠ACD =∠BEC ,其中正确结论有( )A .①②③B .①②④C .①③④D .②③④【答案】B【解析】【分析】 根据垂直定义可得BCA 90∠=o ,ADC BDC ACF 90∠∠∠===o ,然后再根据余角定义和补角定义进行分析即可.【详解】解:CE OA ⊥Q ,OCE 90o ∠∴=,ECD 190∠∠∴+=o ,1∠∴是ECD ∠的余角,故①正确;CD OB ⊥Q ,AOB COCE 90∠∠∴==o ,AOB OEC 90∠∠∴+=o ,DCE OEC 90∠∠+=o ,B BAC 90∠∠∴+=o ,1ACD 90∠∠+=o ,AOB DCE ∠∠∴=,故②正确;1AOB 1DCE DCE CED AOB CED 90∠∠∠∠∠∠∠∠+=+=+=+=o Q , ∴图中互余的角共有4对,故③错误;ACD 90DCE ∠∠=+o Q ,BEC 90AOB ∠∠=+o ,AOB DCE ∠∠=Q ,ACD BEC ∠∠∴=,故④正确.正确的是①②④;故选B .【点睛】考查了余角和补角,关键是掌握两角之和为90o 时,这两个角互余,两角之和为180o 时,这两个角互补.14.如图,圆柱形玻璃板,高为12cm ,底面周长为18cm ,在杯内离杯底4cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的A 处,则蚂蚁到达蜂蜜的最短距离( )cm .A .14B .15C .16D .17【答案】B【解析】【分析】 在侧面展开图中,过C 作CQ ⊥EF 于Q ,作A 关于EH 的对称点A′,连接A′C 交EH 于P ,连接AP ,则AP+PC 就是蚂蚁到达蜂蜜的最短距离,求出A′Q ,CQ ,根据勾股定理求出A′C 即可.【详解】解:沿过A 的圆柱的高剪开,得出矩形EFGH ,过C 作CQ ⊥EF 于Q ,作A 关于EH 的对称点A ′,连接A ′C 交EH 于P ,连接AP ,则 AP +PC 就是蚂蚁到达蜂蜜的最短距离,∵AE =A ′E ,A ′P =AP ,∴AP +PC =A ′P +PC =A ′C ,∵CQ =12×18cm =9cm ,A ′Q =12cm ﹣4cm +4cm =12cm , 在Rt △A ′QC 中,由勾股定理得:A ′C 22129+=15cm ,故选:B .【点睛】本题考查了圆柱的最短路径问题,掌握圆柱的侧面展开图、勾股定理是解题的关键.15.如图,在ABC V 中,90C ∠=︒,30B ∠=︒,如图:(1)以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ;(2)分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ;(3)连结AP 并延长交BC 于点D .根据以上作图过程,下列结论中错误的是( )A .AD 是BAC ∠的平分线B .60ADC ∠=︒ C .点D 在AB 的中垂线上D .:1:3DAC ABD S S =△△【答案】D【解析】【分析】 根据作图的过程可以判定AD 是∠BAC 的角平分线;利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC 的度数;利用等角对等边可以证得△ADB 的等腰三角形,由等腰三角形的“三线合一”的性质可以证明点D 在AB 的中垂线上;利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.【详解】解:A 、根据作图方法可得AD 是∠BAC 的平分线,正确;B 、∵∠C=90°,∠B=30°,∴∠CAB=60°,∵AD 是∠BAC 的平分线,∴∠DAC=∠DAB=30°,∴∠ADC=60°,正确;C 、∵∠B=30°,∠DAB=30°,∴AD=DB ,∴点D 在AB 的中垂线上,正确;D 、∵∠CAD=30°,∴CD=12 AD,∵AD=DB,∴CD=12 DB,∴CD=13 CB,S△ACD=12CD•AC,S△ACB=12CB•AC,∴S△ACD:S△ACB=1:3,∴S△DAC:S△ABD≠1:3,错误,故选:D.【点睛】本题考查了角平分线的性质、线段垂直平分线的性质以及作图—基本作图.解题时,需要熟悉等腰三角形的判定与性质.16.一个角的补角比这个角的余角3倍还多10°,则这个角的度数为()A.140° B.130° C.50° D.40°【答案】C【解析】【分析】根据互为余角的两个角的和等于90°,互为补角的两个角的和等于180°,列出方程,然后解方程即可.【详解】设这个角为α,则它的余角为90°-α,补角为180°-α,根据题意得,180°-α=3(90°-α)+10°,180°-α=270°-3α+10°,解得α=50°.故选C.【点睛】本题考查了互为余角与补角的性质,表示出这个角的余角与补角然后列出方程是解题的关键.17.如图所示为几何体的平面展开图,则从左到右,其对应的几何体名称分别为()A.圆锥,正方体,三棱锥,圆柱B.圆锥,正方体,四棱锥,圆柱C.圆锥,正方体,四棱柱,圆柱D.正方体,圆锥,圆柱,三棱柱【答案】D【解析】【分析】根据常见的几何体的展开图进行判断,即可得出结果.【详解】根据几何体的平面展开图,则从左到右,其对应的几何体名称分别为:正方体,圆锥,圆柱,三棱柱.故选D.【点睛】本题考查了常见几何体的展开图;熟记常见几何体的平面展开图的特征,是解题的关键.18.如图,DE∥BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为()A.20°B.35°C.55°D.70°【答案】B【解析】【分析】根据平行线的性质可得∠1=∠ABC=70°,再根据角平分线的定义可得答案.【详解】∵DE∥BC,∴∠1=∠ABC=70°,∵BE平分∠ABC,∴1352CBE ABC∠=∠=︒,故选:B.【点睛】此题主要考查了平行线的性质,以及角平分线的定义,解题的关键是掌握两直线平行,内错角相等.19.如图,该表面展开图按虚线折叠成正方体后,相对面上的两个数互为相反数,则()x y+的值为()A.-2 B.-3 C.2 D.1【答案】C【解析】【分析】利用正方体及其表面展开图的特点,根据相对面上的两个数互为相反数,列出方程求出x、y的值,从而得到x+y的值.【详解】这是一个正方体的平面展开图,共有六个面,其中面“1”与面“x”相对,面“-3”与面“y”相对.因为相对面上的两个数互为相反数,所以1+0 30xy=⎧⎨-+=⎩解得:-13 xy=⎧⎨=⎩则x+y=2故选:C【点睛】本题考查了正方体的平面展开图,注意从相对面入手,分析及解答问题.20.如图,一副三角尺按不同的位置摆放,摆放位置中αβ∠=∠的图形的个数是()A.1B.2C.3D.4【答案】C【解析】【分析】根据直角三角板可得第一个图形∠β=45°,进而可得∠α=45°;根据余角和补角的性质可得第二个图形、第四个图形中∠α=∠β,第三个图形∠α和∠β互补.【详解】根据角的和差关系可得第一个图形∠α=∠β=45°,根据等角的补角相等可得第二个图形∠α=∠β,第三个图形∠α+∠β=180°,不相等,根据同角的余角相等可得第四个图形∠α=∠β,因此∠α=∠β的图形个数共有3个,故选:C.【点睛】此题主要考查了余角和补角,关键是掌握余角和补角的性质:等角的补角相等.等角的余角相等.。
中考数学练习:图形的认识

中考数学练习:图形的认识1、点,线,面点,线,面:①图形是由点,线,面构成的。
②面与面相交得线,线与线相交得点。
③点动成线,线动成面,面动成体。
展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。
②N棱柱就是底面图形有N条边的棱柱。
截一个几何体:用一个平面去截一个图形,截出的面叫做截面。
视图:主视图,左视图,俯视图。
多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。
弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。
②圆可以分割成假设干个扇形。
2、角线:①线段有两个端点。
②将线段向一个方向无限延长就形成了射线。
射线只有一个端点。
③将线段的两端无限延长就形成了直线。
直线没有端点。
④经过两点有且只有一条直线。
比较长短:①两点之间的所有连线中,线段最短。
②两点之间线段的长度,叫做这两点之间的距离。
角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。
②一度的1/60是一分,一分的1/60是一秒。
角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。
②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。
始边继续旋转,当他又和始边重合时,所成的角叫做周角。
③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
平行:①同一平面内,不相交的两条直线叫做平行线。
②经过直线外一点,有且只有一条直线与这条直线平行。
③如果两条直线都与第3条直线平行,那么这两条直线互相平行。
垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。
②互相垂直的两条直线的交点叫做垂足。
③平面内,过一点有且只有一条直线与直线垂直。
垂直平分线:垂直和平分一条线段的直线叫垂直平分线。
垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。
初三中考数学复习-几何图形初步

几何图形初步一、直线、射线、线段1.直线的性质(1)两条直线相交,只有一个交点;(2)经过两点有且只有一条直线,即两点确定一条直线.(3)直线的基本事实:经过两点有且只有一条直线.2.线段的性质两点确定一条直线,两点之间,线段最短,两点间线段的长度叫两点间的距离.3.线段的中点性质若C是线段AB中点,则AC=BC=12AB;AB=2AC=2BC.4.两条直线的位置关系在同一平面内,两条直线只有两种位置关系:平行和相交.5.垂线的性质(1)两条直线相交所构成的四个角中有一个角是直角,则这两条直线互相垂直,其中一条直线叫做另一条直线的垂线;(2)①经过一点有且只有一条直线与已知直线垂直;②直线外一点与直线上各点连接的所有线段中,垂线段最短.6.点到直线的距离从直线外一点向已知直线作垂线,这一点和垂足之间线段的长度叫做点到直线的距离.二、角1.角有公共端点的两条射线组成的图形.2.角平分线(1)定义:在角的内部,以角的顶点为端点把这个角分成两个相等的角的射线(2)性质:若OC是∠AOB的平分线,则∠AOC=∠BOC=12∠AOB,∠AOB=2∠AOC=2∠BOC.3.度、分、秒的运算方法1°=60′,1′=60″,1°=3600″.1周角=2平角=4直角=360°.分针:60分钟转一圈,每分钟转动的角度为:360°÷60=6°时针:12小时转一圈,每分钟转动的角度为:360°÷12÷60=0.54.余角和补角(1)余角:∠1+∠2=90°⇔∠1与∠2互为余角;(2)补角:∠1+∠2=180°⇔∠1与∠2互为补角.(3)性质:同角(或等角)的余角相等;同角(或等角)的补角相等.5.方向角和方位角在描述方位角时,一般应先说北或南,再说偏西或偏东多少度,而不说成东偏北(南)多少度或西偏北(南)多少度.当方向角在45°方向上时,又常常说成东南、东北、西南、西北方向.6、对顶角、邻补角如果两个角有一个公共顶点,而且一个角的两边分别是另一个角的两边的反向延长线,那么这两个角叫做对顶角.注意:对顶角是成对出现的,对顶角的两边互为反向延长线;有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.对顶角的性质:对顶角相等.三、立体图形1.常见的立体图形有:球、柱体和锥体.圆柱和棱柱的区别:圆柱的底面是圆,棱柱的底面是多边形;圆柱的侧面是曲面,棱柱的侧面是四边形;圆锥和棱锥的区别:圆锥的底面是圆,侧面是曲面;棱锥的底面是多边形,侧面是三角形.2.点动成线,线动成面,面动成体,线没有粗细,点没有大小.3.正方体的平面展开图有如下11种类型:四、三线八角如图:直线a 1、a 2被直线a 3所截,构成了八个角.观察∠1与∠5的位置:它们都在第三条直线a3的同侧,并且分别位于直线a1、a2的同一侧,这样的一对角叫做“同位角”.观察∠3与∠5的位置:它们分别在第三条直线a3的异侧,并且都位于两条直线a1、a2之间,这样的一对角叫做“内错角”.观察∠2与∠5的位置:它们都在第三条直线a3的同旁,并且都位于两条直线a1、a2之间,这样的一对角叫做“同旁内角”.寻找一个角的同位角、内错角、同旁内角,首先应该把这个角放在一个“三线八角”的基本图形中,其次,不管是同位角,还是内错角或是同旁内角,它们都具有一个共同特征:这两个角有一对边在同一直线上,这条共同的直线就是第三边,而两个角剩下的两边所在直线就是另两直线.五、平行公理及推论同一平面内,存在一个直线a与直线b不相交的位置,这时直线a与b互相平行.换言之,同一平面内,不相交的两条直线叫做平行线,直线a与b是平行线,记作“∥”,这里“∥”是平行符号.1、平行公理:经过直线外一点,有且只有一条直线与这条直线平行.比较平行公理和垂线的第一条性质:共同点:都是“有且只有一条直线”,这表明过一点与已知直线平行或垂直的直线存在并且是唯一的.不同点:平行公理中所过的“一点”要在已知直线外;垂线性质中对“一点”没有限制,可在直线上,也可在直线外.2、平行公理的推论:两条直线都与第三条直线平行,那么这两条直线也互相平行.用数学符号来表示:如果b∥a,c∥a,那么b∥c.六、平行线的判定与性质(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.(3)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.(4)两条直线都和第三条直线平行,那么这两条直线平行.(5)在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行.性质1:两条平行线被第三条直线所截,同位角相等,简称为两直线平行,同位角相等.性质2:两条平行线被第三条直线所截,内错角相等,简称为两直线平行,内错角相等.性质3:两条平行线被第三条直线所截,同旁内角互补,简称为两直线平行,同旁内角互补.考向一直线、射线、线段在解答有关线段的计算问题时,一般要注意以下几个方面:①按照已知条件画出图形是正确解题的关键;②观察图形,找出线段之间的关系;③简单的问题可通过列算式求出,复杂的问题可设未知数,利用方程解决.典例1如图,点D是线段AB的中点,点C是线段AD的中点,若CD=1,则AB=__________.1.如图,在数轴上有A、B、C、D四个整数点(即各点均表示整数),且2AB=BC=3CD,若A、D两点表示的数分别为-5和6,且AC的中点为E,BD的中点为M,BC之间距点B的距离为13BC的点N,则该数轴的原点为A.点E B.点FC.点M D.点N考向二角1.角平分线必须同时满足三个条件:①是从角的顶点引出的射线;②在角的内部;③将已知角平分.2.类似地,也有角的n等分线,如三等分线,如图,∠1=∠2=∠3=13∠AOD或∠AOD=3∠1=3∠2=3∠3.典例2一副三角尺按如图所示摆放,已知∠1比∠2的3倍少10°,则∠1的值为A.20°B.70°C.25°D.65°典例3如图,将一副三角尺按不同的位置摆放,下列方式中∠α与∠β互余的是A.图①B.图②C.图③D.图④2.如图,∠AOB=130°,射线OC是∠AOB内部任意一条射线,OD、OE分别是∠AOC、∠BOC的角平分线,下列叙述正确的是A.∠DOE的度数不能确定B.∠AOD=12∠EOCC.∠AOD+∠BOE=65°D.∠BOE=2∠COD3.如图,∠AOB=180°,∠BOC=80°,OD平分∠AOC,∠DOE=3∠COE,求∠BOE.考向三立体图形的平面展开图1.从不同方向看物体,看得见的轮廓线画实线,看不见的轮廓线画虚线.2.在正方体的平面展开图中,一条直线上的小正方形不会超过四个;展开图中不会出现“田”字形、“凹”字形的形状.典例4下列各图中,可以是一个正方体的表面展开图的是A.B.C.D.典例5如图,是一个正方体纸盒的展开图,若在其中三个正方形A,B,C中分别填入适当的数,使得它们折成正方体后相对的面上两个数互为相反数,则填入正方形A,B,C中的三个数依次是A.1,-3,0B.0,-3,1C.-3,0,1D.-3,1,04.如图所示的立方体,如果把它展开,可以是下列图形中的A.B.C.D.5.如图是一个正方体包装盒的表面积展开图,若在其中的三个正方形A、B、C内分别填上适当的数,使得将这个表面展开图沿虚线折成正方体后,相对面上的两数互为相反数,则填在A、B、C内的三个数依次为A.0,-2,1B.0,1,2C.1,0,-2D.-2,0,11.将如图所示表面带有图案的正方体沿某些棱展开后,得到的图形是A.B.C.D.2.如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字A.的B.中C.国D.梦3.如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为A.北偏东30°B.北偏东80°C.北偏西30°D.北偏西50°4.如图,O是直线AB上的一点,过点O任意作射线OC,OD平分∠AOC,OE平分∠BOC,则∠DOEA.一定是钝角B.一定是锐角C.一定是直角D.都有可能5.将一副三角板按如图方式摆放,∠1与∠2不一定互补的是A.B.C.D.6.如图,A,B,C,D是直线L上顺次四点,M,N分别是AB,CD的中点,且MN=6cm,BC=1cm,则AD的长等于A.10cm B.11cmC.12cm D.13cm7、小明在操场上从A点出发,先沿南偏东30°方向走到B点,再沿南偏东60°方向走到C点.这时,∠ABC的度数是()A.120°B.135°C.150°D.160°8、如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数.9、判断下列图中是否存在对顶角.10、找出∠1、∠2、∠3中哪两个是同位角、内错角、同旁内角.11、如图所示,直线a,b被直线c所截,a∥b,∠1与∠2满足什么关系,请说明理由.12、已知如图所示,B,A,E在一条直线上,∠1=∠B,问∠C与∠2相等吗?为什么?13、观察如图所示图形,若使AD∥BC,需添加什么条件?从同位角,内错角,同旁内角三个方面各举一个例子即可.14、如图所示是汽车灯的剖面图,从位于O点灯发出光照射到凹面镜上反射出的光线BA,CD都是水平线,若∠ABO=α,∠DCO=60°,则∠BOC的度数为()A.180°-αB.120°-αC.60+αD.60°-α15、有下列描述:①对顶角相等;②在同一平面内,垂直于同一条直线的两直线平行;③相等的角是对顶角;④内错角相等.其中错误的有()A.①②B.①③C.②④D.③④16、下图中与是内错角的是()A.B.C.D.17、如图,直线AB∥CD,则下列结论正确的是()A.∠1=∠2B.∠3=∠4C.∠1+∠3=180°D.∠3+∠4=180°18、若A,B,C是直线l上的三点,P是直线l外一点,且PA=5cm,PB=4cm,PC=3cm,则点P到直线l 的距离()A.等于3cmB.大于3cm而小于4cmC.不大于3cmD.小于3cm19、如图,将一个等腰直角三角板按照如图方式,放置在一个矩形纸片上,其中∠α=24°,则∠β的度数为()A.24°B.21°C.30°D.45°20、把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则的度数是()A.B.C.D.21、如图,已知点O在直线AB上,CO⊥DO于点O,若∠1=145°,则∠3的度数为()A.35°B.45°C.55°D.65°22.在同一个平面内,不重合的两条直线的位置关系可能是()A.相交或平行B.相交或垂直C.平行或垂直D.不能确定23.如图,若AB∥CD,则∠α、∠β、∠γ之间关系是()A.∠α+∠β+∠γ=180°B.∠α+∠β﹣∠γ=360°C.∠α﹣∠β+∠γ=180°D.∠α+∠β﹣∠γ=180°24.下列描述中,是正确的是()①两条直线被第三条直线所截,同位角相等;②在同一平面内,垂直于同一直线的两条直线互相平行③三角形的三条高中,必有一条在三角形的内部④三角形的三个外角一定都是锐角A.①②B.②③C.①③D.③④25.如图所示,直线EO⊥CD,垂足为点O,AB平分∠EOD,则∠BOD的度数为()A.120°B.130°C.135°D.140°26.下列描述错误的是()A.对顶角相等B.两直线平行,同旁内角相等C.平行于同一条直线的两直线平行D.同位角相等,两直线平行27.如图所示,∠BAC=90°,AD⊥BC于D,则下列结论中,正确的个数为().①AB⊥AC;②AD与AC互相垂直;③点C到AB的垂线段是线段AB;④点D到BC的距离是线段AD的长度;⑤线段AB的长度是点B到AC的距离;⑥线段AB是点B到AC的距离;⑦AD>BD.A.2个B.4个C.7个D.0个28.判断下列说法是否正确,如果正确,请说明理由;如果错误,请订正.(1)直线外一点与直线上一点间的线段的长度是这一点到这条直线的距离;(2)如图,线段AE的长是点A到直线BC的距离;(3)如图,线段CD是点C到直线AB的距离.29.判断以下两条直线是否互相垂直:两条直线相交所成的四个角中有一个是直角;两条直线相交所成的四个角相等;两条直线相交,有一组邻补角相等;两条直线相交,对顶角互补.30.如图所示,想在河堤两岸塔建一座桥,搭建方式最短的是,理由.31.如图,直线AB,CD相交于点O,OE把∠BOD分成两部分.(1)直接写出图中∠AOC的对顶角为________,∠BOE的邻补角为________;(2)若∠AOC=70°,且∠BOE∶∠EOD=2∶3,求∠AOE的度数.32.如图所示,∠ACB=60°,∠ABC=50°,BO,CO分别是∠ABC,∠ACB的平分线,EF经过O点且平行于BC,则∠BOC=度.33.如图,EF⊥CD于F,GH⊥CD于H,已知∠1=70°,求∠3的度数.34.如图所示,AD⊥BC于点D,EG⊥BC于点G,∠E=∠3,求证:AD平分∠BAC.35.如图,D是AB的中点,E是BC的中点.(1)若AB=3,BC=5,则DE=__________;(2)若AC=8,EC=3,则AD=__________.36.如图,Rt△ABC中,∠ACB=90°,过点C的直线DF与∠BAC的平分线AE平行,若∠B=40°,则∠BCF=__________度.37.如图,一只蜘蛛从长、宽都为3,高为8的长方体纸箱的A点沿纸箱表面爬到B点,那么它所爬行的最短路线的长是__________.38.已知∠AOB=120°,OC、OD过点O的射线,射线OM、ON分别平分∠AOC和∠DOB.(1)如图①,若OC、OD是∠AOB的三等分线,求∠MON的度数;(2)如图②,若∠COD=50°,∠AOC≠∠DOB,求∠MON的度数;(3)如图③,在∠AOB内,若∠COD=α(0°<α<60°),求∠MON的度数.39.如图,直线AB,CD相交于O,OE是∠AOD的平分线,∠AOC=28°,求∠AOE的度数.40.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.41.已知线段AB=12,CD=6,线段CD在直线AB上运动(A在B的左侧,C在D的左侧).(1)当D点与B点重合时,AC=__________;(2)点P是线段AB延长线上任意一点,在(1)的条件下,求PA+PB–2PC的值;(3)M、N分别是AC、BD的中点,当BC=4时,求MN的长.42、如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=9cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a cm,其它条件不变,你能猜想MN的长度吗?并说明理由.你能用一句简洁的话描述你发现的结论吗?(3)若C在线段AB的延长线上,且满足AC-BC=b cm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.43、(1)如图,已知点C在线段AB上,且AC=6cm,BC=4cm,点M、N分别是AC、BC的中点,求线段MN 的长度.(2)若点C是线段AB上任意一点,且AC=a,BC=b,点M、N分别是AC、BC的中点,请直接写出线段MN 的长度;(用含a、b的代数式表示)(3)在(2)中,把点C是线段AB上任意一点改为:点C是直线AB上任意一点,其它条件不变,请求出线段MN的长度。
初中数学几何图形初步知识点总复习附答案

C. D.
【答案】A
【解析】
【分析】
设正六棱柱的底面边长为acm,高为hcm,分别表示出挪动前后所在矩形的长与宽,由题意列出方程求出a=2,h=9− ,再根据六棱柱的侧面积是6ah求解.
【详解】
解:设正六棱柱的底面边长为acm,高为hcm,
如图,正六边形边长AB=acm时,由正六边形的性质可知∠BAD=30°,
【答案】D
【解析】
【分析】
根据方向角的概念和平行线的性质求解.
【详解】
如图,过点B作BF∥AE,则∠DBF=∠DAE= ,
∴∠CBF=∠DBC-∠DBF=90°-43°=47°,
∴从B地测得C地在B地的北偏西47°方向上,
故选:D.
【点睛】
此题考查方位角,平行线的性质,正确理解角度间的关系求出能表示点位置的方位角是解题的关键.
故选:A.
【点睛】
本题考查了几何体的展开图,正六棱柱的性质,含30度角的直角三角形的性质;能够求出正六棱柱的高与底面边长是解题的关键.
6.下面四个图形中,是三棱柱的平面展开图的是()
A. B. C. D.
【答案】C
【解析】
【分析】
根据三棱柱的展开图的特点作答.
【详解】
A、是三棱锥的展开图,故不是;
B、两底在同一侧,也不符合题意;
∴∠ACD=38°,
∴∠2=∠BCD=60°﹣38°=22°,
故选:B.
【点睛】
本题考查了平行线的计算问题,掌握平行线的性质是解题的关键.
14.如图, 为等边三角形,点 从A出发,沿 作匀速运动,则线段 的长度y与运动时间x之间的函数关系大致是()
A. B.
C. D.
中考数学专项练习图形认识初步(含解析)

中考数学专项练习图形认识初步(含解析)【一】单项选择题1.能用∠α、∠AOB、∠O三种方式表示同一个角的图形是〔〕A. B.C. D.2.假设∠A=35°16′,那么其余角的度数为〔〕A.54°44′B.54°84′C.55°44′D.144°44′3.用平面去截四棱柱,在所得的截面中,不可能出现的是〔〕A.七边形B.四边形C.六边形D.三角形4.图形哪些是正方体的展开图〔〕A.〔1〕〔2〕〔3〕B.〔2〕〔3〔4〕 C.〔1〕〔3〕〔4〕 D.〔1〕〔2〕〔4〕5.如图,∠BOC=2∠AOB,OD平分∠AOC,∠BOD=14°,那么∠A OB的度数为〔〕A.14°B.28°C.32°D.40°6.如图,用平面截圆锥,所得的截面图形不可能是〔〕A.B.C.D.7.如下图,O是直线AB上一点,图中小于180°的角共有〔〕A.7个B.9个C.8个D.10个8.如图,AB∥CD,∠C=35°,BC平分∠ABE,那么∠ABE的度数是()A.17.5°B.35°C.70°D.105°9.如下图,小于平角的角有〔〕A.9个B.8个C.7个D.6个10.用一副七巧板,不能拼成以下哪种图形〔〕A.三角形B.正方形C.长方形 D.凸八边形【二】填空题11.钟表上的时间是2时30分,此时时针与分针所成的夹角是_______ _度.12.如图,∠AOC=150°,那么射线OA的方向是________13.比较大小:32.5°________32°5'〔填〝>〞、〝=〞或〝<〞〕.14.如图,OD、OE分别是∠AOC的平分线,∠AOD=40°,∠BOE=2 5°,求∠AOB的度数.解:因为OD平分∠AOC,OE平分∠BOC〔〕.所以∠AOC=2∠AOD,∠BOC=2________,因为∠AOD=40°,________=25°〔〕所以∠AOC=2×40°=80°〔等量代换〕,∠BOC=2×________=________.所以∠AOB=________.15.如图,将三角形ABC纸片沿MN折叠,使点A落在点A′处,假设∠A′MB=55°,那么∠AMN=________°.16.如果一个角与它的余角之比为1:2,那么这个角为________度.17.比较大小:32.15°________2×16°6′.〔填〝>〞或〝<〞号〕【三】计算题18.计算:〔1〕49°38′+66°22′;〔2〕180°﹣79°19′;〔3〕22°16′×5;〔4〕182°36′÷4.19.计算以下各题:〔1〕150°19′42″+26°40′28″〔2〕33°15′16″×5.20.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE、试求∠COE的度数.【四】解答题21.在小学,我们曾学过圆柱的体积计算公式:v=πR2h 〔R是圆柱底面半径,h为圆柱的高〕.现有一个长方形,长为2cm.宽为1cm,分别以它的两边所在的直线为轴旋转一周.得到的几何体的体积分别是多少?它们之间有何关系?22.用一个平面截一个正方体,得到一个长方形的截面.且把正方体分为两部分.问:这两部分各由几个面围成?【五】综合题23.如图,O为直线AB上一点,∠DOE=90°,OD是∠AOC的角平分线,假设∠AOC=70°.〔1〕求∠BOD的度数.〔2〕试判断OE是否平分∠BOC,并说明理由.【一】单项选择题【考点】角的概念【解析】【解答】解:A、因为顶点O处有四个角,所以这四个角均不能用∠O表示,故本选项错误;B、因为顶点O处只有一个角,所以这个角能用∠O、∠α及∠AOB表示,故本选项正确;C、因为顶点O处有三个角,所以这三个角均不能用∠O表示,故本选项错误;D、因为∠O与∠α表示的不是同一个角,故本选项错误.应选B、【分析】根据角的表示方法进行逐一分析,即角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否那么分不清这个字母究竟表示哪个角.角还可以用一个希腊字母〔如∠α,∠β,∠γ、…〕表示,或用阿拉伯数字〔∠1,∠2…〕表示.【考点】余角和补角【解析】【解答】解:∠A的余角为:90°﹣∠A=90°﹣35°16′=54°44′;应选A、【分析】根据余角的定义容易求出∠A的余角为90°﹣∠A、【考点】截一个几何体【解析】【解答】解:四棱柱有六个面,用平面去截四棱柱时最多与六个面相交得六边形,最少与三个面相交得三角形.因此不可能是七边形.应选:A、【分析】四棱柱有六个面,用平面去截四棱柱时最多与六个面相交得六边形,最少与三个面相交得三角形.【考点】几何体的展开图【考点】角的计算【解析】【解答】解:∵∠BOC=2∠AOB,OD平分∠AOC,∴∠AOC=3∠AOB=2∠AOD,∴∠AOD=1.5∠AOB,∴∠AOD﹣∠AOB=0.5∠AOB=∠BOD=14°,∴∠AOB=28°,应选B、【分析】根据∠BOC=2∠AOB,OD平分∠AOC,∠BOD=14°,可以得到∠AOB与∠AOD的关系,从而与∠BOD建立关系,得到∠AOB的度数.【考点】截一个几何体【解析】【解答】解:如果用平面取截圆锥,平面过圆锥顶点时得到的截面图形是一个三角形,如果不过顶点,且平面与底面平行,那么得到的截面就是一个圆,如果不与底面平行得到的就是一个椭圆,所以不可能是正方形.应选:C、【分析】根据圆锥的形状特点判断即可,也可用排除法.【考点】角的大小比较【解析】【解答】解:有两种方法:〔Ⅰ〕先数出以OA为一边的角,再数出以OB、OC、OD、OE为一边的角,把他们加起来.〔Ⅱ〕可根据公式:来计算,其中,n指从点O发出的射线的条数.图中角共有4+3+2+1=10个,根据题意要去掉平角,所以图中小于180°的角共有10﹣1=9个.应选B、【分析】按一定的规律数即可.【考点】角平分线的定义,平行线的性质【解析】【分析】先根据两直线平行,内错角相等,求出∠CBA,然后根据角平分线性质求解即可.【解答】∵AB∥CD,∠C=35°,∴∠ABC=∠C=35°,又∵BC平分∠ABE,∴∠ABE=2∠ABC=70°,应选C、【点评】此题主要考查平行线的性质和角平分线的定义.【考点】角的计算【解析】【解答】解:符合条件的角中以A为顶点的角有1个,以B为顶点的角有2个,以C为顶点的角有1个,以D为顶点的角有1个,以E为顶点的角有2个,故有1+2+1+1+2=7个角.应选C、【分析】分别根据以A,B,C,D,E为顶点得出角的个数即可.【考点】七巧板【解析】【解答】解:如图,一副七巧板能拼成三角形,正方形,长方形,平行四边形,不能拼成凸八边形.应选D、【分析】根据七巧板能拼成的常见平面图形解答.【二】填空题【考点】钟面角、方位角【考点】钟面角、方位角【考点】角平分线的定义,角的计算,角的大小比较【考点】角平分线的定义【考点】角的计算,翻折变换〔折叠问题〕【考点】余角和补角【考点】角平分线的定义,角的计算【三】计算题【考点】度分秒的换算【解析】【分析】两个度数相加,度与度,分与分对应相加,分的结果假设满60,那么转化为度.两个度数相减,度与度,分与分对应相减,分的结果假设不够减,那么借位后再减,1°=60′;进行角的乘法运算,应将度分秒分别与5相乘,然后依次进位.一个度数除以一个数,那么从度位开始除起,余数变为分,分的余数变为秒.【考点】度分秒的换算【考点】角平分线的定义,角的计算,余角和补角【解析】【分析】根据OC平分∠AOB可求∠BOC的度数,∠BOD与∠BOC互余可求∠BOD,由∠BOD=3∠DOE可求∠DOE,根据∠COE=∠COD﹣∠DOE可求∠COE【四】解答题【考点】点、线、面、体【解析】【分析】根据圆柱体的体积=底面积×高求解,注意底面半径和高互换得圆柱体的两种情况.【考点】截一个几何体【解析】【分析】有四种可能:①平行于棱中间竖截;②相邻的两个面斜截;③沿对角线竖截;④从一条棱斜截.【五】综合题【考点】角平分线的定义【解析】【分析】〔1〕根据角的平分线的定义求得∠AOD的度数,然后根据邻补角的定义求得∠BOD的度数;〔2〕首先根据∠DOE=90°,即∠COD+∠COE=90°,即可求得∠COE的度数,然后根据∠BOE=180°﹣∠AOD﹣∠DOE,求得∠BOE的度数,从而判断.。
中考——图形的初步认识

图形的初步认识考点一、直线、射线和线段1、几何图形:从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、直线的概念:一根拉得很紧的线,就给我们以直线的形象,直线是直的,并且是向两方无限延伸的。
4、射线的概念:直线上一点和它一旁的部分叫做射线。
这个点叫做射线的端点。
5、线段的概念:直线上两个点和它们之间的部分叫做线段。
这两个点叫做线段的端点。
6、点、直线、射线和线段的表示在几何里,我们常用字母表示图形。
一个点可以用一个大写字母表示。
一条直线可以用一个小写字母表示。
一条射线可以用端点和射线上另一点来表示。
一条线段可用它的端点的两个大写字母来表示。
注意:(1)表示点、直线、射线、线段时,都要在字母前面注明点、直线、射线、线段。
(2)直线和射线无长度,线段有长度。
(3)直线无端点,射线有一个端点,线段有两个端点。
(4)点和直线的位置关系有线面两种:①点在直线上,或者说直线经过这个点。
②点在直线外,或者说直线不经过这个点。
7、直线的性质(1)直线公理:经过两个点有一条直线,并且只有一条直线。
它可以简单地说成:过两点有且只有一条直线。
(2)过一点的直线有无数条。
(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。
(4)直线上有无穷多个点。
(5)两条不同的直线至多有一个公共点。
8、线段的性质(1)线段公理:两点之间线段最短。
(2)连接两点的线段的长度,叫做这两点的距离。
(3)线段的中点到两端点的距离相等。
(4)线段的大小关系和它们的长度的大小关系是一致的。
中考数学复习----《图形初步认识之几何图形的认识》知识点总结与练习题(含答案解析)

中考数学复习----《图形初步认识之几何图形的认识》知识点总结与练习题(含答案解析)知识点总结1.几何图形的概念:从实物中抽象出的各种图形叫做几何图形。
有立体图形和平面图形两种。
2.立体图形:各部分不都在同一平面内的图形叫做立体图形。
3.平面图形:各部分都在同一平面内的图形叫做平面图形。
4.点、线、面、体之间的关系:点动成线,线动成面,面动成体。
面可以通过移动和旋转两种方式得到体。
练习题1.(2022•北京)下面几何体中,是圆锥的为()A.B.C.D.【分析】简单几何体的识别.【解答】解:A是圆柱;B是圆锥;C是三棱锥,也叫四面体;D是球体,简称球;故选:B.2.(2022•河北)①~④是由相同的小正方体粘在一起的几何体,若组合其中的两个,恰是由6个小正方体构成的长方体,则应选择()A.①③B.②③C.③④D.①④【分析】根据组合后的几何体是长方体且由6个小正方体构成直接判断即可.【解答】解:由题意知,组合后的几何体是长方体且由6个小正方体构成,∴①④符合要求,故选:D.3.(2022•柳州)如图,将矩形绕着它的一边所在的直线l旋转一周,可以得到的立体图形是()A.B.C.D.【分析】根据“面动成体”进行判断即可.【解答】解:将矩形绕着它的一边所在的直线l旋转一周,可以得到圆柱体,故选:B.4.(2022•自贡)如图,将矩形纸片ABCD绕边CD所在直线旋转一周,得到的立体图形是()A.B.C.D.【分析】将矩形纸片ABCD绕边CD所在直线旋转一周,可知上面和下面都是平面,所以得到的立体图形是圆体.【解答】解:根据“点动成线,线动成面,面动成体”,将矩形纸片ABCD绕边CD所在直线旋转一周,所得到的立体图形是圆柱.故选:A.本课结束。
中考数学专题复习——图形认识初步(详细答案)

中考数学专题复习——图形认识初步一.选择题(共16小题)1.(2018•南京)用一个平面去截正方体(如图),下列关于截面(截出的面)的形状的结论:①可能是锐角三角形;②可能是直角三角形;③可能是钝角三角形;④可能是平行四边形.其中所有正确结论的序号是()A.①②B.①④C.①②④D.①②③④2.(2018•内江)如图是正方体的表面展开图,则与“前”字相对的字是()A.认B.真C.复D.习3.(2018•长沙)将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是()A.B.C.D.4.(2018•陕西)如图,是一个几何体的表面展开图,则该几何体是()A.正方体B.长方体C.三棱柱D.四棱锥5.(2018•河北)如图,快艇从P处向正北航行到A处时,向左转50°航行到B 处,再向右转80°继续航行,此时的航行方向为()A.北偏东30°B.北偏东80°C.北偏西30°D.北偏西50°6.(2018•滨州)若数轴上点A、B分别表示数2、﹣2,则A、B两点之间的距离可表示为()A.2+(﹣2)B.2﹣(﹣2)C.(﹣2)+2 D.(﹣2)﹣2 7.(2018•大庆)将正方体的表面沿某些棱剪开,展成如图所示的平面图形,则原正方体中与“创”字所在的面相对的面上标的字是()A.庆B.力C.大D.魅8.(2018•河南)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我9.(2018•无锡)下面每个图形都是由6个边长相同的正方形拼成的图形,其中能折叠成正方体的是()A.B.C.D.10.(2018•白银)若一个角为65°,则它的补角的度数为()A.25°B.35°C.115° D.125°11.(2018•天门)如图是某个几何体的展开图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥12.(2018•烟台)由5个棱长为1的小正方体组成的几何体如图放置,一面着地,两面靠墙.如果要将露出来的部分涂色,则涂色部分的面积为()A.9 B.11 C.14 D.1813.(2018•徐州)下列平面展开图是由5个大小相同的正方形组成,其中沿正方形的边不能折成无盖小方盒的是()A.B.C.D.14.(2018•德州)如图,将一副三角尺按不同的位置摆放,下列方式中∠α与∠β互余的是()A.图①B.图②C.图③D.图④15.(2018•台湾)如图为一直棱柱,其底面是三边长为5、12、13的直角三角形.若下列选项中的图形均由三个矩形与两个直角三角形组合而成,且其中一个为如图的直棱柱的展开图,则根据图形中标示的边长与直角记号判断,此展开图为何?()A. B.B.C. D.16.(2018•北京)下列几何体中,是圆柱的为()A.B. C.D.二.填空题(共4小题)17.(2018•昆明)如图,过直线AB上一点O作射线OC,∠BOC=29°18′,则∠AOC的度数为.18.(2018•临安区)马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子(添加所有符合要求的正方形,添加的正方形用阴影表示).19.(2018•大庆)已知圆柱的底面积为60cm2,高为4cm,则这个圆柱体积为cm3.20.(2018•黔南州)∠α=35°,则∠α的补角为度.答案详解一.选择题(共16小题)1.(2018•南京)用一个平面去截正方体(如图),下列关于截面(截出的面)的形状的结论:①可能是锐角三角形;②可能是直角三角形;③可能是钝角三角形;④可能是平行四边形.其中所有正确结论的序号是()A.①②B.①④C.①②④D.①②③④【分析】正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.因此截面的形状可能是:三角形、四边形、五边形、六边形.【解答】解:用平面去截正方体,得的截面可能为三角形、四边形、五边形、六边形,而三角形只能是锐角三角形,不能是直角三角形和钝角三角形.故选:B.2.(2018•内江)如图是正方体的表面展开图,则与“前”字相对的字是()A.认B.真C.复D.习【分析】由平面图形的折叠及正方体的展开图解题.对于正方体的平面展开图中相对的面一定相隔一个小正方形.【解答】解:由图形可知,与“前”字相对的字是“真”.故选:B.3.(2018•长沙)将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是()A.B.C.D.【分析】根据面动成体以及圆台的特点进行逐一分析,能求出结果.【解答】解:绕直线l旋转一周,可以得到圆台,故选:D.4.(2018•陕西)如图,是一个几何体的表面展开图,则该几何体是()A.正方体B.长方体C.三棱柱D.四棱锥【分析】由展开图得这个几何体为棱柱,底面为三边形,则为三棱柱.【解答】解:由图得,这个几何体为三棱柱.故选:C.5.(2018•河北)如图,快艇从P处向正北航行到A处时,向左转50°航行到B 处,再向右转80°继续航行,此时的航行方向为()A.北偏东30°B.北偏东80°C.北偏西30°D.北偏西50°【分析】根据平行线的性质,可得∠2,根据角的和差,可得答案.【解答】解:如图,AP∥BC,∴∠2=∠1=50°.∠3=∠4﹣∠2=80°﹣50°=30°,此时的航行方向为北偏东30°,故选:A.6.(2018•滨州)若数轴上点A、B分别表示数2、﹣2,则A、B两点之间的距离可表示为()A.2+(﹣2)B.2﹣(﹣2)C.(﹣2)+2 D.(﹣2)﹣2【分析】根据数轴上两点间距离的定义进行解答即可.【解答】解:A、B两点之间的距离可表示为:2﹣(﹣2).故选:B.7.(2018•大庆)将正方体的表面沿某些棱剪开,展成如图所示的平面图形,则原正方体中与“创”字所在的面相对的面上标的字是()A.庆B.力C.大D.魅【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“建”与“力”是相对面,“创”与“庆”是相对面,“魅”与“大”是相对面.故选:A.8.(2018•河南)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“的”与“害”是相对面,“了”与“厉”是相对面,“我”与“国”是相对面.故选:D.9.(2018•无锡)下面每个图形都是由6个边长相同的正方形拼成的图形,其中能折叠成正方体的是()A .B .C .D .【分析】利用正方体及其表面展开图的特点解题.能组成正方体的“一,四,一”“三,三”“二,二,二”“一,三,二”的基本形态要记牢.【解答】解:能折叠成正方体的是故选:C .10.(2018•白银)若一个角为65°,则它的补角的度数为( )A .25°B .35°C .115°D .125°【分析】根据互为补角的两个角的和等于180°列式进行计算即可得解.【解答】解:180°﹣65°=115°.故它的补角的度数为115°.故选:C .11.(2018•天门)如图是某个几何体的展开图,该几何体是( )A .三棱柱B .三棱锥C .圆柱D .圆锥【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【解答】解:观察图形可知,这个几何体是三棱柱.故选:A .12.(2018•烟台)由5个棱长为1的小正方体组成的几何体如图放置,一面着地,两面靠墙.如果要将露出来的部分涂色,则涂色部分的面积为()A.9 B.11 C.14 D.18【分析】由涂色部分面积是从上、前、右三个方向所涂面积相加,据此可得.【解答】解:由图可知涂色部分是从上、前、右三个方向所涂面积相加,即涂色部分面积为4+4+3=11,故选:B.13.(2018•徐州)下列平面展开图是由5个大小相同的正方形组成,其中沿正方形的边不能折成无盖小方盒的是()A.B.C.D.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:由四棱柱四个侧面和上下两个底面的特征可知,A,C,D选项可以拼成一个正方体,而B选项,上底面不可能有两个,故不是正方体的展开图.故选:B.14.(2018•德州)如图,将一副三角尺按不同的位置摆放,下列方式中∠α与∠β互余的是()A.图①B.图②C.图③D.图④【分析】根据平角的定义,同角的余角相等,等角的补角相等和邻补角的定义对各小题分析判断即可得解.【解答】解:图①,∠α+∠β=180°﹣90°,互余;图②,根据同角的余角相等,∠α=∠β;图③,根据等角的补角相等∠α=∠β;图④,∠α+∠β=180°,互补.故选:A.15.(2018•台湾)如图为一直棱柱,其底面是三边长为5、12、13的直角三角形.若下列选项中的图形均由三个矩形与两个直角三角形组合而成,且其中一个为如图的直棱柱的展开图,则根据图形中标示的边长与直角记号判断,此展开图为何?()A. B.C.D.【分析】三棱柱的侧面展开图是长方形,底面是三角形,据此进行判断即可.【解答】解:A选项中,展开图下方的直角三角形的斜边长为12,不合题意;B选项中,展开图上下两个直角三角形中的直角边不能与其它棱完全重合,不合题意;C选项中,展开图下方的直角三角形中的直角边不能与其它棱完全重合,不合题意;D选项中,展开图能折叠成一个三棱柱,符合题意;故选:D.16.(2018•北京)下列几何体中,是圆柱的为()A.B. C.D.【分析】根据立体图形的定义及其命名规则逐一判断即可.【解答】解:A、此几何体是圆柱体;B、此几何体是圆锥体;C、此几何体是正方体;D、此几何体是四棱锥;故选:A.二.填空题(共4小题)17.(2018•昆明)如图,过直线AB上一点O作射线OC,∠BOC=29°18′,则∠AOC的度数为150°42′.【分析】直接利用度分秒计算方法得出答案.【解答】解:∵∠BOC=29°18′,∴∠AOC的度数为:180°﹣29°18′=150°42′.故答案为:150°42′.18.(2018•临安区)马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子(添加所有符合要求的正方形,添加的正方形用阴影表示).【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:,故答案为:.19.(2018•大庆)已知圆柱的底面积为60cm2,高为4cm,则这个圆柱体积为240cm3.【分析】根据圆柱体积=底面积×高,即可求出结论.【解答】解:V=S•h=60×4=240(cm3).故答案为:240.20.(2018•黔南州)∠α=35°,则∠α的补角为145度.【分析】根据两个角的和等于180°,则这两个角互补计算即可.【解答】解:180°﹣35°=145°,则∠α的补角为145°,故答案为:145.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新中考数学总复习专题练习“几何图形的初步认识一、选择题1.下列图形属于平面图形的是(A.长方体B.圆锥体【答案】D2.下列语句中正确的是()A.两点之间直线的长度叫做这两点间的距离C.两点之间线的长度叫做这两点间的距离【答案】D3.把一块直尺与一块三角板如图放置,若Zl=40°,则Z2的度数为()【答案】B5.如图,A ABC中BD、CD平分ZABC、ZACB过D作直线平行于BC,交AB、AC于E、F,当ZA的位置及大小变化时,线段EF和BE+CF的大小关系是()A.1250B.12O0C.1400D.13O0【答案】D若ZC=50°,则ZAED=()C.125°D. 130°C.圆柱体D.圆B.两点之间的线段叫做这两点之问的距离D.两点之间线段的长度叫做这两点问的距离【答案】A6. 如图,在ZkABC^4, ZB 二46。
,ZC=54°, AD 平分ZBAC,交 BC 于 D, DE 〃AB,交 AC 于 E,则Z 【答案】C7•如图,两个直角ZAOB, ZCOD 有相同的顶点6下列结论:①ZAOC 二ZBOD ;②ZAOC+ZBOD 二90。
; 则OB 平分ZCOD ;④ZAOD 的平分线与ZCOB 的平分线是同一条射线.其中正【答案】BA. EF=BE+CFB. EF>BE+CFC. EF<BE+CF D ・不能确定A. 45°B. 54°C. 40°D. 50°③若OC 平分ZAOB,B.2个C.3个D.4个不能判断直线a//b 的是(B. Z2=Z3C. Z4=Z5D. Z2+Z4=180° 9•如图,将三角尺的直角顶点放在直尺的一边上, Zl=30°, Z2=50°, 则Z3的度数等于()B. 30°C. 20°D. 15°ADE 的大小是( )确的个数有()BA. 50°【答案】c10.在A ABC 中,ZABC=ZC=2ZA, BD 是ZABC 的平分线,DE 〃BC,则图中等腰三角形的个数是( )【答案】D11.如图,己知1]〃12〃13 ,相邻两条平行直线间的距离相等,若等腰直角AABC 的三个顶点分别在这三条平行直线上,则sina 的值是()12•如图,小军同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现彖的数学知识是()【答案】DB. 3C.4D. 5c 410C •经过两点,有且仅有一条直线B.经过一点有无数条直线D •两点之间,线段最短A. 2【答案】DA.垂线段最短二.填空题13•如图,一束平行太阳光照射到正五边形上,若Zl=46%则Z2= _________【答案】26°14.如图是一个时钟的钟面,8: 00时的分针与时针所成的Zct的度数是【答案】120°15.如果Za和Z卩互补,且Za>Zp,则下列表示角的式子中:①90° - Zp; ®Za - 90°;③|(厶+Z卩);④+ (Za- Zp)・能表示Z卩的余角的是___________ (填写序号)【答案】①②④16. ________________________________________________________________ 如图,直线MN分别交直线AB, CD于E, F,其中,ZAEF的对顶角是Z ________________________________ , ZBEF的同位角17.如图,直线厶〃h,且“与D的距离为1,D与人的距离为2,等腰AABC的顶点分别在直线",H,‘3上,AB=AC, ZBAO120。
,则等腰三角形的底边长为________________ °【答案】6点,2 2血7, 2阿.1&若一圆锥的轴截面是等边三角形,则其侧面展开图的圆心角是【答案】180°20•如图,边长为4的等边三角形ABC中,E是对称轴AD±的一个动点,连接EC,将线段EC绕点C逆DF的最小值是【答案】1Z1=Z2,直线AE与DC平行吗?请说明理由.三.解答题理由如下:VAB/7DE (已知),答:AE〃DC;AZ1 = Z3 内错角相等),(两直线平行,VZ1 = Z2 (己知),AZ2=Z3 (等量代换),:.AE//DC(内错角相等, 两直线平行).E(1) 如图(1),若ZAOB=130°,求ZEOF 的度数;(2) 若ZAOB=a, 90°<a<180°,求ZEOF 的度数;(3) 若ZAOB=a, 0°<a<90°,请在图(2)中画出射线OF,使得(2)中ZEOF 的结果仍然成立.(1) 解:VZAOB=130°, E0 是ZAOB 的平分线,・・・= g 厶」。
〃=扌X 130=65。
,VOB 丄 OF, ••• ZBOF=90°, ••• ZAOF=ZAOB - ZBOF=130° 一 90。
二40。
,CD 与AE 相交于F, ZCFE=ZE.求证:AD 〃BC ・证明:7AE 平分ZBAD, AZ1 = Z2,VAB/7CD, ZCFE=ZE,AZ1 = ZCFE=ZE,AZ2=ZE,23 •如图,已知 AE 平分 ZBAC, BE 丄 AE 于 E, ED//AC, ZBAE=42°,求 ZBED 的度数.VAE 平分 ZB AC?. ZCAE=ZBAE=42°又 VED/7ACAZAED=180° - ZCAE=180° - 42°=138°••• ZBED=360° - ZAEB - ZAED=132°24.0为直线DA 上一点,OB 丄OF, EO 是ZAOB 的平分线.••• ZEOF=ZAOE - ZAOF=65° - 40°=25°(2) 解:V ZAOB=a, 90°<a<180°, EO 是ZAOB 的平分线, /. ZAOE=梟,T ZBOF=90°, •I ZAOF=a - 90°,・•・ ZEOF=ZAOE ・ ZAOF= (a ・90°) =90ya(3) 解:如图,V ZAOB=a, 0°<a<90°,.•.ZBOE=ZAOE= ••• ZBOF=90°,・・・ ZEOF=ZBOF - ZBOE=90。
- 如・如图①,图形1外一点P 与图形丨上各点连接的所有线段中,若线段PA|最短,则线段PA 】的长度称为点解决问题: 如图③,平而直角坐标系xOy 中,点A 、B 的坐标分别为(8, 4) ,(12, 7),点P 从原点O 出发,以 每秒1个单位长度的速度向x 轴正方向运动了 t 秒.(1)当匸4时,求点P 到线段AB 的距离;(2) t 为何值时,点P 到线段AB 的距离为5? (3) t 满足什么条件时,点P 到线段AB 的距离不超过6?(直接写出此小题的结果)t-B图③ 例如:图②屮,线段PiA 的长度是点R 到线段AB 的距离;线段P2H 的长度是点P2到线段AB 的距离. 备用图P 到图形1的距离. A图② AB 25. (2017-泰州)阅读理解:【答案】(1)解:如图1,作AC丄x轴于点C,贝IJAC=4、OC=8,当匸4时,0P=4,APC=4,・••点P到线段AB的距离PA= ^PC2+JC2= ^42+42 =4五;交y轴于点D,①当点P位于AC左侧时,VAC=4. PiA=5,・・・PU 3/- Q二梓_¥ =3,A0Pi=5,即t=5;②当点P位于AC右侧时,过点A作AP2丄AB,交x轴于点P2 , AZCAP2+ZEAB=90%•••BD〃x 轴、AC丄x 轴,ACE 丄BD,AZACP2=ZBEA=90°,AZEAB+ZABE=90°,AZABE=ZP2AC,在厶ACP2和厶BEA中,[Z ACP. = ^BEA= 90°・・• {AC = BE = 4,I z P2AC = LABEAAACP2^ABEA (ASA),AP2=BA= + BE"~二(3= + 4二=5,而此时P2C=AE=3,①当点P位于AC左侧,且AP3=6时,则P3O ^AP^. — AC~ =_ 4, =2 £,:.OP3=OC - P3C=8 - 2 $②当点P位于AC右侧,且P3M=6时,过点匕作P2N丄P3M于点N,则四边形AP2NM是矩形,A ZAP2N=90°, ZACP2=ZP2NP3=90O, AP2=MN=5,・・・ AACP2^AP2NP3 , 且NP3=1,・圮V 丄3・•兀耳一丽p卩P2P^ 1'/. P2P3=号,・•・OP3=OC+CP2+P?P3=8+3+ |= y ,・••当8 - 2 ^5<t<普吋,点P到线段AB的距离不超过6.。